ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录

李平, 朱涛, 吕鹏瑞, 王洪亮, 陈隽璐

李平,朱涛,吕鹏瑞,等. 西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录[J]. 西北地质,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146
引用本文: 李平,朱涛,吕鹏瑞,等. 西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录[J]. 西北地质,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146
LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146
Citation: LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146

西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录

基金项目: 中国地质调查局项目(DD20243439、DD20240073、DD20230228、12120114020501), 陕西省自然科学基础研究计划(2023-JC-YB-268、2023-JC-ZD-15、2022JM-149)和国家自然科学基金(40872061、41502061)联合资助。
详细信息
    作者简介:

    李平(1983−),男,正高级工程师,从事岩浆岩石学研究和地质矿产调查工作。E–mail:gogogis@qq.com

  • 中图分类号: P581

Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean

  • 摘要:

    相对于西天山晚古生代—中生代广泛存在的岩浆事件,其天山早古生代初期地质记录保存较少,此在很大程度上制约了学界对于亚洲洋早期演化的认识。此次选取的夏特辉长岩位于中天山南缘构造混杂岩带北侧,LA-ICPMS锆石U-Pb测年结果为(523±5)Ma,属早寒武世,其与中天山早古生代岩浆活动构成有“ 西早–东晚” 的时空分布特征,从而在一定程度上奠定了西天山“西早–东晚”的剪刀差式闭合事件。夏特辉长岩为钠质的钙碱性系列,岩石地球化学特征反映其形成过程中经历有橄榄石、尖晶石等矿物的分离结晶以及斜长石的堆晶作用。该辉长岩富集大离子亲石元素、亏损高场强元素,构造岩浆环境判别图解也进一步指示其为弧岩浆作用的产物。锆石Hf同位素特征具有正的εHf(t) 值(+1.47 ~+11.91),显示出亏损地幔的物质源区。此外,较高的Th/Nb原始地幔标准化比值和较低的Nb/La值,暗示了岩浆形成过程中存有俯冲物质的卷入。夏特辉长岩的形成表明南天山洋在早寒武世已经开始向中天山地块之下俯冲,伴随着中天山地块的俯冲、消减,沿中天山地块周缘于早寒武世已经形成有陆缘弧岩浆体系。

    Abstract:

    Compared with the widespread magmatic events between the late Paleozoic and the early Mesozoic in Western Tianshan, the intrusive magmatic record of the early Paleozoic are preserved less, which conatrained our understanding on the early evolution of the Asian Ocean. Xiate gabbro is exposed in the north of the Southern Margin of the Central Tianshan, and zircon LA-ICPMS U-Pb dating shows that the formation age is 523±5 Ma, suggesting the Early Cambrian emplacement. Combined with the research on the regional igneous rocks, we believe that the Paleozoic subduction of the Paleo-Asian Ocean initiated in the west and then gradually expanded to the east, which may lay the foundation for the scissors closure (earlier in the west and later in the east) of the Tianshan Ocean. The geochemical characteristics of the Sodium and calcium alkaline rocks studied show that they have experienced the fractional crystallization of olivine, spinels, and the cumulation of plagioclase during their formation. The gabbro is a sodic and calc-alkaline series rocks, rich in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). Discrimination diagrams of tectonic magmatic environment indicate that it is a product of arc magmatism. The ε Hf (t) values range from +1.47 to +11.91, indicating a distinct mantle material source; the higher (Th/Nb)PM and lower Nb/La ratios imply the involvement of subduction materials during magmatic evolution. The formation age and petrogenetic characteristics of the Xiate gabbro indicate that the South Tianshan Ocean began to subduct towards the Central Tianshan Block in the Early Cambrian, and the initial arc magmatism was formed during the tectonic event.

  • 图  1   中国西天山地质简图(a)(据Gao et al., 2009; Xu et al., 2013修)和夏特地区地质图(b)(据新疆维吾尔自治区地质局区域地质调查大队, 1981; Qian et al., 2009修)

    Figure  1.   (a) Simplified geological map of Chinese western Tianshan and (b) the geological map of the Xiate

    图  2   夏特辉长岩的野外产出及镜下特征

    a.辉长岩野外露头;b.辉长岩结构;c.正交偏光(CPL)矿物组成特征;d.单偏光(PPL)矿物组成特征;Pl.斜长石;Cpx.单斜辉石;Hbl.角闪石;Ep.绿帘石

    Figure  2.   Outcrops and micro-structure features for the Xiate grabbo

    图  3   夏特辉长岩锆石阴极发光照片(圆圈为测试位置,数字为测试点号)

    Figure  3.   Cathodoluminescence (CL) images of typical zircons from the Xiate gabbro

    图  4   夏特辉长岩锆石LA-ICPMS U-Pb同位素年龄谐和图(a)及加权平均年龄图(b)

    Figure  4.   (a) Zircon U-Pb age Concordia diagram and (b) the weighted average age diagram for Xiate grabbo

    图  5   夏特辉长岩SiO2-(Na2O+K2O) 图解(a)(Irvine et al, 1971; Middlemost, 1994)和SiO2-FeOT/MgO图解(b)(Miyashiro, 1975

    Figure  5.   (a) SiO2 versus Na2O+K2O Diagram and (b) SiO2-FeOT/MgO Diagram for Xiate grabbo

    图  6   稀土元素球粒陨石标准化图解(a)和微量元素原始地幔标准化图解(b)(标准化数据均自Sun et al., 1989)

    Figure  6.   (a) Chondrite-normalized REE distribution patterns and (b) Primitive mantle-normalized multi-element variation diagram for the Xiate grabbo

    图  7   西天山夏特辉长岩Mg#—多元素含量协变图

    Figure  7.   the covariant diagram of Mg # versus multi-elements for Xiate hornblende gabbro

    图  8   夏特辉长岩εHf(t)-t图 (a) 和 176Hf/177Hf-t图 (b)

    Figure  8.   (a) εHf(t) versus t Diagram and (b) 176Hf/177Hf versus t Diagram for the Xiate grabbo

    图  9   夏特辉长岩构造环境判别图

    a.Hf/3-Th-Nb/16图(Pearce, 1983); b.TiO2-10×MnO-10×P2O5图(Mullen, 1983);c.Ta/Yb-Th/Yb(Wood, 1980 );d. Sm/La-Th/La图(McCarthy et al., 2021

    Figure  9.   Geotectonic discrimation diagrams for the Xiate grabbo

    图  10   中天山南缘地区早古生代早期构造岩浆模式图

    Figure  10.   Tectonic magmatic model of the south margin of the Central Tianshan mountains in the Early Paleozoic

    表  1   夏特辉长角闪石岩 LA-ICPMS 锆石 U-Pb 定年测试数据

    Table  1   Zircon La-ICPMS U-Pb analytical data of the Xiate gabbro

    样品 比值 年龄(Ma) 组成(×10−6 Th/U
    207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 204Pb 206Pb 207Pb 208Pb 232Th 238U
    10XT01-01 0.0623 0.0028 0.71412 0.02924 0.08311 0.00219 0.02627 0.00082 684 45 547 17 515 13 524 16 0 173.21 40.34 518.80 940.69 868.61 1.08
    10XT01-03 0.0586 0.00283 0.69377 0.03079 0.08584 0.00229 0.02616 0.00085 552 52 535 18 531 14 522 17 45.09 138.86 31.02 343.95 628.35 672.61 0.93
    10XT01-04 0.06604 0.00315 0.77993 0.03414 0.08563 0.00229 0.03049 0.00108 808 49 585 19 530 14 607 21 36.71 127.20 31.92 171.75 265.41 617.16 0.43
    10XT01-05 0.05859 0.00309 0.68918 0.03377 0.0853 0.00231 0.02511 0.00087 552 61 532 20 528 14 501 17 0 112.90 24.93 253.24 495.69 563.28 0.88
    10XT01-06 0.05666 0.00374 0.66858 0.04165 0.08556 0.00244 0.0254 0.00103 478 88 520 25 529 14 507 20 0 67.49 14.86 142.22 262.07 335.28 0.78
    10XT01-07 0.05824 0.00283 0.68717 0.03072 0.08557 0.00228 0.02557 0.00088 539 53 531 18 529 14 510 17 0 144.87 32.33 253.11 474.13 703.62 0.67
    10XT01-08 0.05875 0.00265 0.69429 0.02843 0.0857 0.00225 0.02609 0.00085 558 46 535 17 530 13 521 17 3.95 208.02 46.05 395.91 719.86 1007.33 0.71
    10XT01-09 0.05836 0.00314 0.68957 0.03451 0.08568 0.00232 0.02512 0.00089 543 63 533 21 530 14 501 18 50.93 114.31 25.59 260.77 504.86 565.03 0.89
    10XT01-11 0.05707 0.00337 0.66172 0.0365 0.08408 0.00233 0.02531 0.00098 494 73 516 22 520 14 505 19 0 73.67 16.73 143.46 272.58 366.21 0.74
    10XT01-14 0.06276 0.00317 0.71896 0.03339 0.08307 0.00223 0.02585 0.00088 700 55 550 20 514 13 516 17 38.42 222.70 52.82 712.09 1350.88 1136.37 1.19
    10XT01-15 0.06023 0.00322 0.6766 0.03344 0.08147 0.00221 0.02378 0.00082 612 61 525 20 505 13 475 16 0 138.97 32.55 480.61 943.80 717.13 1.32
    10XT01-16 0.05988 0.00312 0.68814 0.03307 0.08333 0.00224 0.02549 0.00091 599 59 532 20 516 13 509 18 32.74 106.48 24.33 273.43 518.86 529.13 0.98
    10XT01-17 0.05833 0.00303 0.68165 0.03255 0.08474 0.00227 0.02538 0.0009 542 59 528 20 524 13 507 18 6.56 129.47 29.56 375.78 694.03 630.93 1.1
    10XT01-18 0.05961 0.00331 0.69006 0.03553 0.08394 0.00229 0.02585 0.00097 589 65 533 21 520 14 516 19 31.67 95.15 21.92 227.71 425.71 469.38 0.91
    10XT01-19 0.06089 0.00392 0.7208 0.04356 0.08584 0.00244 0.02597 0.00104 635 82 551 26 531 14 518 20 0 50.04 12.35 141.99 264.08 242.38 1.09
    10XT01-20 0.06152 0.00378 0.71367 0.04095 0.08413 0.00236 0.02633 0.00109 657 76 547 24 521 14 525 21 22.11 65.99 15.76 130.72 247.99 334.09 0.74
    10XT01-22 0.06039 0.00338 0.71072 0.03681 0.08534 0.00233 0.02629 0.00099 618 66 545 22 528 14 525 19 3.97 116.51 26.88 531.74 974.88 567.21 1.72
    10XT01-23 0.05924 0.00361 0.70792 0.04018 0.08666 0.00241 0.0276 0.00112 576 76 544 24 536 14 550 22 8.80 87.68 20.21 243.98 426.10 421.75 1.01
    10XT01-24 0.05834 0.00364 0.67331 0.03916 0.08369 0.00234 0.02617 0.0011 543 79 523 24 518 14 522 22 6.30 87.32 21.28 195.61 366.56 436.64 0.84
    10XT01-27 0.05926 0.00358 0.69413 0.03886 0.08494 0.00236 0.02528 0.00105 577 74 535 23 526 14 505 21 0 91.82 21.04 283.90 542.23 448.34 1.21
    10XT01-28 0.06049 0.00347 0.69389 0.03671 0.08318 0.00228 0.02621 0.00107 621 68 535 22 515 14 523 21 10.14 130.16 29.37 428.91 790.50 641.71 1.23
    10XT01-29 0.06065 0.00384 0.71196 0.042 0.08513 0.0024 0.02671 0.00115 627 79 546 25 527 14 533 23 14.08 78.48 19.14 229.51 412.28 377.53 1.09
    下载: 导出CSV

    表  2   夏特辉长岩锆石Hf同位素组分表

    Table  2   Zircons Hf isotopic compositions for the Xiate gabbro

    样品176Yb/177Hf176Lu/177Hf176Hf/177Hf176Hf/177HfεHf(0)εHf(tTDM1(Hf)fLu/Hf
    10XT01-020.053820.0019360.2827370.2827140.000028−2.058.8782−0.94
    10XT01-030.0415860.0014250.282620.2825970.000022−6.194.84939−0.96
    10XT01-040.0442780.001740.2827950.2827720.000025−0.0110.92695−0.95
    10XT01-050.0200270.0006780.2825880.2825650.000021−7.333.96965−0.98
    10XT01-060.0170060.0006310.2827140.2826910.000019−2.878.44788−0.98
    10XT01-070.0208140.0007790.2827830.282760.000018−0.4210.84694−0.98
    10XT01-080.0244050.0008530.2827990.2827760.000020.1311.37673−0.97
    10XT01-090.0254080.0009280.282690.2826670.000023−3.77.51827−0.97
    10XT01-100.0349560.0012530.2827480.2827250.00003−1.669.43753−0.96
    10XT01-110.0140020.0005080.2826680.2826450.000018−4.56.85850−0.98
    10XT01-120.0210020.0007690.282810.2827870.0000230.5411.81655−0.98
    10XT01-130.0289950.0009810.2827210.2826980.000029−2.618.58785−0.97
    10XT01-150.0238460.000840.2827990.2827760.0000230.1611.4672−0.97
    10XT01-160.0468490.0016360.2827790.2827560.000029−0.5810.38716−0.95
    10XT01-170.0584280.0020520.2826290.2826050.000035−5.894.92942−0.94
    10XT01-180.036250.0012550.2827960.2827730.0000280.0311.13684−0.96
    10XT01-190.062740.0021170.2825650.2825420.000035−8.142.651036−0.94
    10XT01-200.0131120.0004890.2827860.2827630.000031−0.3311.03685−0.99
    10XT01-210.0539370.0019390.2825990.2825760.000041−6.923.93982−0.94
    10XT01-220.0250450.0009470.2827580.2827350.000032−1.39.9732−0.97
    10XT01-230.0207440.0007620.2827510.2827280.000044−1.579.69739−0.98
    10XT01-240.0249520.0008960.2827320.2827090.000023−2.248.98769−0.97
    10XT01-250.0281150.0009330.282720.2826970.000032−2.668.54786−0.97
    10XT01-260.0324190.001090.2826980.2826750.000036−3.447.71821−0.97
    10XT01-270.0524590.0018580.2828240.2828010.0000421.0211.91655−0.94
    10XT01-280.0626450.0019850.2825510.2825280.000038−8.642.191053−0.94
    10XT01-300.0456560.0015510.2827190.2826960.000036−2.688.31800−0.95
    下载: 导出CSV

    表  3   夏特辉长岩主量元素(%)和微量元素(10−6)分析结果

    Table  3   Major elements (%) and trace elements (10−6) compositions of the Xiate gabbro

    样品号 10XT01-1 10XT01-3 10XT01-5 10XT01-6 10XT01-7
    SiO2 49.57 49.20 49.25 50.54 49.52
    Al2O3 16.86 17.10 16.15 17.39 17.02
    Fe2O3 1.16 0.94 1.39 1.37 1.71
    FeO 4.59 5.28 4.98 4.47 5.00
    Fe2O3T 6.26 6.81 6.92 6.34 7.27
    CaO 13.19 12.89 12.44 11.04 11.48
    MgO 9.36 9.89 9.85 8.06 8.88
    K2O 0.34 0.31 0.71 0.95 0.90
    Na2O 1.69 1.77 1.69 2.46 1.84
    TiO2 0.26 0.27 0.29 0.42 0.35
    P2O5 0.04 0.03 0.03 0.05 0.05
    MnO 0.11 0.11 0.12 0.11 0.12
    LOI 2.74 2.14 2.98 2.99 3.04
    Total 99.91 99.93 99.88 99.85 99.91
    Cu 144.0 59.0 73.3 97.7 65.3
    Pb 28.2 11.5 36.4 5.85 9.06
    Zn 38.6 34.3 66.4 48.5 47.1
    Cr 769 617 689 579 463
    Ni 146 149 141 106 108
    Co 38.2 36.5 38.0 31.8 37.3
    Li 8.6 4.65 11.0 18.6 12.6
    Rb 11.9 8.91 22.2 29.2 26.0
    Cs 0.55 0.41 0.70 1.09 0.96
    Mo 0.35 0.62 0.34 0.36 0.25
    Sr 193 162 159 175 212
    Ba 74.6 53.8 106 172 161
    V 152 138 164 170 136
    Sc 38.0 34.5 38.2 37.5 31.8
    Nb 0.65 0.87 0.52 1.18 1.43
    Ta 0.27 0.40 0.26 0.21 0.34
    Zr 13.1 14.3 9.51 23.7 24.2
    Hf 0.48 0.44 0.34 0.76 0.72
    Ga 11.4 11.5 11.2 11.5 11.9
    U 0.13 0.10 0.05 0.11 0.14
    Th 0.67 0.70 0.31 0.59 0.64
    La 1.61 1.45 0.91 2.46 2.31
    Ce 3.47 4.17 2.25 5.40 5.16
    Pr 0.48 0.46 0.40 0.73 0.69
    Nd 2.39 2.22 1.98 3.94 3.16
    Sm 0.76 0.75 0.72 1.01 0.94
    Eu 0.37 0.33 0.39 0.53 0.47
    注:Mg#=mol MgO/(MgO+FeOtot), FeOtot=FeO+0.89Fe2O3(扣除烧失量后),表中标准化数据引自Sun et al. (1989)
    下载: 导出CSV
    续表3
    样品号 10XT01-1 10XT01-3 10XT01-5 10XT01-6 10XT01-7
    Dy 1.28 1.35 1.39 1.77 1.51
    Ho 0.32 0.32 0.37 0.49 0.34
    Er 0.78 0.78 0.88 1.06 0.88
    Tm 0.14 0.13 0.17 0.22 0.15
    Yb 0.97 0.89 1.05 1.34 0.95
    Lu 0.12 0.11 0.13 0.17 0.13
    Y 7.77 7.93 8.90 11.50 9.02
    Mg# 74.98 74.43 74.04 71.83 71.02
    (La/Sm)N 1.37 1.25 0.82 1.57 1.59
    (Gd/Yb)N 0.80 1.03 0.78 0.99 1.07
    (La/Yb)N 1.20 1.18 0.63 1.33 1.76
    REE 21.57 22.19 20.73 32.54 27.15
    δEu 1.35 1.11 1.42 1.28 1.34
    Sr/Y 24.84 20.43 17.87 15.22 23.5
    Sr/Yb 198.97 182.02 151.43 130.6 223.16
     注:Mg#=mol MgO/(MgO+FeOtot), FeOtot=FeO+0.89Fe2O3(扣除烧失量后),标准化数据引自Sun et al. (1989)
    下载: 导出CSV
  • 冯益民, 李智配, 陈隽璐, 等. 中国西北部大地构造图(1∶2 000 000)及说明书[M]. 北京: 地质出版社, 2021.
    高俊, 龙灵利, 钱青, 等. 南天山: 晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报, 2006, 225): 10491061.

    GAO Jun, LONG Lingli, QIAN Qing, et al. South Tianshan: a Late Paleozoic or a Triassic orogen?[J]. Acta Petrologica Sinica, 2006, 225): 10491061.

    李平, 王洪亮, 徐学义, 等. 西准噶尔早泥盆世马拉苏组火山岩岩石成因研究[J]. 岩石学报, 2014, 3012): 35533568.

    LI Ping, WANG Hongliang, XU Xueyi, et al. Petrogenesis of volcanic rocks from Early Devonian Marasu Formation, West Junggar[J]. Acta Petrologica Sinica, 2014, 3012): 35533568.

    李平, 徐学义, 王洪亮, 等. 中天山南缘那拉提碱性花岗岩岩石成因——来自锆石微量元素和Hf同位素的证据[J]. 地质通报, 2012, 3112): 19491964.

    LI Ping, XU Xueyi, WANG Hongliang, et al. Petrogenesis of Nalati alkali granites in South Central Tianshan Mountains: Evidence from zircon trace elements and Hf isotope[J]. Geological Bulletin of China, 2012, 3112): 19491964.

    李平. 中天山中西段古生代花岗岩成因及对天山洋陆转换时限的制约[D]. 西安: 长安大学, 2011.

    LI Ping. The Petrogenesis of Paleozoic Granites in the Middle and West Segment of the Central Tianshan and Constrain to the Process of the Ocean-continent Transition of the Tianshan [D]. Xi’an: Chang’an University, 2011.

    李舢, 王涛, 肖文交, 等. 中亚造山带东南缘从俯冲-增生到碰撞的构造-岩浆演化记录[J]. 岩石学报, 2023, 39(5): 1261-1275.

    LI Shan, WANG Tao, XIAO WenJiao, et al. Tectono-magmatic evolution from accretion to collision in the southern margin of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 2023, 39(5): 1261-1275.

    龙灵利, 高俊, 熊贤明, 等. 新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究[J]. 岩石学报, 2007, 234): 719732.

    LONG Lingli, GAO Jun, XIONG Xianming, et al. Geochemistry and geochronology of granitoids in Bikai region, southern Central-Tianshan mountains, Xinjiang[J]. Acta Petrologica Sinica, 2007, 234): 719732.

    钱青, 徐守礼, 何国琦, 等. 那拉提山北缘寒武纪玄武岩的元素地球化学特征及构造意义[J]. 岩石学报, 2007, 23(7): 1708-1720.

    QIAN Qing, XU Shouli, HE Guoqi, et al. Elemental geochemistry and tectonic significance of Cambrian basalts from basalts fron the northern side of the Nalati Mountain. Acta Petrologica Sinica, 2007, 23(7): 1708-1720.

    茹艳娇. 西天山大哈拉军山组火山岩地层序列、岩石成因与构造环境[D]. 西安: 长安大学, 2012.

    RU Yanjiao. The Stratigraphic Sequanence, Petrogenesis and Tectonic Setting of the Volcanic Rocks of the Dahalajunshan Formation, Western Tianshan Mountain, China [D]. Xi’an: Chang’an University, 2012.

    夏林圻, 夏祖春, 徐学义, 等. 天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J]. 西北地质, 2008, 414): 168.

    XIA Linqi, XIA Zuchun, XU Xueyi, et al. Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 414): 168.

    夏林圻, 夏祖春, 徐学义, 等. 天山岩浆作用[M]. 北京: 地质出版社, 2007.
    肖文交, 宋东方, WINDLEY BF, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 4910): 15121545.

    XIAO Wenjiao, SONG Dongfang, WINDLEY BF, et al. Research progresses of the accretionary processes andmetallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2019, 4910): 15121545.

    新疆维吾尔自治区地质局. 1∶20万汗腾格里峰幅(K-44XV)地质矿产图[R].1981.
    徐学义, 王洪亮, 马国林, 等. 西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志, 2010, 296): 691706.

    XU Xueyi, WANG Hongliang, MA Guolin, et al. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area, West Tianshan Mountains[J]. Acta Petrologica et Mineralogical, 2010, 296): 691706.

    徐义刚, 王强, 唐功建, 等. 弧玄武岩的成因: 进展与问题[J]. 中国科学(地球科学), 2020, 6312): 19691991.

    XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020, 6312): 19691991.

    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 564): 139.

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 564): 139.

    Allen M B, Windley B F, Zhang C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J]. Tectonophysics, 1993, 220: 89115. doi: 10.1016/0040-1951(93)90225-9

    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192: 5979. doi: 10.1016/S0009-2541(02)00195-X

    Belousova E, Griffin W, Oreilly S, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

    Blichert T, Albarède. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planet Science Letters, 1997, 148: 243258. doi: 10.1016/S0012-821X(97)00040-X

    Chen W, Zhang G, Ruan M, et al. Genesis of intermediate and silicic arc magmas constrained by Nb/Ta fractionation[J]. Journal of Geophysical Research Solid Earth, 2021, 126.

    Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research[J]. Lithos, 2005, 79: 271297. doi: 10.1016/j.lithos.2004.09.004

    Ewart A, Collerson K D, Regelous M, et al. Geochemical evolution within the Tonga–Kermadec–Lau arc–back-arc systems: the role of varying mantle wedge composition in space and time[J]. Journal of Petrology, 1998, 39: 331368. doi: 10.1093/petroj/39.3.331

    Frisch W, Meschede M, Blakey R. Plate tectonics: Continental drift and mountain building [M]. Berlin Heidelberg: Springer, 2011.

    Gao Jun, Long Lingli, Klemd R, et al. Tectonic evolution of the South Tianshan Orogen, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal Of Earth Sciences, 2009, 98: 12211238. doi: 10.1007/s00531-008-0370-8

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64: 133147. doi: 10.1016/S0016-7037(99)00343-9

    Handley H K, Macpherson C G, Davidson J P, et al. Constraining Fluid and Sediment to Subduction-Related Magmatism in Indonesia: IjenVolcanic Complex[J]. Journal of Petrology, 2007, 48: 11551183. doi: 10.1093/petrology/egm013

    Huang He, Wang Tao, Tong Ying, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103255. doi: 10.1016/j.earscirev.2020.103255

    Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90: 297314. doi: 10.1016/0012-821X(88)90132-X

    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523548. doi: 10.1139/e71-055

    Hoskin P, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Rev Mineral Geochem, 2003, 53: 2762.

    Lizuka T, Hirata T. Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220: 121137. doi: 10.1016/j.chemgeo.2005.03.010

    Long Lingli, Gao Jun, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos, 2011, 126: 321340. doi: 10.1016/j.lithos.2011.07.015

    Ludwig K R. User's Manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel[J]. Be rkeley Geochronological Center Special Publication, 2003, 4: 2532.

    Marini J C, Chauvel C, Maury R C. Hf isotope compositions of northern Luzonarc lavas suggest involvement of pelagic sediments in their source[J]. Contributions to Mineralogy and Petrology, 2005, 149: 216232. doi: 10.1007/s00410-004-0645-4

    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79: 124. doi: 10.1016/j.lithos.2004.04.048

    Mccarthy A, Yogodzinski G M, Bizimis M, et al. Volcaniclastic sandstones record the influence of subducted Pacific MORB on magmatism at the early Izu-Bonin arc[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2021, 296: 170188. doi: 10.1016/j.gca.2021.01.006

    Middlemost E A H. Naming materials in magma-igneous rock system[J]. Earth-Science Reviews, 1994, 7: 215224.

    Miyashiro A. Classification, characteristics, and origin of ophiolites[J]. The Journal of Geology, 1975, 83: 249281. doi: 10.1086/628085

    Mullen E D. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 1983, 62: 5362. doi: 10.1016/0012-821X(83)90070-5

    Niu Y L, O’Hara M J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle[J]. Lithos, 2009, 112: 117.

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[A]. In: Hawkesworth C J, Norry M J (eds.). Continental Basalts and Mantle Xenoliths[M]. Cambridge: Shiva Publishing Ltd., 1983.

    PLANK T. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents[J]. Journal of Petrology, 2005, 46: 921944. doi: 10.1093/petrology/egi005

    Qian Qing, Gao Jun, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U–Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal Of Earth Sciences, 2009, 98: 551569. doi: 10.1007/s00531-007-0268-x

    Scherer E, Münker C, Mezger K. Calibration of the Lutetium-Hafnium clock[J]. Science, 2001: 683687.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313345. doi: 10.1144/GSL.SP.1989.042.01.19

    Tang M, Lee C T A, Chen K, et al. Nb/Ta systematics in arcmagma differentiation and the role of arclogites in continent formation[J]. Nature Communications, 2019, 10: 235. doi: 10.1038/s41467-018-08198-3

    Wang Tao, Tong Ying, Huang He, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023, 237: 104298. doi: 10.1016/j.earscirev.2022.104298

    Windley B F, Alexeiev D, Xiao WJ, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 3147. doi: 10.1144/0016-76492006-022

    Wood D A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50: 1130. doi: 10.1016/0012-821X(80)90116-8

    Xia Linqi, Xu Xueyi, Xia Zuchun, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, Northwestern China[J]. Geol. Soc. Am. Bull., 2004, 116: 419433. doi: 10.1130/B25243.1

    Xia Linqi. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195212. doi: 10.1016/j.earscirev.2014.09.006

    Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102117. doi: 10.1016/j.jseaes.2007.10.008

    Xu Xueyi, Wang Hongliang, Li Ping, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution[J]. Journal Fwaof Asian Earth Sciences, 2013, 72: 3362. doi: 10.1016/j.jseaes.2012.11.023

    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasmas mass spectrometry[J]. Geostandard and Geoanalytical Research, 2004, 28: 353370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    Zhu M S, Yan H Y, Pastor G D, et al. Do microcontinents nucleate subduction initiation?[J]. Geology, 2023, 7: 668672.

图(10)  /  表(4)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  21
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-28
  • 修回日期:  2023-07-15
  • 录用日期:  2023-07-23
  • 网络出版日期:  2024-03-25

目录

    /

    返回文章
    返回