ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义

吴妍蓉, 周海, 赵国春, 韩以贵, 张东海, 王盟, 赵少伟, 裴先治, 赵千, Narantsetseg Tserendash, 耿红燕, Enkh-Orshikh Orsoo

吴妍蓉,周海,赵国春,等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质,2024,57(3):11−28. doi: 10.12401/j.nwg.2023152
引用本文: 吴妍蓉,周海,赵国春,等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质,2024,57(3):11−28. doi: 10.12401/j.nwg.2023152
WU Yanrong,ZHOU Hai,ZHAO Guochun,et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology,2024,57(3):11−28. doi: 10.12401/j.nwg.2023152
Citation: WU Yanrong,ZHOU Hai,ZHAO Guochun,et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology,2024,57(3):11−28. doi: 10.12401/j.nwg.2023152

中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义

基金项目: 国家自然科学基金(42102260、41730213、41890831、42072267、 41972229),长安大学中央高校基本科研业务专项资金-高新技术研究支持计划培养项目(300102272204),裘搓基金会Croucher Chinese Visitorships(2022-2023),陕西高校青年创新团队The Youth Innovation Team of Shaanxi Universities联合资助。
详细信息
    作者简介:

    吴妍蓉(2000−),女,硕士,主要研究方向为构造地质学。E−mail:2967138083@qq.com

    通讯作者:

    周海(1988−),男,副教授,硕士研究生导师,主要从事造山带地质、岩石大地构造方面的研究。E−mail:zhouhai@chd.edu.cn。

  • 中图分类号: P548

Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications

  • 摘要:

    中亚造山带作为显生宙以来全球最大的增生型造山带,记录了古亚洲洋俯冲、增生、闭合的全过程。南蒙古地区位于中亚造山带南缘中段,其晚古生代先后发育弧岩浆活动以及与伸展活动相关的岩石组合,是研究陆壳增生和改造的热点区域。笔者结合区域地质特征及前人研究对南蒙古地区石炭纪—二叠纪这一关键时期的岩石组合做出系统梳理和总结,研究区石炭纪—二叠纪岩浆活动大致可以分为早石炭世(350~325 Ma),晚石炭世(320~305 Ma)和早二叠世(300~280 Ma)3个阶段。早石炭世(350~325 Ma)发育典型的弧岩浆岩且具有向南变年轻的趋势。此外,全岩Nd和锆石Hf同位素显示其主体具有显著的地幔贡献。综合前人认识,笔者认为这是古亚洲洋主洋盆以北多个次生的弧后洋盆俯冲后撤的结果。晚石炭世(320~305 Ma)以高硅花岗岩为主,尤其315~310 Ma的碱长花岗岩、碱长正长岩等是年轻弧地体重熔的产物,是俯冲大洋板片显著消耗的结束。早二叠世(300~280 Ma)发育伸展相关的岩石组合(如A型花岗岩、双峰式火山岩和基性岩墙),这些岩浆活动显示高温特征,且具有显著的地幔物质贡献。结合前人工作,特别是笔者的前期工作,上述岩浆活动是由石炭纪板片后撤之后高角度俯冲诱发的俯冲板片断离所造成,且前人研究成果表明南蒙古东西两侧均有类似的岩石、构造和沉积记录。因此,笔者提出,古亚洲洋主洋盆泥盆纪—二叠纪多期次的俯冲后撤导致了其北侧一系列次生的弧后洋盆的开启、俯冲至闭合,上述过程伴随了中亚造山带南缘最后一次大规模侧向增生及其结束后板片断离诱发的垂向地壳增生。

    Abstract:

    As the largest Phanerozoic accretionary orogenic belt in the world, the Central Asian Orogenic Belt (CAOB) records the whole process of subduction, accretion and closure of the Paleo-Asian Ocean (PAO). The southern Mongolia, in the central segment of the southern CAOB, has successively developed rock associations of arc-magmatic activity and later extensional activity during the late Paleozoic, which is a key area for studying the accretion and transformation of continental crust. Combined with regional geological characteristics and previous studies, this paper systematically sorted out and summarized the rock association of the key period of Carboniferous-Permian in Southern Mongolia and the magmatic activity can be roughly divided into three stages: Early Carboniferous (350~325 Ma), Late Carboniferous (320~305 Ma), and the early Permian (300~280 Ma). During Early Carboniferous (350~325 Ma), the Southern Mongolia developed typical arc-type magmatic rocks having a southward migration trend. Whole-rock Nd and zircon Hf isotopes show that these rocks have significant mantle contribution. Combined with previous works, this resulted from slab retreating of a series of secondary back-are oceans of the PAO on the north of its main ocean basin. During Late Carboniferous (320~305 Ma), The southern Mongolia was dominated by high silica granites, especially the alkaline feldspar granites and syenites (315~310 Ma), which were produced by the remelting of earlier arc crusts, indicating the cessation of significant consumption of subducted oceanic plates. During the early Permian (300~280 Ma), extension-related magmatic rocks, such as A-type granite, bi-model volcanic rocks and basic dikes, were developed. The above magmatic activities showed the characteristics of high temperature and significant contribution of mantle materials. Therefore, we support that it was caused by the slab breakoff by high-angle subduction resulted from the aforementioned Carboniferous slab retreating. Previous studies show that there are similar rocks, structure and sedimentary records on both east and west sides of Southern Mongolia. Therefore, the Devonian-Permian subduction and slab retreating of the main basin of the PAO caused the opening, subduction and closure of a series of secondary back-arc basins on the northern side of the PAO, which were accompanied by the last large-scale lateral crustal accretion of the southern CAOB and its cessation with subsequent slab-breakoff-induced vertical crustal accretion.

  • 图  1   中亚造山带地质简图(据肖文交等,2019修)

    Figure  1.   Geological map of Central Asian Orogenic Belt

    图  2   蒙古国构造地层地体图(据Badarch et al., 2002; Kröner et al., 2010修)

    蒙古国地层地体的划分参考Badarch等(Badarch等(2002),南蒙古地区构造单元的划分参考Kröner等(2010)Lehmann等(2010)

    Figure  2.   Tectonic stratigraphy of Mongolia

    图  3   南蒙古地区主要构造单元地层柱(据Badarch et al., 2002; Kröner et al., 2010; Zhou et al., 2023修)

    构造单元划分来自Kröner等(2010),括号内的单元由Badarch等(2002)命名;黄色单元与俯冲有关,红色单元与俯冲无关

    Figure  3.   Stratigraphic columns of main tectonic units of the Southern Mongolia

    图  4   南蒙古地区石炭纪—早二叠世岩石TAS图解(a)(据Middlemost, 1994修)和K2O- SiO2图解(b)(据Peccerillo et al., 1976修)

    早石炭世岩石数据来自Blight等(2010),Wainwright等(2011),Zhu等(2016),Davaasuren等(2021),Zhou等(2021a2022);晚石炭世岩石数据来自Wainwright等(2011),Guy等(2014),Zhu等(2016),Zhou等(2021b2022);石炭纪末期基性岩墙数据来自Zhou等(2021a);早二叠世花岗岩数据来自Kovalenko等(2006),Yarmolyuk等(2008b),Blight等(2010),Kozlovsky等(2012),Guy等(2014),Zhou等(2021b

    Figure  4.   (a) TAS diagram and (b) K2O-SiO2 diagram of Carboniferous-Early Permian rocks in Southern Mongolia

    图  5   南蒙古地区石炭纪—早二叠世岩石A/NK-A/CNK图解(a)(据 Miniar et al., 1989修)和Rb-(Y+Nb)图解(b)(据Pearce, 1996修)

    图例、数据来源参考图4

    Figure  5.   (a) A/NK-A/CNK diagram and (b) Rb- (Y+Nb) diagram of Carboniferan-Early Permian rocks in Southern Mongolia

    图  6   南蒙古地区石炭纪—早二叠世岩石稀土元素配分模式图(a)及微量元素蛛网图(b)(球粒陨石标准化值和原始地幔标准化值引自Sun et al., 1989

    早石炭世火山岩、火山碎屑岩数据分别来自Zhou等(2021a2022);晚石炭世花岗岩、火山碎屑岩数据分别来自Zhou等(2021b2022);石炭纪末期岩墙及早二叠世花岗岩数据分别来自Zhou等(2021a2021b

    Figure  6.   (a) Distribution patterns of rare earth elements and (b) trace elements in Carboniferous and Early Permian rocks in Southern Mongolia

    图  7   南蒙古地区石炭纪—早二叠世岩石锆石ƐHft)-年龄图解(a)和ƐNdt)-(87Sr/ 86Sr)i图解(b)

    图a中的数据来源参考图4,图b中的数据来自Zhou等(2021b2022

    Figure  7.   (a) zircon ƐHf(t)-t diagram and (b) ƐNd(t)-(87Sr/ 86Sr)i diagram of Carboniferous-Early Permian rocks in South Mongolia area

    图  8   南蒙古地区非造山岩浆活动示意图(据Kozlovsky et al., 2012修)

    1.非造山岩浆杂岩;2-5.不同时期中亚褶皱带的褶皱构造:2.华力西期构造带;3.加里东期构造带;4.印支期构造带;5.南戈壁微陆块与前文德期大陆地壳的块体;6.断裂;7.蒙古主断裂;①标注的岩体年龄数据来自Yarmolyuk et al., 2008b;②标注的岩体年龄数据来自Kröner et al., 2010;③标注的岩体年龄数据来自Blight et al., 2010;④标注的岩体年龄数据来自Kozlovsky et al., 2012

    Figure  8.   Schematic diagram of non-orogenic magmatic activities in Southern Mongolia

    图  9   南蒙古地区大地电磁阻抗的二维模型(据Comeau et al., 2020修)

    T1、T2、T3分别代表湖区微陆块、戈壁阿尔泰大陆边缘和南蒙古微陆块

    Figure  9.   Two-dimensional model of magnetotelluric impedance in Southern Mongolia

    图  10   中亚造山带南缘南蒙古地区晚石炭—早二叠世构造演化示意图(据Zhou et al., 2021a修改)

    Figure  10.   Late Carboniferous-Early Permian tectonic evolution of the southern Mongolia in the Central Asian orogenic Belt

    续表1
    时期采样地点岩石类型样品编号年龄(Ma)参考文献
    石炭纪末期—早二叠世阿塔斯默格德地区花岗闪长岩302±3Yarmolyuk et al., 2008b
    阿塔斯默格德地区花岗片麻岩28/5325301.4±1.2Kröner et al., 2010
    阿塔斯默格德地区花岗闪长岩M33/06299.9±1.6Kröner et al., 2010
    古尔万赛汗-汗默格德地区基性岩墙MG07;MG03-1299±3Zhou et al., 2021a
    阿塔斯默格德地区黑云母花岗岩YuM-25/12299±1Kozlovsky et al., 2012
    古尔万赛汗-伊赫山海地区石英二长斑岩T2-048298±4Guy et al., 2014
    戈壁阿尔泰-额尔德尼地区花岗岩M135295.7±2.2Kröner et al., 2010
    阿兹默格德地区亚碱性花岗岩294±5Yarmolyuk et al., 2008b
    古尔万赛汗-汗默格德地区碱性花岗岩Zircon293.4±2.6Gerdes et al., 2017
    古尔万赛汗-汗默格德地区碱性花岗岩Late armstrongite293±55Gerdes et al., 2017
    古尔万赛汗-汗默格德地区碱性花岗岩MG50-1293±4Zhou et al., 2021b
    古尔万赛汗-汗默格德地区碱性花岗岩Zircon early292.8±2.6Gerdes et al., 2017
    曼达洛沃-曼达克山地区花岗岩51.7A292.3±0.5Blight et al., 2010
    古尔万赛汗-汗默格德地区碱性花岗岩MG01-1292±5Zhou et al., 2021b
    古尔万赛汗-汗默格德地区碱性花岗岩KHB-1745292±1Kovalenko et al., 2006
    曼达洛沃-曼达克山地区亚碱性花岗岩292±1Yarmolyuk et al., 2008b
    古尔万赛汗-汗默格德地区碱性花岗岩292±1Yarmolyuk et al., 2008b
    阿塔斯默格德地区碱性花岗斑岩YuM-24/1292±1Kozlovsky et al., 2012
    古尔万赛汗-汗默格德地区碱性花岗岩Zircon late291.7±2.6Gerdes et al., 2017
    古尔万赛汗-汗默格德地区碱性花岗岩Cyrtolite290.8±2.5Gerdes et al., 2017
    古尔万赛汗-汗默格德地区黑云母花岗岩KhB-4448290±1Kovalenko et al., 2006
    古尔万赛汗-汗默格德地区碱性花岗岩KhB-1807290±1Kovalenko et al., 2006
    特西尔地区闪长岩M132289.2±2.3Kröner et al., 2010
    古尔万赛汗-哈尔哈德地区亚碱性花岗岩YuM-18/117289±3Kozlovsky et al., 2012
    古尔万赛汗-塔万塔希尔山地区花岗闪长岩T2-015288±8Guy et al., 2014
    古尔万赛汗-汗默格德地区碱性花岗岩Zircon late287.3±4.2Gerdes et al., 2017
    戈壁阿尔泰-额尔德尼地区花岗岩M65/06-1286.8±1.8Kröner et al., 2010
    古尔万赛汗-伊赫山海地区石英斑岩T2-058286±5Guy et al., 2014
    戈壁阿尔泰-巴彦查干地区碱性花岗岩BaTs-1/1286±2Kozlovsky et al., 2015
    戈壁阿尔泰-哈尔乌祖尔地区碱性花岗岩BaTs-3/2284±1Kozlovsky et al., 2015
    戈壁阿尔泰-乌兰乌尔地区碱性花岗岩KhT-4/11284±1Kozlovsky et al., 2015
    古尔万赛汗-诺贡地区碱性流纹岩YuM-18/109281±3Kozlovsky et al., 2012
    特西尔地区花岗岩M83/06279.6±3.9Kröner et al., 2010
    戈壁阿尔泰-祖恩默格德地区碱性花岗岩DZB-1/1279±1Kozlovsky et al., 2015
    戈壁阿尔泰-新津地区花岗岩M62/06-2277±2.4Kröner et al., 2010
    下载: 导出CSV

    表  1   南蒙古地区石炭纪—早二叠世岩浆岩年龄

    Table  1   Age of Carboniferous-Early Permian magmatic rocks in southern Mongolia

    时期采样地点岩石类型样品编号年龄(Ma)参考文献
    早石炭世特西尔地区花岗片麻岩M107/06-2350.4±1.7Kröner et al., 2010
    古尔万赛汗-奥尤陶勒盖矿床花岗闪长岩AJW03-074350Wainwright et al., 2011
    阿兹默格德地区花岗闪长岩348±1Yarmolyuk et al., 2008b
    古尔万赛汗-奥尤陶勒盖矿床英安岩AJW03-091347Wainwright et al., 2011
    古尔万赛汗-奥尤陶勒盖矿床安山岩AJW03-055346Wainwright et al., 2011
    戈壁阿尔泰-坎德曼地区花岗岩345±2Hrdličkovà et al., 2008
    古尔万赛汗-奥尤陶勒盖矿床安山岩AJW03-183345Wainwright et al., 2011
    特西尔地区花岗岩M103/06-2340.9±2.5Kröner et al., 2010
    古尔万赛汗-汗默格德地区安山岩MG27-4339±3Zhou et al., 2021a
    古尔万赛汗-佐格多铜矿床花岗闪长岩TS-37335.1±4.4Davaasuren et al., 2021
    古尔万赛汗-奥尤陶勒盖矿床流纹岩AJW03-107;AJW03-125335Wainwright et al., 2011
    古尔万赛汗-汗默格德地区流纹斑岩MG09-1334±9Zhou et al., 2021a
    古尔万赛汗-布兰泽福克斯矿床花岗闪长岩BFD333.6±0.6Blight et al., 2010
    曼达洛沃-纳林胡杜格地区二长岩JBSP010333.22±0.6Blight et al., 2010
    古尔万赛汗-南丹亨迪地区花岗闪长岩2012SM-128333±4Zhu et al., 2016
    古尔万赛汗-佐格多铜矿床花岗闪长岩TS-21331.4Davaasuren et al., 2021
    曼达洛沃-奥尤特乌兰矿床石英二长岩88.3A330±0.5Blight et al., 2010
    古尔万赛汗-佐格多铜矿床二长花岗岩TS-30329.9Davaasuren et al., 2021
    古尔万赛汗-佐格多铜矿床花岗闪长岩TS-34329.1Davaasuren et al., 2021
    古尔万赛汗-莫戈伊特山地区石英斑岩T2-025329±6Guy et al., 2014
    巴兰地区角闪石闪长岩329±1Yarmolyuk et al., 2008b
    古尔万赛汗-佐格多铜矿床花岗闪长岩TS-29326.4Davaasuren et al., 2021
    古尔万赛汗-佐格多铜矿床二长花岗岩TS-20326.1Davaasuren et al., 2021
    古尔万赛汗-舒廷地区石英二长岩97.2A325.4±1.0Blight et al., 2010
    古尔万赛汗-南丹亨迪地区安山岩2012SM-104325±3Zhu et al., 2016
    古尔万赛汗-奥尤陶勒盖矿床花岗岩AJW03-132324Wainwright et al., 2011
    晚石炭世古尔万赛汗-奥尤陶勒盖矿床花岗岩AJW03-116321Wainwright et al., 2011
    古尔万赛汗-南丹亨迪地区石英闪长岩T2-062319±6Guy et al., 2014
    古尔万赛汗-巴彦奥沃地区花岗岩T2-029319±5Guy et al., 2014
    阿塔斯默格德地区碱性花岗岩YuM-32/22319±4Kozlovsky et al., 2012
    特西尔地区碱性长石花岗岩YUM-34/12318.3±2.1Yarmolyuk et al., 2017
    古尔万赛汗-伊赫尔斯山地区花岗岩T2-046318±9Guy et al., 2014
    古尔万赛汗-巴伦卡拉特地区花岗闪长岩T2-042318±8Guy et al., 2014
    额尔德仁-塔文塔尔地区花岗闪长岩YUM-34/21318±2.2Yarmolyuk et al., 2017
    戈壁阿尔泰-苏门可汗德地区碱性长石花岗岩YUM-34/13317.3±2.3Yarmolyuk et al., 2017
    特西尔地区碱性花岗岩YUM-33/1316.7±2.5Yarmolyuk et al., 2017
    古尔万赛汗-察夫齐尔胡杜格地区流纹岩2012SM-22315±4Zhu et al., 2016
    古尔万赛汗-汗默格德地区碱性长石花岗岩MG44-3315±2Zhou et al., 2021b
    古尔万赛汗-哈察维奇山地区花岗岩T2-019314±5Guy et al., 2014
    古尔万赛汗-汗默格德地区碱性长石花岗岩MG04-1313±2Zhou et al., 2021b
    古尔万赛汗-汗默格德地区碱性长石花岗岩MG05-1312±2Zhou et al., 2021b
    古尔万赛汗-汗默格德地区二长闪长岩MG37-1312±2Zhou et al., 2021b
    古尔万赛汗-汗默格德地区碱性长石花岗岩MG08-5311±4Zhou et al., 2021b
    古尔万赛汗-汗默格德地区石英二长岩MG36-1311±2Zhou et al., 2021b
    察干乌拉-哈尔奥维地区花岗岩T1-192308±4Guy et al., 2014
    古尔万赛汗-塞夫雷地区石英二长岩T1-239307±6Guy et al., 2014
    古尔万赛汗-伊赫乌尔齐特乌尔山地区花岗岩2012SM-64304±4Zhu et al., 2014
    下载: 导出CSV
  • 陈维民, 白建科, 仇银江, 等. 西天山特克斯地区哈拉达拉基性岩体LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 西北地质, 2017, 50(02): 69-79 doi: 10.3969/j.issn.1009-6248.2017.02.007

    CHEN Weimin, BAI Jianke, CHOU Yinjiang, et al. LA-ICP-MS Zircon U-Pb Dating of the Haladala Basic Plution in Tekesi County, Western Tianshan and Its Geological Implication[J]. Northwestern Geology, 2017, 50(02): 69-79. doi: 10.3969/j.issn.1009-6248.2017.02.007

    付超, 李俊建, 张帅, 等.中蒙边界地区侵入岩时空分布特征及对构造演化的启示[J].华北地质, 2023, 46(1): 1−19.

    FU Chao, LI Junjian, ZHANG Shuai, et al. The temporal and spatial distribution characteristics of intrusive rocks in the border area between China and Mongolia and its implications for tectonic evolution[J]. North China Geology, 2023, 46(1): 1−19.

    滕飞, 苏春乾, 夏明哲, 等. 北天山东段石英滩地区早二叠世火山岩岩石组合与岩浆生成动力学机制[J]. 西北地质, 2017, 50(01): 110-125 doi: 10.3969/j.issn.1009-6248.2017.01.011

    TENG Fei, SU Chunqian, XIA Mingzhe, et al. The Early Permian Volcanic Rock Association and the Dynamics Mechanism for the Magma Generation in the Shiyingtan Area, Eastern Tianshan[J]. Northwestern Geology, 2017, 50(01): 110-125. doi: 10.3969/j.issn.1009-6248.2017.01.011

    王博, 赵国春. 古亚洲洋的最终闭合时限: 来自白乃庙岛弧带东段二叠纪—三叠纪岩浆作用的证据[J]. 西北大学学报(自然科学版), 2021, (06): 1019-1030

    WANG Bo, ZHAO Guochun. Final closure of the Paleo-Asian ocean: Constraints from permian-triassic magmatism in the eastern segment of the Bainaimiao Arc Belt[J]. Journal of northwest university (natural science edition), 2021, (06): 1019-1030.

    肖文交, 宋东方, Windley B F, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49(10): 1512-1545

    XIAO Wenjiao, SONG Dongfang, Windley B F, et al. Research progress of accretive orogeny and mineralization in Central Asia [J]. Scientia Sinica(Terrae), 2014, 49(10): 1512-1545.

    张永玲, 张治国, 刘希军, 等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质, 2024, 57(1): 122−138.

    ZHANG Yongling, ZHANG Zhiguo, LIU Xijun, et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology, 2024, 57(1): 122−138.

    Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87-110. doi: 10.1016/S1367-9120(02)00017-2

    Blight J H S, Crowley Q G, Petterson M G, et al. Granites of the Southern Mongolia Carboniferous Arc: New geochronological and geochemical constraints[J]. Lithos, 2010, 116(1-2): 35-52. doi: 10.1016/j.lithos.2010.01.001

    Comeau M J, Becken M, Kaufl J S, et al. Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect[J]. Earth Planets and Space, 2020, 72(1): 87-110. doi: 10.1186/s40623-020-01214-1

    Chai H, Ma Y F, Santosh M, et al. Late Carboniferous to early Permian oceanic subduction in central Inner Mongolia and its correlation with the tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 84: 245-259. doi: 10.1016/j.gr.2020.02.016

    Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019

    Chung S L, Liu D, Ji J, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. doi: 10.1130/G19796.1

    Davies J H, Blanckenburg F V. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129(1-4): 85-102. doi: 10.1016/0012-821X(94)00237-S

    Davaasuren O E, Koh S M, Kim N, et al. Late Paleozoic adakitic magmatism in the Zogdor Cu occurrences, southern Mongolia, and their tectonic implications: New SHRIMP zircon age dating, Lu-Hf isotope systematics and geochemical constraints[J]. Ore Geology Reviews, 2021, 138: 104356. doi: 10.1016/j.oregeorev.2021.104356

    Du L, Long X P, Yuan C, et al. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff[J]. Lithos, 2018, 318-319: 47-59. doi: 10.1016/j.lithos.2018.08.006

    Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Jahn B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society London Special Publications, 2004, 226(1): 73-100. doi: 10.1144/GSL.SP.2004.226.01.05

    Jian P, Liu D, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118 (1-2): 169-190. doi: 10.1016/j.lithos.2010.04.014

    Han Y G, Zhao G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152. doi: 10.1016/j.earscirev.2017.09.012

    Helo C, Hegner E, Kröner A, et al. Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth[J]. Chemical Geology, 2006, 227(3): 236-257.

    Hrdličkovà K, Bolormaa K, Buriánek D, et al. Petrology and age of metamorphosed rock in tectonic slices inside the Palaeozoic sediments of the eastern Mongolian Altay, SW Mongolia[J]. Journal of Geosciences, 2008, 53: 139-165.

    Hu C S, Li W B, Huang Q Y, et al. Geochemistry and petrogenesis of Late Carboniferous igneous rocks from southern Mongolia: Implications for the post-collisional extension in the southeastern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2017, 144: 141-154. doi: 10.1016/j.jseaes.2017.01.011

    Gerdes A, Kogarko L N, Vladykin N V. New data on the age and nature of the Khan-Bogd alkaline granites, Mongolia[J]. Doklady Earth Sciences, 2017, 477(1): 1320-1324. doi: 10.1134/S1028334X17110137

    Guy A, Schulmann K, Clauer N, et al. Late Paleozoic–Mesozoic tectonic evolution of the Trans-Altai and South Gobi Zones in southern Mongolia based on structural and geochronological data[J]. Gondwana Research, 2014, 25(1): 309-337. doi: 10.1016/j.gr.2013.03.014

    Kozlovsky A M, Yarmolyuk V V, Travin A V, et al. Stages and regularities in the development of Late Paleozoic anorogenic volcanism in the southern Mongolia Hercynides[J]. Doklady Earth Sciences, 2012, 445(1): 811-817. doi: 10.1134/S1028334X12070239

    Kozlovsky A M, Yarmolyuk V V, Salnikova E B, et al. Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): Tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 113(1): 524-541.

    Kovalenko V I, Yarmoluyk V V, Sal’nikova E B, et al. Geology, Geochronology, and Geodynamics of the Khan Bogd Alkali Granite Pluton in Southern Mongolia[J]. Geotectonics, 2006, 40(6): 450-446. doi: 10.1134/S0016852106060033

    Kovalenko V I, Kozlovsky A M, Yarmolyuk V V. Comendite-Bearing Subduction Related Volcanic Associations in the Khan-Bogd Area, Southern Mongolia: Geochemical Data[J]. Petrology, 2010, 18(6): 571-595. doi: 10.1134/S0869591110060020

    Kröner A, Lehmann J, Schulmann K, et al. Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion[J]. American Journal of Science, 2010, 310(7): 523-574. doi: 10.2475/07.2010.01

    Kröner A, Kovach V, Belousova E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1): 103-125. doi: 10.1016/j.gr.2012.12.023

    Lehmann J, Schulmann K, Lexa O, et al. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 2010, 61: 135-140.

    Li S, Chung S L, Wilde S A, et al. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 2291-2309.

    Liu H D, Cheng Y H, Santosh M, et al. Magmatism associated with lithospheric thinning, mantle upwelling, and extensional tectonics: Evidence from Carboniferous-Permian dyke swarms and granitoids from Inner Mongolia, Central Asian Orogenic Belt[J]. Lithos, 2021, 386: 106004.

    Long X P, Wu B, Sun M, et al. Geochronology and geochemistry of Late Carboniferous dykes in the Aqishan-Yamansu belt, Eastern Tianshan: evidence for a post-collisional slab breakoff[J]. Geoscience Frontiers, 2020, 11(1): 347-362. doi: 10.1016/j.gsf.2019.06.003

    Lu L, Qin Y, Han C Y, et al. Provenance and tectonic settings of the Late Paleozoic sandstones in central Inner Mongolia, NE China: Constraints on the evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 77: 111-135. doi: 10.1016/j.gr.2019.07.006

    Meissner R, Mooney W. Weakness of the lower continental crust: a condition for delamination, uplift, and escape[J]. Tectonophysics, 1998, 296: 47-60. doi: 10.1016/S0040-1951(98)00136-X

    Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract[J]. Tectonophysics, 2003, 369(3): 155-174.

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    Miniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Niu Y Z, Shi G R, Ji W H, et al. Paleogeographic evolution of a Carboniferous–Permian sea in the southernmost part of the Central Asian Orogenic Belt, NW China: Evidence from microfacies, provenance and paleobiogeography[J]. Earth-Science Reviews, 2021, 220: 103738. doi: 10.1016/j.earscirev.2021.103738

    Peccerillo A, Taylor S R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    Safonova I, Maruyama S. Asia: a frontier for a future supercontinent Amasia[J]. International Geology Review, 2014, 56(9): 1051-1071. doi: 10.1080/00206814.2014.915586

    Sengör A C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-306. doi: 10.1038/364299a0

    Shu L S, Zhu W B, Wang B, et al. The post-collision intracontinental rifting and olistostrome on the southern slope of Bogda Mountains, Xinjiang[J]. Acta Petrologica Sinica, 2005, 21(1): 25-36.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Tang G J, Chung S L, Hawkesworth C J, et al. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China[J]. Earth and Planetary Science Letters, 2017, 464:142-154.

    Wainwright A J, Tosdal R M, Wooden J L, et al. U–Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern Mongolia[J]. Gondwana Research, 2011, 19(3): 764-787. doi: 10.1016/j.gr.2010.11.012

    Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth Planetary Science Letters, 1983, 64: 295-304. doi: 10.1016/0012-821X(83)90211-X

    Wei R H, Gao Y F, Xu S C, et al. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia[J]. Lithos, 2018, 308-309: 242-261. doi: 10.1016/j.lithos.2018.03.010

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. doi: 10.1144/0016-76492006-022

    Windley B F, Xiao W J. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 2018, 61: 73-87. doi: 10.1016/j.gr.2018.05.003

    Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt [J]. Tectonics, 2003, 22(6): 1484-1505.

    Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. doi: 10.2475/ajs.304.4.370

    Xiao W J, Windley B F, Sun S, et al. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 477-507. doi: 10.1146/annurev-earth-060614-105254

    Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020

    Xu B, Zhao G C, Li J H, et al. Ages and Hf isotopes of detrital zircons from the Permian strata in the Bengbatu are (Inner Mongolia) and tectonic implications[J]. Geoscience Frontiers, 2019, 10(1): 195-212. doi: 10.1016/j.gsf.2018.08.003

    Yang S H, Miao L C, Zhang F C, et al. Detrital zircon age spectra of the Gurvan Sayhan accretionary complex in South Mongolia: Constraints on the Late Paleozoic evolution of the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 175: 213-229. doi: 10.1016/j.jseaes.2018.07.041

    Yarmolyuk V V, Kovalenko V I, Sal'nikova E B, et al. Geochronology of igneous rocks and formation of the late Paleozoic south Mongolian active margin of the Siberian continent[J]. Stratigraphy and Geological Correlation, 2008a, 16(2): 162-181. doi: 10.1134/S0869593808020056

    Yarmolyuk V V, Kovalenko V I, Kozlovsky A M, et al. Crust-forming processes in the Hercynides of the Central Asian Foldbelt[J]. Petrology, 2008b, 16(7): 679-709. doi: 10.1134/S0869591108070035

    Yarmolyuk V V, Kuzmin M I, Kozlovsky A M. Late Paleozoic-Early Mesozoic Within Plate Magmatism in North Asia: Traps, Rifts, Giant Batholiths, and the Geodynamics of Their Origin[J]. Petrology, 2013, 21(2): 115-142.

    Yarmolyuk V V, Kozlovsky A M, Travin A V. Late Paleozoic anorogenic magmatism in Southern Mongolia: Evolutionary stages and structural control[J]. Doklady Earth Sciences, 2017, 475(1): 753-757. doi: 10.1134/S1028334X17070200

    Zhang D H, Huang B C, Zhao G C, et al. Quantifying the extent of the Paleo-Asian Ocean during the Late Carboniferous to Early Permian[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094498.

    Zhang S H, Zhao Y, Liu J M, et al. Different sources involved in generation of continental arc volcanism: The Carboniferous–Permian volcanic rocks in the northern margin of the North China block[J]. Lithos, 2016, 240-243: 382-401. doi: 10.1016/j.lithos.2015.11.027

    Zhang X H, Yuan L L, Xue F H, et al. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2015, 28(1), 311-327. doi: 10.1016/j.gr.2014.02.011

    Zhang Y Y, Sun M, Yuan C, et al. Alternating Trench Advance and Retreat: Insights from Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt[J]. Tectonics, 2018, 37: 2142-2164. doi: 10.1029/2018TC005051

    Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003

    Zhou H, Zhao G C, Han Y G, et al. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc[J]. Lithos, 2018, 314-315: 119-139. doi: 10.1016/j.lithos.2018.05.020

    Zhou H, Zhao G C, Li J H, et al. Magmatic evidence for middle-late Permian tectonic evolution on the northern margin of the North China Craton[J]. Lithos, 2019, 336-337: 125-142. doi: 10.1016/j.lithos.2019.04.002

    Zhou H, Zhao G C, Han Y G, et al. The Late Carboniferous to Early Permian high silica magmatism in the Southern Mongolia: Implications for tectonic evolution and continental growth[J]. Gondwana Research, 2021a, 97: 34-50. doi: 10.1016/j.gr.2021.05.005

    Zhou H, Zhao G C, Han Y G, et al. Magmatic evidence for Late Carboniferous-Early Permian slab breakoff and extension of the southern Mongolia collage system in Central Asia[J]. Gondwana Research, 2021b, 89: 105-118. doi: 10.1016/j.gr.2020.09.006

    Zhou H, Zhao G C, Han Y G, et al. Carboniferous slab-retreating subduction of backarc oceans: the final large-scale lateral accretion of the southern Central Asian Orogenic Belt[J]. Science Bulletin, 2022, 67(13): 1388-1398. doi: 10.1016/j.scib.2022.05.002

    Zhou H, Zhao G C, Han Y G, et al. The early Permian high-temperature felsic magmatism induced by slab breakoff in Southern Mongolia, Central Asian Orogenic Belt and its tectonic implications[J]. Lithos, 2023, 442-443: 107083. doi: 10.1016/j.lithos.2023.107083

    Zhu M S, Baatar M, Miao L C, et al. Zircon ages and geochemical compositions of the Manlay ophiolite and coeval island arc: Implications for the tectonic evolution of South Mongolia[J]. Journal of Asian Earth Sciences, 2014, 96(15): 108-122.

    Zhu M S, Miao L C, Baatar M, et al. Late Paleozoic magmatic record of Middle Gobi area, South Mongolia and its implications for tectonic evolution: Evidences from zircon U–Pb dating and geochemistry[J]. Journal of Asian Earth Sciences, 2016, 115: 507-519. doi: 10.1016/j.jseaes.2015.11.002

  • 期刊类型引用(2)

    1. 滕永涛. 不同类型金矿成因及地质特征. 世界有色金属. 2024(02): 127-129 . 百度学术
    2. 张家瑞,高永伟,张忠平,谢建强,杨彦,余超,余君鹏,李通国,贾志磊,王晓伟. 甘肃西秦岭地区重要金矿预测模型的建立及资源潜力预测. 西北地质. 2024(05): 88-105 . 本站查看

    其他类型引用(0)

图(10)  /  表(2)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  20
  • PDF下载量:  80
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2023-07-26
  • 录用日期:  2023-07-29
  • 网络出版日期:  2024-03-21

目录

    /

    返回文章
    返回