Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions
-
摘要:
东昆仑祁漫塔格成矿带是中国西北地区重要的铜钼铁铅锌多金属成矿带,发育卡尔却卡、野马泉、维宝、乌兰乌珠儿等许多与花岗岩类有关的斑岩−矽卡岩矿床。随着新一轮找矿突破战略行动的开展,进一步加强对祁漫塔格成矿带花岗岩成矿潜力的研究,已成为推动该地区金属矿产储量增长的重要突破口。为此,笔者在系统收集祁漫塔格成矿带典型斑岩−矽卡岩多金属矿床成矿岩体和贫矿岩体(即非成矿岩体)的全岩主量和微量元素数据基础上,选取28种常见的全岩地球化学特征,借助机器学习算法——随机森林,开展机器学习模型训练,建立能够识别该地区斑岩−矽卡岩多金属矿床成矿岩体和非成矿岩体的新方法。根据模型评价指标,笔者训练得到的随机森林分类模型准确率为0.90,证明该方法能够有效识别成矿岩体和非成矿岩体。该研究为祁漫塔格成矿带斑岩−矽卡岩多金属矿床的找矿勘查提供了新思路,将极大地提高找矿效率、降低找矿经济和人力成本,从而更好的服务新一轮找矿突破战略行动。相关机器学习代码已上传至GitHub,地址为https://github.com/ShihuaZhong/2023-Qimantagh-RF-whole-rock-classifier。
Abstract:The Qimantagh Orogenic Belt in the East Kunlun is an important Cu−Mo−Fe−Pb−Zn polymetallic mineralization belt in the northwest of China, and many porphyry-skarn deposits that are genetically related to granitoids are founded, such as Kaerqueka, Yemaquan, Weibao, and Wulanwuzhuer. With the development of a new round of strategic action to find mineral breakthroughs, further strengthening the study of granite mineralization potential in the Qimantagh Orogenic Belt has become an important breakthrough to promote the growth of metal mineral reserves in the region. In this paper, based on the systematic collection of whole−rock major and trace element data of mineralized and barren magmatic rocks of typical porphyry−skarn polymetallic deposits in the Qimantagh Orogenic Belt, 28 common whole-rock geochemical features are selected, and the machine learning algorithm (Random Forest) is used for the training of the machine learning model to establish a machine learning model capable of identifying the mineralized and barren magmatic rocks of porphyry−skarn polymetallic deposits in the region. A new method is developed to identify the mineralized and barren magmatic rocks in the porphyry−skarn polymetallic deposits in this area. According to the model evaluation metric, the accuracy of the Random Forest classification model trained in this paper is 0.90, which proves that the method can effectively recognize mineralized and barren magmatic rocks. This study provides a new idea for the prospecting and exploration of porphyry−skarn polymetallic deposits in the Qimantagh Orogenic Belt, which will greatly improve the efficiency of prospecting, reduce the economic and labor costs of prospecting, and thus better serve the new round of strategic action of prospecting and breakthrough. The machine learning code has been uploaded to GitHub at https://github.com/ShihuaZhong/2023-Qimantagh-RF-whole-rock-classifier.
-
萤石作为一种重要的热液矿物,在冶金、化工、光学、电子和绿色技术等多个传统和新兴领域中得到了广泛的应用,吸引了众多研究人员进行相关的科学研究(曹俊臣,1987,李长江等,1991;许东青等,2009;Dill et al.,2011;方乙等,2014;孙海瑞等,2014;王吉平等,2015;邹灏等,2016a;张苏坤等,2022;栗克坤等,2023;Liu et al., 2023;赵辛敏等,2023)。中国目前是世界上最大的萤石消费国和主要生产国,拥有数个重要的矿化带,如中国华南地区的武夷萤石矿化带,该地区拥有众多萤石矿床(点)(曹俊臣,1994,1995;夏学惠等,2009;刘磊等,2013;邹灏等,2016b;李敬等,2017;黄鸿新等,2018;Chen et al.,2021;Yang et al.,2022;游超等,2022)。
上水桥萤石矿床位于赣闽交界处的江西省黎川县内,是一中型矿床。前人主要对矿区及其周围的成矿地质条件(敖平等,2020)和控矿构造(万禄进等,2000)进行了研究,而萤石成矿作用过程中流体演化和成矿物质来源等方面研究较少,制约了对矿床成因的认识。笔者在以往地质勘查工作的基础上,通过分析上水桥萤石矿床的的微量元素地球化学特征,探讨上水桥萤石矿床的成矿物质来源、流体演化和成矿模式,为研究区及其周围区域找矿提供依据。
1. 区域地质
武夷地区又称武夷造山带(李培铮等,1999;Faure et al., 2009)或武夷地体(Wang et al., 2007; Wan et al., 2010),位于华夏板块东北角(图1a),是华南地区重要的成矿带。研究表明,武夷地区在加里东时期发生了褶皱造山运动;印支时期形成了复式背斜隆起,逆冲走滑断裂与推覆构造、韧性剪切带以及交代–侵入花岗岩带;燕山时期形成了推覆构造,并伴有中酸性岩浆侵入(梅勇文,1998;曾勇廖等,2000;舒良树等,2008;Faure et al., 2009)。
图 1 华南地区构造简图(a)与武夷北地区地质简图(b)(改自Yu et al., 2012)Figure 1. (a) Schematic diagram of the structures of South China and (b) geological map of the northern Wuyi area上水桥萤石矿床位于华南褶皱系武夷成矿带北端,又称武夷北地区(Yu et al.,2012)(图1b)。其北以江山–绍兴断裂带的扬子地块为界。东部紧靠丽水–政和–大埔深断裂带,与东南沿海省份的火山岩带相邻(Xu et al.,2005)。西侧与鹰潭–安远断裂带及赣中褶皱带接近。南界为石城–宁化–南平中元古代弧内裂谷。武夷北地区的地层系统由前震旦纪基岩、震旦纪至中三叠世海相沉积地层、中生代陆相层序和火山岩组成。基底下段是一套形成于晚太古界—早元古代的变质岩,上段主要包括中新元古代晚期的变质地层(Zhao, 1999)。盖层的下段为下震旦统—下古生界,上段则由泥盆系—中三叠统组成。武夷北地区的狭长盆地内广泛分布着由大陆沉积岩和火山喷发堆积岩组成的晚三叠世—白垩纪地层。该地区曾经历了加里东期、印支期、燕山期和喜山期等多次岩浆活动。其中,燕山期的构造岩浆活动范围最广,也最具主导性。区域内岩浆岩分布较广,以带状分布为主,多呈NE向延伸(Charvet et al.,2010;Wang et al.,2011)。
武夷北地区的构造断裂较为复杂。北部以江山–绍兴缝合带为代表的EW向断裂,在控制岩浆活动和成矿作用方面起着关键作用。永平、冷水坑等中大型多金属矿床分布在该断裂及其南侧。NE向的断裂被许多长英质岩脉和部分基性岩脉侵入,这些断裂群控制着燕山期岩浆活动,闽西北的浦城和邵武等地区萤石矿床赋存于其中(朱利岗等,2021;金松等,2022)。其他NE-N至SN的断裂群也在一定程度上控制了中生代陆内造山活动、岩浆活动和成矿作用(刘迅等,1999;Yu et al.,2012)。
2. 矿床地质特征
2.1 矿区地质
上水桥萤石矿床品位约为53%,资源量大于30万吨,为一中型萤石矿床。矿区东南角地表露出下古生界罗峰溪群的绿片岩相浅变质地层。在矿区周边区域,仅有深成侵入岩体和第四系出露(图2)。深成侵入岩体为燕山早期黑云母花岗岩,其出露面积较大且分布广泛。第四系主要出露于低洼、平缓的区域及山沟谷壑中,以山谷洪积相为主。其岩性组成包括红土砾石、泛黄色砂砾石、灰黄色砂土、黏土层、中至粗砂层,期间夹杂少量岩石碎屑及石英砾岩,平均厚度超过10 m(万禄进等,2000)。
上水桥萤石矿区内褶皱不发育,主要发育断裂构造,以近EW向脆性断裂为主,规模较大,周围也存在一些NW向和NNW向的断裂,但它们的规模均相对主断裂较小。成矿期近EW向断裂为F1断裂,是矿区主要的导矿储矿断裂;该断裂横穿整个矿区,局部可见黑云母花岗岩透镜体。这一断裂经历了至少两次构造活动,首次构造运动形成以碎粉岩为主的断层岩还夹杂少量构造角砾岩;后期经硅化作用形成了硅化岩及硅化碎粒岩。第二次构造运动形成了宽为1~6 m的破碎带,杂乱分布在早期硅化破碎带当中,部分地段发育断层面以及断层角砾岩。大部分角砾岩经放射状石英晶簇包裹后,外层再次被萤石包覆,还有部分断层角砾岩则经历了后期的萤石交代。
上水桥萤石矿区出露呈岩基产出的燕山早期第三阶段第三次侵入岩,出露面积约为0.42 km2,岩性为中粗粒黑云母花岗岩(敖平等,2020)。岩石新鲜面呈肉红色–浅肉红色,风化后为灰白色、黄褐色,为中粗粒花岗结构,块状构造。矿物成分主要为长石、石英及黑云母。岩石中副矿物以磁铁矿为主,次为锆石、榍石等。此外,脉岩主要包括闪长玢岩、花岗细晶岩脉以及花岗斑岩脉,这些脉岩贯穿于早期构造裂隙中。
2.2 矿体–矿石特征
上水桥萤石矿区已发现5个萤石矿体(图2a),整体呈EW向分布,受EW向F1断裂控制。其中I-1号矿体和I-2号矿体为主矿体,呈脉状、透镜状产于F1断裂硅化破碎带内,矿体倾向北、倾角为50°~81°;II号矿体位于I-2号矿体的南侧5~12 m处,属于F1断层下盘,受F1派生断裂所控制,矿体倾向北、倾角为45°~58°,呈薄脉状、透镜状;III和IV号矿体位于I-2号矿体北侧5~40 m,受F1断层上盘内的派生断裂控制,呈薄脉状、透镜状,矿体倾向北、倾角为30°~60°。
上水桥萤石矿区内主要有萤石–石英型和石英–萤石型两种类型,矿石矿物为萤石,萤石含量一般为25%~75%。萤石颜色主要为浅绿–深绿色、紫色或白色(图3a~图3c)。脉石矿物含量一般为35%~65%,以石英为主,少量残余原岩,如碎裂花岗岩角砾、黑云母、长石及其蚀变形成的绿泥石、高岭石等黏土矿物,除此之外,脉石矿物含少量方解石。矿石结构主要以半自形粒状结构为主,次为角砾或压碎结构、交代结构。矿石构造多为块状构造、条纹或条带状构造,当矿石中有石英脉贯入时可具网脉状构造、晶洞构造。块状构造萤石主要以绿色为主,少数为紫色,局部含围岩角砾(图3a、图3b),主要分布于矿体上、下部,少量分布于矿体中部,为矿体早期成矿产物,是矿区常见的一种构造类型。
矿体的上下界面主要由断层破碎带内的碎裂(花岗)岩、角砾岩、碎粉岩以及断层泥等组成。在后期硅化作用下,这些组分常转化为硅化岩;而矿体的围岩则为中粗粒黑云母花岗岩(图3d、图3e)。破碎带附近的围岩通常发育被石英脉充填的裂隙,且围岩经历了较强的风化和黏土矿化,与破碎带相距较远的围岩,其蚀变和矿化程度相对较低。矿体与破碎带内围岩常呈渐变过渡关系,接触界线不清晰,局部地段围岩含量接近矿石的边界品位。矿区内围岩蚀变主要为硅化,其次为绢云母化、褐铁矿化、高岭土化、绿泥石化、碳酸盐化等(敖平等,2020)。
3. 样品采集与分析
本次研究对上水桥萤石矿床的围岩和不同颜色萤石进行了采样工作,其中采集的白色、紫色、浅绿色和深绿色4种萤石矿样品来自矿区的ZK3402、ZK3403、ZK4602钻孔岩心,围岩样品采自矿区ZK4602、ZK5405、ZK3402、ZK2601、ZK1004、ZK3403、ZK3404、ZK5004钻孔。
围岩微量元素分析采用广州拓岩分析技术有限公司的Jena Plasma Quant 电感耦合等离子体质谱(ICP-MS)测定。在分析之前对样品进行前处理,将样品粉碎,使其达到200目的颗粒度后稀释1000倍。然后将大约0.05 g的粉末状样品放置在聚四氟乙烯容器中,再添加0.6 ml氢氟酸(HF)和3 ml硝酸(HNO3)。将容器密封,并放入电烤箱中,在185 ℃的条件下加热约36 h。待样品冷却后,将容器再次加热以蒸发溶液中的液体,留下固体残渣。将200 ng的铑(Rh)内标物质加入样品用来校准分析结果,以纠正可能的仪器误差。加入2 ml HNO3和4 ml水将残渣重新溶解,然后将容器再次密封,并置于135 ℃的电烘箱中,进行约5 h的溶解过程。最终,溶解的残渣样品用于后续分析,并使用水标准溶液进行校准以获得准确的分析结果。
萤石矿样品制成激光片后对其微量元素进行了激光剥蚀–电感耦合等离子体质谱(LA-ICP-MS)分析。样品分析测试在东华理工大学核资源与环境国家重点实验室完成,使用了PerkinElmer NexION 1000四极杆ICP-MS,搭配ESI NWR 257 nm飞秒激光器,进行激光剥蚀。具体的实验参数如下:激光剥蚀能量密度为5.0 J/cm2,脉冲频率为5 Hz,剥蚀直径为50 μm。在激光剥蚀的过程中,氦气被用作载气,而氩气则作为补偿气体,在进入质谱仪前通过一个T型接头将这两种气体混合用来细致调节质谱仪的灵敏度。为了进行微量元素含量的校正和分馏校正,采用了玻璃标准物质NIST 610作为外部标准。每个时间分辨分析数据均包括30 s的空白信号和45 s的样品信号,以确保数据的可靠性和准确性。最后使用了Iolite软件对分析数据进行离线处理,以获取精确的微量元素含量和分布信息(Paton et al., 2011)。
4. 结果
4.1 围岩花岗岩微量元素特征
上水桥萤石矿床的围岩黑云母花岗岩的微量元素测试结果见表1。围岩的稀土元素球粒陨石标准化配分型式图(图4a)显示,8个围岩样品的稀土元素配分模式基本一致,均呈现出右倾和Eu负异常的特征。其δEu值为0.63~0.81,均值为0.73;δCe值为0.93~1.57,平均值为1.11。围岩的∑REE含量为356×10−6~447×10−6,平均值为405×10−6;Y含量为19.1~24.3,平均值为21.3;LREE/HREE值为20.67~25.82,平均值为23.51;(La/Yb)N值为33.18~47.82,平均值为41.40。上水桥萤石矿床花岗岩的微量元素原始地幔标准化蛛网图(图5a)显示,围岩相对富集大离子亲石元素Rb以及高场强元素U,而亏损大离子亲石元素Ba及高场强元素Nb、Zr、Ti、Hf。矿体远矿围岩样品(ZK1004、ZK3403、ZK3404)CaF2含量为0.51%~1.50%,近矿围岩样品(ZK4602、ZK5405、ZK3402、ZK2601、ZK5004)CaF2含量变化较大,为1.44%~9.34%。
表 1 黎川上水桥萤石矿床围岩微量元素(10−6)和CaF2(%)分析结果Table 1. Analysis results of trace elements (10−6) and CaF2 (%) in the surrounding rocks of the Shangshuiqiao fluorite deposit in Lichuan样品号 ZK4602 ZK5405 ZK3402 ZK2601 ZK5004 ZK1004 ZK3403 ZK3404 样品名 花岗岩 花岗岩 花岗岩 花岗岩 花岗岩 花岗岩 花岗岩 花岗岩 Rb 252 275 292 252 304 243 252 254 Ba 2070 1500 2020 1640 1820 2170 2080 2010 Th 50.6 63.3 46.6 48.7 55.9 53.3 62.6 10.0 U 7.56 10.3 8.10 8.36 9.25 8.83 9.93 9.14 Nb 18.6 23.2 20.0 20.4 20.3 19.9 20.4 22.5 Sr 761 336 477 625 643 777 730 689 Zr 184 274 246 227 247 263 254 251 Ti 2001 2634 2269 2144 2105 2462 2190 2302 La 102 107 98.7 109 117 91.0 118 91.6 Ce 159 186 161 178 211 196 210 250 Pr 17.1 18.9 16.5 17.6 18.6 16.6 19.3 16.7 Nd 53.6 67.3 57.1 59.6 61.0 63.9 66.0 60.9 Sm 8.44 10.60 9.16 8.87 9.50 9.57 9.41 9.63 Eu 1.61 1.83 1.72 1.83 1.91 2.11 1.87 1.97 Gd 5.59 7.46 6.15 6.31 6.55 6.70 6.41 6.52 Tb 0.72 0.94 0.80 0.77 0.82 0.88 0.85 0.85 Dy 3.54 4.60 3.76 3.89 4.12 4.30 4.03 4.28 Ho 0.65 0.85 0.73 0.76 0.77 0.78 0.74 0.82 Er 1.84 2.35 2.02 1.97 2.00 2.04 2.03 2.14 Tm 0.25 0.32 0.26 0.28 0.28 0.31 0.30 0.31 Yb 1.53 2.14 1.78 1.72 1.78 1.84 1.82 1.98 Lu 0.23 0.30 0.25 0.27 0.27 0.28 0.27 0.29 Y 19.1 24.3 22.0 19.9 20.6 21.4 20.8 22.2 ΣREE 356.10 410.58 359.94 390.88 435.61 396.30 441.03 447.99 LREE 341.75 391.63 344.18 374.90 419.01 379.18 424.58 430.80 HREE 14.35 18.95 15.76 15.98 16.60 17.12 16.45 17.19 LREE/HREE 23.81 20.67 21.84 23.46 25.24 22.14 25.82 25.07 (La/Yb)N 47.82 35.86 39.77 45.46 47.15 35.48 46.51 33.18 δEu 0.72 0.63 0.70 0.75 0.74 0.81 0.74 0.76 δCe 0.93 1.01 0.98 1.00 1.11 1.24 1.08 1.57 CaF2 2.06 9.34 5.18 1.44 3.66 0.74 1.50 0.51 图 4 上水桥萤石矿床围岩及萤石球粒陨石标准化稀土元素配分曲线图(标准数据引自Sun et al.,1989)Figure 4. Standardized rare earth element distribution curves of the surrounding rocks of the Shangshuiqiao fluorite deposit and fluorite chondrites图 5 上水桥萤石矿床围岩及萤石原始地幔标准化微量元素配分曲线图(标准数据引自Taylor et al.,1985)Figure 5. Standardized trace amounts of the surrounding rocks of the Shangshuiqiao fluorite deposit and the original fluorite mantle element partitioning curve4.2 萤石原位微量元素特征
上水桥萤石矿床的萤石矿样品微量元素测试结果见表2。上水桥萤石矿床中不同颜色萤石的稀土元素的含量及其配分模式有所不同(图4b~图4d)。紫色萤石的∑REE含量为22.06×10−6~31.33×10−6,平均值为25.73×10−6;Y含量为6.66×10−6~15.59×10−6,平均值为10.28×10−6;LREE/HREE值为3.01~8.64,平均值为4.92(图6a、图6b);(La/Yb)N值为3.81~28.46,平均值为11.91;指示紫色萤石具有轻稀土富集的特征。其在配分曲线图中整体表现出正Eu异常,δEu值为1.02~2.15,平均值为1.38;δCe值为0.77~1.01,平均值为0.84(图6c、图6d)。白色萤石的∑REE含量为12.90×10−6~88.22×10−6,平均值为46.95×10−6;Y含量为21.03×10−6~256.5×10−6,平均值为102.9×10−6;LREE/HREE值为0.33~0.91,平均值为0.59(图6a、图6b);(La/Yb)N值为0.11~072,平均值为0.37;指示白色萤石具有重稀土富集的特征。其在稀土元素配分曲线图中整体表现出轻微的负Ce异常;δEu值为0.78~1.49,平均值为0.96;δCe值为0.76~1.04,平均值为0.88(图6c、图6d)。浅绿色的萤石∑REE含量为21.44×10−6~268.5×10−6,平均值为77.97×10−6;Y含量为2.34×10−6~6.92×10−6,均值为3.99×10−6;LREE/HREE值为23.59~199.1,均值为67.05(图6a、图6b);(La/Yb)N值为54.14~4397,均值为948.2;显示出较强的轻稀土富集特征。其在配分曲线图中整体表现出强烈的正Eu异常,δEu值为4.18~27.7,平均值为9.73;δCe值为0.75~1.29,平均值为0.94(图6c、图6d)。深绿色萤石的∑REE含量为421.6×10−6~879.7×10−6,平均值为673.6×10−6;Y含量为137.9×10−6~427.7×10−6,平均值为252.3×10−6;LREE/HREE值为3.07~15.51,平均值为8.04(图6a、图6b);(La/Yb)N值为2.02~17.48,平均值为8.21,指示深绿色萤石也具有轻稀土富集的特征。在稀土元素配分曲线图中整体表现为正Eu异常,δEu值为1.40~2.66,平均值为2.13;δCe值为0.89~1.04,平均值为0.96(图6c、图6d)。不同颜色萤石的配分曲线整体趋势相近,显示出相对富集高场强元素U以及大离子亲石元素Rb,而亏损高场强元素Nb、Zr、Ti、Hf以及大离子亲石元素Ba(图5b)。
表 2 黎川上水桥萤石矿床萤石微量元素(10−6)分析结果表Table 2. Analysis results of fluorite trace elements (10−6) in the Shangshuiqiao fluorite deposit in Lichuan样品号 样品名 Rb Ba Th U Nb Sr Zr Ti La Ce Pr Nd Sm Eu Gd ZK3402-1 白色萤石 — — 0.008 — 0.003 67.20 — — 1.00 2.51 0.43 2.78 1.99 0.81 4.97 ZK3402-2 白色萤石 — — — — — 84.23 — — 1.61 3.13 0.64 3.51 2.61 0.97 4.92 ZK3402-3 白色萤石 — 0.017 — — — 87.33 — — 2.40 5.99 1.13 6.26 3.35 1.54 6.00 ZK3402-4 白色萤石 — — — 0.002 — 45.17 — — 1.29 4.18 0.76 4.93 3.28 1.32 6.33 ZK3402-5 白色萤石 — 0.064 0.015 — — 98.35 0.026 — 3.68 8.60 1.46 6.72 4.27 1.70 7.68 ZK3402-6 白色萤石 0.023 — 0.001 — — 103.2 — — 2.16 4.54 0.89 4.49 2.41 1.09 4.96 ZK3402-7 白色萤石 0.017 — — — 0.008 84.43 0.018 — 1.24 2.07 0.33 1.58 0.53 0.40 1.27 ZK3402-8 白色萤石 — — — — — 100.6 0.012 — 1.96 4.27 0.72 4.69 2.00 1.01 4.67 ZK3402-9 白色萤石 0.016 0.092 0.013 0.004 — 100.7 — — 3.07 6.67 1.11 6.30 3.69 1.73 7.81 ZK3402-10 白色萤石 — — — 0.013 — 111.3 — — 1.60 2.88 0.47 3.12 1.84 0.79 3.69 ZK3402-11 白色萤石 — — — 0.017 — 100.2 — — 1.02 2.24 0.37 2.23 1.28 0.35 2.13 ZK3402-12 白色萤石 0.022 — — — — 86.81 0.005 0.903 3.34 6.94 0.96 5.69 3.94 1.81 7.32 ZK3402-13 白色萤石 0.005 — — — — 115.2 — — 3.01 6.51 1.18 6.14 3.31 1.36 6.83 ZK3402-14 白色萤石 0.033 0.084 0.034 — — 94.09 0.055 — 3.25 6.68 1.17 8.03 5.35 2.76 12.9 ZK3403-1 紫色萤石 0.149 0.134 0.016 0.005 — 104.4 — — 8.62 12.8 1.12 4.98 0.76 0.48 1.10 ZK3403-2 紫色萤石 — — 0.003 0.006 — 92.66 — — 5.46 7.49 0.78 3.84 0.98 0.47 1.62 ZK3403-3 紫色萤石 0.003 0.053 0.002 0.006 — 95.80 — — 5.37 7.03 0.93 4.39 0.92 0.69 1.05 ZK3403-4 紫色萤石 — — — 0.006 0.008 73.80 — 0.444 5.85 7.86 0.91 3.94 1.17 0.48 1.49 ZK3403-5 紫色萤石 0.014 0.070 — 0.012 — 83.55 — — 5.78 8.53 1.17 5.90 1.89 0.75 1.87 ZK3403-6 紫色萤石 — — — — — 84.04 — — 4.94 6.75 0.93 3.45 1.48 0.74 1.50 ZK3403-7 紫色萤石 — — — — — 67.33 — — 4.92 6.59 0.81 3.47 1.31 0.59 2.36 ZK3403-8 紫色萤石 0.005 0.065 — 0.001 — 75.19 — 0.610 5.93 7.96 0.97 3.92 1.09 0.68 2.57 ZK4602-1 深绿色萤石 — 0.074 0.004 0.114 — 152.9 0.012 — 141 314 44.0 165 31.3 25.4 27.9 ZK4602-2 深绿色萤石 0.073 0.041 — 0.255 — 180.2 — — 156 374 49.4 191 32.7 24.1 23.6 ZK4602-3 深绿色萤石 — — — 0.107 — 150.4 — 0.334 108 247 36.7 151 28.5 20.9 28.3 ZK4602-4 深绿色萤石 0.017 0.302 — 0.094 — 127.0 — — 55.4 127 19.8 95.7 24.8 13.9 25.6 ZK4602-5 深绿色萤石 — — — 0.131 — 128.5 — — 72.1 164 28.5 136 36.6 17.7 40.6 ZK4602-6 浅绿色萤石 0.258 0.192 — 0.090 — 180.2 — 0.106 7.55 9.83 1.10 3.57 0.53 0.94 0.26 ZK4602-7 浅绿色萤石 0.270 0.190 — 0.084 0.005 175.3 — — 7.63 7.69 0.82 3.00 0.63 0.85 0.42 ZK4602-8 浅绿色萤石 0.145 0.467 — 0.088 — 177.5 — 0.515 8.18 9.93 1.04 3.41 0.71 0.69 0.35 ZK4602-9 浅绿色萤石 0.314 0.410 — 0.136 — 187.8 0.045 — 15.3 18.5 1.74 2.79 0.45 1.16 0.45 ZK4602-10 浅绿色萤石 0.025 0.139 — 0.182 — 173.4 — — 87.5 135 11.4 26.5 1.55 5.66 1.15 ZK4602-11 浅绿色萤石 — 0.121 0.008 0.124 0.010 162.0 0.220 — 25.3 53.4 4.08 11.5 1.45 2.87 1.00 ZK4602-12 浅绿色萤石 0.118 0.216 — 0.211 — 173.5 — — 31.9 42.7 3.52 8.22 0.96 1.63 0.99 ZK4602-13 浅绿色萤石 0.027 0.037 — 0.120 — 141.7 0.010 — 14.5 23.3 2.69 7.44 0.64 4.05 0.31 续表2 样品号 样品名 Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LREE/
HREELaN/YbN δEu δCe ZK3402-1 白色萤石 1.10 8.71 1.89 6.11 0.75 4.80 0.598 85.1 38.46 9.52 28.94 0.33 0.15 0.78 0.94 ZK3402-2 白色萤石 0.87 7.16 1.73 4.74 0.68 4.28 0.593 79.3 37.44 12.47 24.97 0.50 0.27 0.83 0.76 ZK3402-3 白色萤石 1.34 11.3 2.45 7.06 1.12 7.72 0.952 95.5 58.60 20.67 37.94 0.54 0.22 1.05 0.89 ZK3402-4 白色萤石 1.34 10.4 2.35 7.39 1.19 8.23 1.308 80.7 54.25 15.75 38.49 0.41 0.11 0.88 1.04 ZK3402-5 白色萤石 1.61 12.5 3.07 8.78 0.92 5.85 0.801 152 67.65 26.43 41.23 0.64 0.45 0.91 0.91 ZK3402-6 白色萤石 1.06 8.20 1.77 4.73 0.61 4.03 0.500 81.5 41.46 15.59 25.86 0.60 0.39 0.96 0.80 ZK3402-7 白色萤石 0.31 1.93 0.34 1.41 0.14 1.22 0.131 21.0 12.90 6.15 6.76 0.91 0.72 1.49 0.80 ZK3402-8 白色萤石 0.81 6.33 1.35 4.21 0.65 3.29 0.381 68.5 36.35 14.66 21.69 0.68 0.43 1.01 0.88 ZK3402-9 白色萤石 1.60 11.6 2.82 7.98 0.90 5.86 0.776 151 61.90 22.57 39.32 0.57 0.38 0.98 0.89 ZK3402-10 白色萤石 0.67 4.60 1.27 3.44 0.41 2.43 0.364 56.6 27.55 10.69 16.86 0.63 0.47 0.92 0.82 ZK3402-11 白色萤石 0.45 3.05 0.71 2.26 0.22 1.48 0.295 27.7 18.10 7.49 10.60 0.71 0.50 0.65 0.89 ZK3402-12 白色萤石 1.55 9.90 2.62 7.86 1.02 5.52 0.783 137 59.25 22.68 36.57 0.62 0.43 1.03 0.95 ZK3402-13 白色萤石 1.54 8.69 2.34 7.65 0.93 5.11 0.631 148 55.24 21.51 33.73 0.64 0.42 0.88 0.85 ZK3402-14 白色萤石 2.67 17.3 4.29 11.8 1.61 9.28 1.112 257 88.22 27.25 60.97 0.45 0.25 1.02 0.84 ZK3403-1 紫色萤石 0.15 1.01 0.17 0.47 0.05 0.33 0.051 6.66 32.04 28.72 3.32 8.64 18.67 1.60 1.01 ZK3403-2 紫色萤石 0.16 0.96 0.13 0.33 0.03 0.14 0.058 8.46 22.44 19.02 3.42 5.56 28.46 1.15 0.89 ZK3403-3 紫色萤石 0.14 0.68 0.12 0.35 0.02 0.33 0.053 7.94 22.06 19.32 2.74 7.05 11.64 2.15 0.77 ZK3403-4 紫色萤石 0.31 1.04 0.29 0.66 0.07 0.46 0.094 10.3 24.63 20.22 4.41 4.59 9.15 1.12 0.84 ZK3403-5 紫色萤石 0.32 2.25 0.36 1.10 0.17 1.09 0.146 15.6 31.33 24.02 7.31 3.29 3.81 1.22 0.80 ZK3403-6 紫色萤石 0.22 1.52 0.28 0.57 0.09 0.60 0.088 8.94 23.14 18.28 4.86 3.76 5.89 1.51 0.77 ZK3403-7 紫色萤石 0.18 1.27 0.25 0.64 0.09 0.29 0.080 10.3 22.85 17.69 5.16 3.43 12.20 1.02 0.81 ZK3403-8 紫色萤石 0.30 1.76 0.30 0.80 0.16 0.78 0.162 14.0 27.37 20.55 6.82 3.01 5.48 1.25 0.81 ZK4602-1 深绿色萤石 3.03 18.1 3.06 7.43 0.90 8.33 1.565 231 791.3 721.0 70.24 10.26 12.18 2.63 0.98 ZK4602-2 深绿色萤石 2.36 12.3 1.92 4.99 0.69 6.40 1.027 138 879.7 826.4 53.27 15.51 17.48 2.66 1.04 ZK4602-3 深绿色萤石 3.24 20.1 3.64 9.21 1.42 12.1 2.027 216 671.7 591.7 79.99 7.40 6.40 2.25 0.96 ZK4602-4 深绿色萤石 3.98 22.5 4.07 11.1 1.62 13.3 2.638 249 421.6 336.8 84.81 3.97 2.98 1.69 0.94 ZK4602-5 深绿色萤石 5.85 38.4 8.19 22.3 3.08 25.6 4.408 428 603.6 455.2 148.4 3.07 2.02 1.40 0.89 ZK4602-6 浅绿色萤石 0.01 0.14 0.02 0.04 — 0.01 — 2.86 24.02 23.52 0.50 46.93 440.9 7.68 0.84 ZK4602-7 浅绿色萤石 0.03 0.16 0.05 0.06 — 0.10 — 6.13 21.44 20.62 0.82 25.03 54.14 5.04 0.75 ZK4602-8 浅绿色萤石 0.06 0.34 0.03 0.07 0.05 0.10 0.020 3.95 24.98 23.96 1.02 23.59 57.49 4.18 0.84 ZK4602-9 浅绿色萤石 0.04 0.25 0.02 0.01 — — 0.004 2.34 40.67 39.89 0.78 50.90 — 7.86 0.88 ZK4602-10 浅绿色萤石 0.04 0.10 — 0.02 — 0.01 0.004 3.40 268.5 267.2 1.34 199.1 4397 12.96 1.04 ZK4602-11 浅绿色萤石 0.01 0.29 — 0.04 — 0.01 — 3.37 99.96 98.58 1.38 71.66 1489 7.27 1.29 ZK4602-12 浅绿色萤石 0.06 0.33 0.06 0.23 0.01 0.24 0.004 6.92 90.85 88.93 1.92 46.39 95.04 5.11 0.99 ZK4602-13 浅绿色萤石 0.05 0.23 — 0.02 — 0.10 0.002 2.99 53.32 52.60 0.72 72.76 103.4 27.70 0.91 注:“—”为低于检测限。 5. 讨论
5.1 萤石成因
研究表明,萤石中的REE含量主要受控于热液流体中的REE浓度,而REE的分配模式主要受制于成矿物质的来源和成矿流体中REE络合物的稳定性(Graf,1977; Möller,1983;Bau et al.,1992;孙海瑞等,2014;邹灏等,2014)。在简单的卤化物溶液中,REE络合物的稳定性随着原子序数从La到Lu的递增而增加,次稳定的REE络合物更容易从流体中析出(Strong et al.,1984)。萤石中稀土元素的分布与成矿阶段的演化密切相联。在成矿的初期阶段,元素的迁移主要由吸附–解吸作用主导,使得萤石中相对富集轻稀土元素(LREE)。然而,在成矿的晚期阶段,元素的迁移以络合作用为主导,HREE-F络合物的稳定性更高,使得流体中相对富集HREE。随着萤石的不断析出,流体中F含量逐渐降低,(HREE)F2+逐渐解体,使得成矿后期流体中∑REE降低、HREE富集。因此,晚阶段形成的萤石其∑REE降低,但相对更富集HREE(Bau et al., 1992; 许东青等,2009;曹华文等,2014)。
上水桥萤石矿床中,浅绿色萤石的∑REE含量低于深绿色萤石,而LREE/HREE值和(La/Yb)N值则高于深绿色萤石,表明深绿色萤石相对浅绿色萤石更富集重稀土元素。浅绿色萤石的LREE/HREE值为23.59~199.1,(La/Yb)N值为54.14~4397;相比之下,深绿色萤石LREE/HREE值为3.07~15.51,(La/Yb)N值为2.02~17.48,表明浅绿色萤石内的稀土元素分馏作用更加显著,代表了更长期的成矿流体演化过程。综合而言,从浅绿色萤石到深绿色萤石,∑REE含量增加,LREE/HREE值和(La/Yb)N值减小,LREE/HREE值和(La/Yb)N值的变化范围更大(图6a、图6b),这表明浅绿色萤石向深绿色萤石具有重新活化的趋势(Bau et al.,1995)。紫色萤石的∑REE含量(均值为25.73×10−6)较浅绿色、深绿色萤石低。LREE/HREE值(均值为4.92)大于1,显示出轻稀土富集的特征,但是比浅绿色、深绿色萤石的LREE/HREE(均值分别为67.05、8.04)低。
白色萤石的∑REE含量(均值为46.95×10−6)比紫色萤石高,但低于浅绿色、深绿色萤石;与其他颜色萤石不同,白色萤石的LREE/HREE值、(La/Yb)N值均小于1(图6a、图6b);稀土元素配分曲线整体表现较平缓,区别于其他颜色萤石为重稀土富集型,可能指示白色萤石的REE主要以络合作用发生迁移,成矿流体演化过程较长,相对其他颜色萤石成矿时间更晚(许东青等,2009)。研究区不同颜色萤石的稀土元素特征的差异与成矿流体的不断演化有关,且这种差异性可能说明上水桥萤石矿床存在至少两期次萤石成矿作用,早期可能为浅绿色、深绿色和紫色萤石,晚期为白色萤石。虽然当前的钻孔岩心编录和镜下观察未发现不同颜色萤石的空间赋存关系,但是后续工作应加强对该认识的岩相学研究。
Tb/Ca-Tb/La图解已经广泛应用于判断萤石矿床的成因类型(Möller et al., 1976;曹俊臣,1995;夏学惠等,2009;孙海瑞等,2014;张成信等,2019;Liu et al.,2023)。在该图解中(图7a),横坐标的Tb/La值可用来反映萤石结晶时间的先后,纵坐标Tb/Ca原子比值反映了萤石结晶时的地球化学环境。在成矿流体迁移时,Tb和La络合物的稳定性不同,Tb/La值的增加表明在成矿过程中,稀土元素发生了明显的分馏现象,使得后期结晶的萤石富含Tb而相对贫乏La,这种趋势反映了REE的分馏和萤石结晶的时序性(Möller et al., 1976)。对研究区不同颜色萤石样品进行投图,浅绿色萤石样品均投在图中的较低点,表明浅绿色萤石结晶发生在成矿的早期阶段;而白色萤石样品均投在REE分馏曲线的较高处,表明白色萤石为后期矿化形成。并且,所有萤石样品的数据点均投在Tb/Ca-Tb/La图解的热液成因区,表明上水桥萤石矿床是热液成因的产物。
图 7 上水桥萤石矿床不同颜色萤石Tb/Ca-Tb/La关系图(a)(底图据Möller et al.,1976)与上水桥萤石矿床不同颜色萤石La/Ho-Y/Ho关系图(b)(底图据Bau et al.,1995)Figure 7. (a) Tb/Ca-Tb/La relationship diagram and (b) La/Ho-Y/Ho relationship diagram of different colors of fluorite in the Shangshuiqiao fluorite deposit5.2 成矿流体特征
研究表明,在大多数情况下,稀土元素都以+3价的稳定形式存在于地质环境当中。然而,当外部环境(如温度、氧化还原条件等)发生改变时,Eu3+和Ce3+则会发生价态变化,分别转化为Eu2+和Ce4+的状态。Eu2+和Ce4+与稀土元素的+3价形式(REE3+)在性质上有显著差异,导致它们在流体迁移过程中与其他稀土元素发生分离,从而在稀土元素的配分曲线中产生Eu或Ce的异常特征。这些Eu或Ce异常特征通常被用来指示成矿流体的温度和氧化还原条件(Constantopoulos, 1988; Williams-Jones et al., 2000; 王国芝等,2003;曹华文等,2014; Rollinson, 2014)。具体而言,在较高温度(>250 ℃)和还原条件下,Eu在热液流体中主要以Eu2+形式存在,Eu2+的离子半径(1.33 Å)大于Ca2+的离子半径(1.2 Å),不易置换萤石中的Ca2+,导致萤石中Eu负异常出现。而在温度较低(<200 ℃)的氧化环境下,Eu以Eu3+形式居多,更容易置换萤石晶格中的Ca2+,形成Eu正异常。在氧化条件下,Ce主要以Ce4+形式存在,而Ce4+在流体中的溶解度较低,容易和流体中的氢氧化物结合并脱离溶液体系,导致从流体中析出的萤石出现Ce负异常(Taylor et al., 1982; 刘英俊等,1987;王中刚等,1989;Bau et al., 1992)。上水桥矿床萤石整体呈现正Eu异常和负Ce异常,指示矿物结晶温度较低,结晶时可能处于氧化环境。白色萤石Eu异常不明显,可能指示其结晶时处于较弱的氧化环境。因此,区内成矿流体演化时处于较低温的开放体系下。
Y和Ho的地球化学性质相似,在示踪成矿流体作用过程中,Y/Ho值通常作为一种重要参数(Irber, 1999)。Bau等(1995)对众多萤石矿床的稀土元素特征进行深入研究后提出了Y/Ho~La/Ho关系图,该图可以有效地判断成矿流体的同源性。研究指出,Y和Ho的分馏和成矿流体的成分及物理化学性质有关,Y和Ho的分馏发生在流体迁移的过程中。如果萤石是同源的流体形成的,那么它们通常会具有相近的Y/Ho值和La/Ho值;如果萤石经历了后期沉淀,那么它们的Y/Ho值变化范围较小,La/Ho值的变化范围较宽。研究区萤石数据Y/Ho-La/Ho图解显示(图7b),不同颜色的萤石整体呈水平带状分布,说明该研究区内萤石的成矿流体具有同源性,但是不同颜色萤石的La/Ho值变化范围较大,可能指示成矿流体经历了不同阶段的演化过程。研究表明,在含F量较高的成矿流体体系中,Y相对于Ho显示出显著的富集,Y/Ho值通常超过28(Veksler et al., 2005)。研究区萤石的Y/Ho值相近,且均大于28,说明区内萤石矿的成矿流体富含F元素。
中国典型的热液脉型萤石矿床气液包裹体H-O同位素研究表明(曹俊臣,1994;Li et al., 2020; Liu et al., 2023),华南地区福建、江西、浙江等省内萤石矿H-O同位素数据的投点均落在大气降水线的右下方,且更靠近大气降水线,表明了大气降水在华南地区热液脉型萤石矿中起着重要作用。综上所述,研究区成矿流体可能为氧化环境下大气降水成因的中低温含F热液。
5.3 成矿物质来源
Sm和Nd具有相似的化学性质且通常以+3价的形式存在,难以在地质过程中分离,因此,Sm/Nd值被广泛应用于揭示不同地质过程和岩石成因的源区特征(刘英俊等,1987;Dill et al, 2011; 栗克坤等,2023)。研究区中白色萤石样品Sm/Nd值为0.34~0.74,均值为0.59;紫色萤石样品Sm/Nd值为0.15~0.43,均值为0.29;浅绿色萤石样品Sm/Nd值为0.06~0.21,均值为0.14;深绿色萤石样品Sm/Nd值为0.17~0.27,均值为0.22;围岩Sm/Nd值为0.15~0.16,均值为0.15(图8)。浅绿色、深绿色、紫色萤石和围岩的Sm/Nd值较为接近,且不同颜色萤石与围岩微量元素配分曲线趋势大致相同(图5),表明萤石矿的成矿物质来源与围岩之间存在密切的关系。白色萤石Sm/Nd值较围岩更高,可能由流体与围岩发生水岩反应进行到后期,溶液体系的pH值升高,萤石溶解度变低导致(Richardson et al., 1979)。后期形成的白色萤石更易直接从流体中析出,使得流体从围岩中萃取的元素较少,部分Sm、Nd可能来自流体本身,而不完全来自于围岩。
上水桥萤石矿区内的围岩主要为燕山期黑云母花岗岩,围岩和萤石的微量元素配分模式相近,说明两者之间有一定关联(曹俊臣,1994)。研究区的围岩F含量为0.51%~9.34%(表1),均高于大陆地壳F元素丰度(470×10–6)(黎彤等,2011)的5~100倍,且越靠近矿体的围岩其F含量越高,暗示着围岩黑云母花岗岩可能为萤石矿床提供了大量的氟源。此外,区内燕山期黑云母花岗岩发生硅化和绢云母化等蚀变,可能指示构成萤石的Ca来自成矿流体与围岩的水岩反应(曹俊臣,1994;栗克坤等,2023)。围岩黑云母花岗岩中的斜长石发生绢云母化,其化学方程式为Na[AlSi3O8]·Ca[Al2Si2O8](斜长石)+2H++K+→KAl2[AlSi3O10](OH)2(绢云母)+2SiO2+Na++Ca2+(张潮等,2016),导致Ca2+从围岩黑云母花岗岩中的斜长石晶格中析出,转移至热液流体中。
5.4 成矿模式
一般研究认为萤石矿床中成矿需要的F主要来自深部(地幔或基底地层),而Ca来自于蚀变围岩(彭建堂等,2003;夏学惠等,2009;邹灏等,2016a)。然而,部分萤石矿床研究也指出(李长江等,1991;曹俊臣,1994;朱利岗等,2021;金松等,2022;游超等,2022;栗克坤等,2023;Liu et al., 2023):华南地区萤石矿床中的Ca和F可能均来自于围岩,在地热水(主要为大气降水经地下热循环形成)与赋矿围岩(主要为燕山期花岗岩)发生水岩反应的过程中释放出来,萤石在合适的温度、压力以及pH值条件下,在有利的构造内成矿。本次研究推测上水桥萤石矿床的形成也可能与中国东南部拉张构造环境下的地热水循环有关(李长江等,1991)。在燕山早期,侵入的花岗岩浆固结形成黑云母花岗岩,随后经历风化、剥蚀以及构造运动产生裂隙。期间大气降水顺着裂隙下渗进入岩体内部,经深部热源循环加热成为地热水,并从岩体内淋滤汲取出Ca2+、F-等成矿组分后,这些富矿热液沿断层等构造上升过程中伴随着降温、减压、pH值升高和REE分馏,导致了不同颜色萤石的析出。区内发育的东西向断裂破碎带,为富矿流体的迁移和含矿物质的沉淀提供了理想通道和位置,而不断演化的成矿流体在有利构造部位发生多期次成矿(图9)。
6. 结论
(1)上水桥萤石的Y-REE含量以及LREE/HREE值的变化范围较大。萤石整体显示出Eu正异常和Ce负异常,指示萤石成矿过程处于中低温的氧化环境。不同颜色的萤石中,深绿色萤石的Y-REE含量最高。从浅绿色萤石到深绿色萤石,∑REE增大,LREE/HREE值和(La/Yb)N值减小,具有重新活化的趋势。白色萤石∑REE较低,LREE/HREE值小于1,相较于其他颜色萤石可能成矿时间更晚。
(2)上水桥萤石矿床中萤石和围岩的微量元素配分曲线趋势大致相同,且具有相近的Sm/Nd值。近矿围岩发生硅化、绢云母化等蚀变,且越靠近矿体的围岩中F含量越高。结合前人的H-O同位素研究,认为萤石矿床的主要成矿物质Ca和F元素主要来自大气降水对围岩燕山早期黑云母花岗岩的淋滤和萃取。
(3)上水桥萤石矿床的成矿流体来源相同,为同一成矿流体不同成矿期次的产物。萤石颜色的差异可能是由成矿流体不断演化、稀土元素的分馏导致。结合上水桥萤石矿床地质特征以及Tb/Ca-Tb/La和La/Ho-Y/Ho关系图,该萤石矿床成因类型为EW向断裂控制的多期次中低温热液充填型萤石矿床。
致谢:野外采样工作得到了江西省地质局第十地质大队的大力支持,广州拓研分析技术有限公司和东华理工大学核资源与环境国家重点实验室承担样品的测试工作,在此表示诚挚的感谢;同时审稿专家的建议也使本文受益匪浅,再次表示衷心的感谢。
-
图 1 祁漫塔格成矿带地质图(据Zhong et al.,2021b修改)
图中显示了文中涉及的矿床的类型和位置;其中,沙丘、玛兴大阪、哈西雅图矿床位于图幅右侧,未在图中显示出来
Figure 1. Geological map of the Qimantagh metallogenic belt
图 6 外部独立验证数据集的分类结果图
a. 成矿岩体分类结果图(数据来源于Guo et al.,2022;Xu et al.,2023);b. 非成矿岩体分类结果图(数据来源于Ren et al.,2023)
Figure 6. Plot of classification results for external independent validation dataset
表 1 文中使用的成矿岩体和非成矿岩体数据来源表
Table 1 Data sources of mineralized and barren magmatic rocks used in this study
表 2 文中汇编的成矿岩体和非成矿岩体的全岩地球化学特征表
Table 2 Whole–rock geochemical characterization of mineralized and barren magmatic rocks compiled in this study
元素特征 成矿岩体 非成矿岩体 含量 平均值 含量 平均值 SiO2 49.6~78.1 70.2 47.5~78.0 68.1 Al2O3 10.5~18.3 13.3 2.6~18.4 13.6 Fe2O3 0.5~12.6 3.2 0.9~13.4 4.1 MgO 0.1~1.1 0.6 0.1~1.1 0.6 CaO 0.3~10.0 2.5 0.2~13.4 2.7 Na2O 0.7~4.9 3.0 0.7~6.2 3.0 K2O 0.7~7.7 4.0 0.3~7.8 3.9 Ba 36.0~2420.0 502.5 13.0~2086.0 588.0 Rb 21.0~580.0 193.7 6.5~566.0 166.3 Nb 3.1~59.0 13.9 0.5~89.7 16.6 La 6.1~148.0 34.2 5.1~170.0 39.8 Ce 20.9~196.0 66.2 11.1~362.0 80.0 Pr 1.6~33.9 7.5 1.5~41.8 9.7 Nd 6.0~108.0 26.4 5.9~148.0 35.5 Sm 1.5~14.8 4.9 1.4~22.6 7.2 Eu 0~2.3 0.8 0.1~6.8 1.2 Gd 1.2~14.3 4.4 1.3~20.6 6.6 Tb 0.2~3.2 0.7 0.2~3.5 1.1 Dy 1.1~23.0 4.0 0.7~24.5 6.1 Ho 0.2~5.1 0.8 0.2~5.2 1.2 Er 0.7~15.2 2.4 0.5~15.0 3.4 Tm 0.1~2.6 0.4 0.1~2.3 0.5 Yb 0.7~17.6 2.6 0.5~17.0 3.3 Lu 0.1~2.9 0.4 0.1~2.4 0.5 Sr 12.4~743.0 206.5 1.1~927.0 226.7 Y 6.8~164.8 24.2 3.7~157.0 32.4 Sr/Y 0.1~64.9 11.1 0.1~75.8 11.0 La/Yb 0.9~46.5 15.6 0.9~75.2 15.3 注:主量元素含量为%;微量元素含量为10−6。 表 3 随机森林模型分类结果表
Table 3 Classification results of Random Forest model
模型 岩体类型 总体准确率 准确率 AUC 随机森林 成矿岩体 0.90 0.84 0.93 非成矿岩体 0.94 -
陈邦学, 徐胜利, 杨有生, 等. 东昆仑西段其木来克一带晚二叠世侵入岩的成因及其构造意义[J]. 地质通报, 2019, 38(06): 1040-1051 Chen Bangxue, Xu Shengli, Yang Yousheng, et al. Genesis and tectonic significance of Late Permian Qimulaike intrusive rocks in the west of East Kunlun Mountains, Xinjiang[J]. Geological Bulletin of China, 2019, 38(6): 1040-1051.
陈静, 谢智勇, 李彬, 等. 东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义[J]. 地质与勘探, 2013, 49(5): 813−824. CHEN Jing, XIE Zhiyong, LI Bin, et al. Geological and gechemical characteristics of the ore-bearing intrusions from the Lalingzaohuo Mo polymetallic deposit and its metallogenic significance[J]. Geology and Exploration, 2013, 49(5): 813−824.
陈静, 胡继春, 逯永卓, 等. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465−472. CHEN Jing, HU Jichun, LU Yongzhuo, et al. Geochronology, Geochemical Characteristics of Molybdenum Ore-bearing Syenogranite from Xiaozhaohuo Area in East Kunlun and Its Geological Significance[J]. Gold Science and Technology, 2018, 26(04): 465−472.
崔美慧, 孟繁聪, 吴祥珂. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J]. 岩石学报, 2011, 27(11): 3365-3379 CUI Meihui, MENG Fancong, WU Xiangke. Early Ordovician island arc of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate-basic igneous rocks[J]. Acta Petrologica Sinica, 2011, 27(11): 3365-3379.
董连慧, 刘德权, 唐延龄, 等. 试论新疆成矿体系与时空演化模式[J]. 矿床地质, 2015, 34(06): 1107-1129 doi: 10.16111/j.0258-7106.2015.06.002 DONG Lianhui, LIU Dequan, TANG Yanling, et al. Five-era metallogenic system of mineral deposits in Xinjiang and its spatial and temporal evolution mode[J]. Mineral Deposits, 2015, 34(06): 1107-1129. doi: 10.16111/j.0258-7106.2015.06.002
丰成友, 李东生, 吴正寿, 等. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 2010, 43(04): 10-17 doi: 10.3969/j.issn.1009-6248.2010.04.002 FENG Chengyou, Li Dongsheng, WU Zhengshou, et al. Major Types Time Space Distribution and Metallogeneses of Polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area[J]. Northwestern Geology, 2010, 43(04): 10-17. doi: 10.3969/j.issn.1009-6248.2010.04.002
丰成友, 王雪萍, 舒晓峰, 等. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 2011, 41(06): 1806-1817 doi: 10.13278/j.cnki.jjuese.2011.06.013 FENG Chengyou, WANG Xueping, SHU Xiaofeng, et al. Isotopic Chronology of the Hutouya Skarn Lead-Zinc Polymetallic Ore District in Qimantage Area of Qinghia Province and It’s Geological Significance[J]. Journal of Jilin University, 2011, 41(06): 1806-1817. doi: 10.13278/j.cnki.jjuese.2011.06.013
丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(02): 665-678 FENG Chenyou, WANG Song, LI Guochen, et al. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 2012, 28(02): 665-678.
高永宝. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 西安: 长安大学, 2013 GAO Yongbao. The Intermediate-acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Moutains[D]. Xi’an: Chang’an University, 2013.
高永宝, 李侃, 钱兵, 等. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束[J]. 大地构造与成矿学, 2018, 42(01): 96-107 GAO Yongbao, LI Kan, QIAN Bing, et al. The Metallogenic Chronology of Kaerqueka Deposit in Eastern Kunlun: Evidences from Molybdenite Re-Os and Phlogopite Ar-Ar Ages[J]. Geotectonica et Metallogenia, 2018, 42(01): 96-107.
高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(6): 1647−1665. GAO Yongbao, LI Wenyuan, QIAN Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China. Acta Petrologica Sinica, 2014, 30(6): 1647−1665.
高永宝, 李文渊, 马晓光, 等. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版), 2012, 48(02): 36-47 doi: 10.13885/j.issn.0455-2059.2012.02.003 GAO Yongbao, LI Wenyuan, MA Xiaoguang, et al. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern China[J]. Journal of Lanzhou University, 2012, 48(02): 36-47. doi: 10.13885/j.issn.0455-2059.2012.02.003
高永宝, 李文渊, 张照伟. 祁漫塔格白干湖-戛勒赛钨锡矿带石英脉型矿石流体包裹体及氢氧同位素研究[J]. 岩石学报, 2011, 27(06): 1829-1839 GAO Yongbao, LI Wenyuan, ZHANG Zhaowei. Fluid inclusions and H-O isotopic compositions of quartz-vein ores in the Baiganhu-Jialesai W-Sn mineralization belts, Qimantage, NW China[J]. Acta Petrologica Sinica, 2011, 27(6): 1829-1839.
郝杰, 刘小汉, 桑海清. 新疆东昆仑野牛泉石英闪长岩与英安斑岩的40Ar/39Ar同位素年龄[J]. 地质通报, 2003, (03): 165-169 doi: 10.3969/j.issn.1671-2552.2003.03.004 HAO Jie, LIU Xiaohan, SANG Haiqing. Hornblende and biotite 40Ar/39Ar ages of the Yeniuquan quartz diorite and dacite-porphyry in thr Esat Kunlun orogenic belt, Xinjiang[J]. Geological Bulletin of China, 2003, (03): 165-169. doi: 10.3969/j.issn.1671-2552.2003.03.004
景宝盛, 单金忠. 新疆东昆仑维宝地区铅锌矿床找矿标志及找矿方向[J]. 地质找矿论丛, 2013, 28(04): 499-507 doi: 10.6053/j.issn.1001-1412.2013.04.001 JING Baosheng, SHAN Jinzhong. Prospecting criteria and ore prospecting orientation of lead-zinc deposit in Weibao area of East Kunlun region, Xinjiang[J]. Contribution to Geology and Mineral Resources Research, 2013, 28(04): 499-507. doi: 10.6053/j.issn.1001-1412.2013.04.001
孔会磊, 李金超, 黄军, 等. 东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U-Pb测年、岩石地球化学及找矿意义[J]. 中国地质, 2015, 42(03): 521-532. doi: 10.3969/j.issn.1000-3657.2015.03.010 KONG Huilei, LI Jinchao, HUANG Jun, et al. Zircon U-Pb dating and geochemical characteristics of the plagiogranite porphyry from the Xiaoyuanshan iron-polymetallic ore district in East Kunlun Mountains[J]. Geology in China, 2015, 42(3): 521-532. doi: 10.3969/j.issn.1000-3657.2015.03.010
孔会磊, 李金超, 栗亚芝, 等. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质科技情报, 2016, 35(01): 8-16 KONG Huilei, LI Jinchao, LI Yazhi, et al. LA-MC-ICP-MS Zircon U-Pb Dating and Its Geological Implications of the Tonalite from Xiaoyuanshan Iron-Polymetallic Ore District in Qimantag Mountain, Qinghai Province[J]. Geological Science and Technology Information, 2016, 35(01): 8-16.
李碧乐, 孙丰月, 于晓飞, 等. 青海东昆仑卡尔却卡地区野拉塞铜矿床成因类型及成矿机制[J]. 岩石学报, 2010, 26(12): 3696-3708 LI Bile, SUN Fengyue, YU Xiaofei, et al. Genetic type and Mineralizing Mechanism of the Yelasai Copper Deposit in Kaerqueka area Eastern Kunlun Qinghai Province[J]. Acta Petrologica Sinica, 2010, 26(12): 3696-3708.
李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(02): 309-319 doi: 10.3975/cagsb.2020.022501 LI Changbai, XIAO Keyan, LI Nan, et al. A Comparative Study of Support Vector Machine, Random Forest and Artificial Neural Network Machine Learning Algorithms in Geochemical Anomaly Information Extraction[J]. Acta Geoscientica Sinica, 2020, 41(02): 309-319. doi: 10.3975/cagsb.2020.022501
李积清, 陈静, 史青瑞, 等. 东昆仑卡尔却卡矿区似斑状二长花岗岩成因: 锆石U-Pb年龄及Sr-Nd同位素制约[J]. 矿物岩石, 2016, 36(03): 87-95 LI Jiqing, CHENG Jing, SHI Qingrui, et al. The Genesis of Porphyritic Monzogranitie of the Kaerqueka Deposit it the East Kunlun: Evidence, from Zircon U-Pb Dating and Sr-Nd Isotopic Compositions[J]. Mineral Petrol, 2016, 36(03): 87-95.
李侃, 高永宝, 钱兵, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J]. 中国地质, 2015, 42(03): 630-645 doi: 10.3969/j.issn.1000-3657.2015.03.017 LI Kan, GAO Yongbao, QIAO Bing, et al. Geochronology, geochemical characteristics and Hf isotopic compositions of granite in the Hutouya deposit, Qimantag, East Kunlun[J]. Geology in China, 2015, 42(3): 630-645. doi: 10.3969/j.issn.1000-3657.2015.03.017
李世金, 孙丰月, 丰成友, 等. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, 2008, 82(07): 949-955 doi: 10.3321/j.issn:0001-5717.2008.07.013 LI Shijin, SUN Fengyue, FENG Chengyou, et al. Geochronological Study on Yazigou Polymetallic Deposit in Eastern Kunlun Qinhai Province[J]. Acta Geologica Sinica, 2008, 82(07): 949-955. doi: 10.3321/j.issn:0001-5717.2008.07.013
李瑶. 东昆仑祁漫塔格阿确礅地区古生代花岗岩成因及大地构造意义[D]. 北京: 中国地质大学, 2017 LI Yao. Genesis and Tectonic significance of Paleozoic Granites in Aquedun area, East Kunlun[D]. Beijing: China University of Geosciences, 2017.
李国臣, 丰成友, 王瑞江, 等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报, 2012, 33(02): 216-226 LI Guochen, FENG Chengyou, WANG Ruijiang, et al. SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang[J]. Acta Geoscientica Sinica, 2012, 33(02): 216-226.
李慧. 基于证据权重法和机器学习的赣南钨矿成矿远景预测[D]. 赣州: 江西理工大学, 2022 LI Hui. Mineral Prospectivity Mapping of Tungsten Deposits in Southern Jiangxi Province Based on Weights of Evidence and Machine Learning[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.
李玉春, 李彬, 陈静, 等. 东昆仑拉陵灶火矿区花岗闪长岩Sr-Nd-Pb同位素特征及其地质意义[J]. 矿物岩石, 2013, 33(03): 110-115 doi: 10.3969/j.issn.1001-6872.2013.03.016 LI Yuchun, LI Bin, CHEN Jing, et al. Sr-Nd-Pb Isotopic Characteristics of Ore-Bearing Granodiorites from Lalingzaohuo Deposit and it’s Geological Significance[J]. Journal of Mineral Petrol, 2013, 33(03): 110-115. doi: 10.3969/j.issn.1001-6872.2013.03.016
李玉春, 张爱奎, 张培青, 等. 青海祁漫塔格沙丘地区侵入岩地质、地球化学特征及找矿意义[J]. 西北地质, 2013, 46(03): 70-82 doi: 10.3969/j.issn.1009-6248.2013.03.005 LI Yuchun, ZHANG Aikui, ZHANG Peiqing, et al. The Geological and Geochemical Characteristics of the Intrusive Rock and Prospecting Significance in Shaqiu Areas, Qimantage Metallogenic Belt, Qinghai Province[J]. Northwestern Geology, 2013, 46(03): 70-82. doi: 10.3969/j.issn.1009-6248.2013.03.005
刘建楠. 青海野马泉铁锌矿床多期次构造—岩浆热年代学成矿意义[D]. 北京: 中国地质科学院, 2018 LIU Jiannan. The Metallogenic Significance of Multistage Tectonic Magmatic, the Morchronology of Yemaquan Iron-Zinc Deposit, Qinghai[D]. Beijing: Chinese Academy of Geological Sciences For, 2018.
刘彬, 马昌前, 蒋红安, 等. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据[J]. 岩石学报, 2013, 29(06): 2093-2106 LIU Bin, MA Changqian, JIANG Hongan, et al. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin mafic rocks[J]. Acta Petrologica Sinica, 2013, 29(6): 2093-2106.
刘晓生, 章治邦. 基于改进网格搜索法的SVM参数优化[J]. 江西理工大学学报, 2019, 40(1): 5−9. LIU Xiaosheng, ZHANG Zhibang. Parameter optimization of Support Vector Machine based on improved grid search method[J]. Journal of Jiangxi University of Science and Technology, 2019, 40(1): 5−9.
陆济璞, 李江, 覃小锋, 等. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, 2005, (04): 46-54 doi: 10.3969/j.issn.1009-3850.2005.04.008 LU Jipu, LI Jiang, TAN Xiaofeng, et al. The Yinieke agan granite mass in Qimantag eastern Kunlun and its tectonic significance[J]. Sedimentary Geology and Tethyan Geology, 2005, (04): 46-54. doi: 10.3969/j.issn.1009-3850.2005.04.008
陆济璞, 戴梅芳, 李江, 等. 东昆仑祁漫塔格希热芒崖晚石炭世花岗岩地球化学特征及其构造背景[J]. 华南地质与矿产, 2006, (04): 1-8 LU Jipi, DAI Meifang, LI Jiang, et al. Geochemical Characteristics and It’s Tectonis Setting of Xiremangya Lata Carboniferous Granite in the Qimantage Mountains, East Kunlun[J]. South China Geology, 2006, (04): 1-8.
马文, 丁玉进, 李社宏, 等. 祁漫塔格中部元古代高钾(变质)侵入岩体的发现及其地质意义[J]. 西北地质, 2013, 46(01): 32-39 doi: 10.3969/j.issn.1009-6248.2013.01.004 MA Wen, DING Yujin, LI Shehong, et al. The Discovery and Geological Significance of Proterozoic Intrusive Rock with High-K in the Central of Qimantge Area[J]. Northwestern Geology, 2013, 46(01): 32-39. doi: 10.3969/j.issn.1009-6248.2013.01.004
毛景文, 周振华, 丰成友等. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 2012, 39(06): 1437-1471 doi: 10.3969/j.issn.1000-3657.2012.06.001 MAO Jingwen, ZHOU Zhenhua, FENG Chengyou, et al. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 2012, 39(06): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001
莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 49(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010 MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 49(03): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
南卡俄吾, 贾群子, 唐玲, 等. 青海东昆仑哈西亚图矿区花岗闪长岩锆石U-Pb年龄与岩石地球化学特征[J]. 中国地质, 2015, 42(03): 702-712 doi: 10.3969/j.issn.1000-3657.2015.03.022 NAMHKA N, JIA Qunzi, TANG Ling, et al. Zircon U-Pb age and geochemical characteristics of granodiorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J]. Geology in China, 2015, 42(3): 702-712. doi: 10.3969/j.issn.1000-3657.2015.03.022
南卡俄吾, 贾群子, 李文渊, 等. 青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征[J]. 地质通报, 2014, 33(06): 841-849 doi: 10.3969/j.issn.1671-2552.2014.06.007 NAMHKA N, JIA Qunzi, LI Wenyuan, et al. LA-ICP-MS zircon U-Pb age and geochemical characteristics of quartz diorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J]. Geological Bulletin of China, 2014, 33(6): 841-849. doi: 10.3969/j.issn.1671-2552.2014.06.007
潘北斗, 李宝, 王福臣, 等. 不同类型矿床(点)空间关联关系定量研究——以中南半岛及临近地区为例[J]. 地质与勘探, 2022, 58(03): 532-544. PAN Beidou, LIU Bao, WANG Fuchen, et al. Quantitative study on spatial correlation of different types of deposits(occurrences)—A case study of Indochina Peninsula and adjacent areas[J]. Geology and Exploration, 2022, 58(3): 0532-0544.
潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(01): 16-33 doi: 10.3969/j.issn.1672-6561.2017.01.002 PAN Tong. Classification of Metallogenic Units in Qinghai, China[J]. Journal of Earth Sciences and Enviroment, 2017, 39(01): 16-33. doi: 10.3969/j.issn.1672-6561.2017.01.002
时超, 李荣社, 何世平, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿成矿时代及其地质意义——黑云二长花岗岩地球化学特征和锆石U-Pb年龄证据[J]. 地质通报, 2017, 36(06): 977-986 doi: 10.3969/j.issn.1671-2552.2017.06.010 SHI Chao, LI Rongshe, HE Shiping, et al. A study of the ore-forming age of the Hutouya deposit and its geological significance: Geochemistry and U-Pb zircon ages of biotite monzonitic granite in Qimantag, East Kunlun Mountains[J]. Geological Bulletin of China, 2017, 36(6): 977-986. doi: 10.3969/j.issn.1671-2552.2017.06.010
舒树兰, 何书跃, 李彬, 等. 青海东昆仑鸭子沟多金属矿床地质地球化学特征及找矿前景分析[J]. 西北地质, 2014, 47(02): 62-72 doi: 10.3969/j.issn.1009-6248.2014.02.008 SHU Shulan, HE Shuyue, LI Bin, et al. Geology, Geochemical Characteristics and Prospecting Analysisof Yazigou Polymetallic Deposit, Esat Kunlun, Qinghai Province[J]. Northwestern Geology, 2014, 47(02): 62-72. doi: 10.3969/j.issn.1009-6248.2014.02.008
舒晓峰, 王雪萍, 张雨莲, 等. 青海虎头崖地区多金属矿床成因类型的厘定及找矿方向[J]. 西北地质, 2012, 45(01): 165-173 doi: 10.3969/j.issn.1009-6248.2012.01.022 SHU Xiaofeng, WANG Xueping, ZHANG Yulian, et al. Determination of Multifarious Genesis and Prospecting of Polymetallic Metallogenic Deposit in Hutouya, Qinghai[J]. Northwestern Geology, 2012, 45(01): 165-173. doi: 10.3969/j.issn.1009-6248.2012.01.022
谈生祥, 郭通珍, 董进生, 等. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 2011, 29(1): 36−43. TAN Shengxiang, GUO Tongzhen, DONG Jinsheng, et al. Geological characteristics and significance of the peraluminous granite in late silurian epoch in Wulanwuzhuer region of Qinghai[J]. Journal of Qinghai University(Natural Science), 2011, 29(1): 36−43.
田承盛, 丰成友, 李军红, 等. 青海它温查汉铁多金属矿床~(40)Ar-~(39)Ar年代学研究及意义[J]矿床地质, 2013, 32(01): 169-176 doi: 10.3969/j.issn.0258-7106.2013.01.012 TIAN Chengsheng, FENG Chengyou, LI Junhong, et al. 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in Qimantag Mountain of Qinghai Province and its geological implications[J]. Mineral Deposits, 2013, 32(01): 169-176. doi: 10.3969/j.issn.0258-7106.2013.01.012
田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28−45. TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28−45.
王秉璋. 祁漫塔格地质走廊域古生代—中生代火成岩岩石构造组合研究[D]. 北京: 中国地质大学(北京), 2012 WANG Bingzhang. The study and investigation on the assembly and coupling Petrotectonic assemblage during Paleozoic-Mesozoic period at Qimantag geological corridor domain[D]. Beijing: China University of Geosciences (Beijing), 2012.
温博文, 董文瀚, 解武杰, 等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10): 154−157. WEN Bowen, DONG Wenhan, XIE Wujie, et al. Parameter optimization method for random forest based on improved grid search algorithm[J]. Computer Engineering and Applications, 2018, 54(10): 154-157.
徐博. 藏北安多地区中侏罗统布曲组碳酸盐岩微相分析[D]. 成都: 成都理工大学, 2020 XU Bo. Carbonate Microfacies Analysis and Evolutions of the Middle Jurassic Buqu Formation in the Amdo area, northern Tibet[D]. Chendu: Chendu University of Technology, 2020.
许长坤, 刘世宝, 赵子基, 等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 2012, 86(10): 1621-1678 doi: 10.3969/j.issn.0001-5717.2012.10.006 XU Changkun, LIU Shibao, ZHAO Ziji, et al. Metallogenic Law and Prospect Direction of Iron Deposits in the East Kunlun Metallogenic Belt in Qinghai[J]. Acta Geologica Sinca, 2012, 86(10): 1621-1678. doi: 10.3969/j.issn.0001-5717.2012.10.006
许骏, 邓小华, 祝新友. 祁漫塔格成矿带地质特征和成矿时空分布规律[J]. 新疆地质, 2021, 39(04): 671-678 doi: 10.3969/j.issn.1000-8845.2021.04.025 XU Jun, DENG Xiaohua, ZHU Xingyou. Geological Characteristics and Spatio-Temporal Distribution of Mineralization in the Qimantage metallogenic Belt[J]. Xinjiang Geology, 2021, 39(04): 671-678. doi: 10.3969/j.issn.1000-8845.2021.04.025
许志琴, 杨经绥, 李化启, 等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(06): 1697-1709 XU Zhiqin, YANG Jingsui, LI Huaqi, et al. Indosinian collision-orogenic system of Chinese continent and its orogenic mechanism[J]. Acta Petrologica Sinica, 2012, 28(06): 1697-1709.
薛宁, 安勇胜, 李五福, 等. 青海野马泉地区正长花岗岩的基本特征及成因[J]. 青海大学学报(自然科学版), 2009, 27(02): 18-22 doi: 10.13901/j.cnki.qhwxxbzk.2009.02.003 XU Ning, AN Yongsheng, LI Wufu, et al. Characteristic and genesis of normal granite in the Yemaquan of Qinghai[J]. Journal of Qinghai University, 2009, 27(02): 18-22. doi: 10.13901/j.cnki.qhwxxbzk.2009.02.003
杨兴科, 韩珂, 范阅, 等. 东昆仑祁漫塔格矿带典型矿田构造背景与岩浆-热力构造特征[J]. 大地构造与成矿学, 2016, 40(02): 201-212 doi: 10.16539/j.ddgzyckx.2016.02.002 YANG Xingke, HAN Ke, FAN Yue, et al. Tectonic Background and Magma-thermodynamic Structural Features of Typical Orefields in Qimantage Ore Belt, Eastern Kunlun[J]. Geotectonica et Metallogenia, 2016, 40(02): 201-212. doi: 10.16539/j.ddgzyckx.2016.02.002
姚磊. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 北京: 中国地质大学(北京), 2015. YAO Lei. Petrogenesis of the Triassic granitoids and skarn mineralization in the Qimantag area, Qinghai Province, and their geodynamic setting[D]. Beijing: China University of Geosciences (Beijing), 2015.
杨涛, 李智明, 张乐, 等. 东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J]. 高校地质学报, 2017, 23(03): 452-464 doi: 10.16108/j.issn1006-7493.2017026 YANG Tao, LI Zhiming, ZHANG Le, et al. Geological and Geochemical Characteristics of the Tawenchahanxi Granites in East Kunlun and Its Tectonic Significance[J]. Geological Journal of China Universities, 2017, 23(03): 452-464. doi: 10.16108/j.issn1006-7493.2017026
于淼, 丰成友, 刘洪川, 等. 青海尕林格矽卡岩铁矿富Cl角闪石矿物地球化学特征与其成矿意义[J]. 岩石矿物学杂志, 2015, 34(05): 721-740 doi: 10.3969/j.issn.1000-6524.2015.05.010 YU Miao, FENG Chengyou, LIU Hongchuan, et al. The Significance of Mineralization and Geochemistry of the Cl_rich Amphiboles from the Galinge Skarn Iron Deposit in Qinghai Province[J]. Acta Petrologica et Mineralogica, 2015, 34(05): 721-740. doi: 10.3969/j.issn.1000-6524.2015.05.010
袁颖, 于少将, 王晨晖, 等. 基于网格搜索法优化支持向量机的围岩稳定性分类模型[J]. 地质与勘探, 2019, 55(2): 608−613. YUAN Ying, YU Shaojiang, WANG Chenhui, et al. Evaluation model for surrounding rock stability based on support vector machine optimized by grid search method[J]. Geology and Exploration, 2019, 55(2): 608−613.
王子烨. 基于测度学习的喜马拉雅淡色花岗岩岩体识别[D]. 武汉: 中国地质大学, 2020 WANG Ziye. Mapping of Himalaya Leucogranites Based on Metric Learning[D]. HU BEI: China University of Geosciences, 2020.
吴祥珂, 孟繁聪, 许虹, 等. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成[J]. 岩石学报, 2011, 27(11): 3380-3394 WU Xiangke, MENG Fancong, XU Hong, et al. Zircon U-Pb dating, geochemistry and Nd-Hf isotopic compositions of the Maxingdaban Late Triassic granitic pluton from Qimantag in the eastern Kunlun[J]. Acta Petrologica Sinica, 2011, 27(11): 3380-3394.
赵一鸣, 丰成友, 李大新, 等. 青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J]. 矿床地质, 2013, 32(01): 1-19 doi: 10.3969/j.issn.0258-7106.2013.01.001 ZHAO Yiming, FENG Chengyou, LI Daxing. Metallogenic setting and mineralization-alteration characteristics of major skarn Fe-polymetallic deposits in Qimantag area western Qinghai Province[J]. Mineral Deposits, 2013, 32(01): 1-19. doi: 10.3969/j.issn.0258-7106.2013.01.001
张爱奎, 莫宣学, 袁万明, 等. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 2016, 36(02): 157-173 doi: 10.16461/j.cnki.1000-4734.2016.02.001 ZHANG Aikui, MO Xuanxue, YUAN Wangming, et al. Petrogensis and Tectonic Setting of Yemaquan Triassic Granite from the West of the Eastern Kunlun Mountain Range, China[J]. Acta Mineralogica Sinca, 2016, 36(02): 157-173. doi: 10.16461/j.cnki.1000-4734.2016.02.001
张爱奎. 青海野马泉地区晚古生代—早中生代岩浆作用与成矿研究[D]. 北京: 中国地质大学(北京), 2012 ZHANG Aikui. Studies on late Paleozoic-early Mesozoic magmatism and mineralization in Yemaquan area, Qinghai province[D]. Beijing: China University of Geosciences (Beijing), 2012.
张雷. 东昆仑野马泉地区三叠纪构造岩浆作用与成矿关系[D]. 北京: 中国地质大学(北京), 2013. ZHANG Lei. Studies on Triassic Tectonic Magmatosm and Relationship with Mineralization in Yemaquan Area, East Kunlun[D]. Beijing: China University of Geosciences (Beijing), 2013.
张明玉, 丰成友, 王辉, 等. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义[J]. 岩石矿物学杂志, 2018, 37(2): 197−210. ZHANG Mingyu, FENG Chengyou, WANG Hui, et al. Petrogenesis and tectonic implications of the Late Triassic syenogranite in Qimantag area, East Kunlun Mountains[J]. Acta Petrologica et Mineralgica, 2018, 37(2): 197-210.
张杰, 康晓波, 鲁慧, 等. 哀牢山中段地质灾害空间分布规律研究——以元江县为例[J]. 工程地质学报, 2018, 26(03): 720-731 ZHANG Jie, KANG Xiaobo, LU Hui, et al. Study on spatial distribution of geological disasters in middle part of Ailao mountain: A case of Yuanjiang County[J]. Journal of Engineering Geology, 2018, 26(3): 720-731.
张晓飞, 李智明, 贾群子, 等. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(03): 749-765 ZHANG Xiaofei, LI Zhiming, JIA Qunzi, et al. Geochronology, Geochemistry and Geological Significance of Granite Porphyry in Hutouya Polymetallic Deposit, Qimantage Area, Qinghai Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(03): 749-765.
张晓飞, 宋忠宝, 李智明, 等. 北祁连浪力克矿区闪长玢岩地质地球化学特征及其地质意义[J]. 西北地质, 2012, 45(S1): 113−116. 张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39. ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.
张雨莲, 贾群子, 宋忠宝, 等. 青海省卡尔却卡铜多金属矿床A区斑岩型和B区矽卡岩型成矿岩体特征对比[J]. 西北地质, 2014, 47(04): 114-122 doi: 10.3969/j.issn.1009-6248.2014.04.012 ZHANG Yulian, JIA Qunzi, SONG Zhongbao, et al. Contrastive Study on Features of Ore-forming Rock Mass between Area-A Porphyry Type and Area-B Skarn Type in Ka’erqueka Copper Molubdenum Deposit in Qinghai Province[J]. Northwestern Geology, 2014, 47(04): 114-122. doi: 10.3969/j.issn.1009-6248.2014.04.012
钟世华. 新疆维宝铜铅锌矿床成因研究[D]. 北京: 中国地质科学院, 2018 ZHONG Shihua. Genesis of the Weibao Cu-Pb-Zn deposit in Xinjiang, China[D]. Beijing: Chinese Aacademy of Geological Sciences, 2018.
钟世华, 丰成友, 李大新, 等. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 2017, 91(05): 1066-1082 doi: 10.3969/j.issn.0001-5717.2017.05.008 ZHONG Shihua, FENG Chengyou, LI Daxing, et al. Mineralogical Characteristics of the Weixi Ore Block in the Weibao Skarn-type Copper-Lead-Zinc Deposit, Xinjiang[J]. Acta Geologica Sinica, 2017, 91(05): 1066-1082. doi: 10.3969/j.issn.0001-5717.2017.05.008
庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56(1): 63−80. ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology, 2023, 56(1): 63−80.
Ballard J R, Palin M J, Campbell I H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144(3): 347-364. doi: 10.1007/s00410-002-0402-5
Bergen K J, Johnson P A, Hoop M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323. doi: 10.1126/science.aau0323
Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5−32.
Chen J, Wang B Z, Lu H F, et al. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: evidence for post-collisional slab break-off[J]. International Geology Review, 2018, 60(4): 479-495. doi: 10.1080/00206814.2017.1346487
Chiaradia M, Ulianov A, Kouzmanov A, et al. Why large porphyry Cu deposits like high Sr/Y magmas?[J]. Scientific Reports, 2012, 2: 685-686. doi: 10.1038/srep00685
Chawla N V. Data mining for imbalanced datasets: An overview[J]. Data mining and knowledge discovery handbook, 2009, 875−886.
Du J, Audetat A. Early sulfide saturation is not detrimental to porphyry Cu-Au formation[J]. Geology, 2020, 48(5): 519-524. doi: 10.1130/G47169.1
Guo X Z, Zhou T F, Jia Q Z, et al. Highly differentiated felsic granites linked to Mo mineralization in the East Kunlun Orogenic Belt, NW China: Constrains from geochemistry, and Sr-Nd-Hf isotopes of the Duolongqiarou porphyry Mo deposit[J]. Ore Geology Reviews, 2022, 145: 104891. doi: 10.1016/j.oregeorev.2022.104891
Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system;Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits[J]. Philippines. Economic Geology, 1998, 93(4): 373-404. doi: 10.2113/gsecongeo.93.4.373
Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Special Issue Review, 2015, 349: 255-260.
Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced datasets: a review, gests international transactions on computer science and engineering[J]. Synthetic Oversampling Instances Using Clustering, 2006, 30(1): 25-36.
Leng C B, Cooke D R, Hou Z Q, et al. Quantifying Exhumation at the Giant Pulang Porphyry Cu-Au Deposit Using U-Pb-He Dating[J]. Economic Geology, 2018, 113(5): 1077-1092. doi: 10.5382/econgeo.2018.4582
Lin X, Chang H, Wang K, et al. Machine Learning for Source Identification of Dust on the Chinese Loess Plateau[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088950.
Lv W C, Li Z H, Wu X X, et al. Maximum Entropy Niche–Based Modeling(Maxent) of Potential Geographical Distributions of Lobesia Botrana(Lepidoptera_Tortricidae) in China[J]. Computer and Computing Technologies in Agriculture, 2011, 3: 264-246.
Mao Y J, Qin K Z, Li C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, (200-201): 111-125.
Nathwani C L, Wilkinson J J, George F, et al. Machine learning for geochemical exploration: classifying metallogenic fertility in arc magmas and insights into porphyry copper deposit formation[J]. Mineralium Deposita, 2022, 57(7): 1143-1166. doi: 10.1007/s00126-021-01086-9
Nathwani C L, Wilkinson J J, Brownscombe W, et al. Mineral Texture Classification Using Deep Convolutional Neural Networks: An Application to Zircons From Porphyry Copper Deposits[J]. JGR Solid Earth, 2023, 128(2).
Petrelli M, Perugini D. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data[J]. Contributions to Mineralogy and Petrology, 2016, 171(10).
Pizarro H, Campo E, Bouzaro F, et al. Porphyry indicator zircons (PIZs): Application to exploration of porphyry copper deposits[J]. Ore Geology Reviews, 2020, 126: 103771. doi: 10.1016/j.oregeorev.2020.103771
Ren X, Dong Y P, He D F, et al. Late Triassic magmatic rocks in the southern East Kunlun Orogenic Belt, northern Tibetan Plateau: Petrogenesis and tectonic implications[J]. International Geology Review, 2023,
Rezeau H, Jagoutz O. The importance of H2O in arc magmas for the formation of porphyry Cu deposits. Ore Geology Reviews, 2020, 126, 103744.
Rezeau H, Moritz R, Wotzlaw J F, et al. Zircon Petrochronology of the Meghri-Ordubad Pluton, Lesser Caucasus: Fingerprinting Igneous Processes and Implications for the Exploration of Porphyry Cu-Mo Deposits[J]. Economic Geology, 2019, 114(7): 1365-1388. doi: 10.5382/econgeo.4671
Richards J P. High Sr/Y arc magmas and porphyry Cu deposits: just add water[J]. Economic Geology, 2011, 106(7): 1075-1081. doi: 10.2113/econgeo.106.7.1075
Sun W D, Liang H Y, Ling M X, et al. The link between reduced porphyry copper deposits and oxidized magmas[J]. Geochimica et Cosmochimica Acta, 2013, 103: 263-275. doi: 10.1016/j.gca.2012.10.054
Wang Y, Qiu, K F, Müller A, et al. Machine Learning Prediction of Quartz Forming-Environments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8).
Wang C, Liu L, Xiao P X, et al. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China[J]. Lithos, 2014, (202-203): 1-20.
Xia R, Wang C M, Qing M, et al. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 2015, 66: 114-131. doi: 10.1016/j.oregeorev.2014.10.024
Xu Q L, Sun Y G, Mao G Z, et al. Petrogenesis of the Ore-Related Intrusions of the Aikengdelesite Mo (-Cu) and Halongxiuma Mo Deposits: Implication for Geodynamic Evolution and Mineralization in the East Kunlun Orogen, Northwest China[J]. Minerals, 13(3): 447.
Yan M J, Sun G S, Sun F Y, et al. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis[J]. Journal of Earth Science, 2019, 30: 335-347. doi: 10.1007/s12583-018-1203-8
Yin S, Ma C Q, Xu J N. Geochronology, geochemical and Sr-Nd-Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration[J]. Lithos, 2017, 294-295: 339-355. doi: 10.1016/j.lithos.2017.10.012
Yu M, Feng C Y, Santosh M, et al. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 2017a. 167: 103-123. doi: 10.1016/j.earscirev.2017.02.008
Yu M, Feng C Y, Mao J W, et al. Multistage Skarn-Related Tourmaline From the Galinge Deposit, QimanTage, Western China: A Fluid Evolution Perspective[J]. The Canadian Mineralogist, 2017b, 55(1): 3-19. doi: 10.3749/canmin.1600043
Zhong S H, Seltmann R, Shen P. Two different types of granitoids in the Suyunhe large porphyry Mo deposit, NW China and their genetic relationships with molybdenum mineralization[J]. Ore Geology Reviews, 2017, 88: 116-139. doi: 10.1016/j.oregeorev.2017.04.012
Zhong S H, Feng C Y, Seltmann R, et al. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals(zircon and apatite)[J]. Mineralium Deposita, 2018, 53(6): 855-870. doi: 10.1007/s00126-017-0787-8
Zhong S H, Li S Z, Feng C Y, et al. Porphyry copper and skarn fertility of the northern Qinghai-Tibet Plateau collisional granitoids[J]. Earth-Science Reviews, 2021a, 103524.
Zhong S H, Feng C Y, Seltmann R, et al. Middle Devonian volcanic rocks in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: Zircon chronology and tectonic implications[J]. Ore Geology Reviews, 2021b, 84: 309-327.
Zhong S H, Li S Z, Liu Y, et al. I-type and S-type granites in the Earth’s earliest continental crust[J]. Communications Earth & Environment, 2023, 4: 61.
Zhou Y, Zhang Z, Yang J, et al. Machine Learning and Singularity Analysis Reveal Zircon Fertility and Magmatic Intensity: Implications for Porphyry Copper Potential[J]. Natural Resources Research, 2022, 31(6): 3061-3078. doi: 10.1007/s11053-022-10122-y
Zou S, Chen X, Brzozowski M J, et al. Application of Machine Learning to Characterizing Magma Fertility in Porphyry Cu Depositsp[J]. Journal of Geophysical Research: Solid Earth, 2022, 27(8).