ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体

刘嘉情, 钟世华, 李三忠, 丰成友, 戴黎明, 索艳慧, 郭广慧, 牛警徽, 薛梓萌, 黄宇

刘嘉情, 钟世华, 李三忠, 等. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 2023, 56(6): 41-56. DOI: 10.12401/j.nwg.2023155
引用本文: 刘嘉情, 钟世华, 李三忠, 等. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 2023, 56(6): 41-56. DOI: 10.12401/j.nwg.2023155
LIU Jiaqing, ZHONG Shihua, LI Sanzhong, et al. Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions[J]. Northwestern Geology, 2023, 56(6): 41-56. DOI: 10.12401/j.nwg.2023155
Citation: LIU Jiaqing, ZHONG Shihua, LI Sanzhong, et al. Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions[J]. Northwestern Geology, 2023, 56(6): 41-56. DOI: 10.12401/j.nwg.2023155

基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体

基金项目: 国家自然科学青年基金项目(42203066)和山东省自然科学青年基金项目(ZR2020QD027)联合资助。
详细信息
    作者简介:

    刘嘉情(1999−),女,硕士研究生,岩石学、矿物学、矿床学专业。E−mail:liujiaqing11292022@163.com

    通讯作者:

    钟世华(1989−),男,博士,副教授,从事地质大数据与成矿研究。E−mail:zhongshihua@ouc.edu.cn

  • 中图分类号: P62;P588.1

Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions

  • 摘要:

    东昆仑祁漫塔格成矿带是中国西北地区重要的铜钼铁铅锌多金属成矿带,发育卡尔却卡、野马泉、维宝、乌兰乌珠儿等许多与花岗岩类有关的斑岩−矽卡岩矿床。随着新一轮找矿突破战略行动的开展,进一步加强对祁漫塔格成矿带花岗岩成矿潜力的研究,已成为推动该地区金属矿产储量增长的重要突破口。为此,笔者在系统收集祁漫塔格成矿带典型斑岩−矽卡岩多金属矿床成矿岩体和贫矿岩体(即非成矿岩体)的全岩主量和微量元素数据基础上,选取28种常见的全岩地球化学特征,借助机器学习算法——随机森林,开展机器学习模型训练,建立能够识别该地区斑岩−矽卡岩多金属矿床成矿岩体和非成矿岩体的新方法。根据模型评价指标,笔者训练得到的随机森林分类模型准确率为0.90,证明该方法能够有效识别成矿岩体和非成矿岩体。该研究为祁漫塔格成矿带斑岩−矽卡岩多金属矿床的找矿勘查提供了新思路,将极大地提高找矿效率、降低找矿经济和人力成本,从而更好的服务新一轮找矿突破战略行动。相关机器学习代码已上传至GitHub,地址为https://github.com/ShihuaZhong/2023-Qimantagh-RF-whole-rock-classifier

    Abstract:

    The Qimantagh Orogenic Belt in the East Kunlun is an important Cu−Mo−Fe−Pb−Zn polymetallic mineralization belt in the northwest of China, and many porphyry-skarn deposits that are genetically related to granitoids are founded, such as Kaerqueka, Yemaquan, Weibao, and Wulanwuzhuer. With the development of a new round of strategic action to find mineral breakthroughs, further strengthening the study of granite mineralization potential in the Qimantagh Orogenic Belt has become an important breakthrough to promote the growth of metal mineral reserves in the region. In this paper, based on the systematic collection of whole−rock major and trace element data of mineralized and barren magmatic rocks of typical porphyry−skarn polymetallic deposits in the Qimantagh Orogenic Belt, 28 common whole-rock geochemical features are selected, and the machine learning algorithm (Random Forest) is used for the training of the machine learning model to establish a machine learning model capable of identifying the mineralized and barren magmatic rocks of porphyry−skarn polymetallic deposits in the region. A new method is developed to identify the mineralized and barren magmatic rocks in the porphyry−skarn polymetallic deposits in this area. According to the model evaluation metric, the accuracy of the Random Forest classification model trained in this paper is 0.90, which proves that the method can effectively recognize mineralized and barren magmatic rocks. This study provides a new idea for the prospecting and exploration of porphyry−skarn polymetallic deposits in the Qimantagh Orogenic Belt, which will greatly improve the efficiency of prospecting, reduce the economic and labor costs of prospecting, and thus better serve the new round of strategic action of prospecting and breakthrough. The machine learning code has been uploaded to GitHub at https://github.com/ShihuaZhong/2023-Qimantagh-RF-whole-rock-classifier.

  • 地下水作为干旱半干旱地区一种重要的水资源。它不仅是农业灌溉和河流的供应商(何松,2023),还是社会经济、工业发展的重要保障(党学亚等,2022王斌等,2024)。由于长期地下水过度开采,地下水已经面临枯竭,特别是印度西北部(Singh et al., 2021)、华北平原(王凯霖,2020)等地出现水位急剧下降的现象,进一步造成地面沉降、海水入侵、水质恶化等问题。

    目前,地下水硝酸盐污染已经成为全球普遍存在的问题(Torres-Martínez et al., 2020任坤等,2022)。高浓度的硝酸盐不仅会导致河流富营养化(韩聪等,2021),还会造成人体高铁血红蛋白血症或癌症等问题(盛丹睿等,2019)。基于此,针对硝酸盐分布特征、控制因素、来源和健康风险方面的研究,相关学者们分别从时间和空间的角度,对不同地区地下水中硝酸盐的浓度变化特征进行了分析(李捷等,2022)。已有研究发现,农业化肥的大量施用(Karlović et al., 2022)、土地利用(崔静思等,2022)、废水排放(Zhang et al., 2020)等因素对地下水硝酸盐浓度变化起着至关重要的作用。此外,为了更加精准识别地下水中NO3的来源,SIAR模型和线性混合模型也越来越多被学者用于估算硝酸盐来源的比例贡献(张航等,2024)。另一方面,考虑到地下水硝酸盐对健康风险产生的影响,相关学者们分别采用蒙特卡洛模型(高燕燕,2021)、梯形模糊数理论(Ruan et al., 2024)等多种分析方法对地下水硝酸盐为人类健康带来的潜在风险进行了评估。亦有学者在利用微生物的降解作用去除地下水硝酸盐方面进行了积极的探索(贾林春,2023)。同时,为方便缓解和修复高浓度硝酸盐地下水,预测硝酸盐的分布也是极其重要的。Extreme Gradient Boosting模型在美国和伊朗(Ransom et al., 2022Gholami et al., 2022)的硝酸盐分布预测上均有应用。而随机森林模型也被应用在水质预测中,并且有研究表明随机森林方法比传统的统计方法更能提高预测的准确性(Wilson et al., 2020)。

    关中平原是中国西部的经济核心地区,其农业活动强烈并包含多个大型灌区(Zhang et al., 2022a2022b)。地下水作为该地区的重要水源,由于农业发展的大量开采,使得地下水动力场和化学场发生较大,例如,交口灌区由于长期灌溉使得地下水含高氮(张奇莹,2023)。与此同时,也有学者表明,长期灌溉会导致地下水盐渍化(Gao et al., 2022)。笔者以关中平原东南区的华州区为研究对象,旨在①全面了解华州区浅层地下水NO3分布特征。②评估浅层地下水NO3污染的潜在健康风险。③利用随机森林模型确定影响浅层地下水中NO3浓度的主要因素。④基于双同位素(δ15N-NO3和δ18O-NO3)和MixSIAR模型定性和定量识别浅层地下水中NO3来源。该研究为研究区进一步开展农业发展和水资源管理提供科学依据。

    华州区地处陕西省关中平原东南部,隶属渭南市,地势呈南高北低。研究区内包含渭河、遇仙河、石堤河和罗纹河,坐标为 N 34°27′~34°36′, E 109°39′~109°49′(图1)。该区域位于半湿润大陆性季风气候区,平均降雨量约为580 mm,一般集中在8~10月。该区域蒸发量大,年蒸发量可达到830.7 mm(Wang et al., 2022)。

    图  1  华州区地理位置图(a)与浅层地下水采样点位图(b)
    Figure  1.  (a) Geographic location of Huazhou District and (b) sampling site of shallow groundwater

    研究区处于第四纪沉积区内,包含了两类含水层:潜水含水层和承压含水层。潜水含水层由全新统和更新统的冲积砂和粗砂组成,主要分布在一级阶地和河漫滩,潜水含水层厚度为38~51 m。而承压含水层由更新统的细砂和黏土组成,承压含水层顶板埋深约为50 m(Wu et al., 2016)。前期研究了解到华州区地下水主要受到侧向流入、降水入渗、河流入渗和灌溉入渗等方式的补给,而排出方式以抽水、蒸发、侧向径流等方式为主(Li et al., 2016)。此外,根据本研究野外实地调查,华州区浅层地下水总体流向由南向北(图1),但由于地下水大量抽取,在东赵村周围局部形成地下水漏斗。据《2022年渭南市水资源公报》统计,华州区地下水源供水全部为浅层水。因此,文中主要针对潜水进行研究。

    本研究于2023年3月在研究区不同地点采集了37个浅层地下水样品。分析了主要化学指标(K+,Na+,Ca2+,Mg2+,SO42−,HCO3,Cl,NH4+,NO3,NO2和Fe,Mn2+,TDS)和同位素(δ15N-NO3和δ18O-NO3)。所有采样点的坐标通过便携式GPS设备确定(图1)。现场测试了水温(T)、氧化还原电位(ORP)、pH值、电导率。同位素样品送至中国农业科学院农业环境与可持续发展研究所检测,其他化学指标送至陕西工勘院环境检测有限责任公司检测。其中,δ15N-NO3和δ18O-NO3采用同位素比质谱仪分析。K+和Na+采用火焰原子吸收分光光度法测定。Ca2+,Mg2+,SO42−和HCO3采用EDTA滴定法测定。NH4+,NO3,NO2,Fe和Mn2+利用分光光度计测定。Cl和TDS的测定分别采用银量滴定法和重量法。其中,每个样品结果的可靠性利用如下公式计算:

    $$ {\text{CBE\% = }}\frac{{ \displaystyle \sum {\text{C}} {{ - }}\sum {\text{A}} }}{{ \displaystyle \sum {\text{C}} {\text{ + }}\sum {\text{A}} }} \times 100\% $$

    式中:$ \displaystyle \sum {\text{C}} $和$ \displaystyle \sum {\text{A}} $分别为阳离子和阴离子的毫克当量浓度(meq/L)。CBE%值在−5%~+5%之间表示为结果可靠。结果表明总体检验效果较好,数据可靠。

    稳定同位素结果用δ单位表示,相对于国际标准的每密耳(‰)表示:

    $$ \delta \left(\text{‰}\right)\text=\left(\frac{{\text{R}}_{\text{1}}-{\text{R}}_{\text{0}}}{{\text{R}}_{\text{0}}}\right)\times \text{1 000} $$

    式中:R1和R0分别是样品和标准品的分析同位素比值(18O/16O或15N/14N)。R1样品,R0标样。

    (1)贝叶斯混合模型MixSIAR

    基于R语言中的MixSIAR包(3.1.12)对硝酸盐的贡献率进行计算(Stock et al., 2018)。该模型已经在国内外研究中广泛使用(Torres-Martínez et al., 2021李依鸿等,2023)。对各来源贡献率的概率分布估算公式为:

    $$ {X_{ij}} = \sum\nolimits_{k = 1}^K {{P_k}} \left( {{S_{jk}} + {C_{jk}}} \right) + {\varepsilon _{ij}} $$
    $$ {S_{ jk}} \sim N\left( {{\mu _{jk}},\omega _{jk}^2} \right) $$
    $$ {C_{jk}} \sim N\left( {{\lambda _{jk}},\tau _{jk}^2} \right) $$
    $$ {\varepsilon _{ij}} \sim N\left( {0,\sigma _{ij}^2} \right) $$

    式中:Xij表示第i个样品的第j个同位素组成;K表示源的数量,本研究中为5;PkSjkCjk表示第k个源的贡献、第k个源中的第j个同位素值(平均值μjk和标准差ω2jk)以及同位素j在源k上的分馏因子(分别为平均值λjk和标准差τ2jk),εij是残差(均值为零,标准差为σ2ij)。Sjk、Cjkεij均服从正态分布,且括号内分别表示他们的平均值和标准差。

    根据前人研究,确定了大气沉降、土壤氮、化肥、粪肥及污水4种来源的同位素值(表1)。

    表  1  模型中使用的双同位素值(Jin et al., 2023
    Table  1.  Dual isotope values used in the model
    来源 平均值δ15N 标准差δ15N 平均值δ18O 标准差δ18O
    大气沉降 −3.7 1.5 77.4 4.8
    土壤氮 6.4 0.6 −6.2 0.4
    化肥 −2.1 0.7 −4.1 2.7
    粪肥及污水 17.4 3.9 6.1 1.6
    下载: 导出CSV 
    | 显示表格

    (2)随机森林模型

    本研究采用随机森林(RF)中的一种分类技术:决策树。在每一棵决策树中,使用能够生成所有特征因素中最优解的最佳特征来分割每个截点,最终挑选出对分类样本最重要的特征(Chen et al., 2020)。

    ① 将37个浅层地下水样品数据作为数据集。

    ② 将数据集随机划分为训练集与测试集。文中随机选取70%的数据作为训练集,剩下的30%作为模型的验证。此外,文中共选择15个指标作为自变量,包括:K+、Na+、Ca2+、Mg2+、SO42−、Cl、HCO3、TDS、NO2、Fe、Mn2+、EC、ORP、pH、T。NO3作为因变量。

    ③ 构建出每个训练集对应的决策树,每棵决策树产生一个预测结果。

    ④ 将所有预测值平均以产生最佳预测结果。得到确定控制NO3浓度的重要因素。

    (3)健康风险评估(HHRA)模型

    HHRA模型是由USEPA提出(United States Environmental Protection Agency (USEPA),1989)的4个评估步骤,包括:危害识别、剂量效应评估、暴露评估和风险评估。本研究中分别对成年和儿童NO3的口服摄入途径进行风险评估,其中评估中所用参数如表2所示。

    表  2  HHRA中用于评估浅层地下水硝酸盐污染潜在风险的参数
    Table  2.  Parameters used to assess the potential risk of shallow groundwater nitrate in HHRA
    参数 单位 成人 儿童 引用文献
    IR摄入率 L/day 1.5 0.7 吉玉洁,2022
    ED暴露持续时间 days 365 365
    EF暴露频率 Year 32 12 Wang et al., 2022
    BW平均体重 kg 60 15 Wu et al., 2020
    AT平均暴露时间 days 11680 4380 Wang et al., 2022
    RfDNO3 mg/kg/day 1.6 1.6 USEPA, 2001
    下载: 导出CSV 
    | 显示表格

    通过口服摄入途径的暴露评估(CDIoral)计算,公式如下:

    $$ {\text{CD}}{{\text{I}}_{{\text{oral}}}} = \frac{{{\text{C}} \times {\text{IR}} \times {\text{EF}} \times {\text{ED}}}}{{{\text{BW}} \times {\text{AT}}}} $$

    式中:CDI表示单位体重通过摄入途径的日平均暴露剂量 [mg/(kg·d)];C表示地下水中NO3浓度(mg/L);IR是人体摄入率(L/day);ED表示暴露持续时间(days);EF表示暴露频率(year);BW是平均体重(kg);AT是平均暴露时间(days)。

    硝酸盐从口腔途径摄入的危害指数(HQoral)计算公式为:

    $$ {\text{H}}{{\text{Q}}_{{\text{oral}}}} = \frac{{{\text{CD}}{{\text{I}}_{{\text{oral}}}}}}{{{\text{R}}f{{\text{D}}_{{\text{N}}{{\text{O}}_{\text{3}}}^{{ - }}}}}} $$

    式中:${{\text{R}}f{{\text{D}}_{{\text{N}}{{\text{O}}_{\text{3}}}^{{ - }}}}} $是口服摄入NO3参考剂量,mg/kg/day。

    研究区浅层地下水化学参数描述统计数据见表3。其中,浅层地下水中pH值为7.81~8.39,这表明华州区浅层地下水均呈碱性。受水岩相互作用影响,TDS值为180~2612 mg/L。同时,ORP值变化范围较大,为–97~852 mV,这表明研究区可能处于强烈的氧化环境,进一步导致NO3浓度升高。浅层地下水中阳离子和阴离子浓度均值排序分别为Ca2+>Na+>Mg2+>K+和HCO3>SO42−>Cl>NO3

    表  3  浅层地下水水化学参数统计
    Table  3.  Statistics of the hydrochemical parameters of shallow groundwater
    指标单位最大值最小值平均值样品数量
    pH/8.397.818.0837
    TDSmg/L2612180647.9537
    ORPmV852−9793.5437
    Na+mg/L2119.250.237
    K+mg/L25.70.825.5937
    Ca2+mg/L32128.1114.7637
    Mg2+mg/L2432.4327.8537
    Clmg/L355459.2437
    HCO3mg/L106297.6351.6137
    SO42−mg/L62419.2123.5137
    NO3mg/L271<2.068.4637
    δ15N-NO340.28−1.6110.8332
    δ18O-NO322.56−10.125.6032
    下载: 导出CSV 
    | 显示表格

    为进一步了解华州区浅层地下水的类型,利用水化学指标得到Piper三线图(图2)。结果表明,浅层地下水样品主要被鉴定为HCO3-Ca·Mg型。这种类型一般与地质环境有关,例如,碳酸盐和硅酸盐矿物的溶解是地下水中Ca2+和Mg2+的主要来源(苏东等,2023)。所有样品点的主要阳离子为Ca2+,阴离子为HCO3

    图  2  浅层地下水piper三线图
    Figure  2.  Piper diagram of shallow groundwater

    浅层地下水样品检测结果得到,NO3浓度最大值达到271 mg/L,根据国家地下水质量标准(GB/T 14848−2017)(中华人民共和国国家质量监督检验检疫总局等,2017),已有19%的水样中超出了Ⅲ类标准(88.5 mg/L),这表明这部分地下水已不适合直接饮用。华州区浅层地下水NO3的空间分布图(图3)显示,高浓度NO3主要集中在东赵村周围。地下水流方向(图1)表明,浅层地下水在东赵村周边局部形成地下水漏斗,这与高浓度NO3空间特征一致。相反,研究区东部区域的NO3浓度普遍较小。这可能由于研究区西部村庄分布相对密集并且还有一大型化工厂,而东部主要为城区和耕地,推测浅层地下水中NO3可能随水流迁移所致,并且与生活污水和工业废水有关(吴庭雯等,2021)。此外,Podlasek等(2020)曾在表明中砂和粗砂均不具有对NO3的吸附能力。由于研究区内潜水含水层主要为粗砂和冲积砂,其分选能力好且渗透率高,从而促进了NO3的运移。

    图  3  华州区浅层地下水NO3空间分布图
    Figure  3.  Spatial distribution of shallow groundwater NO3 in Huazhou District

    Wang等(2022)Wu等(2016)的研究均表明,华州区浅层地下水NO3因口服摄入引起的风险远大于皮肤接触,皮肤接触的风险可以忽略不计。基于此结论,笔者仅对口腔摄入途径带来的潜在风险进行评估。研究结果表明(表4),NO3对成年人的风险值为0.031~4.234,均值为0.817。儿童的风险值为0.058~7.904,均值为1.525。27%、35%的成人和儿童的HQoral值已经超过了可接受水平(HQoral>1),这表明该地区水样中硝酸盐对居民健康有显著影响,特别是儿童的风险更高。根据HHRA评估结果得到成人和儿童经口服摄入的健康风险分布图(图4),风险最高的区域均出现在华州区西南边的东赵村附近,表明该处高浓度NO3对人类健康威胁较大,特别是儿童的风险比成人高一倍。

    表  4  浅层地下水NO3经口服摄入的潜在风险值
    Table  4.  Potential risk value of oral ingestion of shallow groundwater NO3
    HQoral 2023旱季 2018旱季
    Wang et al., 2022
    2013旱季
    Wu et al., 2016
    成人 儿童 成人 儿童 成人 儿童
    最大值 4.234 7.904 7.975 14.887 13.34 24.89
    最小值 0.031 0.058 0.126 0.236 0.04 0.07
    平均值 0.817 1.525 1.141 2.129 1.44 2.69
    下载: 导出CSV 
    | 显示表格
    图  4  基于HQoral生成的健康风险分布图
    Figure  4.  Health risk distribution map of HQoral

    随机森林模型中训练集和测试集上硝酸盐的预测值与实测值的关系结果表明(图5),在训练集和测试集上,NO3预测值与实测值间的r2分别为0.87和0.74。这表明所构建的浅层地下水硝酸盐值的随机森林模型具有较好的预测效果,可用于进一步分析。

    图  5  随机森林模型中浅层地下水NO3实测值与预测值关系
    Figure  5.  Relationship between measured and predicted shallow groundwater NO3 values in the Random Forest model

    随机森林模型量化各个变量对浅层地下水NO3的相对重要性结果显示(图6)。重要性较大的指标依次为:EC>ORP>Ca2+>Mg2+>T>TDS>HCO3。这些对NO3浓度影响较大的指标指示了与人类活动和自然界氮循环有关的过程。其中,EC对NO3浓度的相对重要性最大,占比为14%。其次是ORP,占比为12.5%。其余指标的重要性占比均在8%~10%之间。Zhang 等(2022a)曾指出地下水中氧化还原电位、电导率、温度、pH等理化环境易受外部水和氮输入以及水文地质环境的影响,并且这些指标与浅层地下水中的氮浓度显示出良好的相关性。这也揭示了华州区内NO3浓度的高低可能与外部水和氮输入有关。苏凤梅(2023)也曾在研究中表明,灌溉过程中,受化肥和土壤淋溶作用的影响,地下水EC、Ca2+浓度均显著增大。与此同时,Ca2+和Mg2+对NO3浓度影响也很重要,这可能是由于三者具有同源性(成世才等,2021)。例如,当生活垃圾及污水集中处理设施不完善时,可造成NO3浓度升高,而这种污水中的有机物会降解产生CO2渗入地下水中,促进了钙镁矿物溶解,从而提高了地下水中Ca2+和Mg2+含量(董海彪等,2015Jiang et al., 2023);另外,农业生产中施用的化肥成分也可能造成这种结果,即Ca(NO32和Mg(NO32曹胜伟等,2019)。总体来说,模型结果中EC、Ca2+、Mg2+、TDS和HCO3是影响NO3浓度的重要因素,这些指标也表明华州区浅层地下水NO3来源可能与当地灌溉、化肥施用以及生活污水排放等方面相关。

    图  6  浅层地下水NO3浓度影响因素的相对重要性
    Figure  6.  Relative importance of factors influencing shallow groundwater NO3 concentration

    利用氮氧同位素明确研究区NO3来源,不同的硝酸盐来源会有特定的氮氧同位素范围值,将δ15N-NO3δ18O-NO3同位素范围分为5类(图7b)(Xue et al., 2009Niu et al., 2022),包括大气沉降−10‰~+10‰和−25‰~+75‰;硝态氮肥为−6‰~+6‰和+17‰~+25‰;化肥和降雨中的氨盐为−6‰~+6‰和−5‰~+15‰;土壤氮为0‰~+8‰和−5‰~+15‰;粪肥及污水为+4‰~+25‰和−5‰~+15‰。研究结果表明,华州区浅层地下水硝酸盐来源主要以土壤氮和粪肥及污水为主,少量样本在化肥和降雨中的氨盐范围内。

    图  7  地下水中δ15N-NO3和lnNO3的关系图(a)、 δ15N-NO3δ18O-NO3识别硝酸盐来源图(b)
    Figure  7.  (a) Relationship between δ15N-NO3 values and lnNO3, (b) nitrate source identification by δ15N-NO3 and δ18O-NO3

    地下水δ15N-NO3δ18O-NO3同位素的值不仅受NO3来源影响,还受水中微生物作用影响。例如,反硝化作用通常会减少NO3负荷(Gibrilla et al., 2020),并导致同位素分馏,当δ15N-NO3δ18O-NO3二者比值在1.3~2.1之间时,表明可能会发生硝化作用(黄颖等,2023)。此外,可以通过lnNO3δ15N-NO3的相关关系来确定反硝化作用是否存在(范祖金等,2023)。lnNO3δ15N-NO3呈极弱正相关性(图7a)。因此,研究区浅层地下水中不存在显著的反硝化过程,即在MixSIAR模型中分馏系数可设置为0(裴东艳等,2022)。

    为了进一步评估浅层地下水硝酸盐各来源的贡献,基于MixSIAR模型得到硝酸盐源解析结果,4种硝酸盐源对华州区浅层地下水贡献率存在一定差异(图8),各硝酸盐源平均贡献占比表现为粪便及污水(63.8%)>土壤氮(19%)>化肥(12.7%)>大气沉降(4.6%)。其中,粪肥及污水的贡献占比最大。这可能由于样本主要集中于农村居民区,缺乏生活污水收集系统,大部分生活污水和牲畜粪便直接排放到地表,并且农村土地较城市土地渗透面较大,使得粪便和污水更容易渗入地下水,从而增加浅层地下水硝酸盐浓度,这也验证了高浓度NO3分布在研究区西部的特点。与此同时,这也说明了浅层地下水硝酸盐污染可能受土地利用类型因素影响(苏贺等,2021崔静思等,2022)。其次,土壤氮和化肥对硝酸盐的平均贡献率分别为19%和12.7%。Zhao等(2019)表明旱季比雨季土壤氮投入量大,所以本研究中随着旱季降雨量减少,土壤氮稀释程度也降低,最终导致土壤氮对地下水NO3浓度有较大贡献。结合野外实地调查情况,部分样本点附近已被灌溉施肥,且肥料以铵态氮肥为主。Zhang等(2022b)曾表明这种肥料更易被土壤吸附,从而氧化产生NO3。这可能也是导致了土壤氮和化肥对地下水NO3浓度的影响。

    图  8  浅层地下水中不同硝酸盐来源的贡献比例
    Figure  8.  Proportional contributions of difference NO3 sources in shallow groundwater

    华州区成人与儿童经口服摄入的风险值均存在超过可接受水平,并且高风险区域位于西南部高水平NO3的位置处。如果长期饮用此处地下水,则有患高铁血红蛋白症等疾病的风险,尤其是儿童。Zhang等(2021)研究表明,陕西省关中地区人口众多,成人和儿童口服摄入的硝酸盐非致癌风险仅次于北京、上海。硝酸盐作为一种很少由天然成分形成的物质,这种结果可能是过去或现在污染源所致(Deng et al., 2021),调查发现,相较于其他位置,①西南位置的高风险区域内建设有大型化肥厂,且化肥厂(陕化)建设以来,富含氮化合物和粉煤灰的废水排入石堤河,从而对河道和地下水的环境造成一定污染(Jia et al., 2020)。②研究区西南区域村庄分布相对密集,而东边主要为城区和耕地。刘芳盈等(2021)研究表明受农村生活污染、水源未处理等因素的影响,农村地下水硝酸盐含量明显高于城区。因此,考虑农村生活污水渗透等影响,浅层地下水NO3受不同程度的污染影响,这也是粪便和污水作为NO3主要来源的原因。由此可见,工厂分布和农村生活污水排放可能是研究区西南部存在高风险的原因。事实上,本研究的评估结果与2013年和2018年旱季相比(表3),NO3对人类健康的危害降低2至3倍。这可能与研究区的生态环境保护政策有关。例如,企业对总氮排放标准不断提高、生态湿地等项目的实施。

    本研究中,西南区域浅层地下水对成人和儿童健康均可能造成危害,该结果不仅与地下水硝酸盐来源相关,还可能受土地利用类型的影响。因此,为了保护地下水水质和广大群众饮水健康,今后应做好水源和周围环境的保护规划,加大力度提高华州区农村污水排放管理设施,规范农村改厕工作,从而改善农村环境卫生。针对农村高硝酸盐区域可考虑更换水源或增强饮用水降氮设备,对于未超标区域浅层地下水也应定期监测。同时,为避免氮超标给人体健康带来危害,建议更多关注儿童。

    (1)华州区浅层地下水NO3浓度总体呈现西高东低分布,西南区域浓度普遍较高,最大值达到271 mg/L。区域内约有19%的浅层地下水样品NO3超出国家地下水水质Ⅲ标准。NO3对成人和儿童的健康仍存在潜在风险,儿童经口服摄入的风险值为0.058~7.904,约高于成人一倍。

    (2)NO3浓度的主要控制指标依次为:EC、ORP、Ca2+、Mg2+、T、TDS、HCO3。EC和ORP对NO3浓度的相对重要性占比较大,分别为14%和12.5%。其余指标的重要性占比水平较为接近,均为8%~10%。

    (3)华州区浅层地下水硝酸盐来源主要以土壤氮和粪肥及污水为主。粪便及污水对NO3含量贡献率最大,为63.8%,其次是土壤氮(19%)、化肥(12.7%)。

  • 图  1   祁漫塔格成矿带地质图(据Zhong et al.,2021b修改)

    图中显示了文中涉及的矿床的类型和位置;其中,沙丘、玛兴大阪、哈西雅图矿床位于图幅右侧,未在图中显示出来

    Figure  1.   Geological map of the Qimantagh metallogenic belt

    图  2   文中使用的成矿岩体和非成矿岩体的28种全岩特征箱状图

    Figure  2.   Box illustrations of the 28 features of the mineralized and barren magmatic rocks used in this study

    图  3   随机森林模型原理图

    Figure  3.   Random Forest model diagram

    图  4   训练的随机森林模型对测试集的评价图

    a. 混淆矩阵图;b. 受试者特征曲线

    Figure  4.   Classification result for the test set using the trained of Random Forest model

    图  5   祁漫塔格地区成矿岩体和非成矿岩体全岩密度图解

    a. Yb–La/Yb密度图解;b. Y–Sr/Y密度图解

    Figure  5.   Whole–rock density diagrams for the mineralized and barren rocks from the Qimantagh metallogenic belt

    图  6   外部独立验证数据集的分类结果图

    a. 成矿岩体分类结果图(数据来源于Guo et al.,2022Xu et al.,2023);b. 非成矿岩体分类结果图(数据来源于Ren et al.,2023

    Figure  6.   Plot of classification results for external independent validation dataset

    表  1   文中使用的成矿岩体和非成矿岩体数据来源表

    Table  1   Data sources of mineralized and barren magmatic rocks used in this study

    编号位置矿床类型岩体类型数据量数据来源
    1卡尔却卡矽卡岩铜铅锌矿床成矿岩体19高永宝,2013张雨莲等,2014
    姚磊,2015Zhong et al.,2021b
    斑岩铜矿成矿岩体17李碧乐等,2010李积清等,2016
    Zhong et al.,2018
    2虎头崖矽卡岩铜铅锌矿床成矿岩体55李侃等,2015时超等,2017
    姚磊,2015张晓飞等,2016
    张爱奎等,20122016
    Zhong et al.,2021b
    3鸭子沟矽卡岩铜铅锌矿床成矿岩体8舒树兰等,2014
    4维宝矽卡岩铜铅锌矿床成矿岩体5Zhong et al.,2018
    非成矿岩体3Zhong et al.,2018
    5拉陵灶火斑岩钼矿成矿岩体10陈静等,2013钟世华,2018
    非成矿岩体5Chen et al.,2018
    6小灶火斑岩钼矿成矿岩体4陈静等,2018
    7长山斑岩钼矿成矿岩体3Zhong et al.,2018
    8乌兰乌珠儿斑岩铜矿成矿岩体6谈生祥等,2011
    9野马泉矽卡岩铁矿床成矿岩体68高永宝等,2014刘建楠,2018
    姚磊,2015张爱奎等,2016
    张雷,2013Chen et al.,2018
    Yin et al.,2017Zhong et al.,20182021b
    10尕林格矽卡岩铁矿床成矿岩体48高永宝等,2012张杰等,2018
    11那陵郭勒河矽卡岩铁矿床成矿岩体11薛宁等,2009李玉春等,2013a
    张雷,2013
    12沙丘矽卡岩铁矿床成矿岩体2李玉春等,2013b
    13它温查汗矽卡岩铁矿床成矿岩体10杨涛等,2017
    14玛兴大阪矽卡岩铁矿床成矿岩体4吴祥珂等,2011
    非成矿岩体5Yan et al.,2019
    15于沟子矽卡岩铁矿床成矿岩体4高永宝,2013
    16哈西雅图矽卡岩铁矿床成矿岩体5南卡俄吾等,2014
    非成矿岩体5南卡俄吾等,2015
    17小圆山矽卡岩铁矿床成矿岩体10孔会磊等,20152016
    18肯德可克非成矿岩体5张明玉等,2018
    19冰沟非成矿岩体6刘彬等,2013
    20白干湖非成矿岩体14李国臣等,2012高永宝,2013
    21阿格腾非成矿岩体21徐博,2020
    22阿确礅非成矿岩体22李瑶,2017
    23其木来克非成矿岩体9陈邦学等,2019
    24阿牙克非成矿岩体3郝杰等,2003
    25伊涅克阿干非成矿岩体9陆济璞等,2005
    26希热芒崖非成矿岩体9陆济璞等,2006
    27鸭子泉非成矿岩体5崔美慧等,2011
    28祁漫塔格非成矿岩体124王秉璋,2012马文等,2013
    29巴音郭勒非成矿岩体8王秉璋,2012
    30哈得尔干非成矿岩体23王秉璋,2012
    31扎日玛日那非成矿岩体5姚磊,2015
    32玉苏普阿勒克非成矿岩体12Wang et al.,2014
    下载: 导出CSV

    表  2   文中汇编的成矿岩体和非成矿岩体的全岩地球化学特征表

    Table  2   Whole–rock geochemical characterization of mineralized and barren magmatic rocks compiled in this study

    元素特征成矿岩体非成矿岩体
    含量平均值含量平均值
    SiO249.6~78.170.247.5~78.068.1
    Al2O310.5~18.313.32.6~18.413.6
    Fe2O30.5~12.63.20.9~13.44.1
    MgO0.1~1.10.60.1~1.10.6
    CaO0.3~10.02.50.2~13.42.7
    Na2O0.7~4.93.00.7~6.23.0
    K2O0.7~7.74.00.3~7.83.9
    Ba36.0~2420.0502.513.0~2086.0588.0
    Rb21.0~580.0193.76.5~566.0166.3
    Nb3.1~59.013.90.5~89.716.6
    La6.1~148.034.25.1~170.039.8
    Ce20.9~196.066.211.1~362.080.0
    Pr1.6~33.97.51.5~41.89.7
    Nd6.0~108.026.45.9~148.035.5
    Sm1.5~14.84.91.4~22.67.2
    Eu0~2.30.80.1~6.81.2
    Gd1.2~14.34.41.3~20.66.6
    Tb0.2~3.20.70.2~3.51.1
    Dy1.1~23.04.00.7~24.56.1
    Ho0.2~5.10.80.2~5.21.2
    Er0.7~15.22.40.5~15.03.4
    Tm0.1~2.60.40.1~2.30.5
    Yb0.7~17.62.60.5~17.03.3
    Lu0.1~2.90.40.1~2.40.5
    Sr12.4~743.0206.51.1~927.0226.7
    Y6.8~164.824.23.7~157.032.4
    Sr/Y0.1~64.911.10.1~75.811.0
    La/Yb0.9~46.515.60.9~75.215.3
      注:主量元素含量为%;微量元素含量为10−6
    下载: 导出CSV

    表  3   随机森林模型分类结果表

    Table  3   Classification results of Random Forest model

    模型岩体类型总体准确率准确率AUC
    随机森林成矿岩体0.900.840.93
    非成矿岩体0.94
    下载: 导出CSV
  • 陈邦学, 徐胜利, 杨有生, 等. 东昆仑西段其木来克一带晚二叠世侵入岩的成因及其构造意义[J]. 地质通报, 2019, 38(06): 1040-1051

    Chen Bangxue, Xu Shengli, Yang Yousheng, et al. Genesis and tectonic significance of Late Permian Qimulaike intrusive rocks in the west of East Kunlun Mountains, Xinjiang[J]. Geological Bulletin of China, 2019, 38(6): 1040-1051.

    陈静, 谢智勇, 李彬, 等. 东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义[J]. 地质与勘探, 2013, 49(5): 813−824.

    CHEN Jing, XIE Zhiyong, LI Bin, et al. Geological and gechemical characteristics of the ore-bearing intrusions from the Lalingzaohuo Mo polymetallic deposit and its metallogenic significance[J]. Geology and Exploration, 2013, 49(5): 813−824.

    陈静, 胡继春, 逯永卓, 等. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465−472.

    CHEN Jing, HU Jichun, LU Yongzhuo, et al. Geochronology, Geochemical Characteristics of Molybdenum Ore-bearing Syenogranite from Xiaozhaohuo Area in East Kunlun and Its Geological Significance[J]. Gold Science and Technology, 2018, 26(04): 465−472.

    崔美慧, 孟繁聪, 吴祥珂. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J]. 岩石学报, 2011, 27(11): 3365-3379

    CUI Meihui, MENG Fancong, WU Xiangke. Early Ordovician island arc of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate-basic igneous rocks[J]. Acta Petrologica Sinica, 2011, 27(11): 3365-3379.

    董连慧, 刘德权, 唐延龄, 等. 试论新疆成矿体系与时空演化模式[J]. 矿床地质, 2015, 34(06): 1107-1129 doi: 10.16111/j.0258-7106.2015.06.002

    DONG Lianhui, LIU Dequan, TANG Yanling, et al. Five-era metallogenic system of mineral deposits in Xinjiang and its spatial and temporal evolution mode[J]. Mineral Deposits, 2015, 34(06): 1107-1129. doi: 10.16111/j.0258-7106.2015.06.002

    丰成友, 李东生, 吴正寿, 等. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 2010, 43(04): 10-17 doi: 10.3969/j.issn.1009-6248.2010.04.002

    FENG Chengyou, Li Dongsheng, WU Zhengshou, et al. Major Types Time Space Distribution and Metallogeneses of Polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area[J]. Northwestern Geology, 2010, 43(04): 10-17. doi: 10.3969/j.issn.1009-6248.2010.04.002

    丰成友, 王雪萍, 舒晓峰, 等. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 2011, 41(06): 1806-1817 doi: 10.13278/j.cnki.jjuese.2011.06.013

    FENG Chengyou, WANG Xueping, SHU Xiaofeng, et al. Isotopic Chronology of the Hutouya Skarn Lead-Zinc Polymetallic Ore District in Qimantage Area of Qinghia Province and It’s Geological Significance[J]. Journal of Jilin University, 2011, 41(06): 1806-1817. doi: 10.13278/j.cnki.jjuese.2011.06.013

    丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(02): 665-678

    FENG Chenyou, WANG Song, LI Guochen, et al. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 2012, 28(02): 665-678.

    高永宝. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 西安: 长安大学, 2013

    GAO Yongbao. The Intermediate-acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Moutains[D]. Xi’an: Chang’an University, 2013.

    高永宝, 李侃, 钱兵, 等. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束[J]. 大地构造与成矿学, 2018, 42(01): 96-107

    GAO Yongbao, LI Kan, QIAN Bing, et al. The Metallogenic Chronology of Kaerqueka Deposit in Eastern Kunlun: Evidences from Molybdenite Re-Os and Phlogopite Ar-Ar Ages[J]. Geotectonica et Metallogenia, 2018, 42(01): 96-107.

    高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(6): 1647−1665.

    GAO Yongbao, LI Wenyuan, QIAN Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China. Acta Petrologica Sinica, 2014, 30(6): 1647−1665.

    高永宝, 李文渊, 马晓光, 等. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版), 2012, 48(02): 36-47 doi: 10.13885/j.issn.0455-2059.2012.02.003

    GAO Yongbao, LI Wenyuan, MA Xiaoguang, et al. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern China[J]. Journal of Lanzhou University, 2012, 48(02): 36-47. doi: 10.13885/j.issn.0455-2059.2012.02.003

    高永宝, 李文渊, 张照伟. 祁漫塔格白干湖-戛勒赛钨锡矿带石英脉型矿石流体包裹体及氢氧同位素研究[J]. 岩石学报, 2011, 27(06): 1829-1839

    GAO Yongbao, LI Wenyuan, ZHANG Zhaowei. Fluid inclusions and H-O isotopic compositions of quartz-vein ores in the Baiganhu-Jialesai W-Sn mineralization belts, Qimantage, NW China[J]. Acta Petrologica Sinica, 2011, 27(6): 1829-1839.

    郝杰, 刘小汉, 桑海清. 新疆东昆仑野牛泉石英闪长岩与英安斑岩的40Ar/39Ar同位素年龄[J]. 地质通报, 2003, (03): 165-169 doi: 10.3969/j.issn.1671-2552.2003.03.004

    HAO Jie, LIU Xiaohan, SANG Haiqing. Hornblende and biotite 40Ar/39Ar ages of the Yeniuquan quartz diorite and dacite-porphyry in thr Esat Kunlun orogenic belt, Xinjiang[J]. Geological Bulletin of China, 2003, (03): 165-169. doi: 10.3969/j.issn.1671-2552.2003.03.004

    景宝盛, 单金忠. 新疆东昆仑维宝地区铅锌矿床找矿标志及找矿方向[J]. 地质找矿论丛, 2013, 28(04): 499-507 doi: 10.6053/j.issn.1001-1412.2013.04.001

    JING Baosheng, SHAN Jinzhong. Prospecting criteria and ore prospecting orientation of lead-zinc deposit in Weibao area of East Kunlun region, Xinjiang[J]. Contribution to Geology and Mineral Resources Research, 2013, 28(04): 499-507. doi: 10.6053/j.issn.1001-1412.2013.04.001

    孔会磊, 李金超, 黄军, 等. 东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U-Pb测年、岩石地球化学及找矿意义[J]. 中国地质, 2015, 42(03): 521-532. doi: 10.3969/j.issn.1000-3657.2015.03.010

    KONG Huilei, LI Jinchao, HUANG Jun, et al. Zircon U-Pb dating and geochemical characteristics of the plagiogranite porphyry from the Xiaoyuanshan iron-polymetallic ore district in East Kunlun Mountains[J]. Geology in China, 2015, 42(3): 521-532. doi: 10.3969/j.issn.1000-3657.2015.03.010

    孔会磊, 李金超, 栗亚芝, 等. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质科技情报, 2016, 35(01): 8-16

    KONG Huilei, LI Jinchao, LI Yazhi, et al. LA-MC-ICP-MS Zircon U-Pb Dating and Its Geological Implications of the Tonalite from Xiaoyuanshan Iron-Polymetallic Ore District in Qimantag Mountain, Qinghai Province[J]. Geological Science and Technology Information, 2016, 35(01): 8-16.

    李碧乐, 孙丰月, 于晓飞, 等. 青海东昆仑卡尔却卡地区野拉塞铜矿床成因类型及成矿机制[J]. 岩石学报, 2010, 26(12): 3696-3708

    LI Bile, SUN Fengyue, YU Xiaofei, et al. Genetic type and Mineralizing Mechanism of the Yelasai Copper Deposit in Kaerqueka area Eastern Kunlun Qinghai Province[J]. Acta Petrologica Sinica, 2010, 26(12): 3696-3708.

    李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(02): 309-319 doi: 10.3975/cagsb.2020.022501

    LI Changbai, XIAO Keyan, LI Nan, et al. A Comparative Study of Support Vector Machine, Random Forest and Artificial Neural Network Machine Learning Algorithms in Geochemical Anomaly Information Extraction[J]. Acta Geoscientica Sinica, 2020, 41(02): 309-319. doi: 10.3975/cagsb.2020.022501

    李积清, 陈静, 史青瑞, 等. 东昆仑卡尔却卡矿区似斑状二长花岗岩成因: 锆石U-Pb年龄及Sr-Nd同位素制约[J]. 矿物岩石, 2016, 36(03): 87-95

    LI Jiqing, CHENG Jing, SHI Qingrui, et al. The Genesis of Porphyritic Monzogranitie of the Kaerqueka Deposit it the East Kunlun: Evidence, from Zircon U-Pb Dating and Sr-Nd Isotopic Compositions[J]. Mineral Petrol, 2016, 36(03): 87-95.

    李侃, 高永宝, 钱兵, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J]. 中国地质, 2015, 42(03): 630-645 doi: 10.3969/j.issn.1000-3657.2015.03.017

    LI Kan, GAO Yongbao, QIAO Bing, et al. Geochronology, geochemical characteristics and Hf isotopic compositions of granite in the Hutouya deposit, Qimantag, East Kunlun[J]. Geology in China, 2015, 42(3): 630-645. doi: 10.3969/j.issn.1000-3657.2015.03.017

    李世金, 孙丰月, 丰成友, 等. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, 2008, 82(07): 949-955 doi: 10.3321/j.issn:0001-5717.2008.07.013

    LI Shijin, SUN Fengyue, FENG Chengyou, et al. Geochronological Study on Yazigou Polymetallic Deposit in Eastern Kunlun Qinhai Province[J]. Acta Geologica Sinica, 2008, 82(07): 949-955. doi: 10.3321/j.issn:0001-5717.2008.07.013

    李瑶. 东昆仑祁漫塔格阿确礅地区古生代花岗岩成因及大地构造意义[D]. 北京: 中国地质大学, 2017

    LI Yao. Genesis and Tectonic significance of Paleozoic Granites in Aquedun area, East Kunlun[D]. Beijing: China University of Geosciences, 2017.

    李国臣, 丰成友, 王瑞江, 等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报, 2012, 33(02): 216-226

    LI Guochen, FENG Chengyou, WANG Ruijiang, et al. SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang[J]. Acta Geoscientica Sinica, 2012, 33(02): 216-226.

    李慧. 基于证据权重法和机器学习的赣南钨矿成矿远景预测[D]. 赣州: 江西理工大学, 2022

    LI Hui. Mineral Prospectivity Mapping of Tungsten Deposits in Southern Jiangxi Province Based on Weights of Evidence and Machine Learning[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    李玉春, 李彬, 陈静, 等. 东昆仑拉陵灶火矿区花岗闪长岩Sr-Nd-Pb同位素特征及其地质意义[J]. 矿物岩石, 2013, 33(03): 110-115 doi: 10.3969/j.issn.1001-6872.2013.03.016

    LI Yuchun, LI Bin, CHEN Jing, et al. Sr-Nd-Pb Isotopic Characteristics of Ore-Bearing Granodiorites from Lalingzaohuo Deposit and it’s Geological Significance[J]. Journal of Mineral Petrol, 2013, 33(03): 110-115. doi: 10.3969/j.issn.1001-6872.2013.03.016

    李玉春, 张爱奎, 张培青, 等. 青海祁漫塔格沙丘地区侵入岩地质、地球化学特征及找矿意义[J]. 西北地质, 2013, 46(03): 70-82 doi: 10.3969/j.issn.1009-6248.2013.03.005

    LI Yuchun, ZHANG Aikui, ZHANG Peiqing, et al. The Geological and Geochemical Characteristics of the Intrusive Rock and Prospecting Significance in Shaqiu Areas, Qimantage Metallogenic Belt, Qinghai Province[J]. Northwestern Geology, 2013, 46(03): 70-82. doi: 10.3969/j.issn.1009-6248.2013.03.005

    刘建楠. 青海野马泉铁锌矿床多期次构造—岩浆热年代学成矿意义[D]. 北京: 中国地质科学院, 2018

    LIU Jiannan. The Metallogenic Significance of Multistage Tectonic Magmatic, the Morchronology of Yemaquan Iron-Zinc Deposit, Qinghai[D]. Beijing: Chinese Academy of Geological Sciences For, 2018.

    刘彬, 马昌前, 蒋红安, 等. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据[J]. 岩石学报, 2013, 29(06): 2093-2106

    LIU Bin, MA Changqian, JIANG Hongan, et al. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin mafic rocks[J]. Acta Petrologica Sinica, 2013, 29(6): 2093-2106.

    刘晓生, 章治邦. 基于改进网格搜索法的SVM参数优化[J]. 江西理工大学学报, 2019, 40(1): 5−9.

    LIU Xiaosheng, ZHANG Zhibang. Parameter optimization of Support Vector Machine based on improved grid search method[J]. Journal of Jiangxi University of Science and Technology, 2019, 40(1): 5−9.

    陆济璞, 李江, 覃小锋, 等. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, 2005, (04): 46-54 doi: 10.3969/j.issn.1009-3850.2005.04.008

    LU Jipu, LI Jiang, TAN Xiaofeng, et al. The Yinieke agan granite mass in Qimantag eastern Kunlun and its tectonic significance[J]. Sedimentary Geology and Tethyan Geology, 2005, (04): 46-54. doi: 10.3969/j.issn.1009-3850.2005.04.008

    陆济璞, 戴梅芳, 李江, 等. 东昆仑祁漫塔格希热芒崖晚石炭世花岗岩地球化学特征及其构造背景[J]. 华南地质与矿产, 2006, (04): 1-8

    LU Jipi, DAI Meifang, LI Jiang, et al. Geochemical Characteristics and It’s Tectonis Setting of Xiremangya Lata Carboniferous Granite in the Qimantage Mountains, East Kunlun[J]. South China Geology, 2006, (04): 1-8.

    马文, 丁玉进, 李社宏, 等. 祁漫塔格中部元古代高钾(变质)侵入岩体的发现及其地质意义[J]. 西北地质, 2013, 46(01): 32-39 doi: 10.3969/j.issn.1009-6248.2013.01.004

    MA Wen, DING Yujin, LI Shehong, et al. The Discovery and Geological Significance of Proterozoic Intrusive Rock with High-K in the Central of Qimantge Area[J]. Northwestern Geology, 2013, 46(01): 32-39. doi: 10.3969/j.issn.1009-6248.2013.01.004

    毛景文, 周振华, 丰成友等. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 2012, 39(06): 1437-1471 doi: 10.3969/j.issn.1000-3657.2012.06.001

    MAO Jingwen, ZHOU Zhenhua, FENG Chengyou, et al. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 2012, 39(06): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 49(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 49(03): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    南卡俄吾, 贾群子, 唐玲, 等. 青海东昆仑哈西亚图矿区花岗闪长岩锆石U-Pb年龄与岩石地球化学特征[J]. 中国地质, 2015, 42(03): 702-712 doi: 10.3969/j.issn.1000-3657.2015.03.022

    NAMHKA N, JIA Qunzi, TANG Ling, et al. Zircon U-Pb age and geochemical characteristics of granodiorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J]. Geology in China, 2015, 42(3): 702-712. doi: 10.3969/j.issn.1000-3657.2015.03.022

    南卡俄吾, 贾群子, 李文渊, 等. 青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征[J]. 地质通报, 2014, 33(06): 841-849 doi: 10.3969/j.issn.1671-2552.2014.06.007

    NAMHKA N, JIA Qunzi, LI Wenyuan, et al. LA-ICP-MS zircon U-Pb age and geochemical characteristics of quartz diorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J]. Geological Bulletin of China, 2014, 33(6): 841-849. doi: 10.3969/j.issn.1671-2552.2014.06.007

    潘北斗, 李宝, 王福臣, 等. 不同类型矿床(点)空间关联关系定量研究——以中南半岛及临近地区为例[J]. 地质与勘探, 2022, 58(03): 532-544.

    PAN Beidou, LIU Bao, WANG Fuchen, et al. Quantitative study on spatial correlation of different types of deposits(occurrences)—A case study of Indochina Peninsula and adjacent areas[J]. Geology and Exploration, 2022, 58(3): 0532-0544.

    潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(01): 16-33 doi: 10.3969/j.issn.1672-6561.2017.01.002

    PAN Tong. Classification of Metallogenic Units in Qinghai, China[J]. Journal of Earth Sciences and Enviroment, 2017, 39(01): 16-33. doi: 10.3969/j.issn.1672-6561.2017.01.002

    时超, 李荣社, 何世平, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿成矿时代及其地质意义——黑云二长花岗岩地球化学特征和锆石U-Pb年龄证据[J]. 地质通报, 2017, 36(06): 977-986 doi: 10.3969/j.issn.1671-2552.2017.06.010

    SHI Chao, LI Rongshe, HE Shiping, et al. A study of the ore-forming age of the Hutouya deposit and its geological significance: Geochemistry and U-Pb zircon ages of biotite monzonitic granite in Qimantag, East Kunlun Mountains[J]. Geological Bulletin of China, 2017, 36(6): 977-986. doi: 10.3969/j.issn.1671-2552.2017.06.010

    舒树兰, 何书跃, 李彬, 等. 青海东昆仑鸭子沟多金属矿床地质地球化学特征及找矿前景分析[J]. 西北地质, 2014, 47(02): 62-72 doi: 10.3969/j.issn.1009-6248.2014.02.008

    SHU Shulan, HE Shuyue, LI Bin, et al. Geology, Geochemical Characteristics and Prospecting Analysisof Yazigou Polymetallic Deposit, Esat Kunlun, Qinghai Province[J]. Northwestern Geology, 2014, 47(02): 62-72. doi: 10.3969/j.issn.1009-6248.2014.02.008

    舒晓峰, 王雪萍, 张雨莲, 等. 青海虎头崖地区多金属矿床成因类型的厘定及找矿方向[J]. 西北地质, 2012, 45(01): 165-173 doi: 10.3969/j.issn.1009-6248.2012.01.022

    SHU Xiaofeng, WANG Xueping, ZHANG Yulian, et al. Determination of Multifarious Genesis and Prospecting of Polymetallic Metallogenic Deposit in Hutouya, Qinghai[J]. Northwestern Geology, 2012, 45(01): 165-173. doi: 10.3969/j.issn.1009-6248.2012.01.022

    谈生祥, 郭通珍, 董进生, 等. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 2011, 29(1): 36−43.

    TAN Shengxiang, GUO Tongzhen, DONG Jinsheng, et al. Geological characteristics and significance of the peraluminous granite in late silurian epoch in Wulanwuzhuer region of Qinghai[J]. Journal of Qinghai University(Natural Science), 2011, 29(1): 36−43.

    田承盛, 丰成友, 李军红, 等. 青海它温查汉铁多金属矿床~(40)Ar-~(39)Ar年代学研究及意义[J]矿床地质, 2013, 32(01): 169-176 doi: 10.3969/j.issn.0258-7106.2013.01.012

    TIAN Chengsheng, FENG Chengyou, LI Junhong, et al. 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in Qimantag Mountain of Qinghai Province and its geological implications[J]. Mineral Deposits, 2013, 32(01): 169-176. doi: 10.3969/j.issn.0258-7106.2013.01.012

    田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28−45.

    TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28−45.

    王秉璋. 祁漫塔格地质走廊域古生代—中生代火成岩岩石构造组合研究[D]. 北京: 中国地质大学(北京), 2012

    WANG Bingzhang. The study and investigation on the assembly and coupling Petrotectonic assemblage during Paleozoic-Mesozoic period at Qimantag geological corridor domain[D]. Beijing: China University of Geosciences (Beijing), 2012.

    温博文, 董文瀚, 解武杰, 等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10): 154−157.

    WEN Bowen, DONG Wenhan, XIE Wujie, et al. Parameter optimization method for random forest based on improved grid search algorithm[J]. Computer Engineering and Applications, 2018, 54(10): 154-157.

    徐博. 藏北安多地区中侏罗统布曲组碳酸盐岩微相分析[D]. 成都: 成都理工大学, 2020

    XU Bo. Carbonate Microfacies Analysis and Evolutions of the Middle Jurassic Buqu Formation in the Amdo area, northern Tibet[D]. Chendu: Chendu University of Technology, 2020.

    许长坤, 刘世宝, 赵子基, 等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 2012, 86(10): 1621-1678 doi: 10.3969/j.issn.0001-5717.2012.10.006

    XU Changkun, LIU Shibao, ZHAO Ziji, et al. Metallogenic Law and Prospect Direction of Iron Deposits in the East Kunlun Metallogenic Belt in Qinghai[J]. Acta Geologica Sinca, 2012, 86(10): 1621-1678. doi: 10.3969/j.issn.0001-5717.2012.10.006

    许骏, 邓小华, 祝新友. 祁漫塔格成矿带地质特征和成矿时空分布规律[J]. 新疆地质, 2021, 39(04): 671-678 doi: 10.3969/j.issn.1000-8845.2021.04.025

    XU Jun, DENG Xiaohua, ZHU Xingyou. Geological Characteristics and Spatio-Temporal Distribution of Mineralization in the Qimantage metallogenic Belt[J]. Xinjiang Geology, 2021, 39(04): 671-678. doi: 10.3969/j.issn.1000-8845.2021.04.025

    许志琴, 杨经绥, 李化启, 等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(06): 1697-1709

    XU Zhiqin, YANG Jingsui, LI Huaqi, et al. Indosinian collision-orogenic system of Chinese continent and its orogenic mechanism[J]. Acta Petrologica Sinica, 2012, 28(06): 1697-1709.

    薛宁, 安勇胜, 李五福, 等. 青海野马泉地区正长花岗岩的基本特征及成因[J]. 青海大学学报(自然科学版), 2009, 27(02): 18-22 doi: 10.13901/j.cnki.qhwxxbzk.2009.02.003

    XU Ning, AN Yongsheng, LI Wufu, et al. Characteristic and genesis of normal granite in the Yemaquan of Qinghai[J]. Journal of Qinghai University, 2009, 27(02): 18-22. doi: 10.13901/j.cnki.qhwxxbzk.2009.02.003

    杨兴科, 韩珂, 范阅, 等. 东昆仑祁漫塔格矿带典型矿田构造背景与岩浆-热力构造特征[J]. 大地构造与成矿学, 2016, 40(02): 201-212 doi: 10.16539/j.ddgzyckx.2016.02.002

    YANG Xingke, HAN Ke, FAN Yue, et al. Tectonic Background and Magma-thermodynamic Structural Features of Typical Orefields in Qimantage Ore Belt, Eastern Kunlun[J]. Geotectonica et Metallogenia, 2016, 40(02): 201-212. doi: 10.16539/j.ddgzyckx.2016.02.002

    姚磊. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 北京: 中国地质大学(北京), 2015.

    YAO Lei. Petrogenesis of the Triassic granitoids and skarn mineralization in the Qimantag area, Qinghai Province, and their geodynamic setting[D]. Beijing: China University of Geosciences (Beijing), 2015.

    杨涛, 李智明, 张乐, 等. 东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J]. 高校地质学报, 2017, 23(03): 452-464 doi: 10.16108/j.issn1006-7493.2017026

    YANG Tao, LI Zhiming, ZHANG Le, et al. Geological and Geochemical Characteristics of the Tawenchahanxi Granites in East Kunlun and Its Tectonic Significance[J]. Geological Journal of China Universities, 2017, 23(03): 452-464. doi: 10.16108/j.issn1006-7493.2017026

    于淼, 丰成友, 刘洪川, 等. 青海尕林格矽卡岩铁矿富Cl角闪石矿物地球化学特征与其成矿意义[J]. 岩石矿物学杂志, 2015, 34(05): 721-740 doi: 10.3969/j.issn.1000-6524.2015.05.010

    YU Miao, FENG Chengyou, LIU Hongchuan, et al. The Significance of Mineralization and Geochemistry of the Cl_rich Amphiboles from the Galinge Skarn Iron Deposit in Qinghai Province[J]. Acta Petrologica et Mineralogica, 2015, 34(05): 721-740. doi: 10.3969/j.issn.1000-6524.2015.05.010

    袁颖, 于少将, 王晨晖, 等. 基于网格搜索法优化支持向量机的围岩稳定性分类模型[J]. 地质与勘探, 2019, 55(2): 608−613.

    YUAN Ying, YU Shaojiang, WANG Chenhui, et al. Evaluation model for surrounding rock stability based on support vector machine optimized by grid search method[J]. Geology and Exploration, 2019, 55(2): 608−613.

    王子烨. 基于测度学习的喜马拉雅淡色花岗岩岩体识别[D]. 武汉: 中国地质大学, 2020

    WANG Ziye. Mapping of Himalaya Leucogranites Based on Metric Learning[D]. HU BEI: China University of Geosciences, 2020.

    吴祥珂, 孟繁聪, 许虹, 等. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成[J]. 岩石学报, 2011, 27(11): 3380-3394

    WU Xiangke, MENG Fancong, XU Hong, et al. Zircon U-Pb dating, geochemistry and Nd-Hf isotopic compositions of the Maxingdaban Late Triassic granitic pluton from Qimantag in the eastern Kunlun[J]. Acta Petrologica Sinica, 2011, 27(11): 3380-3394.

    赵一鸣, 丰成友, 李大新, 等. 青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J]. 矿床地质, 2013, 32(01): 1-19 doi: 10.3969/j.issn.0258-7106.2013.01.001

    ZHAO Yiming, FENG Chengyou, LI Daxing. Metallogenic setting and mineralization-alteration characteristics of major skarn Fe-polymetallic deposits in Qimantag area western Qinghai Province[J]. Mineral Deposits, 2013, 32(01): 1-19. doi: 10.3969/j.issn.0258-7106.2013.01.001

    张爱奎, 莫宣学, 袁万明, 等. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 2016, 36(02): 157-173 doi: 10.16461/j.cnki.1000-4734.2016.02.001

    ZHANG Aikui, MO Xuanxue, YUAN Wangming, et al. Petrogensis and Tectonic Setting of Yemaquan Triassic Granite from the West of the Eastern Kunlun Mountain Range, China[J]. Acta Mineralogica Sinca, 2016, 36(02): 157-173. doi: 10.16461/j.cnki.1000-4734.2016.02.001

    张爱奎. 青海野马泉地区晚古生代—早中生代岩浆作用与成矿研究[D]. 北京: 中国地质大学(北京), 2012

    ZHANG Aikui. Studies on late Paleozoic-early Mesozoic magmatism and mineralization in Yemaquan area, Qinghai province[D]. Beijing: China University of Geosciences (Beijing), 2012.

    张雷. 东昆仑野马泉地区三叠纪构造岩浆作用与成矿关系[D]. 北京: 中国地质大学(北京), 2013.

    ZHANG Lei. Studies on Triassic Tectonic Magmatosm and Relationship with Mineralization in Yemaquan Area, East Kunlun[D]. Beijing: China University of Geosciences (Beijing), 2013.

    张明玉, 丰成友, 王辉, 等. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义[J]. 岩石矿物学杂志, 2018, 37(2): 197−210.

    ZHANG Mingyu, FENG Chengyou, WANG Hui, et al. Petrogenesis and tectonic implications of the Late Triassic syenogranite in Qimantag area, East Kunlun Mountains[J]. Acta Petrologica et Mineralgica, 2018, 37(2): 197-210.

    张杰, 康晓波, 鲁慧, 等. 哀牢山中段地质灾害空间分布规律研究——以元江县为例[J]. 工程地质学报, 2018, 26(03): 720-731

    ZHANG Jie, KANG Xiaobo, LU Hui, et al. Study on spatial distribution of geological disasters in middle part of Ailao mountain: A case of Yuanjiang County[J]. Journal of Engineering Geology, 2018, 26(3): 720-731.

    张晓飞, 李智明, 贾群子, 等. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(03): 749-765

    ZHANG Xiaofei, LI Zhiming, JIA Qunzi, et al. Geochronology, Geochemistry and Geological Significance of Granite Porphyry in Hutouya Polymetallic Deposit, Qimantage Area, Qinghai Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(03): 749-765.

    张晓飞, 宋忠宝, 李智明, 等. 北祁连浪力克矿区闪长玢岩地质地球化学特征及其地质意义[J]. 西北地质, 2012, 45(S1): 113−116.
    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39.

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.

    张雨莲, 贾群子, 宋忠宝, 等. 青海省卡尔却卡铜多金属矿床A区斑岩型和B区矽卡岩型成矿岩体特征对比[J]. 西北地质, 2014, 47(04): 114-122 doi: 10.3969/j.issn.1009-6248.2014.04.012

    ZHANG Yulian, JIA Qunzi, SONG Zhongbao, et al. Contrastive Study on Features of Ore-forming Rock Mass between Area-A Porphyry Type and Area-B Skarn Type in Ka’erqueka Copper Molubdenum Deposit in Qinghai Province[J]. Northwestern Geology, 2014, 47(04): 114-122. doi: 10.3969/j.issn.1009-6248.2014.04.012

    钟世华. 新疆维宝铜铅锌矿床成因研究[D]. 北京: 中国地质科学院, 2018

    ZHONG Shihua. Genesis of the Weibao Cu-Pb-Zn deposit in Xinjiang, China[D]. Beijing: Chinese Aacademy of Geological Sciences, 2018.

    钟世华, 丰成友, 李大新, 等. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 2017, 91(05): 1066-1082 doi: 10.3969/j.issn.0001-5717.2017.05.008

    ZHONG Shihua, FENG Chengyou, LI Daxing, et al. Mineralogical Characteristics of the Weixi Ore Block in the Weibao Skarn-type Copper-Lead-Zinc Deposit, Xinjiang[J]. Acta Geologica Sinica, 2017, 91(05): 1066-1082. doi: 10.3969/j.issn.0001-5717.2017.05.008

    庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56(1): 63−80.

    ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology, 2023, 56(1): 63−80.

    Ballard J R, Palin M J, Campbell I H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144(3): 347-364. doi: 10.1007/s00410-002-0402-5

    Bergen K J, Johnson P A, Hoop M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323. doi: 10.1126/science.aau0323

    Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5−32.

    Chen J, Wang B Z, Lu H F, et al. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: evidence for post-collisional slab break-off[J]. International Geology Review, 2018, 60(4): 479-495. doi: 10.1080/00206814.2017.1346487

    Chiaradia M, Ulianov A, Kouzmanov A, et al. Why large porphyry Cu deposits like high Sr/Y magmas?[J]. Scientific Reports, 2012, 2: 685-686. doi: 10.1038/srep00685

    Chawla N V. Data mining for imbalanced datasets: An overview[J]. Data mining and knowledge discovery handbook, 2009, 875−886.

    Du J, Audetat A. Early sulfide saturation is not detrimental to porphyry Cu-Au formation[J]. Geology, 2020, 48(5): 519-524. doi: 10.1130/G47169.1

    Guo X Z, Zhou T F, Jia Q Z, et al. Highly differentiated felsic granites linked to Mo mineralization in the East Kunlun Orogenic Belt, NW China: Constrains from geochemistry, and Sr-Nd-Hf isotopes of the Duolongqiarou porphyry Mo deposit[J]. Ore Geology Reviews, 2022, 145: 104891. doi: 10.1016/j.oregeorev.2022.104891

    Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system;Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits[J]. Philippines. Economic Geology, 1998, 93(4): 373-404. doi: 10.2113/gsecongeo.93.4.373

    Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Special Issue Review, 2015, 349: 255-260.

    Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced datasets: a review, gests international transactions on computer science and engineering[J]. Synthetic Oversampling Instances Using Clustering, 2006, 30(1): 25-36.

    Leng C B, Cooke D R, Hou Z Q, et al. Quantifying Exhumation at the Giant Pulang Porphyry Cu-Au Deposit Using U-Pb-He Dating[J]. Economic Geology, 2018, 113(5): 1077-1092. doi: 10.5382/econgeo.2018.4582

    Lin X, Chang H, Wang K, et al. Machine Learning for Source Identification of Dust on the Chinese Loess Plateau[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088950.

    Lv W C, Li Z H, Wu X X, et al. Maximum Entropy Niche–Based Modeling(Maxent) of Potential Geographical Distributions of Lobesia Botrana(Lepidoptera_Tortricidae) in China[J]. Computer and Computing Technologies in Agriculture, 2011, 3: 264-246.

    Mao Y J, Qin K Z, Li C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, (200-201): 111-125.

    Nathwani C L, Wilkinson J J, George F, et al. Machine learning for geochemical exploration: classifying metallogenic fertility in arc magmas and insights into porphyry copper deposit formation[J]. Mineralium Deposita, 2022, 57(7): 1143-1166. doi: 10.1007/s00126-021-01086-9

    Nathwani C L, Wilkinson J J, Brownscombe W, et al. Mineral Texture Classification Using Deep Convolutional Neural Networks: An Application to Zircons From Porphyry Copper Deposits[J]. JGR Solid Earth, 2023, 128(2).

    Petrelli M, Perugini D. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data[J]. Contributions to Mineralogy and Petrology, 2016, 171(10).

    Pizarro H, Campo E, Bouzaro F, et al. Porphyry indicator zircons (PIZs): Application to exploration of porphyry copper deposits[J]. Ore Geology Reviews, 2020, 126: 103771. doi: 10.1016/j.oregeorev.2020.103771

    Ren X, Dong Y P, He D F, et al. Late Triassic magmatic rocks in the southern East Kunlun Orogenic Belt, northern Tibetan Plateau: Petrogenesis and tectonic implications[J]. International Geology Review, 2023,

    Rezeau H, Jagoutz O. The importance of H2O in arc magmas for the formation of porphyry Cu deposits. Ore Geology Reviews, 2020, 126, 103744.

    Rezeau H, Moritz R, Wotzlaw J F, et al. Zircon Petrochronology of the Meghri-Ordubad Pluton, Lesser Caucasus: Fingerprinting Igneous Processes and Implications for the Exploration of Porphyry Cu-Mo Deposits[J]. Economic Geology, 2019, 114(7): 1365-1388. doi: 10.5382/econgeo.4671

    Richards J P. High Sr/Y arc magmas and porphyry Cu deposits: just add water[J]. Economic Geology, 2011, 106(7): 1075-1081. doi: 10.2113/econgeo.106.7.1075

    Sun W D, Liang H Y, Ling M X, et al. The link between reduced porphyry copper deposits and oxidized magmas[J]. Geochimica et Cosmochimica Acta, 2013, 103: 263-275. doi: 10.1016/j.gca.2012.10.054

    Wang Y, Qiu, K F, Müller A, et al. Machine Learning Prediction of Quartz Forming-Environments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8).

    Wang C, Liu L, Xiao P X, et al. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China[J]. Lithos, 2014, (202-203): 1-20.

    Xia R, Wang C M, Qing M, et al. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 2015, 66: 114-131. doi: 10.1016/j.oregeorev.2014.10.024

    Xu Q L, Sun Y G, Mao G Z, et al. Petrogenesis of the Ore-Related Intrusions of the Aikengdelesite Mo (-Cu) and Halongxiuma Mo Deposits: Implication for Geodynamic Evolution and Mineralization in the East Kunlun Orogen, Northwest China[J]. Minerals, 13(3): 447.

    Yan M J, Sun G S, Sun F Y, et al. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis[J]. Journal of Earth Science, 2019, 30: 335-347. doi: 10.1007/s12583-018-1203-8

    Yin S, Ma C Q, Xu J N. Geochronology, geochemical and Sr-Nd-Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration[J]. Lithos, 2017, 294-295: 339-355. doi: 10.1016/j.lithos.2017.10.012

    Yu M, Feng C Y, Santosh M, et al. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 2017a. 167: 103-123. doi: 10.1016/j.earscirev.2017.02.008

    Yu M, Feng C Y, Mao J W, et al. Multistage Skarn-Related Tourmaline From the Galinge Deposit, QimanTage, Western China: A Fluid Evolution Perspective[J]. The Canadian Mineralogist, 2017b, 55(1): 3-19. doi: 10.3749/canmin.1600043

    Zhong S H, Seltmann R, Shen P. Two different types of granitoids in the Suyunhe large porphyry Mo deposit, NW China and their genetic relationships with molybdenum mineralization[J]. Ore Geology Reviews, 2017, 88: 116-139. doi: 10.1016/j.oregeorev.2017.04.012

    Zhong S H, Feng C Y, Seltmann R, et al. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals(zircon and apatite)[J]. Mineralium Deposita, 2018, 53(6): 855-870. doi: 10.1007/s00126-017-0787-8

    Zhong S H, Li S Z, Feng C Y, et al. Porphyry copper and skarn fertility of the northern Qinghai-Tibet Plateau collisional granitoids[J]. Earth-Science Reviews, 2021a, 103524.

    Zhong S H, Feng C Y, Seltmann R, et al. Middle Devonian volcanic rocks in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: Zircon chronology and tectonic implications[J]. Ore Geology Reviews, 2021b, 84: 309-327.

    Zhong S H, Li S Z, Liu Y, et al. I-type and S-type granites in the Earth’s earliest continental crust[J]. Communications Earth & Environment, 2023, 4: 61.

    Zhou Y, Zhang Z, Yang J, et al. Machine Learning and Singularity Analysis Reveal Zircon Fertility and Magmatic Intensity: Implications for Porphyry Copper Potential[J]. Natural Resources Research, 2022, 31(6): 3061-3078. doi: 10.1007/s11053-022-10122-y

    Zou S, Chen X, Brzozowski M J, et al. Application of Machine Learning to Characterizing Magma Fertility in Porphyry Cu Depositsp[J]. Journal of Geophysical Research: Solid Earth, 2022, 27(8).

图(6)  /  表(3)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  32
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-09-10
  • 录用日期:  2023-09-10
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2023-12-19

目录

/

返回文章
返回