ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

川西泸定昔格达地层黏土岩工程地质特性研究

李祥, 吴瑞安, 郭长宝, 倪嘉伟, 王炀, 李彩虹, 宋德光

李祥,吴瑞安,郭长宝,等. 川西泸定昔格达地层黏土岩工程地质特性研究[J]. 西北地质,2024,57(2):262−274. doi: 10.12401/j.nwg.2023164
引用本文: 李祥,吴瑞安,郭长宝,等. 川西泸定昔格达地层黏土岩工程地质特性研究[J]. 西北地质,2024,57(2):262−274. doi: 10.12401/j.nwg.2023164
LI Xiang,WU Ruian,GUO Changbao,et al. Engineering Geological Characteristics of Xigeda Formation Claystone in Luding County, Western Sichuan[J]. Northwestern Geology,2024,57(2):262−274. doi: 10.12401/j.nwg.2023164
Citation: LI Xiang,WU Ruian,GUO Changbao,et al. Engineering Geological Characteristics of Xigeda Formation Claystone in Luding County, Western Sichuan[J]. Northwestern Geology,2024,57(2):262−274. doi: 10.12401/j.nwg.2023164

川西泸定昔格达地层黏土岩工程地质特性研究

基金项目: 国家自然科学基金项目“构造缝合带蚀变软岩强度劣化效应及其对巨型滑坡的控滑机理”(42207233),中国地质调查局项目“全国重大工程地质安全风险区划与综合评价”(DD20221816),国家重点研发计划项目课题“地质灾害云-端协同智能预警系统构建与示范应用”(2021YFC3000505)联合资助。
详细信息
    作者简介:

    李祥(1997−),男,硕士研究生,从事工程地质与地质灾害方面的研究。E–mail:1841357868@qq.com

    通讯作者:

    吴瑞安(1991−),男,博士,副研究员,从事工程地质与地质灾害方面的研究。E–mail: wuruian1991@126.com

  • 中图分类号: P588

Engineering Geological Characteristics of Xigeda Formation Claystone in Luding County, Western Sichuan

  • 摘要:

    昔格达地层作为一类特殊的半成岩,具有“见风成粉,遇水成泥”的特性,是工程地质问题与地质灾害的良好孕生载体。以川西泸定海子坪昔格达地层黏土岩为研究对象,通过X射线衍射、电镜扫描、现场与室内岩土测试,分析了其物质组成、微观结构及力学特性,重点研究水作用下其物理力学性质的变化规律,并与其他地区昔格达地层工程地质特性进行比较分析。研究表明:①海子坪昔格达地层黏土岩主要成分为粉细砂、黏土等细粒物质,由薄层黄色和灰色的黏土岩互层产出,具有近水平层理构造。②黄色和灰色黏土岩的物质组成相同,但占比不同,黄色黏土岩的黏粒含量比灰色黏土岩高约12%,方解石含量少约10%,黄色黏土岩的结构更为致密,黏粒间胶结作用更强。③海子坪昔格达地层黏土岩现场实测渗透系数为3.62×10−4~7.34×10−4 cm/s,介于其他地区昔格达地层的黏土岩类–砂岩类之间,这与其天然节理发育、受扰动极易开裂的特性密切相关。④黄、灰色黏土岩的黏聚力均随含水率增加而降低,且含水率越高,降幅越大,内摩擦角与含水率的关系则表现有所不同。⑤不同地区昔格达地层的力学特性对含水率变化的敏感性具有明显差异,其中泸定海子坪昔格达地层黏土岩的水敏性最为显著。

    Abstract:

    The Xigeda Formation is a special semi-diagenetic, which has the characteristics of "wind-induced powder, water-induced mud", and is a good carrier for engineering geological problems and geological hazards. In this study, the yellow and gray claystone of the Xigeda Formation in Haiziping Village, Luding County, western Sichuan was investigated. Its material composition, microstructure, and mechanical properties were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), field and laboratory geotechnical tests. The variation law of its physical and mechanical properties under the action of water is emphasized, and the engineering geological characteristics of the Xigeda Formation are compared and analyzed with those in other regions. Based on the above research, some conclusions are as follows. ①The Xigeda Formation claystone in Haiziping Village is mainly composed of fine sand, clay, and additional fine-grained materials. It is produced by yellow and gray thin layers interbedding and has a horizontal lamination structure. ②Yellow and gray claystone have the same material composition, but material proportions are different. The clay content of yellow claystone is 12% higher than that of gray claystone, and the calcite content is 10% inferior. The microstructure of yellow claystone is denser and cemented with clay particles more strongly. ③The permeability coefficient measured on the site of Xigeda Formation claystone in Haiziping Village is 3.62~7.34×10−4 cm/s, which is between claystones and sandstones in Xigeda Formation in other regions. The characteristic of its permeability is closely related to the development of natural joints and the characteristic of cracks that is susceptible to disturbance. ④The cohesion of yellow and gray claystone decreased with the increase of moisture content, and the higher the moisture content, the greater the decline, but the relationship between internal friction angle and moisture content was different.⑤ The mechanical properties of the Xigeda Formation in different regions and lithology have obvious differences in sensitivity to moisture content changes, among which the mechanical property weakening by the water of the Xigeda Formation claystone in Haiziping Village, Luding County is the most significant.

  • 中亚造山带横亘于西伯利亚板块和华北–塔里木板块之间,其形成与古亚洲洋及其陆缘的演化密切相关(Şengör et al.,1993Badarch et al.,2002Xiao et al.,20032018Windley et al.,2007付超等,2023张永玲等,2024)。关于古亚洲洋或其分支洋闭合时限存在泥盆纪—早石炭世(Charvet et al.,2007Xu et al.,2013邵济安等,2014刘桂萍等,2021)和二叠纪至早—中三叠世不同认识(Xiao et al.,20032018Li,2006Windley et al.,2007Jian et al.,2008Zheng et al.,20202021),究其原因,可能与古亚洲洋自西向东剪刀式闭合有关或多期造山有关(Wang et al.,2022Li et al.,2022),且西伯利亚板块与华北–塔里木板块之间存在不同时期的微陆块和岛弧,不同地体碰撞拼贴的时间也存在差异(陈井胜等,2022董玉等,2022)。中亚造山带各个部分地质演化记录的研究能够丰富对其构造演化过程的精细认识。

    内蒙古阿拉善盟额济纳旗位于中亚造山带中段南缘,是连接造山带东、西两段的关键部位,区域出露有大量岩浆岩,记录了深部壳幔相互作用的信息,是研究中亚造山带构造演化过程的关键。埃达克岩被认为形成于“高压”构造环境(张旗等,20022003,2020),有学者将埃达克岩的产出作为中亚造山带处于俯冲/碰撞期的标志(谢春林等,2009Li et al.,201220132017Liu et al.,2012Liu et al.,2019Lu et al.,2020Wang et al.,2020Zheng et al.,20202021Luan et al.,2022)。A型花岗岩被认为形成于伸展的构造环境(Eby,1992),A型花岗岩的侵位时代可限定其造山后伸展作用的时限(Wu et al.,2002Shi et al.,2004Li et al.,2012Shi et al.,2016Zheng et al.,2016Du et al.,2018Eizenhöfer et al.,2018Lu et al.,2020Song et al.,2020),这些包括埃达克岩和A型花岗岩在内的典型岩浆作用可为理解中亚造山带洋陆演化过程提供关键约束(王元元等,2023舍建忠等,2023)。

    区域地质调查工作过程中在内蒙古阿拉善盟额济纳旗达伦乌苏地区新识别出了两期岩浆岩,利用岩石学、同位素地质年代学和岩石地球化学研究方法,确定了其活动时代,探讨了其成因和构造背景,为该区域典型岩浆作用和构造演化史的研究提供了新证据。

    研究区南侧恩格尔乌苏蛇绿混杂岩带内见有超镁铁岩、辉长岩、枕状和块状玄武岩、硅质岩、细碧岩等,其中辉长岩锆石U-Pb年龄为380 Ma(王廷印等,1993),枕状玄武岩显示正常型大洋中脊玄武岩特征,其SHRIMP 锆石U-Pb年龄为(302±14)Ma(Zheng et al.,2014),多被认为是古亚洲洋在本段的最终闭合位置,向东与索伦蛇绿岩带相连,该蛇绿混杂岩带以北属中亚造山带的中段。研究区北侧蒙古境内Gurvan Sayhan- Zoolen 蛇绿岩带的蛇绿岩组分形成于520~511 Ma ,被(494±6)Ma的闪长岩脉截切侵入,代表了北侧Zoolen洋和对接带(Jian et al., 2014)。雅干断裂带近EW向横穿研究区,两侧古生代地层、火山岩和侵入岩特征存在明显差异,长期以来被视为一条重要的地质界线,北侧主体为奥陶纪—石炭纪岛弧,南侧为珠斯楞-杭乌拉大陆边缘(吴泰然等,1993王廷印等,1993Windley et al.,2007郑荣国等,2013Liu et al.,201620172018)。研究区向西与北山造山带隔巴丹吉林沙漠相望,向东雅干断裂带所分隔的两地体分别与Badarch等(2002)在蒙古境内划分具岛弧性质的Hashaat地体和具克拉通性质的南戈壁微陆块相连(图1a)。达伦乌苏二长花岗岩、花岗斑岩紧邻雅干断裂带,位于其北侧,侵入石炭系地层和更早期的岩体中(图1a、图1b)。

    图  1  内蒙古西部大地构造简图(a)及研究区地质简图(b)
    Figure  1.  (a) Tectonic map of the western Inner Mongolia and (b) sketch geological map of the study area

    达伦乌苏早三叠世二长花岗岩体北东向展布,出露面积约为3.2 km2,侵入石炭系白山组和早期角闪辉长岩中,局部被下白垩统巴音戈壁组和第四系冲洪积物不整合覆盖(图1b)。岩石多为似斑状花岗结构。斑晶主要为钾长石,大者可达3 cm,含量约为5%~10%。基质为中粗粒花岗结构,矿物大小多为3~10 mm,主要由斜长石(35%~40%)、钾长石(20%~25%)、石英(30%)和少量黑云母组成(图2a、图2b)。

    图  2  达伦乌苏早三叠世二长花岗岩(a、b)和中三叠世花岗斑岩岩体(c、d)野外及镜下特征
    Pl. 斜长石;Kfs. 钾长石;Bt. 黑云母;Qtz. 石英
    Figure  2.  (a, b) Representative photomicrographs of the Dalunwusu early- middle Triassic monzogranite and (c, d) granite porphyry

    达伦乌苏中三叠世花岗斑岩呈一小岩株产出,出露面积约0.5 km2,侵入早二叠世正长花岗岩和晚石炭世花岗闪长岩中,局部被第四系冲洪积物覆盖(图1b)。岩石呈斑状–似斑状结构,多由斑晶和基质组成。斑晶见斜长石、钾长石及石英,粒径0.2~2.5 mm不等。斜长石呈半自形板状,镜下隐约可见聚片双晶,部分可见环带构造。钾长石为(正)条纹长石,呈半自形板状,部分粒内嵌布板条状斜长石。石英呈他形粒状,多聚集在一起分布。基质由微细粒的长石、石英及少量白云母组成(图2c、图2d)。岩体整体钼含量较高,其中曾发现了多条钼矿体。

    本次研究在额济纳旗达伦乌苏北早三叠世二长花岗和中三叠世花岗斑岩内各采集了一件锆石U-Pb同位素测年样品,具体采样位置见图1b。样品采自新鲜的岩石露头,粗碎清洗剔除风成砂和风化面。锆石分选、制靶、阴极发光(CL)照相和LA-ICP-MS锆石U-Pb同位素分析均在中国冶金地质总局山东局测试中心完成。锆石U-Pb同位素测试使用美国Coherent 公司生产的193nmArF准分子系统,ICP-MS为美国热电Thermo iCAP Q,激光束斑直径为30 μm,激光脉冲10 Hz。测试采用标准锆石91500作为外部标准物质,元素含量采用NIST610作为外标,29Si作为内标元素,具体实验测试方法与李凤春等(2016)相同。样品的同位素比值及元素含量计算采用ICPMSDATACAL程序,普通铅校正采用ComPbCorr#3.17校正程序,U-Pb谐和图和年龄权重平均计算采用Isoplot程序(Ludwing,2003)完成。

    在岩体的不同位置采集了主、微量和稀土元素测试样品。其中二长花岗岩4件(GS5215-1、GS5137-1、GS5107-1、TW5127-1),花岗斑岩3件(PM54TW7、GS5312-1、GS5312-2),具体采样位置见图1b。样品主量元素测试工作采用X射线荧光法进行分析(XRF),在中国地质调查局呼和浩特自然资源综合调查中心实验室Axios MaxX-荧光光谱仪上完成。稀土、微量元素分析测试工作在中国冶金地质总局山东局测试中心完成,其中Cs、Ba、Nb、Rb、Zr元素分析采用X荧光光谱法分析,其他元素在X Series2电感耦合等离子体质谱仪(YQ006)上完成,具体分析流程与Yan等(2019)相同。

    TW5127-1样品锆石多为自形短柱状晶体,其长轴多为130~220 µm,长宽比在1.5~2.5之间,阴极发光图像显示锆石显示有清晰的震荡环带,具岩浆锆石特征(图3a)。除去部分锆石普通铅过高和和未获有效的平坦的波谱段外,样品中的23个测点具相近的单颗粒锆石年龄,详细分析结果见表1。锆石Th含量为240.0×10−6~935.0×10−6,U含量为545.8×10−6~1250.5×10−6,Th/U值为0.39~0.91(均>0.1),锆石206Pb/ 238U年龄为240~257 Ma,23个点测试结果均位于谐和线附近,其206Pb/ 238U加权平均年龄为(249.0±2.3)Ma(MSWD = 3.4,n=23)(图4a、图4b),代表了该二长花岗岩的结晶年龄。

    图  3  达伦乌苏二长花岗岩(a)和紫红色花岗斑岩体(b)代表性锆石阴极发光图像
    Figure  3.  (a) The cathodoluminescence (CL) images of typical zircon grains of the Dalunwusu early- middle Triassic monzogranite and (b) granite porphyry
    表  1  达伦乌苏早三叠世二长花岗岩和中三叠世花岗斑岩LA-ICP-MS锆石U-Pb 测年结果
    Table  1.  LA-ICP-MS zircon U-Pb dating results for the Dalunwusu early-middle triassic monzogranite and granite porphyry
    样品号含量(10−6Th/U同位素比值年龄(Ma)
    PbThU207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U
    TW5127-1,二长花岗岩
    spot-01 32.8 326.9 674.0 0.49 0.05049 0.00147 0.28031 0.00805 0.04026 0.00048 0.01271 0.00033 217 67 251 6 254 3
    spot-02 45.2 455.1 918.5 0.50 0.05321 0.00132 0.29573 0.00716 0.04026 0.00044 0.01333 0.00032 345 57 263 6 254 3
    spot-03 28.3 258.8 604.2 0.43 0.04913 0.00141 0.26853 0.00759 0.03961 0.00044 0.01198 0.00027 154 67 242 6 250 3
    spot-04 53.0 553.6 1104.3 0.50 0.05191 0.00116 0.28680 0.00654 0.03992 0.00045 0.01226 0.00028 280 52 256 5 252 3
    spot-06 36.8 315.5 771.4 0.41 0.05038 0.00249 0.28842 0.00889 0.04069 0.00050 0.01441 0.00045 213 115 257 7 257 3
    spot-07 52.9 653.7 1115.6 0.59 0.05049 0.00128 0.26964 0.00651 0.03867 0.00044 0.01216 0.00026 217 55 242 5 245 3
    spot-08 53.5 681.0 1150.5 0.59 0.05180 0.00184 0.27615 0.00703 0.03824 0.00042 0.01142 0.00027 276 86 248 6 242 3
    spot-09 59.7 588.7 1247.8 0.47 0.05236 0.00134 0.29155 0.00711 0.04018 0.00047 0.01260 0.00030 302 62 260 6 254 3
    spot-10 26.7 259.7 576.7 0.45 0.05159 0.00165 0.27715 0.00837 0.03891 0.00049 0.01281 0.00035 333 74 248 7 246 3
    spot-11 32.9 282.6 723.8 0.39 0.05188 0.00138 0.27909 0.00744 0.03876 0.00043 0.01279 0.00035 280 61 250 6 245 3
    spot-12 61.6 743.3 1250.5 0.59 0.05035 0.00115 0.28021 0.00614 0.04020 0.00044 0.01272 0.00025 209 49 251 5 254 3
    spot-13 58.5 935.0 1168.0 0.80 0.05662 0.00127 0.30055 0.00718 0.03820 0.00042 0.01236 0.00024 476 48 267 6 242 3
    spot-14 33.1 398.4 699.9 0.57 0.05294 0.00130 0.28662 0.00766 0.03900 0.00053 0.01247 0.00031 328 28 256 6 247 3
    spot-16 50.1 789.2 954.3 0.83 0.05336 0.00124 0.29522 0.00668 0.04002 0.00049 0.01279 0.00029 343 47 263 5 253 3
    spot-18 32.2 366.7 644.9 0.57 0.05154 0.00161 0.28431 0.00892 0.03999 0.00056 0.01268 0.00033 265 77 254 7 253 3
    spot-22 43.9 763.0 844.2 0.90 0.04963 0.00120 0.26183 0.00619 0.03795 0.00037 0.01184 0.00022 176 56 236 5 240 2
    spot-24 25.9 240.0 545.8 0.44 0.05098 0.00152 0.28251 0.00887 0.03984 0.00065 0.01215 0.00041 239 70 253 7 252 4
    spot-25 34.6 491.3 697.3 0.70 0.04986 0.00133 0.26655 0.00691 0.03842 0.00049 0.01198 0.00030 187 63 240 6 243 3
    spot-27 35.5 383.4 718.5 0.53 0.05046 0.00134 0.28351 0.00710 0.04058 0.00052 0.01273 0.00031 217 61 253 6 256 3
    spot-29 37.2 350.4 796.3 0.44 0.04926 0.00147 0.26735 0.00737 0.03925 0.00050 0.01164 0.00028 167 70 241 6 248 3
    spot-30 39.0 658.3 726.7 0.91 0.05058 0.00132 0.28010 0.00692 0.03998 0.00046 0.01233 0.00027 220 59 251 5 253 3
    spot-31 51.3 747.0 1026.8 0.73 0.05171 0.00134 0.27898 0.00669 0.03889 0.00040 0.01207 0.00026 272 59 250 5 246 3
    spot-32 45.1 528.0 924.9 0.57 0.05077 0.00151 0.27851 0.00752 0.03980 0.00056 0.01234 0.00031 232 66 249 6 252 3
    PM54TW7,花岗斑岩
    spot-01 28.7 427.2 572.8 0.75 0.05527 0.00186 0.29714 0.00979 0.03869 0.00065 0.01221 0.00040 433 76 264 8 245 4
    spot-02 48.7 619.9 1002.1 0.62 0.05177 0.00152 0.27438 0.00762 0.03805 0.00054 0.01167 0.00033 276 69 246 6 241 3
    spot-03 33.9 406.8 725.1 0.56 0.05418 0.00204 0.27645 0.00792 0.03671 0.00053 0.01233 0.00037 389 81 248 6 232 3
    spot-05 42.4 786.6 831.7 0.95 0.05388 0.00157 0.28522 0.00820 0.03811 0.00058 0.01118 0.00030 365 67 255 6 241 4
    spot-09 24.3 284.9 523.6 0.54 0.05405 0.00210 0.28162 0.01030 0.03766 0.00058 0.01145 0.00037 372 87 252 8 238 4
    spot-10 55.3 781.8 1085.9 0.72 0.05242 0.00438 0.27090 0.01148 0.03757 0.00062 0.01364 0.00049 306 191 243 9 238 4
    spot-13 38.0 550.1 770.3 0.71 0.05064 0.00156 0.26967 0.00809 0.03845 0.00051 0.01204 0.00035 233 72 242 6 243 3
    spot-14 36.8 470.6 743.6 0.63 0.05036 0.00182 0.27417 0.00974 0.03923 0.00053 0.01244 0.00038 213 88 246 8 248 3
    spot-15 34.4 538.8 723.4 0.74 0.05096 0.00156 0.26393 0.00810 0.03735 0.00051 0.01168 0.00031 239 72 238 7 236 3
    spot-16 25.8 435.0 524.3 0.83 0.05166 0.00184 0.26403 0.00885 0.03711 0.00056 0.01228 0.00033 333 81 238 7 235 3
    spot-21 27.5 373.2 569.7 0.66 0.05394 0.00206 0.28668 0.01036 0.03826 0.00059 0.01193 0.00044 369 87 256 8 242 4
    spot-22 39.5 549.3 782.3 0.70 0.05610 0.00259 0.30074 0.00964 0.03877 0.00057 0.01394 0.00045 457 102 267 8 245 4
    spot-23 33.4 588.1 646.7 0.91 0.04870 0.00181 0.26388 0.00917 0.03937 0.00071 0.01205 0.00040 132 87 238 7 249 4
    spot-27 33.8 463.5 682.4 0.68 0.05041 0.00173 0.26837 0.00914 0.03865 0.00059 0.01287 0.00044 213 84 241 7 244 4
    下载: 导出CSV 
    | 显示表格
    图  4  达伦乌苏二长花岗岩(a、b)和紫红色花岗斑岩体(c、d)锆石U-Pb年龄谐和图
    Figure  4.  (a, b) LA-ICP-MS U-Pb zircon concordia diagram of the Dalunwusu early-middle Triassic monzogranite and (c, d) granite porphyry

    PM54TW7样品锆石多为自形长柱状晶体,其长轴为250~500 µm,长宽比为2.5~5.5,阴极发光图像显示锆石具有清晰的震荡环带,为岩浆锆石(图3b)。除去部分测点普通铅过高和未获有效的平坦的波谱段外,样品中的14个锆石获得了较谐和的单颗粒锆石年龄,详细分析结果见表1。其Th含量为284.9×10−6~786.6×10−6,U含量为523.6×10−6~1085.9×10−6,Th/U值为0.54~0.95(均>0.1),显示岩浆成因锆石特征。锆石206Pb/ 238U年龄为232~249Ma,14个点测试结果均位于谐和线附近,其206Pb/ 238U加权平均年龄为(241.0±2.8) Ma (MSWD = 1.9,n=14),代表了该花岗斑岩的结晶年龄(图4c、图4d)。

    达伦乌苏早三叠世浅肉红色二长花岗岩和中三叠世紫红色花岗斑岩主、微量分析结果见表2

    表  2  达伦乌苏早三叠世二长花岗岩和中三叠世花岗斑岩主、微量分析测试结果
    Table  2.  Major (%) and trace element (10−6) analysis results for the Dalunwusu early- middle Triassic monzogranite and granite porphyry
    GS5215-1GS5137-1GS5107-1TW5127-1PM54TW7GS5312-1GS5312-2
    岩体早三叠世二长花岗岩中三叠世紫红色花岗斑岩
    SiO271.8071.2171.7472.7177.0077.2578.08
    TiO20.300.320.290.260.080.100.10
    Al2O315.1215.0514.8414.9812.2711.6211.35
    Fe2O31.401.161.121.361.010.941.02
    FeO0.901.471.310.320.491.130.80
    CaO1.852.071.721.390.720.600.54
    MgO0.690.840.660.600.140.190.15
    K2O3.663.254.164.505.115.895.71
    Na2O4.144.474.053.793.152.232.22
    MnO0.040.040.030.020.020.030.02
    P2O50.090.110.080.070.010.020.02
    LOI1.280.600.820.910.330.250.27
    TOTAL99.7099.6699.69100.1399.8899.7899.81
    K2O/Na2O0.890.731.031.191.622.642.58
    FeOT2.162.522.331.551.401.971.72
    A/CNK1.071.031.041.101.021.041.05
    A/NK1.401.381.331.351.141.161.15
    Mg#40.2441.2237.4744.7517.6917.1915.34
    R12388231622952392277129183027
    R2529558508472324302287
    Ga19.619.419.819.721.51816.8
    Rb95.5107126168383388403
    Sr39574840248724.865.465.2
    Y4.15.334.544.684.477.425.43
    Zr16115314611881.77672.5
    Nb3.633.783.463.2514.318.415.2
    Ba579727901105652.9127132
    La14.723.320.418.711119.16
    Ce28.542.537.838.917.319.617.6
    Pr3.314.84.13.781.541.811.42
    Nd11.917.214.513.94.135.654.19
    Sm2.022.752.342.470.640.90.66
    Eu0.590.790.70.490.0840.170.15
    Gd1.722.352.041.990.710.970.78
    Tb0.210.270.230.220.10.170.12
    Dy0.781.080.91.010.5310.7
    Ho0.140.190.160.160.110.230.17
    Er0.440.540.480.430.460.830.63
    Tm0.0490.0720.0610.0620.0820.150.1
    Yb0.360.470.410.380.691.150.78
    Lu0.0590.0740.0580.0590.130.20.13
    Hf4.464.193.933.574.153.683.21
    Ta0.120.140.0990.410.971.671.29
    Pb23.727.222.826.451.231.731.9
    Th15.717.419.313.339.44938
    U1.451.540.921.298.677.066.72
    δEu0.970.950.980.680.380.560.64
    ΣREE64.7896.3984.1882.5537.5143.8336.59
    (La/Yb)N29.3035.5835.7135.3111.446.868.43
    (La/Sm)N4.705.485.634.8911.117.908.97
    10000×Ga/Al2.452.432.522.483.312.932.80
    下载: 导出CSV 
    | 显示表格

    达伦乌苏早二叠世二长花岗岩样品SiO2含量为71.21%~72.71%,平均含量为71.87%,在TAS分类图解中样品落入花岗岩区(图5a)。样品全碱含量高(K2O+Na2O=7.72%~8.29%),Na2O/K2O=0.73~1.19,平均为0.96,属高钾钙碱性系列(图5b、图5c)。其Al2O3含量为14.84%~15.12%,平均为15%,A/CNK值均>1且<1.1(1.03~1.10),在A/NK-A/CNK图解中样品全部落入过铝质区域内(图5c)。样品Sr含量较高,在395×10−6~748×10−6之间,平均含量为508×10−6 (>400×10−6)。具有较低的Y(4.10×10−6~5.33×10−6,平均<18×10−6)和Yb(0.36×10−6~0.47×10−6,平均<1.9×10−6)含量。具较高的Sr/Y 值(88.55~140.34,>20~40)。在球粒陨石标准化图解中稀土配分曲线呈右倾型,富集轻稀土元素而亏损重稀土元素,样品无明显Eu异常,δEu值为0.68~0.98,平均为0.89(图6a)。在微量元素蛛网图中,岩体明显富集Sr、K、Th、Rb,相对亏损Nb、Ta、P、Ti(图6b)。

    图  5  达伦乌苏早三叠世二长花岗岩和花岗斑岩TAS图解(a)(据Middemost, 1994)、SiO2-(Na2O+ K2O- CaO)(b)、SiO2- K2O(c)和A/NK-A/CNK图解(d)(据Miniar et al., 1989
    Figure  5.  (a) TAS diagram, (b) SiO2 vs. (Na2O+ K2O-CaO) , (c) SiO2 vs. K2O and (d) A/CNK vs. A/NK diagram for the Dalunwusuearly Triassic monzogranite and granite porphyry
    图  6  达伦乌苏早三叠世二长花岗岩和中三叠世花岗斑岩稀土元素球粒陨石标准化配分模式图(a)及微量元素蛛网图(b)
    球粒陨石标准化值据Boynton (1984);原始地幔标准化值据Sun等(1989)
    Figure  6.  (a) Chondrite-normalized REE patterns and (b) Primitive mantle-normalized multiple trace element diagrams of the Dalunwusu early-middle Triassic monzogranite and granite porphyry

    达伦乌苏中三叠世花岗斑岩样品SiO2含量为77.00%~78.08%,平均为77.44%,在TAS分类图解中样品落入花岗岩区(图4a)。岩石富碱,(Na2O+K2O)含量为7.93%~8.27%,平均为8.10%;K2O/Na2O为0.38~0.62,属高钾钙碱性系列(图4b图4c)。样品具有较低的CaO含量为0.54%~0.72%和Al2O3含量为11.35%~12.27%,平均为11.74%,其A/CNK值接近1(1.02~1.05),属过铝质岩石(图4d)。样品MgO含量较低0.14%~0.19%,Mg#值亦较低,介于15.34~17.69(表2)。稀土总量较低36.59×10−6~43.83×10−6,轻重稀土分馏明显(LREE/HREE=8.33~12.34,(La/Yb)N=6.86~11.44),轻稀土内部分馏亦明显(La/Sm)N=7.90~11.11,重稀土元素相对平坦,具中等Eu负异常(δEu= 0.38~0.64),稀土元素球粒陨石标准化图解中配分曲线呈“右倾海鸥型” (图6a)。在微量元素蛛网图中,样品明显富集高场强元素Th、U、 Rb 、K,相对亏损Ba、Sr、P、Ti(图6b)。样品10 000×Ga/Al值为2.80~3.31(均大于2.6)。

    笔者获得的锆石U-Pb年龄显示达伦乌苏二长花岗岩、花岗斑岩岩体分别形成于(249.0±2.3)Ma、(241.0±2.8)Ma,侵位于早—中三叠世。该年龄修正了雅干幅1∶20万区域地质矿产调查中在达伦乌苏二长花岗岩体的长石中获得的K-Ar年龄为193.5 Ma。区域三叠系分布较少,目前已知的仅在苏亥特高勒南东、拐子湖附近零星出露上三叠统珊瑚井组。前人在研究区西具低Sr/Y值的乔伦恩格次岩体获得了(236.8±2.1) Ma的锆石U-Pb年龄(王丕军,2018刘基等,2020),望湖山岩体获得了230 Ma的锆石U-Pb年龄(Liu et al., 2018)。达伦乌苏两期岩体是区域三叠纪岩浆作用和区域地质演化研究的新载体。

    达伦乌苏早三叠世二长花岗岩样品Sr含量较高(平均为508×10−6),Y含量和Yb含量较低,具较高的Sr/Y值(88.55~140.34)和La/Yb值(40.83~49.76),弱的Eu负异常(δEu平均值为0.89)。这些特征暗示熔融时斜长石在源区是不稳定的,源区熔体与榴辉岩处于平衡,对应于高压环境(张旗等,2020),这种与榴辉岩平衡的熔体形成的岩浆岩多具埃达克岩特征。样品SiO2平均含量71.87%,MgO含量为0.60%~0.84%,稀土配分曲线呈右倾型,微量元素相对亏损Nb、Ta、Ce、P等高场强元素,与典型埃达克岩高硅(SiO2≥56%)、高铝(Al2O3≥15%)、低MgO(<3%)、低Y(<18×10−6)、低Yb(<1.9×10−6)和高Sr含量(极少<400×10−6)等地球化学特征一致,在微量元素判别图解中也均落入埃达克岩区域内(图7a)(Defant et al.,1990)。埃达克岩形成于高压环境,可分为与板块的消减作用有关的O型埃达克岩和与板块的消减作用无关的C型埃达克岩(张旗等,2002,2020熊万宇康等,2023)。达伦乌苏早三叠世二长花岗岩属高钾钙碱性系列,相对O型埃达克岩更富钾,Al2O3含量和Mg#值相对更低,其Y/Yb值主要变化于8~15之间,与C型埃达克岩地球化学特征相一致。该埃达克岩体根据Wang等(2006)的分类也属与加厚下地壳相关的埃达克岩(图7b)。样品Mg#值较低,为37.5~44.7,与加厚下地壳部分熔融的熔体相符(一般小于45,Rapp et al.,1995)。实验岩石学研究表明埃达克岩的原岩需满足基性、含水条件,残留相要有石榴子石存在(张旗等,2002)。综上所述,达伦乌苏早三叠世二长花岗岩属C型埃达克岩,形成于高压环境,可能为地壳加厚区底部的下地壳中基性麻粒岩部分熔融形成的。

    图  7  达伦乌苏早三叠世二长花岗岩岩石类型(a)及构造环境判别图解(b)
    Figure  7.  (a) Geochemical classification discrimination and (b) tectonic setting diagrams for Dalunwusu early Triassic mozogranite pluton

    达伦乌苏中三叠世花岗斑岩呈小岩株产出,出露面积小,与A型花岗岩侵位高、规模小的特征相符(杨玉柱等,1993)。岩石呈斑状-似斑状结构,在冷凝过程中仅部分矿物形成了斑晶,暗示岩浆快速上升降温,可能对应于伸展构造环境。化学成分上,样品富SiO2、富碱、富K,贫CaO、MgO和Al2O3,微量元素强烈亏损Ba、Sr、P、Ti,表明源区发生了长石、磷灰石和榍石或金红石的结晶分离作用,与A型花岗岩特征一致(Whalen et al., 1987Eby, 1992)。因其10 000×Ga/Al值均大于2.6,在Whalen等(1987)的以10 000×Ga/Al值为坐标轴的判别图解中均落入A型花岗岩区域(图8a)。样品具高的FeOT/MgO值(9.76~11.58),属铁质花岗岩,高于长英质I型和S型花岗岩,在Forst 等(2001)的主量元素判别图解中也均落入A型花岗岩区域(图8b)。达伦乌苏花岗斑岩具极低的P2O5含量(0.01%~0.02%),与高分异S型花岗岩(均值为0.14%)不同,具较高的FeOT含量(1.40%~1.97%)可与高分异I型花岗岩(一般小于1%)区分(贾小辉等,2009)。样品相对典型A型花岗岩具低的稀土元素含量,δEu值略高(0.38~0.64,一般小于0.3;张旗等,2012),但其稀土配分模式图与典型A型花岗岩一致,为“右倾海鸥型”(图6a),原因可能与源区的稀土元素含量较低有关。本次研究认为达伦乌苏花岗斑岩属A型花岗岩,是低压条件下源岩脱水熔融的产物,形成于伸展构造环境。

    图  8  达伦乌苏中三叠世花岗斑岩岩石类型及构造环境判别图解(a据Whalen et al., 1987; b据Forst et al., 2001
    Figure  8.  (a) Geochemical classification and (b) discrimination diagrams of the tectonic setting for Dalunwusu middle Triassic granite porphyry pluton

    珠斯楞-杭乌拉活动大陆边缘近年来发现了较多元古宙地质信息(Wang et al., 2001Zhang et al., 2016宋博等,2021马军等,2021王振义等,2022),表明该构造带具前寒武基底,应为蒙古境内划分的南戈壁微陆块的自然延伸。地块北侧圆包山岩浆弧发育有中—下奥陶统咸水湖组和石炭系白山组弧火山岩,分别以为基性火山岩和酸性火山岩为主,反映了奥陶纪—石炭纪火山弧逐渐成熟的过程(吴泰然等,1993雷聪聪等,2023)。Liu等(2018)根据岩浆岩锆石Hf同位素和全岩Nd同位素研究成果认为298~277 Ma区域处于俯冲构造环境,~230 Ma花岗岩为后碰撞构造环境。查干桃勒盖地区发育一套浅海相沉积碎屑岩,含有海百合化石和繁盛于早—中二叠世海相腕足类化石,可能代表了区域最晚闭合的残余海盆或弧后盆地。微陆块南侧恩格尔乌苏和查干础鲁蛇绿岩带代表的古亚洲洋分支洋的闭合发生在早二叠世后(Zheng et al., 2014)。区域地质发育情况表明,奥陶纪—二叠纪,南戈壁微陆块处于南北两侧古亚洲洋分支洋的俯冲作用下,而其后由造山到造山后的伸展的时代未能精确限定。

    研究显示,达伦乌苏早三叠世二长花岗岩属C埃达克岩,其形成构造背景大致有3种:活动陆缘地壳加厚地区,板块碰撞导致的地壳加厚地区和高原底部,与高压背景有关(张旗等,20022003,2020)。该期岩体与中亚造山带东西两段报道的埃达克岩的形成时代相近(谢春林等,2009Li et al., 201220132017Wang et al., 2020Zheng et al., 20202021Luan et al., 2022)。达伦乌苏中三叠世花岗斑岩属A型花岗岩,可形成于大陆裂谷或板内的非造山环境和与陆-陆碰撞或岛弧岩浆作用有关的后造山环境,均与伸展的构造背景有关(Eby, 1992)。两期构造环境截然不同的岩浆活动共同限定中亚造山带中段南缘由挤压-伸展的转换时代应在249~241 Ma之间。结合其位于南戈壁微陆块和圆包山岩浆弧之间的活动陆缘区,埃达克岩可能形成于造山晚期的地壳增厚阶段,而A型花岗斑岩应形成于造山后的伸展阶段。这一过程与张旗等(2002)提出的中国东部埃达克岩及其后的拆沉作用模型类似,随着埃达克岩从下地壳大量熔出,下地壳密度增加,导致拆沉作用,形成了A型花岗岩。

    (1)达伦乌苏二长花岗岩、花岗斑岩岩体分别形成于(249.0±2.3) Ma和(241.0±2.8) Ma,为早—中三叠世岩体。

    (2)达伦乌苏早三叠世二长花岗岩具C型埃达克岩地球化学特征,中三叠世花岗斑岩具A型花岗岩地球化学特征。

    (3)达伦乌苏早三叠世二长花岗岩具埃达克特征,指示了古亚洲洋闭合后陆壳碰撞加厚的背景,而达伦乌苏中三叠世A型花岗岩指示了造山后伸展构造背景。两期岩浆作用标志着中亚造山带中段南缘在早—中三叠世发生了由增生造山到造山后伸展的构造环境转换。

    致谢:匿名审稿人专业的意见建议极大地提高了本文的质量,在此致以诚挚的感谢。

  • 图  1   昔格达地层分布示意图

    Figure  1.   Distribution of Xigeda Formation

    图  2   泸定海子坪昔格达地层分布图(影像据Google Earth)

    Figure  2.   Distribution of Xigeda formation in Haiziping village, Luding county (Image from Google Earth)

    图  3   大渡河海子坪河流阶地剖面图

    Figure  3.   Terrace profile of Dadu River in Haiziping Village

    图  4   昔格达地层出露及取样剖面

    a. 昔格达组地层取样剖面;b. 黄色土样;c. 灰色土样

    Figure  4.   Xigeda Formation developmental characteristics and sampling profile

    图  5   黄色黏土岩XRD测试分析

    a. XRD分析谱图;b. 矿物成分及含量

    Figure  5.   XRD analysis of yellow claystone sample

    图  6   灰色黏土岩XRD测试分析

    a. XRD分析谱图;b. 矿物成分及含量

    Figure  6.   XRD analysis of gray claystone sample

    图  7   黄色黏土岩SEM图像

    a. 1 500倍;b. 3 000倍

    Figure  7.   SEM image of yellow claystone sample

    图  8   灰色黏土岩SEM图像

    a. 1 500倍;b. 3 000倍

    Figure  8.   SEM image of gray claystone sample

    图  9   黄色黏土岩SEM图像和二值图像

    a. SEM图像(1 500倍);b. 二值化图像(白色为孔隙)

    Figure  9.   SEM image and binary image of yellow claystone sample

    图  10   灰色黏土岩SEM图像和二值图像

    a. SEM图像(1 500倍);b. 二值化图像(白色为孔隙)

    Figure  10.   SEM image and binary image of gray claystone sample

    图  11   黄色和灰色黏土岩微观孔隙丰度分布比例

    Figure  11.   Distribution ratio of microscopic porosity of yellow and gray claystone samples

    图  12   不同围压下峰值强度与含水率关系图

    a. 黄色黏土岩;b. 灰色黏土岩

    Figure  12.   Relationship between peak strength and moisture content under different confining pressures

    图  13   黏聚力、内摩擦角与含水率关系

    a. 黄色黏土岩;b. 灰色黏土岩

    Figure  13.   Relationship between cohesion, internal friction angle and moisture content

    图  14   不同地区昔格达地层界限含水率对比图

    a. 塑限;b. 液限;c. 塑性指数

    Figure  14.   Correlation of moisture content of Xigeda Formation boundary in different regions

    图  15   不同地区昔格达地层强度指标与含水率的关系图

    a. 黏聚力;b. 内摩擦角

    Figure  15.   Relationship between strength index and moisture content of Xigeda Formation in different regions

    表  1   泸定海子坪昔格达地层测年方法及结果统计

    Table  1   The dating methods and statistical results of the Xigeda formation in Haiziping village, Luding county

    测年方法测试年龄(Ma)数据来源
    古地磁4.20~2.60蒋复初等(1999)、
    王书兵等(2006
    光释光1.78~1.13罗璐(2021
    ESR0.70~0.40王萍等(2011
    宇生核素1.04~0.53施云云(2020
    下载: 导出CSV

    表  2   黄色和灰色黏土岩黏土矿物分析结果

    Table  2   Test results of clay minerals of yellow and gray claystone samples

    序号样品类型黏土矿物检测结果(%)
    蒙脱石
    S
    伊蒙混层
    I/S
    伊利石
    It
    高岭石
    K
    绿泥石
    C
    I/S混层比(%S)
    1黄色黏土岩3934
    2灰色黏土岩5896
    下载: 导出CSV

    表  3   黄色和灰色黏土岩各孔径级别对应的微观孔隙测量结果

    Table  3   Measurement results of different pore sizes of yellow and gray claystone samples

    孔径级别(µm)黄色黏土岩灰色黏土岩
    数量 N(个)孔径d(µm)面积A(µm2丰度(C)数量 N(个)孔径d(µm)面积A(µm2丰度(C
    <0.43560.230.040.535120.240.050.53
    0.4~11370.590.240.461780.570.260.51
    1~4221.51.640.45301.241.060.44
    >4000014.115.990.52
     注:CBL的比值,B表示孔隙的短轴长度,L表示孔隙长轴长度,A为平均孔隙面积。
    下载: 导出CSV

    表  4   黄色和灰色黏土岩基本物性指标

    Table  4   Basic physical property indexes of yellow and gray claystone samples

    土样
    编号
    样品
    类型
    含水率
    (%)
    土粒
    比重
    天然密度
    (g/cm3
    干密度
    (g/cm3
    孔隙比液限
    (%)
    塑限
    (%)
    塑性
    指数
    饱和含水
    率(%)
    XGD-01灰色黏土岩3.72.691.861.760.56936.425.910.530.93
    XGD-02黄色黏土岩4.52.701.801.730.55036.324.911.431.91
    下载: 导出CSV

    表  5   双环注水试验结果

    Table  5   Results of double-ring water injection tests

    试验点序号渗透系数
    (cm/s)
    平均渗透系数
    (cm/s)
    透水性等级
    S013.62×10−45.11×10−4中等透水
    S027.34×10−4
    S034.36×10−4
    下载: 导出CSV

    表  6   不同地区昔格达地层渗透特性比较

    Table  6   Comparison of permeability characteristics of Xigeda Formation in different regions

    地区试验对象试验条件渗透系数(cm/s)透水性等级数据来源
    泸定海子坪粉土-亚黏土现场双环注水3.62×10−4~7.34×10−4中等透水本研究
    攀枝花格里坪亚黏土室内渗透3.7×10−5~7.2×10−4弱透水宋为广等(2017
    粉砂岩室内渗透2.0×10−5~2.78×10−5弱透水左永振等(2016
    攀枝花粟子坪亚黏土室内渗透2.8×10−7~3.3×10−7极弱透水李小泉(1996
    云南龙开口镇黏土岩室内渗透10−8~10−7极弱透水张德强等(2021
    川南地区泥岩现场、室内渗透1.7×10−5~5.25×10−5弱透水钟成等(2012
    砂岩1.6×10−4中等透水
    西昌经久乡黏土岩室内渗透、
    钻孔压水
    1.95×10−7~4.61×10−5弱透水杨碧(2010
    粉砂岩1.47×10−4~6.54×10−4中等透水
    下载: 导出CSV
  • 安少鹏, 韦立德, 刘文连, 等. 昔格达组粉砂岩与结构接触面力学特性试验研究[J]. 工程地质学报, 2013, 21(05): 702-708 doi: 10.3969/j.issn.1004-9665.2013.05.005

    AN Shaopeng, WEI Lide, LIU Wenlian, et al. Experimental study on mechanical behavior of Xigeda Formation siltstone and structure interface[J]. Journal of Engineering Geology, 2013, 21(05): 702-708. doi: 10.3969/j.issn.1004-9665.2013.05.005

    陈林, 朱剑. 昔格达滑坡破坏模式及稳定性评价[J]. 地质灾害与环境保护, 2015, 26(03): 11-16 doi: 10.3969/j.issn.1006-4362.2015.03.003

    CHEN Lin, ZHU Jian. Deformation mechanism and stability assessment of Xigeda landslide[J]. Journal of Geological Hazards and Environment Preservation, 2015, 26(03): 11-16. doi: 10.3969/j.issn.1006-4362.2015.03.003

    陈智梁, 孙志明, L. H. Royden, 等. 四川泸定昔格达组的堰塞湖成因及其意义[J]. 第四纪研究, 2004, 24(06): 614-620 doi: 10.3321/j.issn:1001-7410.2004.06.002

    CHEN Zhiliang, SUN Zhiming, L. H. Royden, et al. Landslide blocked lake: origin of the Xigeda Formation in Luding, Sichuan and its significance[J]. Quaternary Sciences, 2004, 24(06): 614-620. doi: 10.3321/j.issn:1001-7410.2004.06.002

    冯立, 张茂省, 张成航, 等. 四川虹口黑泥湾滑坡风险性评估[J]. 西北地质, 2014, 47(03): 165-176 doi: 10.3969/j.issn.1009-6248.2014.03.022

    FENG Li, ZHANG Maosheng, ZHANG Chenghang, et al. Risk Assessment of Landslide in Heiniwan, Hongkou County, Sichuan Province[J]. Northwest Geology, 2014, 47(03): 165-176. doi: 10.3969/j.issn.1009-6248.2014.03.022

    GB/T 50123-2019, 土工试验方法标准[S].

    GB/T 50123-2019, Standard for Geotechnical Test Methods[S].

    蒋复初, 吴锡浩, 肖华国. 四川泸定昔格达组时代及其新构造意义[J]. 地质学报, 1999, 73(1): 1-6 doi: 10.3321/j.issn:0001-5717.1999.01.001

    JIANG Fuchu, WU Xihao, XIAO Huaguo. The age of Xigeda Formation in Luding, Sichuan and its neotectonic significance[J]. Acta Geologica Sinica, 1999, 73(1): 1-6. doi: 10.3321/j.issn:0001-5717.1999.01.001

    黄绍槟, 吉随旺, 朱学雷, 等. 西攀路昔格达地层滑坡分析[J]. 公路交通科技, 2005, 22(6): 41-44

    HUANG Shaobin, JI Suiwang, ZHU Xuelei, et al. Analysis on Xigeda landslide in Xipan expressway[J]. Journal of Highway and Transportation Research and Development, 2005, 22(6): 41-44.

    李绵绵, 赵法锁, 宋飞, 等. 双排抗滑桩的受力特性研究—以柳家坡2号滑坡治理工程为例[J]. 西北地质, 2019, 52(02): 181-189

    LI Mianmian, ZHAO Fasuo, SONG Fei, et al. Force Characteristics of Double-row Anti-slide Pile in Liujiapo Landslide[J]. Northwest Geology, 2019, 52(02): 181-189.

    李小泉. 粟子坪水电站厂基昔格达土的工程特性[J]. 广西水利水电, 1996, (01): 18-22+45 doi: 10.16014/j.cnki.1003-1510.1996.01.005

    LI Xiaoquan. Engineering characteristics of Xigeda foundation soil in Suziping Hydropower plant[J]. Guangxi Water Resources & Hydropower Engineering, 1996, (01): 18-22+45. doi: 10.16014/j.cnki.1003-1510.1996.01.005

    梁坤. 基于昔格达混合填料中砂泥配比变化的工程力学效应研究[D]. 绵阳: 西南科技大学, 2021

    LIANG Kun. Research on engineering mechanics effect based on the variation of sand and mud ratio in Xigeda mixed filling[D]. Mianyang: Southwest University of Science and Technology, 2021.

    刘惠军, 聂德新. 昔格达地层研究综述[J]. 地球科学进展, 2004, (S1): 80-82

    LIU Huijun, NIE Dexin. The overview of the Xigeda Strata’ study[J]. Advances in Earth Science, 2004, (S1): 80-82.

    卢志鹏, 孔玉侠, 王慧娟, 等. 昔格达土的压缩特性和微观结构[J]. 南京工业大学学报(自然科学版), 2022, 44(1): 114-122

    LU Zhipeng, KONG Yuxia, WANG Huijuan, et al. Compressive characteristics and microstructure of Xigeda soil[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2022, 44(1): 114-122.

    罗璐. 四川泸定晚新生代昔格达组沉积记录及大渡河水系演化[D]. 成都: 成都理工大学, 2021

    LUO Lu. Sedimentary records of the Xigeda Formation in the late eenozoic and evolution of the Dadu river system in Luding, Sichuan[D]. Chengdu: Chengdu University of Technology, 2021.

    罗运利, 刘东生. 昔格达组沉积环境演化与旋回地层学研究[J]. 第四纪研究, 1998, 4: 373 doi: 10.3321/j.issn:1001-7410.1998.04.015

    LUO Yunli, LIU Dongsheng. Study on sedimentary environment evolution and cyclostratigraphy of Xigeda Formation[J]. Quaternary Sciences, 1998, 4: 373. doi: 10.3321/j.issn:1001-7410.1998.04.015

    孟庆会. 西昌昔格达地层粘土塑性指数形成机制[D]. 昆明: 昆明理工大学, 2011

    MENG Qinghui. Formation mechanism of clay plasticity index of Xigeda Clay in Xichang[D]. Kunming: Kunming University of Science and Technology, 2011.

    彭盛恩. 昔格达组粘土的工程地质特性研究[J]. 水文地质工程地质, 1986, 2: 16-18 doi: 10.16030/j.cnki.issn.1000-3665.1986.02.006

    PENG Shengen. Study on the engineering geological characteristics of the clay in the Xigeda Group[J]. Hydrogeology and Engineering Geology, 1986, 2: 16-18. doi: 10.16030/j.cnki.issn.1000-3665.1986.02.006

    SL 345-2007, 水利水电工程注水试验规程[S].

    SL 345-2007, Code of Water Injection Test for Water Resources and Hydropower Engineering[S].

    施云云. 大渡河泸定段海子坪昔格达组的宇生核素等时线埋藏测年及地貌意义[D]. 南京: 南京师范大学, 2020

    SHI Yunyun. Cosmogenic nuclides Isochronal burial dating and geomorphological significance of the Haiziping Xigeda Formation in Luding section of Dadu River[D]. Nanjing: Nanjing Normal University, 2020.

    宋德光, 吴瑞安, 马德芹, 等. 四川泸定昔格达组滑坡灾害运动过程模拟分析[J]. 地质通报, 2023, 42(12): 2185−2197.

    SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China, 2023, 42(12): 2185−2197.

    宋为广, 杜妍平. 昔格达土用于坝体防渗料试验研究[J]. 山西建筑, 2017, 43(01): 228-229 doi: 10.3969/j.issn.1009-6825.2017.01.120

    SONG Weiguang, DU Yanping. On dam anti-seepage material test with Xigeda soil[J]. Shan’xi Architecture, 2017, 43(01): 228-229. doi: 10.3969/j.issn.1009-6825.2017.01.120

    铁永波, 张宪政, 龚凌枫, 等. 西南山区典型地质灾害链成灾模式研究[J]. 地质力学学报, 2022, 28(6): 1071-1080 doi: 10.12090/j.issn.1006-6616.20222830

    TIE Yongbo, ZHANG Xianzheng, GONG Linfeng, et al. Research on the pattern of typical geohazard chains in the southwest mountainous region, China [J]. Journal of Geomechanics, 2022, 28(6): 1071-1080. doi: 10.12090/j.issn.1006-6616.20222830

    王萍, 李建平, 王建存, 等. 四川昔格达组地层的石英Ti心ESR测年及与磁性地层剖面的对比[J]. 核技术, 2011, 34(02): 111-115

    WANG Ping, LI Jianping, WANG Jiancun, et al. Quartz Ti-center in ESR dating of Xigeda Formation in Sichuan and contrast with magnetic stratigraphic profiles[J]. Nuclear Techniques, 2011, 34(02): 111-115.

    王书兵, 赵志中, 乔彦松, 等. 泸定昔格达组时代认定与古环境[J]. 第四纪研究, 2006, 26(2): 257-264 doi: 10.3321/j.issn:1001-7410.2006.02.014

    WANG Shubing, ZHAO Zhizhong, QIAO Yansong, et al. Age and paleoenvironment of Xigeda Formation in Luding[J]. Quaternary Sciences, 2006, 26(2): 257-264. doi: 10.3321/j.issn:1001-7410.2006.02.014

    王思敬, 黄鼎成. 攀西地区环境工程地质[M]. 北京: 海洋出版社, 1990

    WANG Sijing, HUANG Dingcheng. Environmental engineering geology in west of Sichuan[M]. Beijing: China Ocean Press, 1990.

    文丽娜, 朱学雷, 白志勇, 等. 西攀高速公路新九地区昔格达地层岩土特性[J]. 公路, 2005, 7: 145-148 doi: 10.3969/j.issn.0451-0712.2005.03.034

    WEN Lina, ZHU Xuelei, BAI Zhiyong, et al. Characteristics rock and soil of Xigeda Strata in Xinjiu district of Xi-Pan Expressway [J]. Highway, 2005, 7: 145-148. doi: 10.3969/j.issn.0451-0712.2005.03.034

    吴俊峰, 王运生, 张桥, 等. 大渡河加郡-得妥河段大型滑坡地质灾害遥感调查[J]. 水土保持通报, 2011, 31(03): 113-116

    WU Junfeng, WANG Yunsheng, ZHANG Qiao, et al. Investigation on Large-scale Landslides in Daduhe River Between Jiajun County and Detuo County Based on Remote Sensing[J]. Bulletin of Soil and Water Conservation, 2011, 31(03): 113-116.

    徐奕梓, 樊晓一, 张友谊, 等. 四川省汉源县中海村滑坡动力学特征数值分析[J]. 中国地质调查, 2022, 9(4): 102-111 doi: 10.19388/j.zgdzdc.2022.04.12

    XU Yizi, FAN Xiaoyi, ZHANG Youyi, et al. Numerical analysis on dynamic characteristics of Zhonghai Village landslide in HanyuanCounty of Sichuan Province[J]. Geological Survey of China, 2022, 9(4): 102-111. doi: 10.19388/j.zgdzdc.2022.04.12

    徐则民, 刘文连. 昔格达地层研究中需要注意的若干关键问题[J]. 地学前缘, 2011, 18(5): 256-270

    XU Zemin, LIU Wenlian. Some problems in the study of the genesis of Xigeda Formation[J]. Earth Science Frontiers, 2011, 18(5): 256-270.

    杨碧, 范柱国, 刘文连, 等. 攀钢钒钛钢铁新基地昔格达地层岩土工程特性研究[J]. 科学技术与工程, 2010, 10(4): 973-976 doi: 10.3969/j.issn.1671-1815.2010.04.027

    YANG Bi, FAN Zhuguo, LIU Wenlian, et al. Engineering property of Xigeda strata of Panzhihua new steel V-Ti base[J]. Science Technology and Engineering, 2010, 10(4): 973-976. doi: 10.3969/j.issn.1671-1815.2010.04.027

    张德强, 孙兴伟, 魏尚朝, 等. 金沙江中游龙开口水电站昔格达黏土物理特性研究[J]. 人民长江, 2021, 52(S1): 104-107 doi: 10.16232/j.cnki.1001-4179.2021.S1.023

    ZHANG Deqiang, SUN Xingwei, WEI Shangchao, et al. Study on physical properties of Xigeda clay at Longkaikou Hydropower Station in the middle reaches of Jinsha River[J]. Yangtze River, 2021, 52(S1): 104-107. doi: 10.16232/j.cnki.1001-4179.2021.S1.023

    张威, 徐则民, 刘文连, 等. 含水率对西昌昔格达组粘土岩抗剪强度的影响研究[J]. 工程勘察, 2011, 39(05): 1-5

    ZHANG Wei, XU Zemin, LIU Wenlian, et al. Study on the influence of water content to shear strength of Xigeda-strata clay rock in Xichang[J]. Geotechnical Investigation & Surveying, 2011, 39(5): 1-5.

    张文举. 攀西地区昔格达土工程力学特性试验研究[D]. 成都: 四川大学, 2003

    ZHANG Wenju. Study on engineering dynamic properties of Xigeda soil in Panxi area[D]. Chengdu: Sichuan University, 2003.

    钟成, 范德平. 川南昔格达岩组工程地质特性研究[J]. 四川水力发电, 2012, 31(01): 97-99 doi: 10.3969/j.issn.1001-2184.2012.01.027

    ZHONG Cheng, FAN Deping. Study on engineering geological characteristics of Xigeda Formation in south Sichuan[J]. Sichuan Water Power, 2012, 31(01): 97-99. doi: 10.3969/j.issn.1001-2184.2012.01.027

    周罕, 曹平, 张科. 昔格达组黏土岩和粉砂岩现场直剪试验研究[J]. 中南大学学报(自然科学版), 2014, 45(10): 3544−3550

    ZHOU Han, CAO Ping, ZHANG Ke. In-situ direct shear test on Xigeda Formation clay stone and siltstone[J]. Journal of Central South University (Science and Technology), 2014, 45(10): 3544-3550.

    周平, 王志杰, 侯伟名, 等. 昔格达地层隧道局部浸湿失稳特征及突变预测研究[J]. 岩土工程学报, 2020, 42(03): 503-512 doi: 10.11779/CJGE202003012

    ZHOU Ping, WANG Zhijie, HOU Weiming et al. Local slaking instability characteristics and catastrophic prediction of deep tunnels in Xigeda strata[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 503-512. doi: 10.11779/CJGE202003012

    左永振, 张伟, 张晓川, 等. 昔格达组粉砂岩作为筑坝土料的工程特性研究[J]. 长江科学院院报, 2016, 33(3): 84-88 doi: 10.11988/ckyyb.20140937

    ZUO Yongzhen, ZHANG Wei, ZHANG Xiaochuan, et al. Engineering properties of Xigeda strata siltstone as the filling material of earth-rock dam[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(3): 84-88. doi: 10.11988/ckyyb.20140937

    Deng Bin, David Chew, Chris Mark, et al. Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda[J]. Bulletin of the Geological Society of America, 2020, 133(1-2): 199-211.

    Ding Wenfu, Zhang Guangzhe, Song Zhang. Research on the engineering geological characteristics and engineering countermeasures of Xigeda Strata of Chengdu-Kunming Railway[J]. Journal of Railway Engineering Society, 2017, 34(4): 1-5.

    Du Yuxiang, Sheng Qian, Wang Shuai, et al. Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation[J]. Rock and Soil Mechanics, 2020, 41(4): 1247-1269.

    Fu Xiaodong, Du Yuxiang, Sheng Qian, et al. Influences of water on the microstructure and mechanical behavior of the Xigeda Formation[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(01): 72. doi: 10.1007/s10064-022-02567-5

    Kong Ping, Granger Darryl E, Wu Fuyuan, et al. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 2009, 278: 131-141. doi: 10.1016/j.jpgl.2008.12.003

    Wu Lizhou, Deng Hui, Huang Runqiu, et al. Evolution of lakes created by landslide dams and the role of dam erosion: A case study of the Jiajun landslide on the Dadu River, China[J]. Quaternary International, 2019, 503: 41-50. doi: 10.1016/j.quaint.2018.08.001

    Xue Xinhua, Fan Xu, Jiang Chusheng, et al. Research on the deformation properties of Xigeda Layer high fill embankment[J]. Journal of Railway Engineering Society, 2018, 35(2): 41-45.

    Yang Zheng, Guo Ning, Zhang Heng. Study on microstructure characteristics of clay rock of Xigeda Formation in Xichang City based on softening test and image recognition[J]. Hydraulic and Civil Engineering Technology VI, 2021, 19: 73-78.

    Zhou Ping, Zhou Feicong, Lin Jiayong, et al. Decoupling analysis of interaction between tunnel surrounding rock and support in Xigeda formation strata[J]. KSCE Journal of Civil Engineering, 2021, 25(2): 1-16.

图(15)  /  表(6)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  15
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-08-24
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2024-04-19

目录

/

返回文章
返回