ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

新疆库尔尕生铅锌矿床成矿作用:来自石英和闪锌矿原位微区成分的约束

李来龙, 章永梅, 顾雪祥, 柳晨雨, 张英帅

李来龙,章永梅,顾雪祥,等. 新疆库尔尕生铅锌矿床成矿作用:来自石英和闪锌矿原位微区成分的约束[J]. 西北地质,2024,57(3):139−153. doi: 10.12401/j.nwg.2023174
引用本文: 李来龙,章永梅,顾雪祥,等. 新疆库尔尕生铅锌矿床成矿作用:来自石英和闪锌矿原位微区成分的约束[J]. 西北地质,2024,57(3):139−153. doi: 10.12401/j.nwg.2023174
LI Lailong,ZHANG Yongmei,GU Xuexiang,et al. Pb-Zn Mineralization in Kuergasheng Pb-Zn Deposit, Xinjiang: Constraints from In-situ Micro Composition of Quartz and Sphalerite[J]. Northwestern Geology,2024,57(3):139−153. doi: 10.12401/j.nwg.2023174
Citation: LI Lailong,ZHANG Yongmei,GU Xuexiang,et al. Pb-Zn Mineralization in Kuergasheng Pb-Zn Deposit, Xinjiang: Constraints from In-situ Micro Composition of Quartz and Sphalerite[J]. Northwestern Geology,2024,57(3):139−153. doi: 10.12401/j.nwg.2023174

新疆库尔尕生铅锌矿床成矿作用:来自石英和闪锌矿原位微区成分的约束

基金项目: 国家自然科学基金重点项目(42130804),国家重点研发计划深地资源勘查开采重点专项(2018YFC0604003),大学生创新创业训练项目“新疆西天山阿希金矿床的石英结构和微区成分研究”(X202211415297)联合资助。
详细信息
    作者简介:

    李来龙(2001−),男,本科生,资源勘查工程(固体矿产)专业。E−mail:2812638486@qq.com

    通讯作者:

    章永梅(1984−),女,副教授,博士生导师,从事矿床学及矿床地球化学研究。E−mail:zhangyongmei@cugb.edu.cn

  • 中图分类号: P618.42;P618.43

Pb-Zn Mineralization in Kuergasheng Pb-Zn Deposit, Xinjiang: Constraints from In-situ Micro Composition of Quartz and Sphalerite

  • 摘要:

    库尔尕生铅锌矿床位于新疆西天山赛里木地区,是一个形成于板内伸展环境中的热液脉型铅锌矿床。矿体呈脉状、网脉状以及透镜状赋存于上泥盆统托斯库尔他乌组上亚组中,并受控于3条近平行展布的NW向断裂带。成矿过程可分为无矿石英阶段(Ⅰ)、石英–多金属硫化物阶段(Ⅱ)(主成矿阶段)和方解石阶段(Ⅲ)3个阶段。笔者利用LA-ICP-MS方法对不同成矿阶段石英和闪锌矿进行了原位微区分析。结果表明:①库尔尕生铅锌矿床Ⅰ阶段和Ⅱ阶段石英中含有多种微量元素,主要富集Al、K、Na和Li。Al、K、Na、Li的质量分数分别为547.56 × 10−6~4355.49 × 10−6、9.41 × 10−6~626.66 × 10−6、23.78 × 10−6~994.40 × 10−6以及43.37 × 10−6~265.52 × 10−6,Al与Li+Na+K之间呈显著的线性正相关关系;Ti、Ge含量较低,分别为3.17 × 10−6~14.05 × 10−6、1.77 × 10−6~6.50 × 10−6,反映成矿温度较低。从Ⅰ阶段到Ⅱ阶段,石英中Ti含量在逐渐降低,指示成矿流体温度在逐渐降低;Al含量也在降低,反映成矿流体的pH值在逐渐升高。与世界典型的斑岩型和浅成低温热液型铅锌矿床相比,库尔尕生铅锌矿床的石英微量元素特征更类似于浅成低温热液型矿床。②闪锌矿中Mn、In、Fe、Ga、Ge等微量元素的含量和比值表明矿石形成于中低温环境,进一步利用闪锌矿GGIMFis温度计限定成矿温度为122~178 ℃。Ga/In值与lnw(Ga)-lnw(In)特征反映闪锌矿的形成与沉积作用有关。综合围岩地层的微量元素特征及前人Pb同位素研究,推测库尔尕生铅锌矿床部分成矿物质来源于围岩地层。

    Abstract:

    The Kuergasheng Pb-Zn deposit, located in the Serimu area of the western Tianshan of Xinjiang, is a hydrothermal vein-type Pb-Zn deposit formed in the extensional environment of the plate. The ore body is veined, reticulated and lenticular in the upper subgroup of the Upper Devonian Toskurtau Formation, and is controlled by three north-west fault zones that are spread in parallel with each other. The mineralization process can be divided into three stages: the pre-ore quartz stage (I), the quartz-polymetallic sulphides stage (II) (main mineralization stage) and the calcite stage (III). In this study, the LA-ICP-MS method was used to analyze quartz and sphalerite at different stages of mineralization. The results showed that: (1) The Quartz in the I and II stages of the Kuergasheng Pb-Zn ore area contained more trace elements. Among them, Al, K, Na and Li are mainly enriched. The mass fractions of Al, K, Na and Li varied from 547.56×10−6~4355.49×10−6, 9.41×10−6~626.66×10−6, 23.78×10−6~994.40×10−6, and 43.37×10−6~265.52×10−6, respectively, showing a significant linear positive correlation between Al and Li+Na+K. The contents of Ti and Ge were low, and the contents of Ti and Ge varied from 3.17×10−6~14.05×10−6, and 1.77×10−6~6.50×10−6, respectively, reflecting the low mineralization temperature. Compared with the world's typical porphyry-type and epithermal Pb-Zn deposits, the quartz trace elements characteristics of the Kuergasheng Pb-Zn deposit are more similar to the epithermal Pb-Zn deposits. (2) The content and ratio of trace elements such as Mn, In, Fe, Ga, Ge in sphalerite indicate that the deposit was formed in a medium to low temperature environment, and the mineralization temperature was further limited to be 122~178 ℃ by using sphalerite GGIMFis thermometer. The Ga/In ratio and lnw(Ga)-lnw(In) characteristics indicate that the formation of sphalerite is related to sedimentation. Combining the trace element characteristics of host rock with the previous Pb isotopic data, it is speculated that the ore-forming materials of the Kuergasheng Pb-Zn deposit were mainly derived from the host rock.

  • 鄂尔多斯盆地东缘古生界致密砂岩气勘探不断突破,自下而上多层位成藏,资源潜力巨大,勘探前景好(郑萌等,2023张瑶瑶等,2023)。早期勘探目的层主要集中于本溪组、太原组、山西组以及盒8段(王震亮等,2004; 杨华等,2004,2016;兰朝利等,2010吴颖等,2024),自2021年以来,先后在神84井区以及米33井区石千峰组千5段探明优质天然气藏,获得显著的开发效果,其中米33井日产20.83×104 m3,神84井日产16.18×104 m3,表明千5段具良好的勘探前景。对比鄂尔多斯盆地东南缘以及苏里格等区域石千峰组鲜有成藏的现状,该发现唤起了区域范围内对石千峰组油气勘探的巨大愿景(肖玲等,2022欧阳明华等,2023)。部分学者对盆地范围内石千峰组沉积环境(张翔等,2009)、沉积相(李君文等,2007张翔等,2008)及成藏特征(王震亮等,2004杨华等,2004李振宏等,2005闫小雄等,2005; 张清等,2005)已经开展大量的研究工作,但是关于石千峰组砂体发育规模以及储层特征方面的研究少有涉及,研究程度整体偏低。因而,笔者认为结合目前勘探突破,在沉积微相分析的基础上,结合多类型实验手段,总结石千峰组砂岩储层特征,为区域储层研究提供基础资料;同时,对石千峰组千5段开展系统性的砂体发育规模评价分析,可为区域范围开发井的部署提供重要线索。

    神木气田构造上位于鄂尔多斯盆地晋西挠褶带以西的伊陕斜坡上,构造上表现为西倾单斜的特点(王震亮等, 2004; 闫小雄等, 2005; 杨华等, 2015唐玮玮等,2022牛艳伟等,2023)。石千峰组与下伏上石盒子组整合接触,与上覆下三叠统刘家沟组平行不整合接触,为干旱、炎热、氧化的淡水沉积环境(张翔等, 2008)。石千峰组由5个亚段构成,千5段位于底部,神木地区千5段地层厚度约为60~65 m,西南部最大埋深为1180 m,北东部最浅,约为360 m。

    千5段纵向上由4个中期沉积旋回纵向叠置,对应两个亚段(千5上亚段与千5下亚段)4个小层,下部3个中期旋回可容纳空间持续增加,顶部旋回可容纳空间缓慢降低(图1),各旋回由底部厚层砂岩与顶部薄层泥岩组合而成。砂岩多呈浅肉粉色-粉褐色,为中厚层-厚层状中-粗粒砂岩或含砾粗砂岩,具丰富的交错层理、平行层理以及冲刷面构造。测井曲线形态以箱形、钟形为主,少量指形曲线,箱形与钟形曲线含量约为60%和36%。由于砂岩中泥质含量变化,箱形与钟形平滑程度不同,泥质含量相对较高的齿状箱形在千5上、下亚段中均占主导,平均厚度约10 m,个别区域厚层箱状砂体可达25 m。为高能河道频繁聚合冲刷而成,呈典型的辫状河道沉积特点。

    图  1  神木气田区域位置图(据赵龙梅等,2023修改)与千5段综合柱状图
    Figure  1.  Location map of Shenmu las field and comprehensive histogram of Qian5 section

    千5段泥岩颜色以自生氧化色为主,呈砖红或红褐色(图2),与区域石千峰组早期干旱氧化为主的沉积环境一致。表现为中厚层块状,粉砂质含量较高,未见生物扰动或植物叶片化石,为典型的洪泛平原泥质沉积。局部泥岩呈浅灰绿色或杂色混积,暗示千5段沉积期局部干湿气候快速交替,沉积环境动荡加深的水体变化特点。

    图  2  神木地区石千峰组千5段砂岩与泥岩颜色发育特征
    发育3种类型岩石颜色组合:砖红色为主(a~c)、灰绿色为主(d~f)、混积色(g~i);a. 砖红色粉砂质泥岩,米160井,1 877.0 m;b. 浅褐灰色含细砾中粗砂岩,双56井,2 298.76 m; c. 浅褐色夹灰色泥质中粗砂岩,米35井,2 000.8 m;d. 浅绿灰色泥砾粗砂岩,米161井,2 298.05 m;e. 浅绿灰色中细砂岩,米44井,1 875.2 m;f. 灰绿色泥质细砂岩,米120井,2 120.8 m;g. 砖红色粉砂质泥岩,米160井,1 877.1 m;h. 浅褐灰色具平行层理粗砂岩,府2,1 728.1 m;i. 褐灰色向浅绿灰色粗砂岩过渡,米160井,1 872.5 m
    Figure  2.  Color characteristics of sandstone and mudstone in the Qian5 member of Shiqianfeng Formation in the Shenmu area

    随着油气勘探的逐步精细化,砂体发育规模评价成为开发井部署的重要基础工作,结合露头、测井以及经验公式对神木地区千5段砂体规模进行综合刻画分析,将有效降低开发井的部署风险。

    石千峰组露头多为断崖式特征,剖面实测分析难度大。以韩城遽水河石千峰组剖面为例(图3),露头呈EW向展布,垂高近百米,千5段厚层砂体直接覆盖于盒1段紫红色泥岩之上。千5段垂直厚度为66 m,上、下亚段为浅粉色或粉褐色厚层聚合河道砂体,中部中厚层洪泛平原紫红色泥岩。由于剖面出露情况限制,露头范围无法真实反映聚合河道砂体宽度发育规模,仅能对内部单河道砂体提供数据支持。千5下亚段聚合河道砂体中单河道砂体厚度为4~6 m,单期河道宽度主体分布多大于50 m;千5上亚段单砂体厚度为6~8 m,单期河道主体宽度大于100 m。

    图  3  韩城遽水河剖面石千峰组千5段露头聚合河道砂体刻画
    a. 韩城遽水河石千峰组聚合河道露头;b. 韩城遽水河石千峰组聚合河道露头河道砂体刻画
    Figure  3.  Characterization of the aggregate channel sand body in the Qian5 Member of the Shiqianfeng Formation of the Qushui river section in Hancheng

    经验公式法不受露头出露情况以及地貌特征限制,因此对于井下河道规模发育评价具有重要参考价值。在早期地质学曲流河宽度规模评价(Collinson, 1977)的基础上,辫状河聚合河道宽度以及单砂体宽度计算方式获得了广泛认可。主要包括4个参数:

    h=1.1L(Shanley, 2004);          (1)

    CWB=45.76h1.52(Bridge et al., 1993); (2)

    Wm=12.1h1.87(Robinson et al.,1997);  (3)

    F=W/h (Schumm, 1960)。         (4)

    式中:h为水深m(考虑10%的压实);L为河道单砂体最大厚度;CWB为辨状河河道带宽度;Wm为辫状河河道平均单砂体宽;F为单河道的宽深比。

    结合计算公式1~4,在测井曲线砂体分析的基础上进行沉积期水体深度以及河道宽度分析(表1)。千5段单砂体宽度主体分布区间为100~350 m;聚合河道带宽度主体分布区间为240~700 m,沉积水深为2 ~5 m。与露头单砂体厚度所反映的沉积水深基本一致。

    表  1  砂体宽度与聚合河道带计算数据表
    Table  1.  Calculation data for the width of single sand body and aggregate channel sand body
    单砂体厚度(m) 单砂体宽度(m) 聚合河道带宽度(m) 厚度频率(次)
    0~2 0~100 0~240 1 969
    2~4 100~350 240~700 2900
    4~6 350~750 700~1300 1776
    6~8 750~1250 1300~2 000 1037
    8~10 1250~1 900 2 000~2800 525
    >10 >1 900 2800 277
    下载: 导出CSV 
    | 显示表格

    神木气田早期油气勘探积累了大量的钻、测井资料,局部开发井密度大,井距小,为井下砂体规模评价提供了便利。在经验公式计算基础上,结合密井网解剖可更准确的分析砂体规模,为后续的开发提供详实的线索。以双44井区东西向开发井剖面为例(图4)(剖面位置见图1),近垂直河道砂体在上、下亚段中表现形式差异较大。千5下亚段主要为箱状下切堆叠型与离散堆叠型聚合河道为主,纵向厚度变化大,聚合河道宽度为700~3200 m;千5上亚段河道砂体相对孤立,聚合河道宽度延伸显著降低,主体分布区间为600~1000 m。结合多区域开发井井网砂体剖面刻画(图5),千5段上、下亚段单砂体厚度基本一致,主频范围为2~6 m。聚合河道砂体宽度变化大,千5上聚合河道砂体宽度以800~1200 m范围为主,千5下亚段主要分布区间为12001600 m。

    图  4  神木气田双44井区EW向开发井剖面砂体刻画
    Figure  4.  Sand body characterization of the east-west well profile in Shuang44 well area of Shenmu Gas Field
    图  5  神木气田石千峰组千5段密井网砂体刻画数据分布特征
    Figure  5.  Distribution characteristics of dense well network sand body characterization data in the Qian5 section of the Shiqianfeng Formation in Shenmu Gas Field

    对石千峰组千5段4个小层进行岩石学特征分析,砂岩类型以岩屑砂岩、长石岩屑砂岩和岩屑长石砂岩为主(图6)。石英平均含量为48.7%;长石平均含量为18%,最高达43%;岩屑含量整体偏高,10%~68%,平均为19%,以火山岩岩屑、变质砂岩、石英岩以及千枚岩为主,不同矿物成分含量在平面上差异较小。

    图  6  神木气田石千峰组千5段砂岩成分三角图
    Ⅰ.石英砂岩;Ⅱ.长石石英砂岩;Ⅲ.岩屑石英砂岩;Ⅳ.长石砂岩;Ⅴ.岩屑长石砂岩;Ⅵ.长石岩屑砂岩;Ⅶ:岩屑砂岩
    Figure  6.  Triangle diagram of sandstone composition in the Qian5 member of the Shiqianfeng Formation in Shenmu Gas Field

    千5段砂岩碎屑颗粒之间填隙物以硅质、钙质、以及黏土矿物为主,见少量浊沸石局部富集(图7)。黏土矿物平均含量约为8.7%,最高达30%(图7),主要为绿泥石和凝灰质杂基(图8),其次为高岭石和铁泥质,绿泥石多以绿泥石膜的形式存在,少量全充填原生粒间孔;铁泥质与凝灰质多全充填原生粒间孔。硅质胶结物平均含量为2.4%,最高约为9.8%,半充填原生粒间孔;钙质呈镶嵌状胶结全充填孔隙的特点,平均含量为2.6%,最高为16%。浊沸石含量少,仅局部富集,因此较难进行统计分析。

    图  7  神木地区石千峰千5段填隙物含量特征
    Figure  7.  Characteristics of interstitial material content in Shiqianfeng Qian5 member of Shenmu area

    高压压汞数据分析表明千5段砂岩最大孔隙度达16.8%,平均孔隙度为10.6%,平均渗透率为1.42 mD,与神木地区其余砂岩储集层位对比,具备较好的物性条件(图9)。千5段高物性条件储层多集中分布于低可容纳空间聚合河道砂体底部,即箱状和钟状测井曲线底部,向旋回顶部泥质成分逐渐增多,物性逐渐降低。神木地区受晋西挠褶带附近断裂构造影响,千5段砂岩渗透率高值较为突出。

    图  9  神木地区主要储集层段砂岩物性特征对比
    a.孔隙度箱状图,箱体为25%~75%孔隙度分布区间,标注数字为孔隙度均值;b.渗透率箱状图,菱形箱体为25%~75%渗透率分布区间,标注数字为孔隙度均值和中位值
    Figure  9.  Characteristics of sandstone porosity and permeability in the main reservoir sections of the Shenmu area

    千5段砂岩以原生粒间孔为主要的储集空间(图8a),多为未充填原生孔隙,少量半充填孔;黏土矿物晶间孔含量少,以绿泥石晶间孔为主,其次为少量高岭石晶间孔,部分黏土矿物孔隙疑似为早期矿物颗粒溶孔(图8c)。溶蚀孔隙发育含量较少,主要为长石颗粒溶孔(图8c),少量胶结物溶孔(图8k),溶蚀程度均较弱。结合核磁共振对系列储层进行孔隙大小分析,千5段砂岩孔隙以微米孔隙(1~40 μm)和纳米孔隙(1 μm~100 nm)为主(图10图11)。渗透率低于0.1 mD时,以纳米孔为主,大于0.1 mD时,微米孔隙含量增加,孔隙度大于9%时,以微米孔隙为主,含少量纳米孔隙。结合压汞数据将神木地区千5段砂岩储层细分为4类(图10):Ⅰ类储层,裂缝–孔隙型储层,微米级孔隙,孔隙度大于10%,排驱压力小于0.1 MPa,最大进汞饱和度大于85%;Ⅱ类储层,微米–亚微米级孔隙,平均孔隙度大于9%,最大进汞饱和度大于70%;Ⅲ类储层,亚微米–微米级孔隙,平均孔隙度大于8%,最大进汞饱和度为60%~70%;Ⅳ类储层,以亚微米级孔隙为主,孔隙度大于6%,最大进汞饱和度小于60%。

    图  8  神木地区千5段砂岩孔隙充填特征
    a.未充填原生粒间孔,1 871.4 m,米44井(扫描电镜);b.黏土矿物晶间孔和疑似颗粒溶孔,2 032.6 m,双118井(扫描电镜);c.长石颗粒溶孔,1 993.5 m,榆88井(扫描电镜);d.绿泥石膜与硅质胶结物全充填原生粒间孔,米161井,1 737.3 m(单偏光);e.绿泥石完全充填原生粒间孔,双118井,2 035.6 m(单偏光);f.原生粒间孔被铁泥质全充填,米44井,1 874.1 m(单偏光);g.高岭石半充填长石溶孔,米161井,1 742.7 m(单偏光);h.接触式硅质胶结作用,残留部分原生粒间孔,米44井,1 866.4 m(单偏光);i.镶嵌式钙质胶结物全充填原生粒间孔,米165井,2 267 m(单偏光); j.长石颗粒溶孔被方解石胶结物充填,神118井,2 037.2 m(单偏光);k.沸石胶结物半充填原生粒间孔,发育沸石溶孔,府2井,1 527 m(单偏光);l.浊沸石胶结原生粒间孔,发育少量沸石溶孔,府2井,1 530 m(单偏光)
    Figure  8.  Pore filling characteristics of sandstone in the Qian5 member of the Shenmu area
    图  10  神木地区石千峰组千5段砂岩储层孔隙大小分布特征
    Figure  10.  Pore size distribution characteristics of sandstone reservoirs in the Qian5 member of the Shiqianfeng Formation in the Shenmu area
    图  11  神木地区石千峰组千5段压汞储层分类特征
    Ⅰ类样品:米44井,1 872.8 m;Ⅱ类样品:榆88井-1,1 994.2 m;Ⅲ类样品:府2井-4,1 527.8 m;Ⅳ类样品:米44井-10,1 875.3 m
    Figure  11.  Classification characteristics of mercury injection reservoirs in the Qian5 member of the Shiqianfeng Formation in the Shenmu area

    在成分分析以及成岩作用分析基础上,对研究区9个中-粗砂岩样品的孔隙度变化进行定量计算。①原始孔隙度φ1(%)(Beard et al., 1973; Scherer, 1987),φ1=20.91+22.9/SO。SO为分选系数,SO=$\sqrt {D25/D75} $。②压实后剩余孔隙度φ2=C+φori×φavepor, C为胶结物含量(%),φori为现今粒间孔面孔率。③压实作用损失孔隙度φ312张兴良等, 2014)。④胶结作用损失孔隙度:φ4=黏土矿物百分含量+C。⑤溶蚀作用增加孔隙度:φ5diss×φavepor, φdiss为溶蚀孔面孔率,φave为平均测试总孔隙度,φpor为总面孔率。⑥自生晶间孔增加量:φ6i-c×φavepor,φi-c为现今成岩晶间孔面孔率。数据结果显示,千5段砂岩未固结平均原始孔隙度φ1=30.6%,压实作用平均损失孔隙度φ3=16.1%,胶结作用平均损失孔隙度φ4=9%,其中钙质胶结作用平均损失孔隙度约为2.1%,硅质胶结作用损失孔隙度约为2.4%,黏土矿物充填胶结损失约4.5%,溶蚀作用平均增加孔隙度φ5=3.5%,现今平均剩余孔隙度为9.8%。

    成岩作用对砂岩储集物性具有直接的控制作用,多种成岩作用共存是砂岩成岩演化过程中的普遍现象,对其类型以及作用方式的准确分析解读是成岩演化分析的必要手段。千5段砂岩相较于二叠系中下部主要砂岩储集层(Wu et al., 2021)无论是成岩作用类型还是成岩作用期次均存在明显差异。

    神木地区千5段砂岩碎屑颗粒表现为点接触为主(图7),少量线接触,压实作用程度中-弱。胶结作用除了常见的硅质与钙质胶结之外,浊沸石胶结作用呈现局部富集的特点。这与千5段高火山岩碎屑含量与高凝灰质杂基含量具有直接的联系(Levy, 1984; Chipera et al., 2008; 朱世发等, 2011; 李振华等, 2014; 吴和源等, 2017, 2018)。硅质胶结晚于自生绿泥石膜,表现为接触式胶结的特点,全充填(图8d)或半充填原生粒间孔(图8h),未见多期次石英次生加大。钙质胶结作用呈镶嵌状胶结,全充填原生粒间孔(图8i)与长石颗粒溶孔(图8j),方解石胶结作用基本不见自生黏土矿物伴生。浊沸石为镶嵌状胶结,局部与少量硅质胶结物伴生,暗示两种胶结作用形成时间基本一致。千5段砂岩胶结物含量偏低,填隙物以黏土矿物充填为主,凝灰质、铁泥质、绿泥石含量较高,少量高岭石、伊利石以及伊\蒙混层矿物。凝灰质与铁泥质以杂基形式充填粒间孔,多表现为致密状,绿泥石化明显。自生绿泥石以绿泥石膜形式存在,形成于早成岩A期,抑制了局部硅质胶结作用的持续形成,因此多呈现高原生粒间孔的特点。高岭石呈书页状半充填粒间孔,含量较少。

    溶蚀作用作为砂岩储层形成过程中重要的建设性作用,在神木地区千5段砂岩中发育差。长石碎屑颗粒溶蚀程度较弱,显微薄片与扫描电镜分析仅见少量长石溶孔。浊沸石溶蚀显著,多呈半溶蚀状,但由于其局部富集的特点,很难对整体储集空间形成巨大贡献。综合分析认为,千5段砂岩成藏期不存在广泛的有机酸溶蚀作用。

    结合成岩作用发育特征,将神木地区千5段砂岩成岩演化细分为3个阶段(图12):早成岩A期:碎屑沉积压实阶段,该阶段主要发育硅质胶结(浊沸石胶结)作用,黏土矿物充填粒间孔,阶段孔隙类型为残余粒间孔;早成岩B期:持续压实减孔阶段,少量方解石胶结原生粒间孔,阶段孔隙类型主要为残余粒间孔、绿泥石、高岭石晶间孔隙;中成岩阶段:天然气成藏及黏土矿物转化阶段,结合包裹体测试数据分析认为,千5段包裹体测温数据主要分布区间为130~150 ℃,结合埋藏演化史认为其主成藏期位于160~130 Ma,期间天然气依靠断裂以及扩散作用聚集成藏,同时凝灰质以及铁泥质杂基向绿泥石以及伊利石转化,阶段孔隙类型为残余原生粒间孔以及黏土矿物晶间孔。

    图  12  神木地区千5段砂岩埋藏演化史及成岩作用发育特征
    Figure  12.  Burial evolution history and diagenetic development characteristics of sandstone in the Qian5 section of the Shenmu area

    (1)鄂尔多斯盆地神木地区石千峰组千5段由4个中期旋回纵向叠置而成,对应2个亚段4个小层,为辫状河三角洲平原沉积,表现为浅水宽河道的沉积特点,辫状河道平均水深为5~6 m,聚合河道宽度分布范围为800~1200 m。

    (2)千5段砂岩以厚层岩屑砂岩、长石岩屑砂岩和岩屑长石砂岩为主,具有高岩屑含量、高原生粒间孔的特点,形成以微米到纳米孔隙为主的4类砂岩储层:Ⅰ类微米级裂缝孔隙型;Ⅱ类微米–纳米级连通孔隙型;Ⅲ类纳米–微米级连通–孤立孔隙型;Ⅳ类纳米级孤立孔隙型。

    (3)千5段高火山岩碎屑与高凝灰质杂基砂岩中发育浊沸石胶结作用,呈现浊沸石胶结物局部富集的特点,由于沸石胶结物的易溶蚀性,区域范围内可能存在高孔渗浊沸石胶结砂砾岩储层。

    (4)神木地区千5段砂岩具胶结物含量低、成岩胶结作用期次少、平均黏土矿物含量高的特点,除压实减孔之外,黏土矿物充填是原始孔隙结构破坏的主要原因。

  • 图  1   新疆西天山赛里木地区大地构造位置图(a)和区域地质图(b)(据新疆维吾尔自治区地质矿产勘查开发局,2005顾雪祥等,20132014修改)

    1.第四系沉积物;2.二叠系;3.石炭系;4.泥盆系;5.青白口系凯尔塔斯群;6.蓟县系库松木切克群;7.长城系哈尔达坂群;8.古元古界温泉群;9.古生代侵入岩;10.元古宙侵入岩;11.断层;12.地质界线;13.铅锌矿床;14.铜钼矿床;15.铜矿床

    Figure  1.   (a) Tectonic location map and (b) regional geological map of Sailimu area, western Tianshan mountains, Xinjiang

    图  2   库尔尕生铅锌矿床地质简图(据戴玉林,1994刘凤鸣,2007修改)

    1.第四系;2.上泥盆统托斯库尔他乌组上亚组上段;3.上泥盆统托斯库尔他乌组上亚组中段;4.上泥盆统托斯库尔他乌组上亚组下段;5.断层破碎带;6.断层及编号;7.石英脉;8.矿体及编号;9.地质界线;10.实测剖面位置及编号;11.钻孔位置及编号;12.采样钻孔位置及编号

    Figure  2.   Geological map of Kuergasheng Pb-Zn deposit

    图  3   库尔尕生矿床Ⅰ-2号矿体7号勘探线剖面图(据新疆有色地质矿产勘查院,2002修改)

    Figure  3.   Profile view of exploration line No. 7 of the I-2 ore body of the Kuergasheng ore section

    图  4   库尔尕生铅锌矿床矿石构造、脉体穿插关系与矿物组合

    a. 稀疏浸染状矿石中共生的石英、方铅矿、黄铜矿和黄铁矿,矿石表面氧化形成孔雀石;b.团块状方铅矿矿石;c. 蜂窝状方铅矿矿石;d. 稠密浸染状方铅矿矿石;e. 梳状石英脉;f. 晶洞状石英中充填方解石;g. 石英-闪锌矿脉(Ⅱ)切穿石英脉(Ⅰ);h. 方解石脉(Ⅲ)切穿石英-方铅矿脉(Ⅱ);i. 方解石脉(Ⅲ)切穿石英脉(Ⅰ);j. 方铅矿、黄铜矿与石英共生;k. 铅矾和铜蓝沿方铅矿自身裂隙交代方铅矿;l. 铅矾沿方铅矿和石英间隙交代方铅矿;j~l为反射单偏光下拍摄;Sp. 闪锌矿;Q. 石英;Py. 黄铁矿;Cpy. 黄铜矿;Mal. 孔雀石;Gn. 方铅矿;Cal. 方解石;Cv. 铜蓝;Ang. 铅矾

    Figure  4.   Ore structure, vein interspersion relationship and mineral assemblage of Pb-Zn deposit in Kurkasheng

    图  5   浅成低温热液型、斑岩型铅锌矿床和库尔尕生铅锌矿床石英Li、Al、Ti和Ge元素对比(斑岩型和浅成低温热液型铅锌矿床石英微量数据源自Gao et al.,2022

    Figure  5.   Comparison of Li, Al, Ti and Ge elements in quartz of epithermal type, porphyry type Pb-Zn deposits and Kuergasheng Pb-Zn deposit

    图  6   浅成低温热液型、斑岩型铅锌矿床和库尔尕生铅锌矿床石英Li、Al、Ti和Ge元素对比(底图据Gao et al.,2022

    Figure  6.   Comparison of Li, Al, Ti and Ge elements in quartz of epithermal type, porphyry type and Kuergasheng Pb-Zn deposit

    图  7   库尔尕生铅锌矿床石英中Al与(Li+Na+K)的相关关系

    Figure  7.   Correlation between Al and (Li+Na+K) in quartz of Kuergasheng Pb-Zn deposit

    图  8   库尔尕生铅锌矿床闪锌矿ln(Ga)-ln(In)关系图(底图据张乾,1987

    Ⅰ. 与岩浆作用有关的矿床;Ⅱ. 与火山作用有关的矿床;Ⅲ. 与沉积作用有关的矿床

    Figure  8.   Relationship between ln(Ga)-ln(In) of sphalerite in Kuergasheng Pb-Zn deposit

    表  1   库尔尕生铅锌矿床石英微量元素组成表(10−6

    Table  1   Trace elements composition of quartz in Kuergasheng Pb-Zn deposit (10−6)

    成矿阶段 样品号 Li Na Al P K Ca Ti Fe Ge Rb Sr Sb Ba
    Ⅰ阶段 19KE001-17-1 183 428 3567 10.9 446 318 9.33 18.4 3.66 2.08 5.82 11.9 14.4
    19KE001-17-2 161 408 3053 28.0 433 370 8.05 22.1 3.66 1.60 4.25 10.6 8.78
    19KE001-17-3 194 469 3743 31.8 627 456 9.26 12.7 3.72 1.65 3.92 12.2 9.31
    19KE001-17-4 224 635 3874 34.8 436 497 14.0 83.1 4.18 1.89 3.36 9.41 9.16
    19KE001-17-5 209 455 3547 45.4 404 341 8.63 14.1 4.08 1.65 4.76 10.4 11.1
    19KE001-17-6 232 368 3528 37.6 355 803 7.18 22.3 4.58 1.43 3.97 10.5 9.81
    19KE001-17-7 196 263 3741 36.4 520 708 10.3 65.5 4.41 2.68 2.34 11.1 6.21
    19KE001-17-8 158 683 2993 44.8 468 566 8.84 15.0 4.99 1.17 3.92 11.0 7.57
    19KE001-17-9 212 451 3148 67.1 529 414 9.59 51.5 5.50 1.85 4.02 8.28 8.16
    19KE001-17-10 197 387 2933 9.80 239 732 8.86 14.5 4.43 0.57 2.01 9.84 3.95
    19KE001-17-11 181 389 2872 35.6 285 467 8.20 8.20 4.77 1.27 3.94 10.0 8.85
    19KE001-17-12 118 473 2876 30.8 393 478 9.77 4.65 6.49 0.72 2.36 9.79 4.37
    19KE001-17-13 144 337 2288 36.9 487 468 6.21 53.8 4.11 1.62 3.23 4.20 5.61
    19KE001-17-14 172 365 2544 35.8 341 801 8.80 41.4 5.38 0.87 2.27 5.57 3.98
    19KE001-17-15 121 228 1897 46.9 112 787 6.14 2.76 3.81 0.38 1.98 5.67 4.73
    19KE001-17-16 108 356 1972 30.9 202 524 5.74 9.06 3.85 0.71 2.78 6.83 7.37
    Ⅱ阶段 19KE001-19-1 149 136 1488 42.6 62.1 821 4.25 55.1 2.95 0.26 1.41 2.87 3.13
    19KE001-19-2 119 131 1241 20.5 48.5 633 6.10 30.1 3.17 0.23 1.08 3.92 4.13
    19KE001-19-3 43.4 60.1 548 9.74 15.1 686 3.45 4.21 2.47 0.02 0.46 0.93 1.16
    19KE001-19-4 220 136 2471 43.6 104 693 6.44 4.48 4.87 0.28 0.72 6.34 1.86
    19KE001-19-5 136 151 1605 31.4 136 761 6.71 289 4.21 0.64 1.65 3.53 4.93
    19KE001-19-6 83.0 299 1567 22.6 99.8 930 3.93 4.88 2.78 0.40 1.88 3.53 3.77
    19KE001-19-7 207 297 2600 40.1 164 627 7.89 1.88 6.50 0.52 2.11 8.00 4.90
    19KE001-19-8 103 106 1233 20.6 41.3 721 11.1 124 3.53 0.17 1.18 2.97 2.49
    19KE001-19-9 186 196 2289 33.9 152 873 10.6 275 5.10 0.73 1.46 7.44 3.94
    19KE001-19-10 113 47.8 1454 48.3 10.8 672 3.84 13.5 4.05 0.03 0.26 4.23 0.69
    19KE001-19-11 51.5 42.9 665 10.9 26.3 834 3.45 95.5 2.79 0.02 0.29 1.51 1.06
    19KE001-19-12 87.3 23.8 1132 18.1 9.41 941 7.46 291 4.09 0.06 0.23 2.13 0.65
    19KE001-19-13 76.8 55.9 897 22.3 21.7 863 3.17 461 2.72 0.06 0.72 2.48 2.18
    19KE-4-1 266 994 4239 12.4 47.4 655 8.54 1.34 5.72 0.18 11.7 17.3 9.98
    19KE-4-2 181 589 3142 27.8 106 906 8.57 0.72 4.12 0.63 6.51 12.6 12.2
    19KE-4-3 116 914 4355 0.84 391 705 10.8 402 4.07 0.70 7.83 18.3 13.3
    19KE-4-4 102 293 2198 45.9 355 727 3.89 23.3 2.37 1.12 13.0 6.84 13.8
    19KE-4-5 209 432 3363 34.9 121 661 9.03 16.3 4.73 0.52 8.03 10.0 4.95
    19KE-4-6 88.6 985 3113 22.6 137 793 10.2 6.36 4.06 0.52 3.62 9.18 5.52
    19KE-4-7 147 296 2319 67.5 113 489 10.4 2.18 3.43 0.40 3.06 7.85 6.74
    19KE-4-8 99.0 751 2409 17.7 83.6 779 7.24 14.2 4.64 0.38 11.2 7.54 9.89
    19KE-4-9 62.0 247 1460 59.3 247 483 3.51 19.8 1.83 1.05 4.97 3.10 9.14
    19KE-4-10 121 327 2678 33.8 352 851 4.43 36.9 2.71 1.27 7.00 13.1 13.5
    19KE-4-11 77.3 254 1553 57.0 197 538 4.71 8.14 1.77 0.70 5.41 7.07 9.24
    19KE-4-12 105 542 2195 35.0 303 440 4.53 19.1 2.79 0.96 9.92 11.0 15.3
    19KE-4-13 50.9 357 2032 52.3 573 755 5.09 93.6 2.32 2.62 8.87 5.19 11.0
    下载: 导出CSV

    表  2   库尔尕生铅锌矿床闪锌矿微量元素组成表

    Table  2   Trace element composition of sphalerite in Kuergasheng Pb-Zn deposit

    样品号MnCoCuGaGeSeAgCdInSnFeZn
    19KE001-18-127.716.619630013.6<9.590.768.229.159181.2059.9
    19KE001-18-228.113.339.318.8<6.6612.70.5859.3<3.4310421.5667.4
    19KE001-18-345.831.642433541.2226<0.208.5312.113491.7252.4
    19KE001-18-412.011.940424341.9<6.170.2111.69.3410851.1866.3
    19KE001-18-517.919.852618638.47.50<0.0628.524.213601.4768.0
    19KE001-18-617.112.126261.955.2<4.070.077.347.7611281.4869.5
     注:Fe、Zn含量为%,其他元素含量为10−6
    下载: 导出CSV

    表  3   库尔尕生铅锌矿床围岩微量元素组成表(10−6

    Table  3   Composition of trace elements in the host rock of the Kuergasheng Pb-Zn deposit (10−6)

    地层样号岩性MnTiCuPbZnCrCoBaBe
    D3tbKB-2凝灰质粉砂岩174429432.730.713369.813.46702.82
    KB-5凝灰质粉砂岩163350424.822.784.157.214.44662.05
    KB-14凝灰质粉砂岩194300525.733.647446.010.04261.88
    KB-28凝灰质粉砂岩418230380.121.989951.211.12761.33
    KB-10岩屑砂岩1149364625.124.521054.610.03231.71
    KB-18岩屑砂岩604254426.132.268849.411.93011.38
    KB-21岩屑砂岩331381241.861.652963.613.54191.72
    KB-3细砂岩432271323.721.010448.211.43891.51
    KB-4细砂岩331262525.220.590.149.010.44851.39
    KB-9细砂岩551269223.429.811746.08.662981.32
    KB-12细砂岩509283829.923.817747.89.643911.51
    KB-15细砂岩360242524.020.426145.812.12721.26
    KB-17细砂岩444256926.324.613849.710.83601.36
    KB-26细砂岩457279567.923.024662.213.53481.61
     注:数据来源于戴玉林,1994
    下载: 导出CSV
  • 蔡劲宏, 周卫宁, 张锦章. 江西银山铜铅锌多金属矿床闪锌矿的标型特征[J]. 桂林工学院学报, 1996, 16(4): 370-375

    CAI Jinhong, ZHOU Weining, ZHANG Jinzhang. Typomorphic characteristics of sphalerites in the Yinshan copper, lead and zinc polymetallic deposit, Jiangxi[J]. Journal of Guilin Institute of Technology, 1996, 16(4): 370-375.

    陈小丹, 陈振宇, 程彦博, 等. 热液石英中微量元素特征及应用: 认识与进展[J]. 地质论评, 2011, 57(5): 707-717

    CHEN Xiaodan, CHEN Zhenyu, CHENG Yanbo, et al. Distribution and Application of Trace Elements in Hydrothermal Quartz: Understanding and prospecting[J]. Geological Review, 2011, 57(5): 707-717. .

    戴玉林. 库尔尕生布拉克铅锌矿床地质特征及成因探讨[J]. 矿产与地质, 1994, 8(5): 326-329.
    段士刚, 薛春纪, 李野, 等. 新疆库尔尕生铅锌矿床地质、流体包裹体和同位素地球化学[J]. 矿 床地质, 2012, 31(5): 1014-1024

    DUAN Shigang, XUE Chunji, LI Ye, et al. Geology, fluid inclusions and isotopic geochemistry of Kuergasheng lead- zinc deposit in western Tianshan, Xinjiang[J]. Geology of Ore Deposits, 2012, 31(5): 1014-1024.

    段士刚. 新疆西天山赛里木微地块区域成矿规律与找矿方向[D]. 北京: 中国地质大学 (北京), 2011

    DUAN Shigang. Mineralization law and prospecting direction in the Serimu microplot area of West Tianshan Mountain, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2011.

    高永宝, 李侃, 钱兵, 等. 扬子北缘马元铅锌矿床闪锌矿微量元素及 S-Pb-He-Ar-C 同位素地球化学研究[J]. 岩石学报, 2016 (1): 251-263

    GAO Yongbao, LI Kan, QIAN Bing, et al. Trace elements S-Pb-He-Ar and C isotopes of sphalerite in the Mayuan Pb-Zn deposit, at the northern margin of the Yangtze plate, China[J]. Journal of Petrology, 2016(1): 251-263.

    顾雪祥, 章永梅, 彭义伟, 等. 西天山博罗科努成矿带与侵入岩有关的铁铜钼多金属成矿系统: 成岩成矿地球化学与构造-岩浆演化[J]. 地学前缘, 2014, 21(5): 156-175

    GU Xuexiang, ZHANG Yongmei, PENG Yiwei, et al. The Fe-Cu-Mo polymetallic mineralization system related to intermediateacid intrusions in the Boluokenu metallogenic belt of the West Tianshan, Xinjiang: Rock-and ore-forming geochemistry and tectonomagmatic evolution[J]. Earth Science Frontiers, 2014, 21(5): 156-175.

    顾雪祥, 章永梅, 王新利, 等. 新疆西天山可克萨拉-艾木斯呆依铁铜矿床成岩成矿年代学及其地质意义[J]. 地学前缘, 2013, 20(6): 195-209

    GU Xuexiang, ZHANG Yongmei, WANG Xinli, et al. Geochronology of intrusive rocks and associated ores of the Kekesala-Aimusidaiyi Fe-Cu deposit in the West Tianshan, Xinjiang and its geologic significance[J]. Frontiers of Geoscience, 2013, 20(6): 195-209.

    郭飞, 王智琳, 许德如, 等. 湖南栗山铅锌铜多金属矿床闪锌矿微量元素特征及成矿指示意义[J]. 地学前缘, 2020, 27(4): 66-81 doi: 10.13745/j.esf.sf.2020.4.28

    GUO Fei, WANG Zhilin, XU Rude, et al. Trace element characteristics of sphalerite in the Lishan Pb-Zn-Cu polymetallic deposit in Hunan Province and the metallogenic implications[J]. Earth Science Frontiers, 2020, 27(4): 66-81. doi: 10.13745/j.esf.sf.2020.4.28

    郭闯, 卢玉杰, 欧阳志强, 等. 湖南水口山老鸦巢金矿床地质特征及成因分析[J]. 西北地质, 2023, 56(5): 294−307.

    GUO Chuang, LU Yujie, OUYANG Zhiqiang, et al. Geological Characteristics and Genetic Analysis of Laoyachao Gold Deposit in Shuikoushan, Hunan Province[J]. Northwestern Geology, 2023, 56(5): 294−307.

    韩照信. 秦岭泥盆系铅锌成矿带中闪锌矿的标型特征[J]. 西安地质学院学报, 1994, 16(1): 12-17

    HAN Zhaoxin. The typomorphic characteristic of the sphalerite in the Qinling Devonian system lead -zinc metallogenic belt[J]. Journal of Xi'an Institute of Geology, 1994, 16(1): 12-17.

    黎彤. 化学元素的地球丰度[J]. 地球化学, 1976 (3): 167-174 doi: 10.3321/j.issn:0379-1726.1976.03.004

    LI Tong. Chemical element abundances in the earth and it's major shells[J]. Geochemistry, 1976(3): 167-174. doi: 10.3321/j.issn:0379-1726.1976.03.004

    刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.
    李徽. 闪锌矿中杂质元素的特征及地质意义[J]. 地质与勘探, 1986, 22(10): 42-46.
    李野. 新疆西天山达巴特铜钼矿地质地球化学及成因[D]. 北京: 中国地质大学(北京), 2012

    LI Ye. Geological and geochemical characteristics and genesis of Dabate Cu-Mo deposit, Western Tianshan, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2012.

    刘畅. 西天山达巴特铜钼成矿流体性质及演化[D]. 北京: 中国地质大学(北京), 2015

    LIU Chang. The nature and evolution of ore fluids in Dabate Cu-Mo Deposit, Western Tianshan[D]. Beijing: China University of Geosciences (Beijing), 2015.

    刘凤鸣. 库尔尕生铅锌矿床地质特征及成因浅析[J]. 新疆有色金属, 2007, 30(3): 4-6. doi: 10.16206/j.cnki.65-1136/tg.2007.03.005
    刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS 在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753-3769 doi: 10.1360/csb2013-58-36-3753

    LIU Yongsheng, HU Zhaochu, LI Ming, et al. Application of LA-ICP-MS in elemental analysis of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3753-3769. doi: 10.1360/csb2013-58-36-3753

    吕行. 新疆西天山达巴特铜钼矿床萤石流体包裹体及元素地球化学研究[D]. 北京: 中国地质大学(北京), 2021

    LV Xing. Study on Fluid Inclusions and Geochemical Characteristics of Major and 'Trace Elements of Fluorite in the Dabate Cu-Mo Deposit, West Tianshan, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2021.

    柳晨雨, 章永梅, 顾雪祥, 等. 新疆西天山库尔尕生铅锌矿床成因——来自流体包裹体和硫同位素的证据[J]. 新疆地质, 2021, 39(4): 655-660 doi: 10.3969/j.issn.1000-8845.2021.04.022

    LIU Chenyu, ZHANG Yongmei, GU Xuexiang, et al. The Genesis of the Kuergasheng Pb-Zn Deposit in Western Tianshan, Xinjiang: Evidence from Fluid Inclusions and Sulfur Isotopes[J]. Xinjiang Geology, 2021, 39(4): 655-660. doi: 10.3969/j.issn.1000-8845.2021.04.022

    唐功建, 陈海红, 王强, 等. 西天山达巴特 A 型花岗岩的形成时代与构造背景[J]. 岩石学报, 2008, 24(5): 947-958

    TANG Gongjian, CHEN Haihong, WANG Qiang, et al. Geochronological age and tectonic background of the Dabate A-type granite pluton in the west Tianshan[J]. Acta Petrologica Sinica, 2008, 24(5): 947-958.

    王核, 彭省临, 赖健清, 等. 新疆温泉县达巴特铜矿火山机构的厘定及其意义[J]. 地质找矿论丛, 2000, 15(4): 346-350 doi: 10.3969/j.issn.1001-1412.2000.04.008

    WANG He, PENG Shenglin, LAI Jianqing, et al. Determination of volcanic edifice and its geological significance to Dabate copper ore deposit in Wenquan county, Xinjiang[J]. Contributions to Geology and Mineral Resources Research, 2000, 15(4): 346-350. doi: 10.3969/j.issn.1001-1412.2000.04.008

    新疆新地地质勘查有限公司.新疆温泉县北达巴特铜钼矿勘探报告[R].新疆新地地质勘查有限公司, 2011.
    新疆维吾尔自治区地质矿产勘查开发局. 西天山地区 1∶500000 地质图[R].新疆维吾尔自治区地质矿产勘查开发局, 2005
    新疆有色地质矿产勘查院. 新疆博乐市库尔尕生铅多金属矿普查报告[R]. 新疆有色地质矿产勘查院, 2002.
    薛春纪, 赵晓波, 莫宣学, 等. 西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向[J]. 地质学报, 2014, 88(12): 2490-2531 doi: 10.19762/j.cnki.dizhixuebao.2014.12.025

    XUE Chunji, ZHAO Xiaobo, MO Xuanxue, et al. Tectonic metallogenic evolution and prospecting direction of giant gold-copper-Pb-Zn metallogenic belt in West Tianshan[J]. Acta Petrologica Sinica, 2014, 88(12): 2490-2531. doi: 10.19762/j.cnki.dizhixuebao.2014.12.025

    薛春纪, 赵晓波, 张国震, 等. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力[J]. 中国地质, 2015, 42(3): 381-410 doi: 10.3969/j.issn.1000-3657.2015.03.002

    XUE Chunji, ZHAO Xiaobo, ZHANG Guozhen, et al. Important mineralization types, mineralization environment and prospecting potential of gold-copper polymetals in West Tianshan[J]. Geology in China, 2015, 42(3): 381-410. doi: 10.3969/j.issn.1000-3657.2015.03.002

    肖红, 张伟博. 新疆博乐市库尔尕生铅锌矿地质普查报告[R]. 新疆有色地质勘查局703队, 2002.
    伊其安, 邸晓辰, 卞翔, 等. 新疆博乐市库尔尕生铅锌矿地质特征[J]. 新疆有色金属, 2013, 36(4): 30-33. doi: 10.16206/j.cnki.65-1136/tg.2013.04.014
    张作衡, 毛景文, 王志良, 等. 新疆西天山达巴特铜矿床地质特征和成矿时代研究[J]. 地质论评, 2006, 52(5): 683-689 doi: 10.3321/j.issn:0371-5736.2006.05.023

    ZHANG Zuoheng, MAO Jingwen, WANG Zhiliang, et al. Geology and Metallogenetic Epoch of the Dabate Porphyry Copper Deposit in West Tianshan Mountains, Xinjiang[J]. Geological Review, 2006, 52(5): 683-689. doi: 10.3321/j.issn:0371-5736.2006.05.023

    张作衡, 王志良, 陈伟十, 等. 西天山达巴特斑岩型铜矿床流体地球化学特征和成矿作用[J]. 岩石学报, 2009, 25(6): 1310-1318

    ZHANG Zuoheng, WANG Zhiliang, CHEN Weishi, et al. Fluid geochemical characteristics and metallogenic effects of Dabat porphyry copper deposits in West Tianshan Mountains[J]. Acta Petrologica Sinica, 2009, 25(6): 1310-1318.

    张作衡, 王志良, 左国朝, 等. 西天山达巴特矿区火山岩的形成时代, 构造背景及对斑岩型矿化的制约[J]. 地质学报, 2008, 82(11): 1494-1503 doi: 10.3321/j.issn:0001-5717.2008.11.004

    ZHANG Zuoheng, WANG Zhiliang, ZUO Guochao, et al. Ages and tectonic settings of the volcanic rocks in Dabate ore district in West Tianshan Mountains and their constraints on the porphyry-type mineralization West Tianshan Mountains, Xinjiang[J]. Acta Geological Sinica, 2008, 82(11): 1494-1503. doi: 10.3321/j.issn:0001-5717.2008.11.004

    张辉善, 李艳广, 全守村, 等. 阿尔金喀腊达坂铅锌矿床金属硫化物元素地球化学特征及其对成矿作用的制约[J]. 岩石学报, 2018, 34(8): 2295-2311

    ZHANG Huishan, LI Yanguang, QUAN Shoucun, et al. Geochemical characteristics of metallic sulfides from the Kaladaban deposit in Xinjiang and its implications for Pb-Zn ore-forming mechanism[J]. Acta Petrologica Sinica, 2018, 34(8): 2295-2311.

    张天栋, 刘忠法, 邸洪飞, 等. 湘南宝山铜铅锌多金属矿床闪锌矿元素地球化学特征及其对成矿的制约[J]. 矿产勘查, 2021, 12(8): 1716-1726 doi: 10.3969/j.issn.1674-7801.2021.08.002

    ZHANG Tiandong, LIU Zhongfa, DI Hongfei, et al. Geochemical characteristics of sphalerite from the Baoshan deposit in southern Hunan and its implications for Cu-Pb-Zn-Ag polymetallic oreforming mechanism Xinjiang and its implications for Pb-Zn ore-forming mechanism[J]. Mineral Exploration, 2021, 12(8): 1716-1726. doi: 10.3969/j.issn.1674-7801.2021.08.002

    周卫宁, 傅金宝, 李达明. 广西大厂矿田铜坑-长坡矿区闪锌矿的标型特征研究[J]. 矿物岩石, 1989, 9(2): 65-72 doi: 10.19719/j.cnki.1001-6872.1989.02.006

    ZHOU Weining, FU Jinbao, LI Daming. Typomorphic characteristics of sphalerite in Tongkeng-Changpo mine of Dachang ore field Guangxi, China[J]. Mineralogy and Petrology, 1989, 9(2): 65-72. doi: 10.19719/j.cnki.1001-6872.1989.02.006

    朱赖民, 袁海华, 栾世伟. 金阳底苏会东大梁子铅锌矿床内闪锌矿微量元素标型特征及其研究意义[J]. 四川地质学报, 1995(1): 49-55

    ZHU Laimin, YUAN Haihua, LUAN Shiwei. Typomorphic characteristics and their signficance of minor elements of sphalerite from Disu and Daliangzi Pb-Zn deposits, Sichuan[J]. Sichuan Journal of Geology, 1995(1): 49-55.

    张乾. 利用方铅矿, 闪锌矿的微量元素图解法区分铅锌矿床的成因类型[J]. 地质地球化学, 1987, 9: 64-66

    Audétat A, Garbe Schönberg D, Kronz A, et al. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge[J]. Geostandards and Geoanalytical Research, 2015, 39(2): 171-184.

    Cao R, Yan S C, Chen B, et al. Cu-Mo differential mineralization mechanism of the Dabate PolymetallicDeposit in Western Tianshan, NW China: Evidence from geology, fluid Inclusions, and oxygen isotopesystematics[J]. Resource Geology, 2020, 70(1): 50-69. doi: 10.1111/rge.12218

    Flem B, Larsen R B, Grimstvedt A, et al. In situ analysis oftrace elements in quartz by using laser ablation inductivelycoupled plasma mass spectrometry[J]. Chemical Geology, 2002, 182(2-4) : 237-247. doi: 10.1016/S0009-2541(01)00292-3

    Frenzel M, Hirsch T, Gutzmer J. Gallium, germanium, indium and other trace and minor elements in sphalerite as a function of deposit type-A meta-analysis[J]. Ore Geology Reviews, 2016, 76: 52-78. doi: 10.1016/j.oregeorev.2015.12.017

    Gao, S. , Zou, X. , Hofstra, A. H, et al. Trace elements in quartz: Insights into source and fluid evolution in magmatic-hydrothermal systems[J]. Economic Geology, 2022, 117(6): 1415-1428. doi: 10.5382/econgeo.4943

    Götze J, Plötze M, Graupner T, et al. Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography[J]. Geochimica et Cosmochimica Acta, 2004, 68(18): 3741-3759. doi: 10.1016/j.gca.2004.01.003

    Götte T, Ramseyer K. Trace element characteristics, luminescence properties and real structure of quartz[J]. Quartz: Deposits, Mineralogy and Analytics, 2012: 265-285.

    Hayden L A, Watson E B, Wark D A. A thermobarometer for sphene (titanite)[J]. Contributions to Mineralogy and Petrology, 2008, 155: 529-540. doi: 10.1007/s00410-007-0256-y

    Jacamon F, Larsen R B. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation[J]. Lithos, 2009, 107(3-4): 281-291. doi: 10.1016/j.lithos.2008.10.016

    Larsen R B, Henderson I, Ihlen P M, et al. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway[J]. Contributions to Mineralogy and Petrology, 2004, 147: 615-628. doi: 10.1007/s00410-004-0580-4

    Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4

    Maydagán L, Franchini M, Rusk B, et al. Porphyry to epithermal transition in the Altar Cu-(Au-Mo) deposit, Argentina, studied by cathodoluminescence, LA-ICP-MS, and fluid inclusion analysis[J]. Economic Geology, 2015, 110(4): 889-923. doi: 10.2113/econgeo.110.4.889

    Rottier B, Casanova V. Trace element composition of quartz from porphyry systems: a tracer of the mineralizing fluid evolution[J]. Mineralium Deposita, 2021, 56: 843-862. doi: 10.1007/s00126-020-01009-0

    Rusk B G, Lowers H A, Reed M H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation[J]. Geology, 2008, 36(7): 547-550. doi: 10.1130/G24580A.1

    Wang C M, Deng J, Zhang S T, et al. Sediment-hosted Pb-Zn deposits in southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton[J]. Acta Geologica Sinica-English Edition, 2010, 84(6): 1428-1438. doi: 10.1111/j.1755-6724.2010.00338.x

    Wang Y, Qiu K F, Müller A, et al. Machine learning prediction of quartz forming-environments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2021JB021925. doi: 10.1029/2021JB021925

    Wark D A, Watson E B. TitaniQ: a titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6): 743-754. doi: 10.1007/s00410-006-0132-1

    Wei C, Ye L, Hu Y, et al. Distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb deposit, northeastern Yunnan, China: Insights from SEM and LA-ICP-MS studies[J]. Ore Geology Reviews, 2019, 115: 103175. doi: 10.1016/j.oregeorev.2019.103175

    Qian Z. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits[J]. Chinese Journal of Geochemistry, 1987, 6: 177-190. doi: 10.1007/BF02872218

图(8)  /  表(3)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  13
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-07-28
  • 录用日期:  2023-09-05
  • 网络出版日期:  2024-03-27

目录

/

返回文章
返回