Study on Migration and Enrichment Characteristics and Risk Assessment of Heavy Metals (Metalloids) in Rock-Parent Material- Soil: Taking Typical Rock-Soil Profiles in Three Gorges Reservoir Area as Examples
-
摘要:
笔者选取长江重点生区三峡库区(重庆段)4条典型岩石−土壤剖面,分析风化成土过程中重(类)金属元素(Cu、Pb、Zn、Cr、Ni、Cd、As、Hg)的迁移富集特征,探索该地段的典型健康风险。结果表明:①研究区侏罗纪碎屑岩风化剖面土壤呈弱碱性,二叠纪碳酸盐岩风化剖面土壤呈酸性、弱酸性,二叠纪碳酸盐岩母质土壤中各种元素含量基本高于侏罗纪碎屑岩母质土壤,8种重(类)金属元素含量均值都没有超过管制值。②同类土壤剖面中多种元素具有相似的迁移富集特征,各种元素的迁移富集规律受到成土母岩自身特性、淋溶淀积作用、黏土矿物吸附作用、大气降尘、元素地球化学性质和pH等多重因素的影响。③内梅罗综合污染指数显示研究区TP0301、TP0302剖面整体状况良好,无污染。TP0501和TP0502剖面由于元素Cd和As轻度超标造成轻度污染。④健康风险评价表明,儿童比成人更容易受到重(类)金属元素威胁,通过手−口摄入是土壤污染元素对人体引起非致癌健康风险的主要途径,研究区致癌风险较低,但 Cr 的重金属致癌健康风险指数 CR接近 1×10−6 ,应当引起关注。综合分析评价认为,研究区土壤整体状况良好,但二叠纪碳酸盐岩风化土壤剖面存在轻微的污染现象,考虑到研究区内居民的生命健康安全,建议加强二叠纪碳酸盐岩风化剖面中的类金属As和重金属Cr的监测关注。
-
关键词:
- 生态地质 /
- 侏罗纪碎屑岩风化剖面 /
- 二叠纪碳酸盐岩风化剖面 /
- 元素迁移富集特征 /
- 重庆
Abstract:Four typical rock-soil profiles in the key ecological area of the Yangtze River (Chongqing section) were selected to explore the migration and enrichment characteristics of heavy metal elements ( Cu, Pb, Zn, Cr, Ni, Cd, As, Hg ) in the process of weathering and soil formation, and to explore the typical health risks in this area. The results show that the soil in the Jurassic clastic rock weathering profile in the study area is weakly alkaline, and the soil in the Permian carbonate rock weathering profile is acidic and weakly acidic. The content of various elements in the Permian carbonate rock parent material soil is basically higher than that in the Jurassic clastic rock parent material soil, and the average content of eight heavy metal elements does not exceed the control value; Various elements in the same soil profile have similar migration and enrichment characteristics. The migration and enrichment of various elements are affected by multiple factors such as the characteristics of the parent rock, leaching and deposition, clay mineral adsorption, atmospheric dustfall, elemental geochemical properties and pH; The Nemero comprehensive pollution index shows that the TP0301 and TP0302 profiles in the study area are in good condition and pollution-free. The TP0501 and TP0502 profiles were slightly polluted due to the light exceeding of Cd and As; Health risk assessment showed that children were more susceptible to heavy metal elements than adults. Hand-mouth ingestion was the main way of soil pollution elements causing non-carcinogenic health risks. The carcinogenic risk in the study area was low, but the carcinogenic health risk index CR of Cr was close to 1 × 10−6, which should be concerned. According to the comprehensive analysis and evaluation, the soil in the study area is in good condition as a whole, but there is slight pollution in the weathering soil profile of Permian carbonate rocks. Considering the life and health safety of residents in the study area, it is suggested to strengthen the monitoring of metalloid As and heavy metal Cr in the weathering profile of Permian carbonate rocks. However, the carcinogenic health risk index of Cr is close to 1 × 10−6, which should be concerned.
-
研究区南临祁连造山带,北接中亚造山带,其所处构造环境的特殊性对区域构造演化及板块运动有着重大意义。该地区岩浆演化期次及构造背景研究较为薄弱且存在较大争议,前人通过对合黎山地区五坝和张家窑岩体锆石U-Pb年代学及同位素地球化学特征研究,其年龄介于432~397 Ma,为中志留世—早泥盆世,认为阿拉善地块西南缘早古生代很可能受控于祁连造山带的构造演化,处于后碰撞拉伸环境(王增振等,2020);通过对龙首山西山头窑地区三期岩体锆石U-Pb年代学研究,其年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世,处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022);而强利刚等(2019)认为龙首山地壳在晚古生代处于拉伸的稳定阶段。对合黎山地区岩浆岩形成时代及构造环境研究存在重要意义。龙首山成矿带区内侵入岩发育广泛,主要为酸性、中酸性岩石,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主(张甲民等,2017),前人对龙首山成矿带的研究工作主要以东段为主,且主要集中在早古生代(牛宇奔等,2018;刘文恒等,2019;王增振等,2020)。而不同构造环境下的侵入岩具有不同的地球化学特征及同位素特征,能有效反映其岩浆源区及构造演化等重要信息。笔者在前人工作基础上对该区花岗闪长岩开展了锆石U-Pb年代学、岩石地球化学及Lu-Hf同位素特征的研究,确定该岩体形成时代并探讨这些黑云母花岗闪长岩的成因问题及龙首山成矿带西南缘构造环境特征。
1. 区域地质概况
合黎山地处阿拉善地块龙首山成矿带西南缘,大地构造位置属于华北板块西南边缘(图1a)(谭文娟等,2012),北以龙首山北缘断裂与潮水中新生代断陷相邻(汤中立等,1999),南以南缘断裂与走廊过渡带分开。区内成矿条件有利(焦建刚等,2007)。龙首山成矿带是中国西北重要的铀成矿带(王承花,2010),同时中国著名的金川镍矿也位于该成矿带内(强利刚等,2019;张照伟等,2023)。
区内地质构造复杂,次级构造发育,逆冲构造及伸展构造叠加,总体构造为NWW向(甘肃省地质局,1974),出露地层包括前震旦系龙首山群的角闪岩相–绿片岩相变质岩等中级区域变质岩系,其与上覆地层均为不整合接触;震旦系下统及中上统的云母石英片岩、变粒岩及变质砂岩、大理岩等为主的浅变质岩,其下统与中—上统之间多为断层接触;侏罗系青土井群的砂岩、砂砾岩等为主的陆源碎屑岩夹煤层,其与上覆地层及下伏地层均为不整合接触;白垩系以砂砾岩、泥岩等为主的碎屑岩;第三系以砾岩、含砾砂岩为主的沉积岩及第四系松散堆积物(图1b)。
测区内岩浆岩发育广泛,主要为酸性、中酸性岩石为主,侵入活动主要是在加里东中期及华力西期,以华力西期侵入岩最为发育,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主,其中以花岗闪长岩出露最为广泛,其次为英云闪长岩。罗城岩体主要为花岗闪长岩发育,其中可见花岗岩、闪长岩呈脉状发育。区内五坝和张家窑岩体锆石U-Pb年代学年龄介于432~397 Ma,为中志留世—早泥盆世(王增振等,2020);西山头窑地区岩体锆石U-Pb年代学年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世。
2. 样品采集及岩石学特征
罗城岩体主要位于甘肃省高台县罗城镇北侧,其岩性主要为黑云母花岗闪长岩,野外岩体出露较为完整,笔者选取了合黎山地区高台县罗城幅的黑云母花岗闪长岩进行锆石U-Pb定年分析,共采集样品5件,其中岩石年龄同位素样品1件,并在岩石年龄同位素样品采集处配套采集岩石地球化学样品4件。样品采集地理坐标:E 99°43′39″,N 39°46′30″和E 99°41′43″,N 39°48′20″。为确保锆石数据准确性,样品均为未风化蚀变的新鲜岩石。
岩石新鲜面为灰白色,具半自形粒状结构,块状构造(图2a)。主要矿物及含量:斜长石(45%),石英(20%),碱性长石(15%),普通角闪石(15%),黑云母(5%)。斜长石粒径约0.30~1.30 mm,呈半形粒状、板状,具聚片双晶,表面浑浊,微裂隙发育,次生绢云母化,均匀分布。碱性长石粒径约0.20~1.10,呈半自形板状,具卡式双晶,少量分布。石英粒径约0.10~2.00 mm,呈他形粒状,波状消光,沿长石粒间分布。普通角闪石粒径约0.20~1.60 mm,呈他形柱状,黄褐色,截面呈菱面体状,具角闪石式解理,绿泥石化,沿长英质粒间定向分布。黑云母粒径约0.15~2.25 mm,呈鳞片状、片状,褐黄色-红褐色,沿长英质粒间定向分布。副矿物有磷灰石、绿帘石(图2b、图2c、图2d)。
3. 样品分析方法
样品的锆石挑选、制靶、CL照相由西安瑞石地质科技有限公司完成,采用标准重矿物分离技术分选出重矿物,随后在双目镜下挑选出锆石颗粒,将不同特征的锆石颗粒粘在双面胶上,并用无色透明的环氧树脂固定,待其固化之后将表面抛光至锆石内部暴露。然后拍摄阴极发光图像、透射光图像和反射光图像,选取分析点位。
锆石U-Pb定年和Hf同位素组成分析在中国地质调查局西安地质调查中心岩浆作用成矿与找矿重点实验室完成。锆石U-Pb定年在LA-ICP-MS仪器上用标准测定程序进行,样品采用激光剥蚀等离子体质谱仪原位分析锆石微区的铀铅比值(206Pb/238U、207Pb/235U和207Pb/206Pb)(李艳广等,2015)并通过Glitter计算程序计算锆石的年龄及标准偏差;应用Isoplot(Ludwig, 2003)计算程序对锆石样品的206Pb/238U年龄和207Pb/235U年龄在谐和图上进行投图,并计算谐和年龄测点的加权平均值。
锆石Hf同位素组成运用Neptune型多接收电感耦合等离子体质谱仪和GeolasPro型激光剥蚀系统联用的方法完成(袁洪林等,2007),所选测试位置均与锆石U-Pb测点位置相近,测试束斑直径为32 μm,采用国际标准锆石91500进行监控和样品外部校正。
主量元素和微量元素分析测试在中国地质调查局西安矿产资源调查中心完成,主量元素采用X荧光光谱仪进行分析,稀土和微量元素采用等离子质谱仪进行分析,测试结果见表1。
表 1 罗城黑云母花岗闪长岩主量元素(%)、微量元素(10−6)、稀土元素(10−6)分析结果表Table 1. Analysis results of major elements (%), trace elements (10−6) and rare earth elements (10−6) in Luocheng biotite granodiorite样品编号 LCYT03 LCYT04 LCYT05 LCYT06 SiO2 59.84 58.75 58.52 59.09 Al2O3 16.91 17.25 17.28 17.28 Fe2O3 7.13 7.82 7.55 7.61 CaO 6.33 6.70 6.93 6.68 MgO 3.13 3.38 3.53 3.34 K2O 1.87 1.49 1.49 1.54 Na2O 2.52 2.60 2.55 2.60 P2O5 0.13 0.15 0.15 0.15 TiO2 0.68 0.74 0.77 0.75 MnO 0.13 0.14 0.14 0.14 LOI 1.03 0.74 0.85 0.60 总和 99.70 99.76 99.75 99.79 K2O+Na2O 4.40 4.09 4.04 4.15 K2O/Na2O 0.74 0.57 0.59 0.59 δ 1.15 1.06 1.05 1.07 A/NK 2.74 2.93 2.98 2.9 A/CNK 0.97 0.97 0.96 0.97 Rb 61.1 49.2 40.6 46.9 Th 3.37 4.58 5.70 8.46 U 0.79 0.72 0.74 0.75 Nb 4.48 4.76 4.64 4.64 Sr 376 429 413 403 Zr 84.3 112 88.6 118 Hf 2.34 2.79 2.23 2.97 F 454 320 663 360 Sn <1.80 <1.80 <1.80 <1.80 Cr 12.9 17.6 14.1 14.1 Li 16.8 18.3 17.3 17.4 Be 0.76 0.87 0.86 0.79 V 166 186 180 174 Co 15.3 16.2 15.6 15.3 Ni 8.36 10.9 11.2 10.4 Ga 16.6 17.7 16.3 16.4 Cs 2.52 2.92 2.69 3.15 Ta 0.33 0.35 0.34 0.35 W 2.30 1.91 1.81 1.80 Bi 0.073 0.070 <0.050 0.057 La 12.0 14.3 12.5 12.5 Ce 27.1 28.9 25.5 25.7 Pr 3.60 3.59 3.32 3.21 Nd 16.4 15.3 14.6 14.1 Sm 3.91 3.37 3.28 3.14 Eu 1.05 1.07 1.05 1.03 Gd 4.14 3.54 3.49 3.41 Tb 0.66 0.55 0.54 0.52 Dy 4.04 3.28 3.24 3.15 Ho 0.83 0.68 0.67 0.65 Er 2.54 2.03 2.02 1.95 Tm 0.36 0.29 0.29 0.28 Yb 2.33 1.88 1.87 1.84 Lu 0.36 0.30 0.30 0.29 Y 21.3 17.2 16.9 16.4 ΣREE 79.32 79.08 72.67 71.77 LREE 64.06 66.53 60.25 59.68 HREE 15.26 12.55 12.42 12.09 LREE/HREE 4.20 5.30 4.85 4.94 (La/Yb)N 3.69 5.46 4.79 4.87 δEu 0.80 0.95 0.95 0.96 δCe 1.01 0.99 0.97 0.99 4. 分析结果
4.1 锆石U-Pb定年分析
样品的锆石颗粒的CL图像(图3)显示所选的锆石为透明的自形晶体,为无色透明或浅黄色,大部分锆石结晶较好,短柱状晶形,阴极发光电子图像特征均显示出典型的岩浆结晶韵律环带结构。
本次所选锆石样品25颗,均为有效样品,黑云母花岗闪长岩锆石U-Pb分析测试结果见表2,锆石Th含量为34.81×10−6~129.66×10−6,U含量为52.88×10−6~147.36×10−6,Th/U值为0.55~0.97,均大于0.4,说明锆石为岩浆成因(吴元保等,2004)。锆石微量元素测试结果见表3,其显示出重稀土富集,相对亏损轻稀土元素的特征,显示典型的岩浆锆石成因特征(Hoskin,2000)。锆石谐和图反映出锆石U-Pb年龄数据分布比较集中且谐和程度较好(图4a),所有数据协和度均符合要求,证明数据均有效。通过数据分析得到206Pb/238U加权平均年龄为(289±3)Ma,(MSWD=0.57),代表岩浆结晶年龄(图4b)。
表 2 罗城花岗闪长岩(LCYT01)锆石LA-ICP-MS测年结果Table 2. Zircon LA-ICP-MS dating results of Luocheng granodiorite (LCYT01)测点号 含量(10−6) Th/U 同位素比值 同位素年龄 Pb Th U 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 208Pb/232Th ±1δ 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 208Pb/232Th ±1δ LCYT001 15.96 79.28 81.67 0.97 0.05153 0.00423 0.32079 0.02551 0.04511 0.00102 0.01452 0.00048 264.4 177.81 282.5 19.61 284.5 6.28 291.3 9.56 LCYT002 14.25 47.28 72.22 0.65 0.05202 0.0046 0.32939 0.02827 0.04589 0.00108 0.01269 0.00063 286.1 189.7 289.1 21.59 289.2 6.68 255 12.64 LCYT003 12.04 34.81 63.55 0.55 0.0524 0.00697 0.32463 0.04227 0.0449 0.00134 0.01375 0.00088 302.7 277.82 285.5 32.4 283.2 8.26 276.1 17.48 LCYT004 19.92 93.99 98.06 0.96 0.04923 0.00498 0.31772 0.03138 0.04678 0.00114 0.01432 0.00059 158.7 220.85 280.1 24.18 294.7 7.05 287.5 11.7 LCYT005 11.37 41.91 57.97 0.72 0.0517 0.00762 0.33365 0.04817 0.04678 0.00152 0.01611 0.00095 272.2 306.78 292.4 36.67 294.7 9.39 323 18.95 LCYT006 16.79 80.92 85.36 0.95 0.05021 0.00438 0.31261 0.02651 0.04513 0.00103 0.01345 0.00049 204.9 190.68 276.2 20.51 284.6 6.35 270 9.73 LCYT007 27.09 129.66 147.36 0.88 0.05412 0.00356 0.342 0.0216 0.04582 0.00096 0.01384 0.00042 375.8 141.54 298.7 16.34 288.8 5.93 277.8 8.4 LCYT008 12.51 45.55 65.96 0.69 0.05029 0.0043 0.32015 0.0266 0.04616 0.00106 0.01535 0.00062 208.3 187.16 282 20.46 290.9 6.51 307.8 12.31 LCYT009 13.69 45.68 72.34 0.63 0.05153 0.00444 0.33081 0.02763 0.04656 0.00109 0.01519 0.00068 264.4 186.14 290.2 21.08 293.3 6.73 304.7 13.59 LCYT010 12.68 46.02 66.65 0.69 0.05115 0.00472 0.33038 0.0297 0.04685 0.00111 0.01457 0.00063 247.4 199.46 289.9 22.67 295.1 6.83 292.5 12.53 LCYT011 13.09 49.92 68.97 0.72 0.04792 0.00563 0.30937 0.03563 0.04682 0.00122 0.01473 0.00087 94.2 257.92 273.7 27.63 295 7.49 295.6 17.3 LCYT012 12.53 47.8 65.53 0.73 0.0521 0.00482 0.33683 0.03033 0.04689 0.00112 0.01606 0.00063 289.7 198 294.8 23.04 295.4 6.87 322 12.57 LCYT013 18.31 92.71 98.11 0.94 0.05178 0.0039 0.32956 0.02399 0.04618 0.001 0.01362 0.00044 275.6 163.56 289.2 18.32 291 6.19 273.3 8.78 LCYT014 19 93.38 105.35 0.89 0.05329 0.00398 0.3273 0.02358 0.04457 0.00099 0.01433 0.00046 340.9 160.32 287.5 18.04 281.1 6.09 287.6 9.21 LCYT015 15.16 51.53 80.72 0.64 0.04948 0.00412 0.30521 0.02472 0.04476 0.00098 0.01424 0.00055 170.8 183.56 270.5 19.23 282.3 6.06 285.7 11.06 LCYT016 14.01 55.43 76.33 0.73 0.0503 0.00537 0.30848 0.03208 0.04451 0.00118 0.01286 0.00065 209 229.96 273 24.9 280.7 7.27 258.2 12.91 LCYT017 11.3 45.88 60.72 0.76 0.05239 0.00499 0.33231 0.03079 0.04604 0.00115 0.01288 0.0006 302.4 203.45 291.3 23.47 290.1 7.1 258.6 11.9 LCYT018 16.38 73.42 88.24 0.83 0.05321 0.0037 0.3292 0.02201 0.0449 0.00096 0.01409 0.00044 337.7 149.52 289 16.81 283.2 5.92 282.7 8.81 LCYT019 15.81 76.58 80.92 0.95 0.05166 0.00378 0.32813 0.02317 0.0461 0.00099 0.01466 0.00044 270.4 159.18 288.1 17.72 290.6 6.07 294.2 8.75 LCYT020 13.2 53.42 68.41 0.78 0.05023 0.00423 0.31534 0.02582 0.04557 0.00103 0.0151 0.00054 205.7 184.61 278.3 19.93 287.3 6.36 302.9 10.68 LCYT021 10.77 36.85 52.88 0.70 0.05095 0.0044 0.32225 0.02702 0.04592 0.00105 0.01367 0.00064 238.6 187.4 283.6 20.75 289.4 6.46 274.3 12.67 LCYT022 13.95 47.61 68.78 0.69 0.05283 0.00388 0.34372 0.02436 0.04724 0.00102 0.01389 0.00055 321.3 157.94 300 18.41 297.6 6.25 278.8 10.94 LCYT023 23.03 103.73 117.27 0.88 0.05235 0.00313 0.33694 0.01926 0.04673 0.00094 0.01421 0.00041 300.6 130.55 294.9 14.63 294.4 5.77 285.2 8.1 LCYT024 16.81 56.88 85.69 0.66 0.05387 0.00347 0.34195 0.02113 0.04609 0.00095 0.01337 0.00048 365.6 138.52 298.6 15.99 290.5 5.83 268.4 9.65 LCYT025 14.8 67.05 76.38 0.88 0.05203 0.00384 0.33011 0.02359 0.04608 0.00099 0.01419 0.00047 286.8 160.34 289.7 18 290.4 6.11 284.8 9.33 表 3 罗城花岗闪长岩锆石分析点位微量元素(10−6)测试结果Table 3. Test results of trace elements (10−6) at zircon analysis points of Luocheng granodiorite测点号 Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ta LCYT001 1.10 0.06 8.23 0.05 0.23 0.49 1.28 27.74 0.78 107.27 40.27 181.12 35.88 339.17 66.63 0.28 LCYT002 0.49 0.04 6.69 0.03 2.07 3.33 0.40 11.13 8.82 67.14 26.56 126.02 27.32 290.78 57.98 0.24 LCYT003 0.61 0.00 6.26 0.02 0.49 2.64 0.29 7.43 4.65 45.16 17.35 87.13 19.02 192.36 38.24 0.27 LCYT004 0.63 0.06 9.25 0.08 0.44 0.69 1.15 25.90 3.00 112.88 44.64 196.44 39.56 377.09 71.61 0.26 LCYT005 0.55 0.00 6.42 0.03 1.79 4.98 0.36 8.45 9.99 40.51 19.27 87.53 19.76 189.52 37.30 0.23 LCYT006 0.52 0.01 9.03 0.05 0.63 1.34 0.91 24.92 3.67 102.58 38.80 175.98 35.30 323.64 65.73 0.28 LCYT007 0.46 0.02 17.04 0.11 1.55 2.65 0.85 24.04 6.96 113.49 45.17 206.58 43.34 418.84 82.25 0.41 LCYT008 1.37 0.00 7.31 0.03 1.49 3.08 0.46 10.50 8.69 50.85 20.86 97.32 21.63 218.50 42.57 0.30 LCYT009 0.53 0.04 7.76 0.02 0.67 1.58 0.24 7.99 4.06 43.08 18.56 85.81 19.58 193.52 36.74 0.31 LCYT010 0.65 0.00 7.39 0.03 0.40 1.28 0.24 11.38 3.43 52.67 20.97 98.21 22.28 213.94 42.28 0.26 LCYT011 0.67 0.01 7.65 0.05 0.44 2.14 0.43 11.65 4.08 54.24 22.14 101.02 21.59 221.82 41.65 0.21 LCYT012 0.58 0.24 7.21 0.07 0.73 1.88 0.48 9.62 4.43 51.70 20.95 100.70 22.19 222.33 43.83 0.39 LCYT013 3.01 0.01 9.21 0.08 1.56 2.82 0.95 24.93 3.94 113.56 45.37 198.15 41.36 399.32 71.97 0.38 LCYT014 0.66 0.01 9.65 0.07 1.79 3.63 1.15 28.87 9.60 117.65 44.48 198.85 41.00 392.05 76.11 0.34 LCYT015 0.58 0.00 8.44 0.02 2.16 4.68 0.33 10.50 9.83 52.88 20.95 100.98 22.47 230.32 44.42 0.31 LCYT016 0.74 0.00 7.73 0.04 0.49 1.29 0.40 12.46 4.08 61.43 26.20 120.97 26.57 261.96 52.64 0.38 LCYT017 0.73 0.00 6.93 0.02 0.87 2.13 0.43 12.06 5.04 54.07 23.41 106.05 23.33 232.88 44.25 0.33 LCYT018 0.84 0.01 8.09 0.06 0.57 1.82 0.83 20.89 4.58 92.58 36.57 172.39 35.31 347.52 67.40 0.29 LCYT019 0.61 0.00 8.04 0.06 1.53 3.32 0.97 26.28 7.25 103.33 41.09 175.93 36.48 349.56 66.29 0.23 LCYT020 0.47 0.00 7.31 0.02 1.72 5.06 0.39 14.22 8.78 63.23 24.83 115.49 25.21 238.91 45.30 0.22 LCYT021 0.57 0.01 5.70 0.02 0.69 1.87 0.53 10.94 5.15 53.16 21.38 104.62 22.91 221.56 45.69 0.30 LCYT022 0.53 0.04 6.60 0.03 0.27 1.73 0.46 12.33 3.89 67.24 25.79 122.86 27.12 273.00 52.93 0.28 LCYT023 0.70 0.04 9.56 0.09 0.57 1.92 1.18 27.41 5.00 122.96 49.00 227.37 46.39 456.07 89.13 0.38 LCYT024 1.14 0.04 8.63 0.02 1.85 4.19 0.28 9.30 10.49 48.68 20.06 95.23 20.74 214.10 41.88 0.34 LCYT025 1.12 0.02 7.63 0.07 1.41 2.91 1.04 22.23 4.01 93.47 36.23 160.65 34.00 327.88 65.05 0.25 4.2 锆石Hf同位素特征
在LA-ICP-MS锆石U-Pb测年的基础上,对黑云母花岗闪长岩样品25颗锆石测点进行了锆石微区Hf同位素测定。测点的数据分析结果(表4)。176Yb/177Hf值介于
0.012222351 ~0.042050552 ,176Lu/177Hf值介于0.00042471 ~0.001378472 ,均小于0.002,说明锆石在形成后具有很少的放射成因Hf的积累。因此,锆石 176Hf/177Hf值可能代表该锆石形成时的176Hf/177Hf值(吴福元等,2007),176Hf/177Hf值介于0.282726048 ~0.282787588 ,εHf(t)值均为正值,介于+4.37~+6.88,平均为+5.6,通过锆石Hf同位素εHf(t)-U-Pb年龄t(Ma)图解(图5a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或新生地壳,Hf同位素一阶段模式年龄T(DM1)分布范围为615.4~703.0 Ma,平均值为660.5 Ma,地壳模式年龄T(DMC)分布范围为808.6~952.5 Ma,平均值为882.8 Ma,地壳模式年龄T(DMC)较集中(图5b)。表 4 黑云母花岗闪长岩锆石Hf同位素分析结果Table 4. Zircon Hf isotope analysis results of biotite granodiorite分析点 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ Hfi εHf (0) εHf (t) ±1σ T(DM1) T(DMC) ±1σ fLu/Hf LCYT01-01 284.5 0.018558653 0.000625497 0.282772262 0.0000194150 0.282769 0.079994272 6.14162 0.679525 634.4 846.8 0.06673 - 0.9583 LCYT01-02 289.2 0.021350813 0.00072988 0.282742229 0.0000173343 0.282738 - 0.982120012 5.16050 0.606701 676.8 910.5 0.065471 - 0.95134 LCYT01-03 283.2 0.018541903 0.0006332 0.282761526 0.0000162177 0.282758 - 0.299686693 5.73214 0.56762 649.0 871.0 0.062774 - 0.95779 LCYT01-04 294.7 0.022088228 0.000738473 0.282787588 0.0000174089 0.282784 0.621999168 6.88254 0.609311 615.4 808.6 0.063449 - 0.95077 LCYT01-05 294.7 0.016473205 0.000610408 0.282734375 0.0000178101 0.282731 - 1.259864349 5.02445 0.623354 685.4 922.9 0.066228 - 0.95931 LCYT01-06 284.6 0.03087808 0.00103004 0.282748701 0.0000169380 0.282743 - 0.753226632 5.23386 0.59283 673.2 902.5 0.065308 - 0.93133 LCYT01-07 288.8 0.019725731 0.000669661 0.282759209 0.0000166409 0.282756 - 0.381620593 5.76427 0.582432 652.8 873.1 0.063558 - 0.95536 LCYT01-08 290.9 0.025750031 0.000867335 0.282742988 0.0000180678 0.282738 - 0.955258813 5.19757 0.632374 678.1 909.3 0.066791 - 0.94218 LCYT01-09 293.3 0.021818077 0.00074069 0.282752659 0.0000170188 0.282749 - 0.61326993 5.61588 0.595659 662.8 885.4 0.06456 - 0.95062 LCYT01-10 295.1 0.031810315 0.001072333 0.282760072 0.0000185273 0.282754 - 0.35109486 5.85224 0.648455 658.3 872.0 0.067113 - 0.92851 LCYT01-11 295 0.032320695 0.00106083 0.282770029 0.0000187588 0.282764 0.001027859 6.20471 0.656558 644.5 850.3 0.066935 - 0.92928 LCYT01-12 295.4 0.025753941 0.00084072 0.282744619 0.0000195056 0.28274 - 0.897570925 5.35710 0.682698 675.5 902.8 0.068675 - 0.94395 LCYT01-13 291 0.042050552 0.001378472 0.282744602 0.0000188351 0.282737 - 0.898174811 5.15840 0.659227 684.9 911.5 0.069048 - 0.9081 LCYT01-14 281.1 0.025917388 0.000895112 0.282777258 0.0000173229 0.282773 0.256671065 6.19473 0.606302 631.9 840.9 0.064172 - 0.94033 LCYT01-15 282.3 0.012222351 0.00042471 0.282730661 0.0000185893 0.282728 - 1.391186427 4.65946 0.650625 687.1 936.4 0.06705 - 0.97169 LCYT01-16 280.7 0.026071795 0.00089378 0.282726048 0.0000187777 0.282721 - 1.5543273 4.37430 0.65722 701.7 952.5 0.068661 - 0.94041 LCYT01-17 290.1 0.026377494 0.000892334 0.282753361 0.0000177671 0.282749 - 0.588435111 5.54265 0.621848 664.4 887.5 0.065933 - 0.94051 LCYT01-18 283.2 0.024916918 0.000880457 0.282778938 0.0000203212 0.282774 0.316093287 6.30197 0.711244 629.4 835.9 0.068288 - 0.9413 LCYT01-19 290.6 0.018210323 0.000633771 0.282781801 0.0000175364 0.282778 0.417339793 6.60951 0.613775 621.6 822.4 0.063668 - 0.95775 LCYT01-20 287.3 0.01802085 0.000615423 0.282772775 0.0000170572 0.282769 0.098119936 6.22222 0.597003 633.5 843.9 0.06338 - 0.95897 LCYT01-21 289.4 0.020384277 0.000718113 0.282742372 0.0000184710 0.282738 - 0.9770409 5.17215 0.646485 676.4 909.9 0.067032 - 0.95213 LCYT01-22 297.6 0.02594746 0.000881354 0.282760012 0.0000161587 0.282755 - 0.353235735 5.94105 0.565556 655.2 868.5 0.063322 - 0.94124 LCYT01-23 294.4 0.029427132 0.001014853 0.282726672 0.0000206482 0.282721 - 1.532286504 4.66656 0.722688 703.0 944.4 0.071574 - 0.93234 LCYT01-24 290.5 0.018539508 0.000641115 0.282769911 0.0000162977 0.282766 - 0.003162189 6.18517 0.570421 637.8 848.5 0.062508 - 0.95726 LCYT01-25 290.4 0.021881036 0.000749457 0.282741158 0.0000155788 0.282737 - 1.019970646 5.14473 0.545259 678.6 912.3 0.063102 - 0.95004 图 5 罗城黑云母花岗闪长岩锆石εHf(t)-t(Ma)图解(a)(据李良等,2018)和地壳模式年龄T(DMC)统计直方图(b)Figure 5. (a)Zircon εHf(t)-t (Ma) diagram (According to LI Liang et al., 2018) and (b) crustal model age T (DMC) statistical histogram (b) of Luocheng biotite granodiorite4.3 主量元素特征
合黎山地区罗城黑云母花岗闪长岩的主量元素分析结果见表1,其SiO2含量介于58.52%~59.84%,Al2O3含量介于16.91%~17.28%。全碱含量Na2O+K2O介于4.04%~4.40%,相对富碱,Na2O含量介于2.52%~2.60%,K2O含量介于1.49%~1.87%,富钠贫钾。里特曼指数δ介于1.05~1.15。根据CIPW标准矿物计算(Le Maitre,1979),石英(Qtz)含量介于18.97%~20.69%,碱性长石(A)含量介于11.6%~14.66%,斜长石(Pl)含量介于47.86%~50.76%,在Q-A-P图解中(图6a),处在花岗闪长岩区域中。SiO2-(Na2O+K2O-CaO)图解(图6b)反应岩石属于钙性系列。SiO2-K2O图解(图6c)反映岩石主体属于钙碱性系列。铝饱和指数A/CNK比较集中,介于0.96~0.97,A/NK介于2.74~2.98,在A/CNK-A/NK图解中(图6d),处在准铝质范围内。
图 6 罗城黑云母花岗闪长岩Q-A-P图解(a)(据Streckeisen, 1976)、SiO2-(Na2O+K2O-CaO)图解(b)(据Peccerillo et al., 1976)、SiO2-K2O图解(c)(据Peccerillo et al., 1976)及A/NK-A/CNK图解(d)(据Maniar et al.,1989)Figure 6. (a) Q-A-P diagram of Luocheng biotite granodiorite, (b) SiO2- (Na2O+K2O-CaO) diagram, (c) SiO2-K2O diagram and (d) A/NK-A/CNK diagrams4.4 微量元素特征
合黎山地区罗城黑云母花岗闪长岩的稀土元素分析结果见表1,其稀土元素总量ΣREE在71.77×10−6~79.32×10−6之间,平均为75.71×10−6。LREE/HREE值在4.20~5.30之间,平均为4.82,相对富集轻稀土,亏损重稀土。(La/Yb)N在3.69~5.46之间,平均为4.70,稀土元素球粒陨石标准化配分曲线图(图4a)中显示稀土元素为右倾型配分模式。δEu值在0.80~0.96之间,平均值为0.91,Eu具轻度负异常,说明在岩浆演化过程中有少量的斜长石分离结晶作用。
合黎山地区罗城黑云母花岗闪长岩的微量元素分析结果见表1,在微量元素原始地幔标准化蛛网图(图7b)上可见,岩石均相对富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素。
5. 讨论
5.1 岩体成岩时代及岩石成因
合黎山地区罗城岩体锆石自形程度好,具有典型的岩浆结晶韵律环带结构(图5),且Th/U值均大于0.4,为典型的岩浆锆石(王新雨等,2023;李平等,2024),其锆石数据谐和度较高,206Pb/238U加权平均年龄为(289±3) Ma ,可代表岩浆结晶年龄,因此,合黎山地区罗城岩体形成于早二叠世。
合黎山地区罗城花岗闪长岩Ga含量为16.3×10−6~17.7×10−6,Al2O3含量为16.91%~17.28%,10000Ga/Al值为1.78~1.93,平均为1.84,小于A型花岗岩下限2.6(Whalen et al., 1987),在Zr-10000Ga/Al、Ce-10000Ga/Al、Y-10000Ga/Al图解(图8b、 图8c、图8d)中,罗城岩体均投影在I&S花岗岩区域,在K2O-Na2O图解(图8a)中,罗城岩体均处于I型花岗岩区域。根据岩石主量元素特征可知,罗城花岗闪长岩具有钙碱性、准铝质特征,其A/CNK比较集中,介于0.96~0.97,均小于1.1,与I型花岗岩一致(Chappell et al., 1992;李宏卫等,2021),且P2O5含量与SiO2含量存在负线性关系,与I型花岗岩演化趋势一致(Wolf et al., 1994)。综合判断分析,罗城花岗闪长岩属于结晶分异I型花岗岩。
图 8 罗城黑云母花岗闪长岩K2O-Na2O图解(a)及Zr、Ce、Y-10000Ga图解(b、c、d)(据Whalen et al.,1987)Figure 8. (a) K2O-Na2O and (b, c, d) Zr, Ce, Y-10000 Ga diagram of Luocheng biotite granodiorite5.2 岩浆起源及演化特征
I型花岗岩主要来源于板块边缘陆壳下部,可能与地壳岩石的部分熔融(徐克勤等,1982)、交代岩石圈地幔部分熔融(Jiang et al., 2006)等有关,罗城黑云母花岗闪长岩属于钙碱性系列,富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,指示岩体具有大陆地壳物质的参与,岩石Nb/Ta=13.25~13.65,平均值为13.52,接近大陆地壳Nb/Ta值(=10~14)。在判断源岩的C/MF-A/MF图解(图9a)中,显示岩体源岩可能为基性岩的部分熔融,岩石δEu值具轻度负异常,在0.80~0.96之间,平均值为0.91,说明在岩浆演化过程中有少量的斜长石分离结晶作用,在δEu-(La/Yb)N图解中(图9b),样品投点均落在了壳源与壳幔混合源花岗岩区域,La/Ta值为35.71~40.86,大于起源于岩石圈地幔或受其混染岩浆La/Ta值的下限25,指示其为幔源或者壳幔混合源(Lassiter et al., 1997)。
罗城黑云母花岗闪长岩锆石Hf二阶段模式年龄T(DMC)分布范围为808.6~952.5 Ma,εHf(t)值介于+4.37~+6.88,通过锆石εHf(t)-U-Pb年龄t(Ma)图解(图7a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或具有新生地壳演化趋势(李金超等,2021)。
在野外工作中,在黑云母花岗闪长岩中发现暗色微细粒包体发育(图10),包体形态可见椭圆状、圆状、透镜状以及不规则状,大小差异较大,包体常具淬冷边,证明岩浆发生混合作用(王德滋等,2008;张建军等,2012);Mg#值可以指示壳源岩浆作用是否有幔源物质的参与,在地幔组分参与时,才能导致熔体的Mg#值大于40(Rapp et al., 1995),岩石MgO含量介于3.13%~3.53%,Mg#值介于0.64~0.66,明显高于40,表明岩体源岩明显具幔源岩浆加入。
基于上述讨论,罗城花岗闪长岩为壳源岩浆与幔源岩浆发生混合作用的产物,这种作用是由于地壳深部存在强烈的地幔岩浆底侵作用,导致新生地壳部分熔融并混入底侵的幔源物质。幔源的高温基性岩浆底侵,为其提供了少量物质来源,使岩石地球化学特征上既表现出壳源特征,也表现出幔源物质的信息。
5.3 构造背景
罗城黑云母花岗闪长岩富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,具有典型的岛弧岩浆岩特征(王秉璋等,2021),其形成与大洋板片俯冲消减作用有关。通过对黑云母花岗闪长岩构造背景判别,在Rb-(Y+Nb)(图11a)、Nb-Y(图11b)及Hf-Rb/30-3Ta(图11c)图解中,样品均落在火山弧花岗岩区域;在R1-R2(图11d)图解中,样品落在地幔分异花岗岩与碰撞前花岗岩交界区域。
图 11 花岗闪长岩构造背景判别Rb-(Y+Nb)(a)、Nb-Y(b)(据Pearce et al., 1984)、Hf-Rb/30-3Ta(c)(据Harris et al., 1986)图解及R1-R2(d)(据Batchelor et al., 1985)图解① 地幔分异花岗岩;② 破坏性活动板块边缘 (板块碰撞前) 花岗岩;③ 板块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山区花岗岩;⑥ 同碰撞花岗岩;⑦造山期花岗岩Figure 11. Identification of granodiorite structural background (a) Rb-(Y+Nb), (b) Nb-Y, (c) Hf-Rb/30-3Ta and (d) R1-R2 diagram罗城岩体位于龙首山造山带的西南缘大陆边缘活动带和祁连裂谷的发育构成了龙首山成矿带特定的构造环境(王承花,2010)。龙首山地区地壳演化自早古生代至中新生代经历了活动-稳定-再活动-再稳定-又活动的发展阶段,其在晚古生代处于稳定的拉张环境(强利刚等,2019),早古生代祁连造山带经历了北祁连洋向南俯冲,俯冲受阻,转为向北俯冲,引起北祁连岛弧与阿拉善陆块的碰撞,从而形成了一系列火山弧I型花岗岩(夏林圻等,2003;刘文恒等,2019;王增振等,2020)。罗城二叠纪黑云母花岗闪长岩指示其形成环境为岩浆弧,且R1-R2判别图解指示其形成环境为碰撞前消减花岗岩环境,说明在晚古生代该区还存在一期俯冲碰撞活动,与前人对龙首山晚石炭世—早二叠世西山头窑地区岩体处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022)相吻合,同时与前人认为的北山地区二叠纪时期仍发生的俯冲–增生造山过程延续可至三叠纪(宋东方等,2018)存在相关性,而并非处于拉张稳定发展期(强利刚等,2019)。
6. 结论
(1)通过对罗城黑云母花岗闪长岩LA-ICP-MS锆石U-Pb测年得出,岩石锆石结晶年龄为(289±3) Ma ,属于早二叠世,指示了区域上华力西期的强烈构造岩浆事件。
(2)通过罗城黑云母花岗闪长岩岩相学、岩石地球化学及Hf同位素特征,岩体富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Ba、Nb、Ta、P等高场强元素,属于准铝质钙碱性I型花岗岩,是由新生地壳部分熔融并混入底侵幔源物质的产物,指示了地壳深部强烈的地幔岩浆底侵作用。
(3)罗城黑云母花岗闪长岩地球化学特征指示其形成于碰撞前的消减花岗岩环境,结合龙首山地区构造演化历史,表明该区在晚古生代还存在一期俯冲碰撞,而并非一直处于拉张稳定发展期。
-
表 1 质量平衡系数参数表
Table 1 Mass balance coefficient parameter table
项目 参数名称/单位 范围 含义 Ci, W 元素i在风化层的实测含量(mg/kg) Ti, Zr = −1 元素i已经被全部迁移殆尽 Ci, P 元素i在基岩的实测含量(mg/kg) Ti, Zr<0 元素i在风化和蚀变过程中有迁移或者损失 CZr, W 惰性元素Zr在风化层的含量(mg/kg) Ti, Zr= 0 元素i相对于新鲜基岩没有任何迁移 CZr, P 惰性元素Zr在基岩的含量(mg/kg) Ti, Zr>0 有外来i元素的加入 表 2 土壤污染风险值
Table 2 Soil pollution risk value
元素 风险筛选值(标准) 风险管制值 pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5 pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5 Cd 0.3 0.3 0.3 0.6 1.5 2 3 4 Hg 1.3 1.8 2.4 3.4 2 2.5 4 6 As 40 40 30 25 200 150 120 100 Pb 70 90 120 170 400 500 700 1000 Cr 150 150 200 250 800 850 1000 1300 Cu 50 50 100 100 — — — — Ni 60 70 100 190 — — — — Zn 200 200 250 300 — — — — 注:表中风险筛选值依据《土壤环境质量农用地土壤污染风险管控标准(试行)(GB 15618—2018)》(下文简称为国标)。筛选值单位为mg/ kg。—为未检出,下同。 表 3 单因子指数与内梅罗综合指数评价标准
Table 3 Single factor index and Nemero comprehensive index evaluation standard
等级 单因子指数 内梅罗综合指数 范围 污染评价 范围 污染评价 Ⅰ Pi≤1 清洁 P综≤0.7 安全 Ⅱ 1<Pi≤2 轻度污染 0.7<P综≤1.0 警戒线 Ⅲ 2<Pi≤3 中度污染 1.0<P综≤2.0 轻度污染 Ⅳ Pi>3 重度污染 2.0<P综≤3.0 中度污染 Ⅴ P综>3.0 重度污染 表 4 重金属健康风险暴露参数
Table 4 Heavy metal health risk exposure parameters
项目 参数名称及单位 成人参考值 儿童参考值 IngR 手−口摄入土壤频率(mg/d) 100 200 EF 暴露频率(d/a) 350 350 ED 暴露时间(a) 25 6 BW 平均体重(kg) 56.8 15.9 AT 平均暴露时间(d) 致癌 26280 ,非致癌9125 致癌 26280 ,非致癌2190 InhR 呼吸频率(m3/d) 14.5 7.5 PEF 颗粒物排放因子(m3/kg) 1.36×109 1.36×109 SA 皮肤暴露表面积( cm2) 2415 1295 SL 皮肤粘附系数(mg/(cm2·d)) 0.2 0.2 ABS 皮肤吸收因子 0.001 0.001 表 5 土壤中重金属不同暴露途径RfD 和 SF
Table 5 Different exposure pathways of heavy metals RfD and SF in soil
元素 RfD(mg/kg·d-1) SF(kg·d/mg) 呼吸吸入 手-口摄入 皮肤接触 呼吸吸入 Cu 4×10−2 4×10−2 1.2×10−2 — Pb 3.5×10−3 3.5×10−3 5.25×10−4 — Zn 3×10−1 3×10−1 6×10−2 — Cr 2.86×10−5 3×10−3 6×10−5 42 Ni 2.06×10−2 2×10−2 5.4×10−3 0.84 Cd 1×10−3 1×10−3 3×10−5 6.3 As 3×10−4 3×10−4 1.23×10−4 15.1 Hg 3×10−4 3×10−4 2.1×10−5 — 表 6 研究区风化剖面元素含量与pH一览表
Table 6 List of element content and pH of weathering profile in the study area
剖面 样品 深度(cm) Cu Pb Zn Cr Ni Cd As Hg Zr pH TP0301 A 0~10 21.70 28.00 76.30 54.60 33.60 0.360 6.97 0.033 202.00 8.03 B1 10~20 21.50 26.30 76.50 56.20 32.40 0.270 7.56 0.017 211.00 8.19 B2 20~30 20.90 22.90 67.70 57.20 30.80 0.120 5.45 0.011 268.00 8.40 B3 30~50 18.80 23.40 65.60 58.00 30.60 0.120 4.68 0.011 244.00 8.47 C1 50~65 18.10 32.20 82.80 65.00 41.30 0.320 6.22 0.010 130.00 8.58 C2 65~80 17.20 25.00 73.20 61.90 34.90 0.200 4.25 0.010 191.00 8.45 土壤均值 — 19.70 26.30 73.68 58.82 33.93 0.232 5.86 0.015 207.67 — R >80 14.00 19.40 40.40 44.40 21.40 0.120 2.35 0.009 172.00 — TP0302 A 0~10 31.60 30.80 74.40 54.50 30.90 0.390 7.39 0.025 212.00 8.00 B1 10~20 20.20 29.40 80.70 55.00 36.70 0.220 7.74 0.013 197.00 8.27 B2 20~30 18.70 32.00 84.10 60.60 35.80 0.140 8.26 0.008 178.00 8.26 C 30~40 16.00 21.60 58.70 51.40 25.60 0.089 4.33 0.005 224.00 8.59 土壤均值 — 21.63 28.45 74.48 55.38 32.25 0.210 6.93 0.013 202.75 — R >40 15.80 21.20 63.20 48.30 24.80 0.080 3.06 0.003 238.00 — TP0501 A1 0~7 30.80 46.60 110.00 96.70 34.40 0.580 26.80 0.160 252.00 5.53 A2 7~15 29.00 47.30 122.00 98.60 36.00 0.580 26.20 0.170 259.00 5.01 E1 15~25 24.80 49.40 143.00 95.00 34.50 0.780 21.80 0.230 227.00 5.28 E2 25~35 22.10 36.70 119.00 84.80 30.80 0.660 20.60 0.200 198.00 5.62 B1 35~45 21.40 29.40 93.50 79.00 27.30 0.370 22.50 0.160 182.00 5.86 B2 45~60 28.00 35.20 102.00 106.00 38.90 0.380 24.50 0.200 232.00 6.04 C1 60~85 27.20 44.20 122.00 100.00 37.50 0.490 26.20 0.170 271.00 5.39 C2 85~110 30.00 49.40 128.00 99.40 38.00 0.390 26.40 0.180 252.00 5.34 土壤均值 — 26.66 42.28 117.44 94.94 34.68 0.529 24.38 0.184 234.13 — R >110 0.96 0.27 2.29 6.65 0.24 0.038 0.50 0.002 6.90 — TP0502 A1 0~10 40.30 46.20 121.00 117.00 40.30 0.660 43.70 0.180 259.00 5.00 A2 10~20 31.50 45.30 120.00 129.00 43.00 0.520 46.50 0.190 264.00 5.27 E1 20~40 29.00 50.60 129.00 107.00 42.00 0.330 26.90 0.220 266.00 4.97 E2 40~60 28.70 48.90 129.00 108.00 37.90 0.460 23.30 0.220 238.00 4.96 B1 60~75 24.20 24.40 76.40 68.80 36.50 0.440 15.30 0.200 138.00 5.62 B2 75~90 36.50 32.20 105.00 88.70 54.70 0.620 18.00 0.270 149.00 6.74 C1 90~120 30.00 50.20 128.00 121.00 42.40 0.400 41.80 0.220 256.00 5.30 C2 120~150 30.80 50.90 131.00 121.00 41.80 0.360 31.50 0.190 258.00 5.14 土壤均值 — 31.38 43.59 117.43 107.56 42.33 0.474 30.88 0.211 228.50 — R >150 2.01 0.29 5.15 4.36 3.44 0.045 0.50 0.001 7.90 — 超管制值/% 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.000 — — 上地壳丰度(UCC) 28.00 17.00 67.00 92.00 47.00 0.090 4.80 0.050 — — 重庆土壤背景值 24.60 28.10 81.90 74.40 31.60 0.280 6.62 0.069 — — 中国土壤背景值 22.60 26.00 74.20 61.00 26.90 0.097 11.20 0.065 — — 世界土壤 30.00 19.00 90.00 40.00 20.00 0.350 — — — — 注:表中字母A代表腐殖层,E代表淋溶层,B代表淀积层,C代表母质层,R代表基岩层;元素的含量为mg/kg,PH无量纲。 表 7 研究区剖面土壤重金属元素单因子指数和内梅罗指数评价结果
Table 7 The evaluation results of single factor index and Nemero index of heavy metal elements in soil profile of the study area
剖面 样品 PCu PPb PZn PCr PNi PCd PAs PHg Pave Pmax P综 等级 TP0301 A 0.217 0.165 0.254 0.218 0.177 0.600 0.279 0.010 0.204 0.600 0.317 安全 B1 0.215 0.155 0.255 0.225 0.171 0.450 0.302 0.005 B2 0.209 0.135 0.226 0.229 0.162 0.200 0.218 0.003 B3 0.188 0.138 0.219 0.232 0.161 0.200 0.187 0.003 C1 0.181 0.189 0.276 0.260 0.217 0.533 0.249 0.003 C2 0.172 0.147 0.244 0.248 0.184 0.333 0.170 0.003 TP0302 A 0.316 0.181 0.248 0.218 0.163 0.650 0.296 0.007 0.207 0.650 0.312 安全 B1 0.202 0.173 0.269 0.220 0.193 0.367 0.310 0.004 B2 0.187 0.188 0.280 0.242 0.188 0.233 0.330 0.002 C 0.160 0.127 0.196 0.206 0.135 0.148 0.173 0.001 TP0501 A1 0.616 0.518 0.550 0.645 0.491 1.933 0.670 0.089 0.666 2.600 1.335 轻度
污染A2 0.580 0.676 0.610 0.657 0.600 1.933 0.655 0.131 E1 0.496 0.706 0.715 0.633 0.575 2.600 0.545 0.177 E2 0.442 0.408 0.595 0.565 0.440 2.200 0.515 0.111 B1 0.428 0.327 0.468 0.527 0.390 1.233 0.563 0.089 B2 0.560 0.391 0.510 0.707 0.556 1.267 0.613 0.111 C1 0.544 0.631 0.610 0.667 0.625 1.633 0.655 0.131 C2 0.600 0.706 0.640 0.663 0.633 1.300 0.660 0.138 TP0502 A1 0.806 0.660 0.605 0.780 0.672 2.200 1.093 0.138 0.701 2.200 1.226 轻度
污染A2 0.630 0.647 0.600 0.860 0.717 1.733 1.163 0.146 E1 0.580 0.723 0.645 0.713 0.700 1.100 0.673 0.169 E2 0.574 0.699 0.645 0.720 0.632 1.533 0.583 0.169 B1 0.484 0.271 0.382 0.459 0.521 1.467 0.383 0.111 B2 0.365 0.268 0.420 0.444 0.547 2.067 0.600 0.113 C1 0.600 0.717 0.640 0.807 0.707 1.333 1.045 0.169 C2 0.616 0.727 0.655 0.807 0.697 1.200 0.788 0.146 表 8 健康风险评价结果
Table 8 Health risk assessment results
剖面 元素 HQing HQinh HQderm HI CR 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 TP0301 Cu 8.67×10−4 6.50×10−3 9.24×10−8 1.79×10−7 1.40×10−5 2.81×10−5 8.81×10−4 6.53×10−3 — — Pb 1.28×10−2 9.59×10−2 1.36×10−6 2.64×10−6 4.12×10−4 8.28×10−4 1.32×10−2 9.67×10−2 — — Zn 4.06×10−4 3.05×10−3 4.33×10−8 8.41×10−8 9.82×10−6 1.97×10−5 4.16×10−4 3.07×10−3 — — Cr 2.91×10−2 2.18×10−1 3.25×10−4 6.31×10−4 7.02×10−3 1.41×10−2 3.64×10−2 2.33×10−1 1.36×10−7 1.99×10−7 Ni 2.68×10−3 2.01×10−2 2.78×10−7 5.39×10−7 4.80×10−5 9.66×10−5 2.73×10−3 2.02×10−2 1.67×10−9 2.45×10−9 Cd 5.75×10−4 4.32×10−3 6.13×10−8 1.19×10−7 9.26×10−5 1.86×10−4 6.68×10−4 4.50×10−3 1.34×10−10 1.97×10−10 As 3.71×10−2 2.78×10−1 3.96×10−6 7.68×10−6 4.37×10−4 8.80×10−4 3.76×10−2 2.79×10−1 6.23×10−9 9.13×10−9 Hg 1.76×10−4 1.32×10−3 1.87×10−8 3.64×10−8 1.21×10−5 2.44×10−5 1.88×10−4 1.34×10−3 — — TP0302 Cu 1.26×10−3 9.47×10−3 1.35×10−7 2.61×10−7 2.03×10−5 4.09×10−5 1.28×10−3 9.51×10−3 — — Pb 1.41×10−2 1.05×10−1 1.50×10−6 2.91×10−6 4.53×10−4 9.11×10−4 1.45×10−2 1.06×10−1 — — Zn 3.96×10−4 2.97×10−3 4.23×10−8 8.20×10−8 9.57×10−6 1.92×10−5 4.06×10−4 2.99×10−3 — — Cr 2.90×10−2 2.18×10−1 3.25×10−4 6.30×10−4 7.01×10−3 1.41×10−2 3.64×10−2 2.32×10−1 1.35×10−7 1.98×10−7 Ni 2.47×10−3 1.85×10−2 2.56×10−7 4.96×10−7 4.42×10−5 8.88×10−5 2.51×10−3 1.86×10−2 1.54×10−9 2.25×10−9 Cd 6.23×10−4 4.67×10−3 6.65×10−8 1.29×10−7 1.00×10−4 2.02×10−4 7.24×10−4 4.88×10−3 1.45×10−10 2.13×10−10 As 3.94×10−2 2.95×10−1 4.20×10−6 8.14×10−6 4.64×10−4 9.33×10−4 3.98×10−2 2.96×10−1 6.60×10−9 9.68×10−9 Hg 1.33×10−4 9.99×10−4 1.42×10−8 2.75×10−8 9.19×10−6 1.85×10−5 1.42×10−4 1.02×10−3 — — TP0501 Cu 1.23×10−3 9.23×10−3 1.31×10−7 2.54×10−7 1.98×10−5 3.98×10−5 1.25×10−3 9.27×10−3 — — Pb 2.13×10−2 1.60×10−1 2.27×10−6 4.40×10−6 6.85×10−4 1.38×10−3 2.20×10−2 1.61×10−1 — — Zn 5.86×10−4 4.39×10−3 6.25×10−8 1.21×10−7 1.42×10−5 2.85×10−5 6.00×10−4 4.42×10−3 — — Cr 5.15×10−2 3.86×10−1 5.76×10−4 1.12×10−3 1.24×10−2 2.50×10−2 6.45×10−2 4.12×10−1 2.40×10−7 3.52×10−7 Ni 2.75×10−3 2.06×10−2 2.85×10−7 5.52×10−7 4.92×10−5 9.89×10−5 2.80×10−3 2.07×10−2 1.71×10−9 2.51×10−9 Cd 9.27×10−4 6.95×10−3 9.88×10−8 1.92×10−7 1.49×10−4 3.00×10−4 1.08×10−3 7.25×10−3 2.16×10−10 3.17×10−10 As 1.43×10−1 1.07×100 1.52×10−5 2.95×10−5 1.68×10−3 3.38×10−3 1.44×10−1 1.07×100 2.39×10−8 3.51×10−8 Hg 8.52×10−4 6.39×10−3 9.09×10−8 1.76×10−7 5.88×10−5 1.18×10−4 9.11×10−4 6.51×10−3 — — TP0502 Cu 1.61×10−3 1.21×10−2 1.72×10−7 3.33×10−7 2.59×10−5 5.21×10−5 1.64×10−3 1.21×10−2 — — Pb 2.11×10−2 1.58×10−1 2.25×10−6 4.36×10−6 6.79×10−4 1.37×10−3 2.18×10−2 1.60×10−1 — — Zn 6.45×10−4 4.83×10−3 6.87×10−8 1.33×10−7 1.56×10−5 3.13×10−5 6.60×10−4 4.87×10−3 — — Cr 6.23×10−2 4.67×10−1 6.97×10−4 1.35×10−3 1.51×10−2 3.03×10−2 7.81×10−2 4.99×10−1 2.91×10−7 4.26×10−7 Ni 3.22×10−3 2.42×10−2 3.33×10−7 6.47×10−7 5.76×10−5 1.16×10−4 3.28×10−3 2.43×10−2 2.00×10−9 2.94×10−9 Cd 1.05×10−3 7.91×10−3 1.12×10−7 2.18×10−7 1.70×10−4 3.41×10−4 1.22×10−3 8.25×10−3 2.46×10−10 3.61×10−10 As 2.33×10−1 1.75×100 2.48×10−5 4.81×10−5 2.74×10−3 5.51×10−3 2.36×10−1 1.75×100 3.90×10−8 5.72×10−8 Hg 9.59×10−4 7.19×10−3 1.02×10−7 1.98×10−5 6.62×10−5 1.33×10−4 1.03×10−3 7.33×10−3 — — -
白佳灵, 冯志刚, 马强, 等. 湘西北黑色泥灰岩风化剖面重金属富集的地球化学机制[J]. 地球与环境, 2019, 47(04): 436-447 doi: 10.14050/j.cnki.1672-9250.2019.47.079 BAI Jialing, FENG Zhigang, MA Qiang, et al. Geochemical Mechanism for the Enrichment of Heavy Metals in a Weathering Profile of Black Marlstone in the Northwestern Hunan Province, China [J]. Earth and Environment, 2019, 47(04): 436-447 doi: 10.14050/j.cnki.1672-9250.2019.47.079
鲍丽然, 邓海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47(06): 1625-1636 doi: 10.12029/gc20200602 BAO Liran, DENG Hai, JIA Zhongmin, et al. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 2020, 47(06): 1625-1636. doi: 10.12029/gc20200602
蔡雄飞, 赵士杰, 宣斌, 等. 贵阳市城郊两处菜地土壤垂直剖面重金属迁移规律及来源解析[J]. 生态科学, 2021, 40(03): 42-50 doi: 10.14108/j.cnki.1008-8873.2021.03.006 CAI Xiongfei, ZHAO Shijie, XUAN Bin, et al. Migration and source analysis of heavy metals in vertical soil profiles of the two suburban vegetable filds of guiyang city[J]. Ecological Science, 2021, 40(03): 42–50. doi: 10.14108/j.cnki.1008-8873.2021.03.006
陈继平, 钞中东, 任蕊, 等. 陕西关中富硒土壤区农作物重金属含量相关性及安全性评价[J]. 西北地质, 2021, 54(2): 273-281 doi: 10.19751/j.cnki.61-1149/p.2021.02.024 CHEN Jiping, CHAO Zhongdong, REN Rui, et al. Correlation and Safety Evaluation of Crop Heavy Mental Content in Shaanxi Guanzhong Selenium-enriched Areas[J]. Northwestern Geology, 2021, 54(02): 273-281. doi: 10.19751/j.cnki.61-1149/p.2021.02.024
窦韦强, 安毅, 秦莉, 等. 农田土壤重金属垂直分布迁移特征及生态风险评价[J]. 环境工程, 2021, 39(02): 166-172 doi: 10.13205/j.hjgc.202102027 DOU Weiqiang, AN Yi, QIN Li, et al. Characteristics of vertical distribution and migration of heavy metals in farmland soils and ecological risk assessment[J]. Environmental Engineering, 2021, 39(02): 166-172. doi: 10.13205/j.hjgc.202102027
冯博鑫, 徐多勋, 张宏宇, 等. 基于最小数据集的周至地区土壤重金属地球化学特征及成因分析[J]. 西北地质, 2023, 56(1): 284-292. FENG Boxin, XU Duoxun, ZHANG Hongyu, et al. Geochemical Characteristic of Heavy Metal in Zhouzhi Area and Analysis of Their Causes Based on Minimum Data Set[J]. Northwestern Geology, 2023, 56(1): 284−292.
高雅, 胡晨, 张春雷, 等. 安徽石台地区富硒土壤分布及硒的富集迁移规律探讨[J]. 西北地质, 2022, 55(02): 284-291 doi: 10.19751/j.cnki.61-1149/p.2022.02.025 GAO Ya, HU Chen, ZHANG Chunlei, et al. Study on the Distribution of Selenium-rich Soil and the Regularity of Selenium Enrichment-Migration in Shitai Area, Anhui, China[J]. Northwestern Geology, 2022, 55(02): 284-291. doi: 10.19751/j.cnki.61-1149/p.2022.02.025
国家环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社. 1990. 胡正峰, 高明, 谢德体, 等. 三峡库区紫色土不同成土母质Cu, Zn污染评价[J]. 西南师范大学学报(自然科学版), 2015, 40(03): 112-119 HU Zhengfeng, GAO Ming, XIE Deti, et al. On Contents of Cu and Zn in Different Parent Materials of Purple Soil and Pollution Assessment in the Three Gorges Reservoir Area[J]. Journal of Southwest China Normal University(Natural Science Edition), 2015, 40(03): 112-119.
黄小娟, 江长胜, 郝庆菊. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征[J]. 生态学报, 2014, 34(15): 4201-4211 HUNG Xiaojuan, JING Changsheng, HAO Qingju. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi Manganese mineland of Chongqing[J]. Acta Ecologica Sinica, 2014, 34(15): 4201-4211.
黄勇, 欧阳渊, 刘洪, 等. 地质建造对土壤性质的制约及其生态环境效应—以西昌地区红壤为例[J]. 西北地质, 2023, 56(4): 196−212. HUANG Yong, OUYANG Yuan, LIU Hong, et al. Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area[J]. Northwestern Geology, 2023, 56(4): 196−212.
贾磊, 刘洪, 欧阳渊, 等. 基于地质建造的南方山地-丘陵区地表基质填图单元划分方案——以珠三角新会—台山地区为例[J]. 西北地质, 2022, 55(04): 140-157 JIA Lei, LIU Hong, OUYANG Yuan, ZHANG Wei, et al. Division Scheme of Surface Substrate Mapping Units of Mountainous-Hilly Area in South China Based on Geological Formations Research: Example from Xinhui-Taishan Area in Pearl River Delta[J]. Northwestern Geology, 2022, 55(04): 140-157.
李礼, 徐龙君, 李斗. 重庆秀山锰矿区土壤重金属污染分析与评价[J]. 地球与环境, 2014, 42(05): 646-651 doi: 10.14050/j.cnki.1672-9250.2014.05.029 LI Li, XU Longjun, LI Dou. Analysis and Evaluation of Soil Heavy Metal Pollution in Chongqing Xiushan Manganese Mine-zone[J]. Earth and Environment, 2014, 42(05): 646-651. doi: 10.14050/j.cnki.1672-9250.2014.05.029
李樋, 李紫烨, 刘洪, 等. 西昌普诗碎屑岩地区紫色土剖面重金属迁移富集特征与生态风险评价[J]. 矿物学报, 2023b, 43(01): 125-136 doi: 10.16461/j.cnki.1000-4734.2022.42.079 LI Tong, LI Ziye, LIU Hong, et al. Migration and enrichment characteristics of heavy metals in purple soil profile and ecological risk assessment in Pushi clastic rock area, Xichang[J]. Acta Mineralogica Sinica, 2023, 43(01): 125-136. doi: 10.16461/j.cnki.1000-4734.2022.42.079
李樋, 刘洪, 李佑国, 等. 基于地统计学及GIS的西昌地区中生代红层区紫色土营养元素空间变异性及影响因素研究[J]. 地球科学进展, 2022, 37(06): 627-640 doi: 10.11867/j.issn.1001-8166.2022.6.dqkxjz202206007 LI Tong, LIU Hong, LI Youguo, et al. Study on Spatial Variability and Influencing Factors of Nutrient Elements in Purple Soil in Mesozoic Red Layer Region in Xichang Area Based on Geostatistics and GIS[J]. Advances in Earth Science, 2022, 37(06): 627-640. doi: 10.11867/j.issn.1001-8166.2022.6.dqkxjz202206007
李樋, 刘小念, 刘洪, 等. 基于地质建造的土壤营养元素空间分布特征研究——以大凉山区为例[J]. 安全与环境工程, 2021, 28(06): 127-137 doi: 10.13578/j.cnki.issn.1671-1556.20200957 LI Tong, LIU Xiaonian, LIU Hong, et al. Study on Spatial Distribution Characteristics of Soil Nutrient Elements Based on Geological Construction—Take Daliangshan Region as an Example[J]. Safety and Environmental Engineering, 2021, 28(06): 127-137. doi: 10.13578/j.cnki.issn.1671-1556.20200957
李樋, 刘小念, 刘洪, 等. 西昌普诗地区中—下白垩统小坝组岩石–紫色土剖面稀土元素地球化学特征分析[J]. 沉积与特提斯地质, 2023a,43(4): 829-843. doi: 10.19826/j.cnki.1009-3850.2021.06002 LI Tong, LIU Xiaonian, LIU Hong, et al. Geochemistry of rare earth elements of purple soil layers in the Middle-Lower Cretaceous Xiaoba Formation, Pushi area, Xichang[J]. Sedimentary Geology and Tethyan Geology, 2023,43(4): 829-843. doi: 10.19826/j.cnki.1009-3850.2021.06002.
刘洪, 黄瀚霄, 欧阳渊, 等. 基于地质建造的土壤地质调查及应用前景分析——以大凉山区西昌市为例[J]. 沉积与特提斯地质, 2020, 40(01): 91-105 doi: 10.19826/j.cnki.1009-3850.(2020)01-091-15 LIU Hong, HUANG Hanxiao, OUYANG yuan, et al. Soil's geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(01): 91-105. doi: 10.19826/j.cnki.1009-3850.(2020)01-091-15
刘丽琼, 魏世强, 江韬. 三峡库区消落带土壤重金属分布特征及潜在风险评价[J]. 中国环境科学, 2011, 31(07): 1204-1211 LIU Liqiong, WEI Shiqiang, JIANG Tao. Distribution of soil heavy metals from water-level-fluctuating zone in Three-Gorge Reservoir Area and their evaluation of potential ecological risk[J]. China Environmental Science, 2011, 31(07): 1204-1211.
刘文景, 涂成龙, 郎赟超, 等. 喀斯特地区黄壤和石灰土剖面化学组成变化与风化成土过程[J]. 地球与环境, 2010, 38(03): 271-279 doi: 10.14050/j.cnki.1672-9250.2010.03.018 LIU Wenjing, TU Chenglong, LANG Yunchao, et al. Major and Trace Element Compositions of Yellow and Limestone Soils in the Karst Area of Southwest China: Implications for Weathering and Soil-formation Processes[J]. Earth and Environment, 2010, 38(03): 271-279. doi: 10.14050/j.cnki.1672-9250.2010.03.018
刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社,1984. 石雨佳, 方林发, 方标, 等. 三峡库区(重庆段)菜地土壤重金属污染特征、 潜在生态风险评估及源解析[J/OL]. 环境科学, 2023, 44(3): 1611-1619 SHI Yujia, FANG Linfa, FANG Biao, et al. Pollution Characteristics and Source Apportionment of Heavy Metals in Vegetable Field in the Three Gorges Reservoir Area (Chongqing Section) [J/OL]. Environmental Science, 2023, 44(3): 1611-1619.
孙子媛, 文雪峰, 吴攀, 等. 喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究[J]. 地球与环境, 2019, 47(01): 50-56 doi: 10.14050/j.cnki.1672-9250.2019.47.011 SUN Ziyuan, WEN Xuefeng, WU Pan, et al. Excessive Degrees and Migration Characteristics of Heavy Metals in Typical Weathering Profiles in Karst Areas[J]. Earth and Environment, 2019, 47(01): 50-56. doi: 10.14050/j.cnki.1672-9250.2019.47.011
唐世琪, 刘秀金, 杨柯, 等. 典型碳酸盐岩区耕地土壤剖面重金属形态迁移转化特征及生态风险评价[J]. 环境科学, 2021, 42(08): 3913-3923 doi: 10.13227/j.hjkx.202101066 TANG Shiqi, LIU Xiujin, YANG Ke, et al. Migration, Transformation Characteristics, and Ecological Risk Evaluation of Heavy Metal Fractions in Cultivated Soil Profiles in a Typical Carbonate-Covered Area[J]. Environmental Science, 2021, 42(08): 3913-3923. doi: 10.13227/j.hjkx.202101066
汪洁, 龚竞, 刘雨佳, 等. 昆明市土壤重金属污染特征及其生态与健康风险评价[J]. 轻工学报, 2022, 37(04): 118-126 WANG Jie, GONG Jing, LIU Yujia, et al. Ecological and health risk assessment of heavy metals in urban soils from a typical southwest capital city[J]. Journal of Light Industry, 2022, 37(04): 118-126.
王海荣, 侯青叶, 杨忠芳, 等. 广东省典型花岗岩成土剖面元素垂向分布特征[J]. 中国地质, 2013, 40(02): 619-628 doi: 10.3969/j.issn.1000-3657.2013.02.025 WAMG Hairong, HOU Qingye, YANG Zhongfang, et al. Vertical distribution of some elements in typical weathering-soil profiles of granite in Guangdong Province[J]. Geology in China, 2013, 40(02): 619-628. doi: 10.3969/j.issn.1000-3657.2013.02.025
王秋艳, 文雪峰, 魏晓, 等. 碳酸盐岩风化和成土过程的重金属迁移富集机理初探及环境风险评价[J]. 地球与环境, 2022, 50(01): 119-130 WANG Qiuyan, WEN Xuefeng, WEI Xiao, et al. Heavy Metal Migration and Enrichment Mechanism and the Environmental Risks during the Weathering and Soil Formation of Carbonate Rocks[J]. Earth and Environment, 2022, 50(01): 119-130.
武春林, 王瑞廷, 丁坤, 等. 中国土壤质量地球化学调查与评价的研究现状和进展[J]. 西北地质, 2018, 51(03): 240-252 doi: 10.3969/j.issn.1009-6248.2018.03.023 WU Chunlin, WANG Ruiting, DING Kun, et al. Geochemical Survey and Evaluation on Soil Quality in China: Research Status and Advances[J]. Northwestern Geology, 2018, 51(03): 240-252. doi: 10.3969/j.issn.1009-6248.2018.03.023
谢代兴, 杨杨, 苏春田, 等. 滇东南石灰土微量元素地化特征与环境质量评价[J]. 贵州农业科学, 2014, 42(10): 229-233 doi: 10.3969/j.issn.1001-3601.2014.10.060 XIE Daixing, YANG Yang, SU Chuntian, et al. Geochemical Characteristics and Environmental Quality of Microelements in Limestone Soil in Southeast Yunnan Province[J]. Guizhou Agricultural Sciences, 2014, 42(10): 229-233. doi: 10.3969/j.issn.1001-3601.2014.10.060
徐志豪, 吴健, 王敏, 等. 典型复垦工业场地土壤垂直剖面重金属污染特征及潜在生态风险[J]. 水土保持通报, 2019, 39(02): 43-47 XU Zhihao, WU Jian, Wang Min, et al. Characteristics and Potential Ecological Risk of Heavy Metal in Vertical Soil Profiles of Typical Reclaimed Industrial Sites[J]. Bulletin of Soil and Water Conservation, 2019, 39(02): 43-47.
严明书, 李武斌, 杨乐超, 等. 重庆渝北地区土壤重金属形态特征及其有效性评价[J]. 环境科学研究, 2014, 27(01): 64-70 doi: 10.13198/j.issn1001-6929.2014.01.10 YAN Mingshu, LI Wubin, YANG Lechao, et al. Speciation Characteristics and Effectiveness Assessment of Heavy Metals in Soils in Yubei District, Chongqing[J]. Research of Environmental Sciences, 2014, 27(01): 64-70. doi: 10.13198/j.issn1001-6929.2014.01.10
余飞, 张永文, 严明书, 等. 重庆汞矿区耕地土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 2022, 41(02): 536-548 doi: 10.7524/j.issn.0254-6108.2020101302 YU Fei, ZHANG Yongwen, YAN Mingshu, et al. Heavy metal pollution and human health risks assessment of soil and crops near the mercury ore in Chongqing[J]. Environmental Chemistry, 2022, 41(02): 536-548. doi: 10.7524/j.issn.0254-6108.2020101302
张连科, 李艳伟, 李玉梅, 等. 包头市铜厂周边土壤中重金属垂直分布特征与形态分析[J]. 水土保持研究, 2016, 23(05): 354-358 doi: 10.13869/j.cnki.rswc.2016.05.048 ZHANG Lianke, LI Yanwei, LI Yumei, et al. Vertical. Distribution Characteristics and Speciation Analysis of Heavy Metals in Topsoils Around a Copper Plant of Baotou[J]. Research of Soil and Water Conservation, 2016, 23(05): 354-358. doi: 10.13869/j.cnki.rswc.2016.05.048
张腾蛟, 刘洪, 欧阳渊, 等. 中高山区土壤成土母质理化特征及主控因素初探——以西昌市为例[J]. 沉积与特提斯地质, 2020, 40(01): 106-114 doi: 10.19826/j.cnki.1009-3850.(2020)01-0106-09 ZHANG Tengjiao, LIU Hong, OUYANG yuan, et al. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area——take Xichang as an example[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(01): 106-114. doi: 10.19826/j.cnki.1009-3850.(2020)01-0106-09
张炜华, 于瑞莲, 杨玉杰, 等. 厦门某旱地土壤垂直剖面中重金属迁移规律及来源解析[J]. 环境科学, 2019, 40(08): 3764-3773 doi: 10.13227/j.hjkx.201901227 ZHANG Weihua, YU Ruilian, YANG Yujie, et al. Migration and Source Analysis of Heavy Metals in Vertical Soil Profiles of the Drylands of Xiamen City[J]. Environmental Science, 2019, 40(08): 3764-3773. doi: 10.13227/j.hjkx.201901227
张永江, 邓茂, 王祥炳, 等. 黔江区农业区域土壤重金属健康风险评价[J]. 贵州师范大学学报(自然科学版), 2016, 34(02): 37-42 doi: 10.16614/j.cnki.issn1004-5570.2016.02.007 ZHANG Yongjiang, DENG Mao, WANG Xiangbing, et al. Assesssment on human health risk of potentially heavy metals in agricultural farmland of Qianjiang district[J]. Journal of Guizhou Normal University(Natural Sciences), 2016, 34(02): 37-42. doi: 10.16614/j.cnki.issn1004-5570.2016.02.007
周皎, 何欣芮, 李瑜, 等. 基于土壤重金属特征的绿色食品产地环境评价——以重庆(江津)现代农业园区为例[J]. 中国环境科学, 2020, 40(07): 3070-3078 doi: 10.3969/j.issn.1000-6923.2020.07.033 ZHOU Jiao, HE Xinrui, LI Yu, et al. Evaluation of soil environmental quality in green food production based on spatial distribution of heavy metals -- a case study of modern agricultural park in Iiangjin district, Chongqing[J]. China Environmental Science, 2020, 40(07): 3070-3078. doi: 10.3969/j.issn.1000-6923.2020.07.033
Ariya P A, Dastroor A P , Amyot M , et al. The Arctic: a sink for mercury [J]. Tellus B: Chemical and Physical Meteorology, 2004, 56: 397-403. doi: 10.3402/tellusb.v56i5.16458
Ayoub G M, Mehawej M. Adsorption of arsenate on untreated dolomite powder[J]. Journal of Hazardous Materials, 2007, 148: 259-266. doi: 10.1016/j.jhazmat.2007.02.011
Bowman K L, Lamborg C H, Agather A M. A global perspective on mercury cycling in the ocean[J]. Science of the Total Environment, 2020, 710: 136166. doi: 10.1016/j.scitotenv.2019.136166
Wedepohl K H . The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(07): 1217-1232. doi: 10.1016/0016-7037(95)00038-2
Loganathan P , Vigneswaran S , Naidu J K & R . Cadmium Sorption and Desorption in Soils: A Review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42: 489-533. doi: 10.1080/10643389.2010.520234
Nesbitt H W . Mobility and Fractionation of Rare Earth Elements During Weathering of a Granodiorite[J]. Nature, 1979, 279: 206-210. doi: 10.1038/279206a0
Peters R W. Chelant Extraction of Heavy Metals From Contaminated Soils[J]. Journal of Hazardous Materials, 1999, 66 (1-2): 151-210. doi: 10.1016/S0304-3894(99)00010-2
Qian J , Shan X Q , Wang Z J , et al. Distribution and plant availability of heavy metals in different particle-size fractions of soil[J]. Science of the Total Environment, 1996, 187( 02): 131-141. doi: 10.1016/0048-9697(96)05134-0
Qu S , Wu W , Nel W , et al. The behavior of metals/metalloids during natural weathering: A systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China[J]. The Science of the Total Environment, 2020, 708: 134572. doi: 10.1016/j.scitotenv.2019.134572
Quezada-Hinojosa R P , Matera V , Adatte T , et al. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura[J]. Geoderma, 2009, 150(3-4): 287-301 doi: 10.1016/j.geoderma.2009.02.013
Rambeau C M C , Baize R , Sasunby R , et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France[J]. Environmental Earth Sciences, 2010, 61(08): 1573-1585. doi: 10.1007/s12665-010-0471-0
Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2014, 4: 1-51.
Sun G , Feng X , Yang C , et al. Levels, sources, isotope signatures, and health risks of mercury in street dust across China[J]. Journal of Hazardous Materials, 2020, 392: 122276. doi: 10.1016/j.jhazmat.2020.122276
Tahervand S , Jalali M . Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH[J]. Environmental Monitoring and Assessment, 2016, 188(06): 1-12.
Tiller K G , Gerth J , G. Brümmer. The relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite[J]. Geoderma, 1984, 34(01): 17-35. doi: 10.1016/0016-7061(84)90003-X
Tuttle M L W , Breit G N , Goldhaber M B . Weathering of the New Albany Shale, Kentucky: Ii. Redistribution of minor and trace elements[J]. Applied Geochemistry, 2009, 24(08): 1565-1578. doi: 10.1016/j.apgeochem.2009.04.034
Wang J , Bai X , Liu F , et al. Enrichments of Cadmium and Arsenic and their Effects on the Karst Forest Area[J]. International Journal of Environmental Research and Public Health, 2019, 16: 4665. doi: 10.3390/ijerph16234665