ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

三峡库区典型岩石土壤中重(类)金属迁移富集特征研究及风险评价

邵璐, 刘洪, 欧阳渊, 张景华, 高文龙, 刘小念, 宋雯洁, 吴君毅, 苏悦

邵璐,刘洪,欧阳渊,等. 三峡库区典型岩石土壤中重(类)金属迁移富集特征研究及风险评价[J]. 西北地质,2025,58(1):204−218. doi: 10.12401/j.nwg.2023175
引用本文: 邵璐,刘洪,欧阳渊,等. 三峡库区典型岩石土壤中重(类)金属迁移富集特征研究及风险评价[J]. 西北地质,2025,58(1):204−218. doi: 10.12401/j.nwg.2023175
SHAO Lu,LIU Hong,OUYANG Yuan,et al. Study on Migration and Enrichment Characteristics and Risk Assessment of Heavy Metals (Metalloids) in Rock-Parent Material- Soil: Taking Typical Rock-Soil Profiles in Three Gorges Reservoir Area as Examples[J]. Northwestern Geology,2025,58(1):204−218. doi: 10.12401/j.nwg.2023175
Citation: SHAO Lu,LIU Hong,OUYANG Yuan,et al. Study on Migration and Enrichment Characteristics and Risk Assessment of Heavy Metals (Metalloids) in Rock-Parent Material- Soil: Taking Typical Rock-Soil Profiles in Three Gorges Reservoir Area as Examples[J]. Northwestern Geology,2025,58(1):204−218. doi: 10.12401/j.nwg.2023175

三峡库区典型岩石土壤中重(类)金属迁移富集特征研究及风险评价

基金项目: 国家自然科学基金(92055314,42272106,42202105),中国地质调查项目“(DD20221776, DD20230093,DD20220971,DD20230247, ZD20220301),宁夏生态地质调查示范项目(NXCZ20220201),广东省地质勘查与城市地质专项([2022]-21)、国家重点研发计划(2021YFC2901903),国际地球科学计划(IGCP 741)和西南地质科技创新中心刘宝珺院士基金联合资助。
详细信息
    作者简介:

    邵璐(1999−),女,硕士研究生,主要从事生态地质、地球探测技术研究。E−mail:lshaolu@163.com

    通讯作者:

    欧阳渊(1982−),男,正高级工程师,博士,硕士生导师,主要从事遥感地质、生态地质研究。E−mail:oyangyuan@mail.cgs.gov.cn。

  • 中图分类号: [P66]

Study on Migration and Enrichment Characteristics and Risk Assessment of Heavy Metals (Metalloids) in Rock-Parent Material- Soil: Taking Typical Rock-Soil Profiles in Three Gorges Reservoir Area as Examples

  • 摘要:

    笔者选取长江重点生区三峡库区(重庆段)4条典型岩石−土壤剖面,分析风化成土过程中重(类)金属元素(Cu、Pb、Zn、Cr、Ni、Cd、As、Hg)的迁移富集特征,探索该地段的典型健康风险。结果表明:①研究区侏罗纪碎屑岩风化剖面土壤呈弱碱性,二叠纪碳酸盐岩风化剖面土壤呈酸性、弱酸性,二叠纪碳酸盐岩母质土壤中各种元素含量基本高于侏罗纪碎屑岩母质土壤,8种重(类)金属元素含量均值都没有超过管制值。②同类土壤剖面中多种元素具有相似的迁移富集特征,各种元素的迁移富集规律受到成土母岩自身特性、淋溶淀积作用、黏土矿物吸附作用、大气降尘、元素地球化学性质和pH等多重因素的影响。③内梅罗综合污染指数显示研究区TP0301、TP0302剖面整体状况良好,无污染。TP0501和TP0502剖面由于元素Cd和As轻度超标造成轻度污染。④健康风险评价表明,儿童比成人更容易受到重(类)金属元素威胁,通过手−口摄入是土壤污染元素对人体引起非致癌健康风险的主要途径,研究区致癌风险较低,但 Cr 的重金属致癌健康风险指数 CR接近 1×10−6 ,应当引起关注。综合分析评价认为,研究区土壤整体状况良好,但二叠纪碳酸盐岩风化土壤剖面存在轻微的污染现象,考虑到研究区内居民的生命健康安全,建议加强二叠纪碳酸盐岩风化剖面中的类金属As和重金属Cr的监测关注。

    Abstract:

    Four typical rock-soil profiles in the key ecological area of the Yangtze River (Chongqing section) were selected to explore the migration and enrichment characteristics of heavy metal elements ( Cu, Pb, Zn, Cr, Ni, Cd, As, Hg ) in the process of weathering and soil formation, and to explore the typical health risks in this area. The results show that the soil in the Jurassic clastic rock weathering profile in the study area is weakly alkaline, and the soil in the Permian carbonate rock weathering profile is acidic and weakly acidic. The content of various elements in the Permian carbonate rock parent material soil is basically higher than that in the Jurassic clastic rock parent material soil, and the average content of eight heavy metal elements does not exceed the control value; Various elements in the same soil profile have similar migration and enrichment characteristics. The migration and enrichment of various elements are affected by multiple factors such as the characteristics of the parent rock, leaching and deposition, clay mineral adsorption, atmospheric dustfall, elemental geochemical properties and pH; The Nemero comprehensive pollution index shows that the TP0301 and TP0302 profiles in the study area are in good condition and pollution-free. The TP0501 and TP0502 profiles were slightly polluted due to the light exceeding of Cd and As; Health risk assessment showed that children were more susceptible to heavy metal elements than adults. Hand-mouth ingestion was the main way of soil pollution elements causing non-carcinogenic health risks. The carcinogenic risk in the study area was low, but the carcinogenic health risk index CR of Cr was close to 1 × 10−6, which should be concerned. According to the comprehensive analysis and evaluation, the soil in the study area is in good condition as a whole, but there is slight pollution in the weathering soil profile of Permian carbonate rocks. Considering the life and health safety of residents in the study area, it is suggested to strengthen the monitoring of metalloid As and heavy metal Cr in the weathering profile of Permian carbonate rocks. However, the carcinogenic health risk index of Cr is close to 1 × 10−6, which should be concerned.

  • 图  1   研究区地质背景及采样点位置图

    Figure  1.   Geological background and sampling point location map of study area

    图  2   研究区二叠纪碳酸盐岩和侏罗纪碎屑岩风化剖面图

    Figure  2.   Weathering profile of Permian carbonate rocks and Jurassic clastic rocks in study area

    图  3   研究区质量平衡系数与采样深度关系图

    (a).TP0501;(b).TP0502为二叠纪碳酸盐岩-石灰土剖面;(c).TP0301;(d). TP0302为侏罗纪碎屑岩-紫色土剖面

    Figure  3.   Relation diagram of mass balance coefficient and sampling depth in study area

    图  4   基岩(a)和风化土壤(b)中元素富集系数

    Figure  4.   (a) Enrichment factor of elements in bedrock and (b) Enrichment factor of elements in weathered soil

    表  1   质量平衡系数参数表

    Table  1   Mass balance coefficient parameter table

    项目参数名称/单位范围含义
    Ci, W 元素i在风化层的实测含量(mg/kg) Ti, Zr = −1 元素i已经被全部迁移殆尽
    Ci, P 元素i在基岩的实测含量(mg/kg) Ti, Zr<0 元素i在风化和蚀变过程中有迁移或者损失
    CZr, W 惰性元素Zr在风化层的含量(mg/kg) Ti, Zr= 0 元素i相对于新鲜基岩没有任何迁移
    CZr, P 惰性元素Zr在基岩的含量(mg/kg) Ti, Zr>0 有外来i元素的加入
    下载: 导出CSV

    表  2   土壤污染风险值

    Table  2   Soil pollution risk value

    元素风险筛选值(标准)风险管制值
    pH≤5.55.5<pH≤6.56.5<pH≤7.5pH>7.5pH≤5.55.5<pH≤6.56.5<pH≤7.5pH>7.5
    Cd 0.3 0.3 0.3 0.6 1.5 2 3 4
    Hg 1.3 1.8 2.4 3.4 2 2.5 4 6
    As 40 40 30 25 200 150 120 100
    Pb 70 90 120 170 400 500 700 1000
    Cr 150 150 200 250 800 850 1000 1300
    Cu 50 50 100 100
    Ni 60 70 100 190
    Zn 200 200 250 300
     注:表中风险筛选值依据《土壤环境质量农用地土壤污染风险管控标准(试行)(GB 15618—2018)》(下文简称为国标)。筛选值单位为mg/ kg。—为未检出,下同。
    下载: 导出CSV

    表  3   单因子指数与内梅罗综合指数评价标准

    Table  3   Single factor index and Nemero comprehensive index evaluation standard

    等级单因子指数内梅罗综合指数
    范围污染评价范围污染评价
    Pi≤1 清洁 P≤0.7 安全
    1<Pi≤2 轻度污染 0.7<P≤1.0 警戒线
    2<Pi≤3 中度污染 1.0<P≤2.0 轻度污染
    Pi>3 重度污染 2.0<P≤3.0 中度污染
    P>3.0 重度污染
    下载: 导出CSV

    表  4   重金属健康风险暴露参数

    Table  4   Heavy metal health risk exposure parameters

    项目参数名称及单位成人参考值儿童参考值
    IngR 手−口摄入土壤频率(mg/d) 100 200
    EF 暴露频率(d/a) 350 350
    ED 暴露时间(a) 25 6
    BW 平均体重(kg) 56.8 15.9
    AT 平均暴露时间(d) 致癌26280,非致癌9125 致癌26280,非致癌2190
    InhR 呼吸频率(m3/d) 14.5 7.5
    PEF 颗粒物排放因子(m3/kg) 1.36×109 1.36×109
    SA 皮肤暴露表面积( cm2 2415 1295
    SL 皮肤粘附系数(mg/(cm2·d)) 0.2 0.2
    ABS 皮肤吸收因子 0.001 0.001
    下载: 导出CSV

    表  5   土壤中重金属不同暴露途径RfDSF

    Table  5   Different exposure pathways of heavy metals RfD and SF in soil

    元素RfD(mg/kg·d-1 SF(kg·d/mg)
    呼吸吸入手-口摄入皮肤接触呼吸吸入
    Cu 4×10−2 4×10−2 1.2×10−2
    Pb 3.5×10−3 3.5×10−3 5.25×10−4
    Zn 3×10−1 3×10−1 6×10−2
    Cr 2.86×10−5 3×10−3 6×10−5 42
    Ni 2.06×10−2 2×10−2 5.4×10−3 0.84
    Cd 1×10−3 1×10−3 3×10−5 6.3
    As 3×10−4 3×10−4 1.23×10−4 15.1
    Hg 3×10−4 3×10−4 2.1×10−5
    下载: 导出CSV

    表  6   研究区风化剖面元素含量与pH一览表

    Table  6   List of element content and pH of weathering profile in the study area

    剖面样品深度(cm)CuPbZnCrNiCdAsHgZrpH
    TP0301 A 0~10 21.70 28.00 76.30 54.60 33.60 0.360 6.97 0.033 202.00 8.03
    B1 10~20 21.50 26.30 76.50 56.20 32.40 0.270 7.56 0.017 211.00 8.19
    B2 20~30 20.90 22.90 67.70 57.20 30.80 0.120 5.45 0.011 268.00 8.40
    B3 30~50 18.80 23.40 65.60 58.00 30.60 0.120 4.68 0.011 244.00 8.47
    C1 50~65 18.10 32.20 82.80 65.00 41.30 0.320 6.22 0.010 130.00 8.58
    C2 65~80 17.20 25.00 73.20 61.90 34.90 0.200 4.25 0.010 191.00 8.45
    土壤均值 19.70 26.30 73.68 58.82 33.93 0.232 5.86 0.015 207.67
    R >80 14.00 19.40 40.40 44.40 21.40 0.120 2.35 0.009 172.00
    TP0302 A 0~10 31.60 30.80 74.40 54.50 30.90 0.390 7.39 0.025 212.00 8.00
    B1 10~20 20.20 29.40 80.70 55.00 36.70 0.220 7.74 0.013 197.00 8.27
    B2 20~30 18.70 32.00 84.10 60.60 35.80 0.140 8.26 0.008 178.00 8.26
    C 30~40 16.00 21.60 58.70 51.40 25.60 0.089 4.33 0.005 224.00 8.59
    土壤均值 21.63 28.45 74.48 55.38 32.25 0.210 6.93 0.013 202.75
    R >40 15.80 21.20 63.20 48.30 24.80 0.080 3.06 0.003 238.00
    TP0501 A1 0~7 30.80 46.60 110.00 96.70 34.40 0.580 26.80 0.160 252.00 5.53
    A2 7~15 29.00 47.30 122.00 98.60 36.00 0.580 26.20 0.170 259.00 5.01
    E1 15~25 24.80 49.40 143.00 95.00 34.50 0.780 21.80 0.230 227.00 5.28
    E2 25~35 22.10 36.70 119.00 84.80 30.80 0.660 20.60 0.200 198.00 5.62
    B1 35~45 21.40 29.40 93.50 79.00 27.30 0.370 22.50 0.160 182.00 5.86
    B2 45~60 28.00 35.20 102.00 106.00 38.90 0.380 24.50 0.200 232.00 6.04
    C1 60~85 27.20 44.20 122.00 100.00 37.50 0.490 26.20 0.170 271.00 5.39
    C2 85~110 30.00 49.40 128.00 99.40 38.00 0.390 26.40 0.180 252.00 5.34
    土壤均值 26.66 42.28 117.44 94.94 34.68 0.529 24.38 0.184 234.13
    R >110 0.96 0.27 2.29 6.65 0.24 0.038 0.50 0.002 6.90
    TP0502 A1 0~10 40.30 46.20 121.00 117.00 40.30 0.660 43.70 0.180 259.00 5.00
    A2 10~20 31.50 45.30 120.00 129.00 43.00 0.520 46.50 0.190 264.00 5.27
    E1 20~40 29.00 50.60 129.00 107.00 42.00 0.330 26.90 0.220 266.00 4.97
    E2 40~60 28.70 48.90 129.00 108.00 37.90 0.460 23.30 0.220 238.00 4.96
    B1 60~75 24.20 24.40 76.40 68.80 36.50 0.440 15.30 0.200 138.00 5.62
    B2 75~90 36.50 32.20 105.00 88.70 54.70 0.620 18.00 0.270 149.00 6.74
    C1 90~120 30.00 50.20 128.00 121.00 42.40 0.400 41.80 0.220 256.00 5.30
    C2 120~150 30.80 50.90 131.00 121.00 41.80 0.360 31.50 0.190 258.00 5.14
    土壤均值 31.38 43.59 117.43 107.56 42.33 0.474 30.88 0.211 228.50
    R >150 2.01 0.29 5.15 4.36 3.44 0.045 0.50 0.001 7.90
    超管制值/% 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.000
    上地壳丰度(UCC) 28.00 17.00 67.00 92.00 47.00 0.090 4.80 0.050
    重庆土壤背景值 24.60 28.10 81.90 74.40 31.60 0.280 6.62 0.069
    中国土壤背景值 22.60 26.00 74.20 61.00 26.90 0.097 11.20 0.065
    世界土壤 30.00 19.00 90.00 40.00 20.00 0.350
     注:表中字母A代表腐殖层,E代表淋溶层,B代表淀积层,C代表母质层,R代表基岩层;元素的含量为mg/kg,PH无量纲。
    下载: 导出CSV

    表  7   研究区剖面土壤重金属元素单因子指数和内梅罗指数评价结果

    Table  7   The evaluation results of single factor index and Nemero index of heavy metal elements in soil profile of the study area

    剖面样品PCuPPbPZnPCrPNiPCdPAsPHgPavePmaxP等级
    TP0301 A 0.217 0.165 0.254 0.218 0.177 0.600 0.279 0.010 0.204 0.600 0.317 安全
    B1 0.215 0.155 0.255 0.225 0.171 0.450 0.302 0.005
    B2 0.209 0.135 0.226 0.229 0.162 0.200 0.218 0.003
    B3 0.188 0.138 0.219 0.232 0.161 0.200 0.187 0.003
    C1 0.181 0.189 0.276 0.260 0.217 0.533 0.249 0.003
    C2 0.172 0.147 0.244 0.248 0.184 0.333 0.170 0.003
    TP0302 A 0.316 0.181 0.248 0.218 0.163 0.650 0.296 0.007 0.207 0.650 0.312 安全
    B1 0.202 0.173 0.269 0.220 0.193 0.367 0.310 0.004
    B2 0.187 0.188 0.280 0.242 0.188 0.233 0.330 0.002
    C 0.160 0.127 0.196 0.206 0.135 0.148 0.173 0.001
    TP0501 A1 0.616 0.518 0.550 0.645 0.491 1.933 0.670 0.089 0.666 2.600 1.335 轻度
    污染
    A2 0.580 0.676 0.610 0.657 0.600 1.933 0.655 0.131
    E1 0.496 0.706 0.715 0.633 0.575 2.600 0.545 0.177
    E2 0.442 0.408 0.595 0.565 0.440 2.200 0.515 0.111
    B1 0.428 0.327 0.468 0.527 0.390 1.233 0.563 0.089
    B2 0.560 0.391 0.510 0.707 0.556 1.267 0.613 0.111
    C1 0.544 0.631 0.610 0.667 0.625 1.633 0.655 0.131
    C2 0.600 0.706 0.640 0.663 0.633 1.300 0.660 0.138
    TP0502 A1 0.806 0.660 0.605 0.780 0.672 2.200 1.093 0.138 0.701 2.200 1.226 轻度
    污染
    A2 0.630 0.647 0.600 0.860 0.717 1.733 1.163 0.146
    E1 0.580 0.723 0.645 0.713 0.700 1.100 0.673 0.169
    E2 0.574 0.699 0.645 0.720 0.632 1.533 0.583 0.169
    B1 0.484 0.271 0.382 0.459 0.521 1.467 0.383 0.111
    B2 0.365 0.268 0.420 0.444 0.547 2.067 0.600 0.113
    C1 0.600 0.717 0.640 0.807 0.707 1.333 1.045 0.169
    C2 0.616 0.727 0.655 0.807 0.697 1.200 0.788 0.146
    下载: 导出CSV

    表  8   健康风险评价结果

    Table  8   Health risk assessment results

    剖面元素HQingHQinhHQdermHICR
    成人儿童成人儿童成人儿童成人儿童成人儿童
    TP0301 Cu 8.67×10−4 6.50×10−3 9.24×10−8 1.79×10−7 1.40×10−5 2.81×10−5 8.81×10−4 6.53×10−3
    Pb 1.28×10−2 9.59×10−2 1.36×10−6 2.64×10−6 4.12×10−4 8.28×10−4 1.32×10−2 9.67×10−2
    Zn 4.06×10−4 3.05×10−3 4.33×10−8 8.41×10−8 9.82×10−6 1.97×10−5 4.16×10−4 3.07×10−3
    Cr 2.91×10−2 2.18×10−1 3.25×10−4 6.31×10−4 7.02×10−3 1.41×10−2 3.64×10−2 2.33×10−1 1.36×10−7 1.99×10−7
    Ni 2.68×10−3 2.01×10−2 2.78×10−7 5.39×10−7 4.80×10−5 9.66×10−5 2.73×10−3 2.02×10−2 1.67×10−9 2.45×10−9
    Cd 5.75×10−4 4.32×10−3 6.13×10−8 1.19×10−7 9.26×10−5 1.86×10−4 6.68×10−4 4.50×10−3 1.34×10−10 1.97×10−10
    As 3.71×10−2 2.78×10−1 3.96×10−6 7.68×10−6 4.37×10−4 8.80×10−4 3.76×10−2 2.79×10−1 6.23×10−9 9.13×10−9
    Hg 1.76×10−4 1.32×10−3 1.87×10−8 3.64×10−8 1.21×10−5 2.44×10−5 1.88×10−4 1.34×10−3
    TP0302 Cu 1.26×10−3 9.47×10−3 1.35×10−7 2.61×10−7 2.03×10−5 4.09×10−5 1.28×10−3 9.51×10−3
    Pb 1.41×10−2 1.05×10−1 1.50×10−6 2.91×10−6 4.53×10−4 9.11×10−4 1.45×10−2 1.06×10−1
    Zn 3.96×10−4 2.97×10−3 4.23×10−8 8.20×10−8 9.57×10−6 1.92×10−5 4.06×10−4 2.99×10−3
    Cr 2.90×10−2 2.18×10−1 3.25×10−4 6.30×10−4 7.01×10−3 1.41×10−2 3.64×10−2 2.32×10−1 1.35×10−7 1.98×10−7
    Ni 2.47×10−3 1.85×10−2 2.56×10−7 4.96×10−7 4.42×10−5 8.88×10−5 2.51×10−3 1.86×10−2 1.54×10−9 2.25×10−9
    Cd 6.23×10−4 4.67×10−3 6.65×10−8 1.29×10−7 1.00×10−4 2.02×10−4 7.24×10−4 4.88×10−3 1.45×10−10 2.13×10−10
    As 3.94×10−2 2.95×10−1 4.20×10−6 8.14×10−6 4.64×10−4 9.33×10−4 3.98×10−2 2.96×10−1 6.60×10−9 9.68×10−9
    Hg 1.33×10−4 9.99×10−4 1.42×10−8 2.75×10−8 9.19×10−6 1.85×10−5 1.42×10−4 1.02×10−3
    TP0501 Cu 1.23×10−3 9.23×10−3 1.31×10−7 2.54×10−7 1.98×10−5 3.98×10−5 1.25×10−3 9.27×10−3
    Pb 2.13×10−2 1.60×10−1 2.27×10−6 4.40×10−6 6.85×10−4 1.38×10−3 2.20×10−2 1.61×10−1
    Zn 5.86×10−4 4.39×10−3 6.25×10−8 1.21×10−7 1.42×10−5 2.85×10−5 6.00×10−4 4.42×10−3
    Cr 5.15×10−2 3.86×10−1 5.76×10−4 1.12×10−3 1.24×10−2 2.50×10−2 6.45×10−2 4.12×10−1 2.40×10−7 3.52×10−7
    Ni 2.75×10−3 2.06×10−2 2.85×10−7 5.52×10−7 4.92×10−5 9.89×10−5 2.80×10−3 2.07×10−2 1.71×10−9 2.51×10−9
    Cd 9.27×10−4 6.95×10−3 9.88×10−8 1.92×10−7 1.49×10−4 3.00×10−4 1.08×10−3 7.25×10−3 2.16×10−10 3.17×10−10
    As 1.43×10−1 1.07×100 1.52×10−5 2.95×10−5 1.68×10−3 3.38×10−3 1.44×10−1 1.07×100 2.39×10−8 3.51×10−8
    Hg 8.52×10−4 6.39×10−3 9.09×10−8 1.76×10−7 5.88×10−5 1.18×10−4 9.11×10−4 6.51×10−3
    TP0502 Cu 1.61×10−3 1.21×10−2 1.72×10−7 3.33×10−7 2.59×10−5 5.21×10−5 1.64×10−3 1.21×10−2
    Pb 2.11×10−2 1.58×10−1 2.25×10−6 4.36×10−6 6.79×10−4 1.37×10−3 2.18×10−2 1.60×10−1
    Zn 6.45×10−4 4.83×10−3 6.87×10−8 1.33×10−7 1.56×10−5 3.13×10−5 6.60×10−4 4.87×10−3
    Cr 6.23×10−2 4.67×10−1 6.97×10−4 1.35×10−3 1.51×10−2 3.03×10−2 7.81×10−2 4.99×10−1 2.91×10−7 4.26×10−7
    Ni 3.22×10−3 2.42×10−2 3.33×10−7 6.47×10−7 5.76×10−5 1.16×10−4 3.28×10−3 2.43×10−2 2.00×10−9 2.94×10−9
    Cd 1.05×10−3 7.91×10−3 1.12×10−7 2.18×10−7 1.70×10−4 3.41×10−4 1.22×10−3 8.25×10−3 2.46×10−10 3.61×10−10
    As 2.33×10−1 1.75×100 2.48×10−5 4.81×10−5 2.74×10−3 5.51×10−3 2.36×10−1 1.75×100 3.90×10−8 5.72×10−8
    Hg 9.59×10−4 7.19×10−3 1.02×10−7 1.98×10−5 6.62×10−5 1.33×10−4 1.03×10−3 7.33×10−3
    下载: 导出CSV
  • 白佳灵, 冯志刚, 马强, 等. 湘西北黑色泥灰岩风化剖面重金属富集的地球化学机制[J]. 地球与环境, 2019, 47(04): 436-447 doi: 10.14050/j.cnki.1672-9250.2019.47.079

    BAI Jialing, FENG Zhigang, MA Qiang, et al. Geochemical Mechanism for the Enrichment of Heavy Metals in a Weathering Profile of Black Marlstone in the Northwestern Hunan Province, China [J]. Earth and Environment, 2019, 47(04): 436-447 doi: 10.14050/j.cnki.1672-9250.2019.47.079

    鲍丽然, 邓海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47(06): 1625-1636 doi: 10.12029/gc20200602

    BAO Liran, DENG Hai, JIA Zhongmin, et al. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 2020, 47(06): 1625-1636. doi: 10.12029/gc20200602

    蔡雄飞, 赵士杰, 宣斌, 等. 贵阳市城郊两处菜地土壤垂直剖面重金属迁移规律及来源解析[J]. 生态科学, 2021, 40(03): 42-50 doi: 10.14108/j.cnki.1008-8873.2021.03.006

    CAI Xiongfei, ZHAO Shijie, XUAN Bin, et al. Migration and source analysis of heavy metals in vertical soil profiles of the two suburban vegetable filds of guiyang city[J]. Ecological Science, 2021, 40(03): 42–50. doi: 10.14108/j.cnki.1008-8873.2021.03.006

    陈继平, 钞中东, 任蕊, 等. 陕西关中富硒土壤区农作物重金属含量相关性及安全性评价[J]. 西北地质, 2021, 54(2): 273-281 doi: 10.19751/j.cnki.61-1149/p.2021.02.024

    CHEN Jiping, CHAO Zhongdong, REN Rui, et al. Correlation and Safety Evaluation of Crop Heavy Mental Content in Shaanxi Guanzhong Selenium-enriched Areas[J]. Northwestern Geology, 2021, 54(02): 273-281. doi: 10.19751/j.cnki.61-1149/p.2021.02.024

    窦韦强, 安毅, 秦莉, 等. 农田土壤重金属垂直分布迁移特征及生态风险评价[J]. 环境工程, 2021, 39(02): 166-172 doi: 10.13205/j.hjgc.202102027

    DOU Weiqiang, AN Yi, QIN Li, et al. Characteristics of vertical distribution and migration of heavy metals in farmland soils and ecological risk assessment[J]. Environmental Engineering, 2021, 39(02): 166-172. doi: 10.13205/j.hjgc.202102027

    冯博鑫, 徐多勋, 张宏宇, 等. 基于最小数据集的周至地区土壤重金属地球化学特征及成因分析[J]. 西北地质, 2023, 56(1): 284-292.

    FENG Boxin, XU Duoxun, ZHANG Hongyu, et al. Geochemical Characteristic of Heavy Metal in Zhouzhi Area and Analysis of Their Causes Based on Minimum Data Set[J]. Northwestern Geology, 2023, 56(1): 284−292.

    高雅, 胡晨, 张春雷, 等. 安徽石台地区富硒土壤分布及硒的富集迁移规律探讨[J]. 西北地质, 2022, 55(02): 284-291 doi: 10.19751/j.cnki.61-1149/p.2022.02.025

    GAO Ya, HU Chen, ZHANG Chunlei, et al. Study on the Distribution of Selenium-rich Soil and the Regularity of Selenium Enrichment-Migration in Shitai Area, Anhui, China[J]. Northwestern Geology, 2022, 55(02): 284-291. doi: 10.19751/j.cnki.61-1149/p.2022.02.025

    国家环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社. 1990.
    胡正峰, 高明, 谢德体, 等. 三峡库区紫色土不同成土母质Cu, Zn污染评价[J]. 西南师范大学学报(自然科学版), 2015, 40(03): 112-119

    HU Zhengfeng, GAO Ming, XIE Deti, et al. On Contents of Cu and Zn in Different Parent Materials of Purple Soil and Pollution Assessment in the Three Gorges Reservoir Area[J]. Journal of Southwest China Normal University(Natural Science Edition), 2015, 40(03): 112-119.

    黄小娟, 江长胜, 郝庆菊. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征[J]. 生态学报, 2014, 34(15): 4201-4211

    HUNG Xiaojuan, JING Changsheng, HAO Qingju. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi Manganese mineland of Chongqing[J]. Acta Ecologica Sinica, 2014, 34(15): 4201-4211.

    黄勇, 欧阳渊, 刘洪, 等. 地质建造对土壤性质的制约及其生态环境效应—以西昌地区红壤为例[J]. 西北地质, 2023, 56(4): 196−212.

    HUANG Yong, OUYANG Yuan, LIU Hong, et al. Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area[J]. Northwestern Geology, 2023, 56(4): 196−212.

    贾磊, 刘洪, 欧阳渊, 等. 基于地质建造的南方山地-丘陵区地表基质填图单元划分方案——以珠三角新会—台山地区为例[J]. 西北地质, 2022, 55(04): 140-157

    JIA Lei, LIU Hong, OUYANG Yuan, ZHANG Wei, et al. Division Scheme of Surface Substrate Mapping Units of Mountainous-Hilly Area in South China Based on Geological Formations Research: Example from Xinhui-Taishan Area in Pearl River Delta[J]. Northwestern Geology, 2022, 55(04): 140-157.

    李礼, 徐龙君, 李斗. 重庆秀山锰矿区土壤重金属污染分析与评价[J]. 地球与环境, 2014, 42(05): 646-651 doi: 10.14050/j.cnki.1672-9250.2014.05.029

    LI Li, XU Longjun, LI Dou. Analysis and Evaluation of Soil Heavy Metal Pollution in Chongqing Xiushan Manganese Mine-zone[J]. Earth and Environment, 2014, 42(05): 646-651. doi: 10.14050/j.cnki.1672-9250.2014.05.029

    李樋, 李紫烨, 刘洪, 等. 西昌普诗碎屑岩地区紫色土剖面重金属迁移富集特征与生态风险评价[J]. 矿物学报, 2023b, 43(01): 125-136 doi: 10.16461/j.cnki.1000-4734.2022.42.079

    LI Tong, LI Ziye, LIU Hong, et al. Migration and enrichment characteristics of heavy metals in purple soil profile and ecological risk assessment in Pushi clastic rock area, Xichang[J]. Acta Mineralogica Sinica, 2023, 43(01): 125-136. doi: 10.16461/j.cnki.1000-4734.2022.42.079

    李樋, 刘洪, 李佑国, 等. 基于地统计学及GIS的西昌地区中生代红层区紫色土营养元素空间变异性及影响因素研究[J]. 地球科学进展, 2022, 37(06): 627-640 doi: 10.11867/j.issn.1001-8166.2022.6.dqkxjz202206007

    LI Tong, LIU Hong, LI Youguo, et al. Study on Spatial Variability and Influencing Factors of Nutrient Elements in Purple Soil in Mesozoic Red Layer Region in Xichang Area Based on Geostatistics and GIS[J]. Advances in Earth Science, 2022, 37(06): 627-640. doi: 10.11867/j.issn.1001-8166.2022.6.dqkxjz202206007

    李樋, 刘小念, 刘洪, 等. 基于地质建造的土壤营养元素空间分布特征研究——以大凉山区为例[J]. 安全与环境工程, 2021, 28(06): 127-137 doi: 10.13578/j.cnki.issn.1671-1556.20200957

    LI Tong, LIU Xiaonian, LIU Hong, et al. Study on Spatial Distribution Characteristics of Soil Nutrient Elements Based on Geological Construction—Take Daliangshan Region as an Example[J]. Safety and Environmental Engineering, 2021, 28(06): 127-137. doi: 10.13578/j.cnki.issn.1671-1556.20200957

    李樋, 刘小念, 刘洪, 等. 西昌普诗地区中—下白垩统小坝组岩石–紫色土剖面稀土元素地球化学特征分析[J]. 沉积与特提斯地质, 2023a,43(4): 829-843. doi: 10.19826/j.cnki.1009-3850.2021.06002

    LI Tong, LIU Xiaonian, LIU Hong, et al. Geochemistry of rare earth elements of purple soil layers in the Middle-Lower Cretaceous Xiaoba Formation, Pushi area, Xichang[J]. Sedimentary Geology and Tethyan Geology, 2023,43(4): 829-843. doi: 10.19826/j.cnki.1009-3850.2021.06002.

    刘洪, 黄瀚霄, 欧阳渊, 等. 基于地质建造的土壤地质调查及应用前景分析——以大凉山区西昌市为例[J]. 沉积与特提斯地质, 2020, 40(01): 91-105 doi: 10.19826/j.cnki.1009-3850.(2020)01-091-15

    LIU Hong, HUANG Hanxiao, OUYANG yuan, et al. Soil's geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(01): 91-105. doi: 10.19826/j.cnki.1009-3850.(2020)01-091-15

    刘丽琼, 魏世强, 江韬. 三峡库区消落带土壤重金属分布特征及潜在风险评价[J]. 中国环境科学, 2011, 31(07): 1204-1211

    LIU Liqiong, WEI Shiqiang, JIANG Tao. Distribution of soil heavy metals from water-level-fluctuating zone in Three-Gorge Reservoir Area and their evaluation of potential ecological risk[J]. China Environmental Science, 2011, 31(07): 1204-1211.

    刘文景, 涂成龙, 郎赟超, 等. 喀斯特地区黄壤和石灰土剖面化学组成变化与风化成土过程[J]. 地球与环境, 2010, 38(03): 271-279 doi: 10.14050/j.cnki.1672-9250.2010.03.018

    LIU Wenjing, TU Chenglong, LANG Yunchao, et al. Major and Trace Element Compositions of Yellow and Limestone Soils in the Karst Area of Southwest China: Implications for Weathering and Soil-formation Processes[J]. Earth and Environment, 2010, 38(03): 271-279. doi: 10.14050/j.cnki.1672-9250.2010.03.018

    刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社,1984.
    石雨佳, 方林发, 方标, 等. 三峡库区(重庆段)菜地土壤重金属污染特征、 潜在生态风险评估及源解析[J/OL]. 环境科学, 2023, 44(3): 1611-1619

    SHI Yujia, FANG Linfa, FANG Biao, et al. Pollution Characteristics and Source Apportionment of Heavy Metals in Vegetable Field in the Three Gorges Reservoir Area (Chongqing Section) [J/OL]. Environmental Science, 2023, 44(3): 1611-1619.

    孙子媛, 文雪峰, 吴攀, 等. 喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究[J]. 地球与环境, 2019, 47(01): 50-56 doi: 10.14050/j.cnki.1672-9250.2019.47.011

    SUN Ziyuan, WEN Xuefeng, WU Pan, et al. Excessive Degrees and Migration Characteristics of Heavy Metals in Typical Weathering Profiles in Karst Areas[J]. Earth and Environment, 2019, 47(01): 50-56. doi: 10.14050/j.cnki.1672-9250.2019.47.011

    唐世琪, 刘秀金, 杨柯, 等. 典型碳酸盐岩区耕地土壤剖面重金属形态迁移转化特征及生态风险评价[J]. 环境科学, 2021, 42(08): 3913-3923 doi: 10.13227/j.hjkx.202101066

    TANG Shiqi, LIU Xiujin, YANG Ke, et al. Migration, Transformation Characteristics, and Ecological Risk Evaluation of Heavy Metal Fractions in Cultivated Soil Profiles in a Typical Carbonate-Covered Area[J]. Environmental Science, 2021, 42(08): 3913-3923. doi: 10.13227/j.hjkx.202101066

    汪洁, 龚竞, 刘雨佳, 等. 昆明市土壤重金属污染特征及其生态与健康风险评价[J]. 轻工学报, 2022, 37(04): 118-126

    WANG Jie, GONG Jing, LIU Yujia, et al. Ecological and health risk assessment of heavy metals in urban soils from a typical southwest capital city[J]. Journal of Light Industry, 2022, 37(04): 118-126.

    王海荣, 侯青叶, 杨忠芳, 等. 广东省典型花岗岩成土剖面元素垂向分布特征[J]. 中国地质, 2013, 40(02): 619-628 doi: 10.3969/j.issn.1000-3657.2013.02.025

    WAMG Hairong, HOU Qingye, YANG Zhongfang, et al. Vertical distribution of some elements in typical weathering-soil profiles of granite in Guangdong Province[J]. Geology in China, 2013, 40(02): 619-628. doi: 10.3969/j.issn.1000-3657.2013.02.025

    王秋艳, 文雪峰, 魏晓, 等. 碳酸盐岩风化和成土过程的重金属迁移富集机理初探及环境风险评价[J]. 地球与环境, 2022, 50(01): 119-130

    WANG Qiuyan, WEN Xuefeng, WEI Xiao, et al. Heavy Metal Migration and Enrichment Mechanism and the Environmental Risks during the Weathering and Soil Formation of Carbonate Rocks[J]. Earth and Environment, 2022, 50(01): 119-130.

    武春林, 王瑞廷, 丁坤, 等. 中国土壤质量地球化学调查与评价的研究现状和进展[J]. 西北地质, 2018, 51(03): 240-252 doi: 10.3969/j.issn.1009-6248.2018.03.023

    WU Chunlin, WANG Ruiting, DING Kun, et al. Geochemical Survey and Evaluation on Soil Quality in China: Research Status and Advances[J]. Northwestern Geology, 2018, 51(03): 240-252. doi: 10.3969/j.issn.1009-6248.2018.03.023

    谢代兴, 杨杨, 苏春田, 等. 滇东南石灰土微量元素地化特征与环境质量评价[J]. 贵州农业科学, 2014, 42(10): 229-233 doi: 10.3969/j.issn.1001-3601.2014.10.060

    XIE Daixing, YANG Yang, SU Chuntian, et al. Geochemical Characteristics and Environmental Quality of Microelements in Limestone Soil in Southeast Yunnan Province[J]. Guizhou Agricultural Sciences, 2014, 42(10): 229-233. doi: 10.3969/j.issn.1001-3601.2014.10.060

    徐志豪, 吴健, 王敏, 等. 典型复垦工业场地土壤垂直剖面重金属污染特征及潜在生态风险[J]. 水土保持通报, 2019, 39(02): 43-47

    XU Zhihao, WU Jian, Wang Min, et al. Characteristics and Potential Ecological Risk of Heavy Metal in Vertical Soil Profiles of Typical Reclaimed Industrial Sites[J]. Bulletin of Soil and Water Conservation, 2019, 39(02): 43-47.

    严明书, 李武斌, 杨乐超, 等. 重庆渝北地区土壤重金属形态特征及其有效性评价[J]. 环境科学研究, 2014, 27(01): 64-70 doi: 10.13198/j.issn1001-6929.2014.01.10

    YAN Mingshu, LI Wubin, YANG Lechao, et al. Speciation Characteristics and Effectiveness Assessment of Heavy Metals in Soils in Yubei District, Chongqing[J]. Research of Environmental Sciences, 2014, 27(01): 64-70. doi: 10.13198/j.issn1001-6929.2014.01.10

    余飞, 张永文, 严明书, 等. 重庆汞矿区耕地土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 2022, 41(02): 536-548 doi: 10.7524/j.issn.0254-6108.2020101302

    YU Fei, ZHANG Yongwen, YAN Mingshu, et al. Heavy metal pollution and human health risks assessment of soil and crops near the mercury ore in Chongqing[J]. Environmental Chemistry, 2022, 41(02): 536-548. doi: 10.7524/j.issn.0254-6108.2020101302

    张连科, 李艳伟, 李玉梅, 等. 包头市铜厂周边土壤中重金属垂直分布特征与形态分析[J]. 水土保持研究, 2016, 23(05): 354-358 doi: 10.13869/j.cnki.rswc.2016.05.048

    ZHANG Lianke, LI Yanwei, LI Yumei, et al. Vertical. Distribution Characteristics and Speciation Analysis of Heavy Metals in Topsoils Around a Copper Plant of Baotou[J]. Research of Soil and Water Conservation, 2016, 23(05): 354-358. doi: 10.13869/j.cnki.rswc.2016.05.048

    张腾蛟, 刘洪, 欧阳渊, 等. 中高山区土壤成土母质理化特征及主控因素初探——以西昌市为例[J]. 沉积与特提斯地质, 2020, 40(01): 106-114 doi: 10.19826/j.cnki.1009-3850.(2020)01-0106-09

    ZHANG Tengjiao, LIU Hong, OUYANG yuan, et al. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area——take Xichang as an example[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(01): 106-114. doi: 10.19826/j.cnki.1009-3850.(2020)01-0106-09

    张炜华, 于瑞莲, 杨玉杰, 等. 厦门某旱地土壤垂直剖面中重金属迁移规律及来源解析[J]. 环境科学, 2019, 40(08): 3764-3773 doi: 10.13227/j.hjkx.201901227

    ZHANG Weihua, YU Ruilian, YANG Yujie, et al. Migration and Source Analysis of Heavy Metals in Vertical Soil Profiles of the Drylands of Xiamen City[J]. Environmental Science, 2019, 40(08): 3764-3773. doi: 10.13227/j.hjkx.201901227

    张永江, 邓茂, 王祥炳, 等. 黔江区农业区域土壤重金属健康风险评价[J]. 贵州师范大学学报(自然科学版), 2016, 34(02): 37-42 doi: 10.16614/j.cnki.issn1004-5570.2016.02.007

    ZHANG Yongjiang, DENG Mao, WANG Xiangbing, et al. Assesssment on human health risk of potentially heavy metals in agricultural farmland of Qianjiang district[J]. Journal of Guizhou Normal University(Natural Sciences), 2016, 34(02): 37-42. doi: 10.16614/j.cnki.issn1004-5570.2016.02.007

    周皎, 何欣芮, 李瑜, 等. 基于土壤重金属特征的绿色食品产地环境评价——以重庆(江津)现代农业园区为例[J]. 中国环境科学, 2020, 40(07): 3070-3078 doi: 10.3969/j.issn.1000-6923.2020.07.033

    ZHOU Jiao, HE Xinrui, LI Yu, et al. Evaluation of soil environmental quality in green food production based on spatial distribution of heavy metals -- a case study of modern agricultural park in Iiangjin district, Chongqing[J]. China Environmental Science, 2020, 40(07): 3070-3078. doi: 10.3969/j.issn.1000-6923.2020.07.033

    Ariya P A, Dastroor A P , Amyot M , et al. The Arctic: a sink for mercury [J]. Tellus B: Chemical and Physical Meteorology, 2004, 56: 397-403. doi: 10.3402/tellusb.v56i5.16458

    Ayoub G M, Mehawej M. Adsorption of arsenate on untreated dolomite powder[J]. Journal of Hazardous Materials, 2007, 148: 259-266. doi: 10.1016/j.jhazmat.2007.02.011

    Bowman K L, Lamborg C H, Agather A M. A global perspective on mercury cycling in the ocean[J]. Science of the Total Environment, 2020, 710: 136166. doi: 10.1016/j.scitotenv.2019.136166

    Wedepohl K H . The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(07): 1217-1232. doi: 10.1016/0016-7037(95)00038-2

    Loganathan P , Vigneswaran S , Naidu J K & R . Cadmium Sorption and Desorption in Soils: A Review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42: 489-533. doi: 10.1080/10643389.2010.520234

    Nesbitt H W . Mobility and Fractionation of Rare Earth Elements During Weathering of a Granodiorite[J]. Nature, 1979, 279: 206-210. doi: 10.1038/279206a0

    Peters R W. Chelant Extraction of Heavy Metals From Contaminated Soils[J]. Journal of Hazardous Materials, 1999, 66 (1-2): 151-210. doi: 10.1016/S0304-3894(99)00010-2

    Qian J , Shan X Q , Wang Z J , et al. Distribution and plant availability of heavy metals in different particle-size fractions of soil[J]. Science of the Total Environment, 1996, 187( 02): 131-141. doi: 10.1016/0048-9697(96)05134-0

    Qu S , Wu W , Nel W , et al. The behavior of metals/metalloids during natural weathering: A systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China[J]. The Science of the Total Environment, 2020, 708: 134572. doi: 10.1016/j.scitotenv.2019.134572

    Quezada-Hinojosa R P , Matera V , Adatte T , et al. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura[J]. Geoderma, 2009, 150(3-4): 287-301 doi: 10.1016/j.geoderma.2009.02.013

    Rambeau C M C , Baize R , Sasunby R , et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France[J]. Environmental Earth Sciences, 2010, 61(08): 1573-1585. doi: 10.1007/s12665-010-0471-0

    Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2014, 4: 1-51.

    Sun G , Feng X , Yang C , et al. Levels, sources, isotope signatures, and health risks of mercury in street dust across China[J]. Journal of Hazardous Materials, 2020, 392: 122276. doi: 10.1016/j.jhazmat.2020.122276

    Tahervand S , Jalali M . Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH[J]. Environmental Monitoring and Assessment, 2016, 188(06): 1-12.

    Tiller K G , Gerth J , G. Brümmer. The relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite[J]. Geoderma, 1984, 34(01): 17-35. doi: 10.1016/0016-7061(84)90003-X

    Tuttle M L W , Breit G N , Goldhaber M B . Weathering of the New Albany Shale, Kentucky: Ii. Redistribution of minor and trace elements[J]. Applied Geochemistry, 2009, 24(08): 1565-1578. doi: 10.1016/j.apgeochem.2009.04.034

    Wang J , Bai X , Liu F , et al. Enrichments of Cadmium and Arsenic and their Effects on the Karst Forest Area[J]. International Journal of Environmental Research and Public Health, 2019, 16: 4665. doi: 10.3390/ijerph16234665

图(4)  /  表(8)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  23
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-09
  • 修回日期:  2023-08-25
  • 录用日期:  2023-09-07
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2025-02-19

目录

    /

    返回文章
    返回