A Review of the Impurity Element Chemistry and Textures of Natural Quartz and Its Application to the Prospect of High Purity Quartz Deposit
-
摘要:
目前,中国4N8以上高纯石英高度依赖进口,高纯石英是保障中国芯片安全、光纤安全、光伏安全、高端器件安全的战略矿产。笔者通过国内外对石英的微量(杂质)元素分布特征研究相关的文献进行了梳理和总结,并结合近年来找矿勘查实践认识。研究发现,控制4N以上中高端高纯石英杂质元素的种类主要是类质同象,包括有B、Li、Al、Ge、Ti、Fe、Mn、K和P等元素。中国高纯石英找矿方向包括变质重结晶石英、钨锡矿床云英岩和石英脉、花岗伟晶岩石英、高分异演化花岗岩石英等,其中4N以上中高端高纯石英可能为非成矿花岗伟晶岩。高纯石英矿床形成的地质背景、物质组成、物质来源、控制因素等与成矿有关的理论,即建立高纯石英成矿模型,可能是中国高纯石英矿床的找矿勘查突破的基础。这些研究除了能够很好地指导高纯石英找矿,同时也是示踪钨、锡、铌、钽和锂等金属矿床岩浆–热液演化过程的关键。中国高纯石英地质勘查处于起步阶段,笔者总结近年攻关中国高纯石英找矿勘查理论和技术研究,以供同行参考。
Abstract:At present, China's high-grade high-purity quartz (above 4N8) completely depends on imports. High-purity quartz is a strategic mineral to ensure the safety of chip, optical fiber, photovoltaic and high-end devices in China. In this paper, related references on the distribution characteristics of impurity elements in quartz are reviewed and summarized. The medium and high-grade high-purity quartz is mainly isomorphism, mainly including B, Li, Al, Ge, Ti, Fe, Mn, K and P elements. The prospecting directions of high purity quartz in China are as follows: hydrothermal vein quartz, metamorphic recrystallized quartz, greisen and quartz vein of tungsten-tin deposit, granite pegmatite quartz and highly differentiated evolution granite quartz. The high-grade high-purity quartz above 4N may be from non-metallogenic granite pegmatite. The geological background, quartz composition and source, controlling factors and other metallogenic theories related to the formation of high-purity quartz deposits, i.e. modelling the mineralisation of high purity quartz, are the basis for the breakthrough in prospecting and exploration of high-purity quartz deposits in China. All these not only indicate the prospecting of high-purity quartz, but also trace the magmatic-hydrothermal evolution for tungsten, tin, niobium, tantalum, lithium and other metal deposits. The geological exploration for high-purity quartz is in its infancy in China. This paper is a preliminary summary of the studies on exploration of high-purity quartz in the past years.
-
Keywords:
- quartz /
- impurity element /
- prospect of high purity quartz deposit
-
蒸汽辅助重力泄油(SAGD)是重油油藏开发的一项关键技术。该技术通过在水平生产井上方部署注入井持续注入高温蒸汽,形成高温蒸汽腔,在改善地下油藏的流动性的同时其前缘以热传导的形式增加地下岩石局部的孔隙压力,导致岩石发生微破裂,其破裂能量以弹性波的形式进行传播,这种现象也被称为“热凯赛尔效应”( 李彦平等,2003;董宏等,2017)。SAGD快速预热技术利用短时间、人工精细调节的高压蒸汽注入,在SAGD的生产井和注汽井之间形成一个高孔隙度和高渗透率的扩容区域,从而提早建立生产井和注入井的均匀连通。这项技术能大大的缩短SAGD生产的预热周期,解决注汽量大、阶段能耗大、地面循环返出液处理压力大、建产慢等多种问题。
微地震监测技术可以连续监测热蒸汽注入过程中诱发地震事件在时间和空间域的动态变化,通过反演的震源空间与震级能量的分布,可描述高温蒸汽腔体的几何形态、均匀程度和形成过程,预测蒸汽腔前缘扩展速度与扩展规律,从而为重油油田的注采参数调整、开采方案的决策和优化提供理论依据(宋维琪,2014;杨瑞召,2017;李萌,2020)。震源定位是微地震监测的核心技术,其结果直接影响蒸汽腔体几何形态和扩展规律的预测精度。目前,常规的微地震震源定位方法需要拾取准确的初至,通过射线追踪最小化拾取与计算初至之差来获取震源的位置(Wang et al.,2016;Li et al.,2019a)。然而,实际采集的SAGD微地震数据普遍包含强噪声干扰,难以拾取准确可靠的初至,降低了基于初至信息定位方法的精度和可靠性。
微地震逆时干涉震源定位技术(TRI)基于逆时偏移原理,同时利用微地震波场的运动学和动力学特征,通过有限差分或相移法进行波场的逆时延拓并施加一定的成像条件来获取震源的位置和起震时刻。该方法无需拾取震相走时,避免了人工拾取初至引入的定位误差,是一种适用于低信噪比微地震监测数据的震源定位方法(Gajewski,2005;Artman et al.,2010;Maxwell,2015;李萌等,2016)。近年来,优化改进逆时干涉定位成像条件以获取高精度震源定位结果成为了研究热点。Zhu(2014)在粘弹性介质中对逆时干涉定位法进行了介质固有衰减的校正,但忽略了散射衰减对定位的影响。Douma等(2015)利用地震勘探反褶积思想提高了逆时干涉定位的空间和时间分辨率。Nakata等(2016)对各接收器波场进行独立逆时传播并将这些子波场的乘积作为最终的干涉波场从而提高定位结果的聚焦性。Li等(2019b)采用多尺度双树复小波变换将原始数据分解到多个时频域分别进行逆时干涉,选择有效尺度TRI的乘积压制了稀疏观测系统引起的成像假象。Li等(2021)引入二维VTI介质波场解耦算法,采用解耦qP和SV波场的自相关和互相关压制了耦合波场互相干涉引起的定位成像假象,提高了逆时干涉震源定位的精度。大量研究表明,逆时干涉震源定位在速度模型合理的情况下,对低信噪比微地震监测数据具有较高的定位精度。
笔者优选风城油田八道湾组超稠油油藏的一组SAGD快速预热注入与生产井组进行为期5天的微地震井中监测,采用逆时干涉定位算法成功实现弱诱发地震事件的震源定位,以此估算不同注入时期的蒸汽腔体在空间的几何展布形态,得到其在水平方向和深度方向的扩展规律,分析岩性夹层和非均质性对蒸汽腔体延伸形态的影响,为该地区SAGD重油油田开发方案的布置与优化奠定基础。
1. 观测系统布置方案
研究区块位于准噶尔盆地西部隆起乌夏断裂带、夏红北断裂上盘的风城油田重58井区,其整体构造形态为被断裂切割的南倾单斜,南部发育断裂,走向近东西向,倾向向北。区块目的层为受构造和岩性控制的单斜超稠油油藏,岩性以砾砂岩为主,油质稠,原油粘度较高,储层物性较差(何文军等,2023)。研究区块优选I井作为高温蒸汽注入井,P井为生产井,F井为微地震监测井,布置8级井下三分量检波器,进行为期5天的井中监测,实时记录高温蒸汽注入时的诱发地震信号。项目选取邻井S井布置射孔信号,校正井下检波器水平分量的方位(图1)。图1a中红色轨迹为选取的井中微地震监测的SAGD快速预热井组。图1b中红色三角为三分量检波器,蓝色星形为射孔点。观测系统以监测井井口坐标为坐标原点,检波器阵列中点距离SAGD井组小于500 m,满足井中微地震监测条件。
2. 井中微地震逆时干涉震源定位方法
传统的微地震震源定位方法需要拾取准确的纵波和横波初至,采用网格搜索法通过三维射线追踪最小化拾取初至与理论初至之差来推断震源的位置。这类方法的定位精度强烈依赖于拾取初至的准确性,在SAGD快速预热中产生的低信噪比微地震监测中难以取得满意的震源定位结果。逆时干涉震源定位方法基于三维弹性波波动方程,能够同时利用微地震波场的运动学和动力学特征。这类方法通过在检波器位置逆时加载实际记录的原始波形,当速度模型合理时,各检波器逆时传播的微地震波场能量会在真实震源位置干涉叠加到达最大值,该成像最大能量所对应的网格即为震源位置。这类方法无需拾取纵波与横波初至,避免了人工拾取初至引入的定位误差,适用于SAGD快速预热中产生的低信噪比微地震事件的定位。
微地震逆时干涉震源定位算法的基本假设为波场互易原理及弹性波动方程在非耗散介质中的时不变性。该方法以检波器作为震源,以实际接收的微地震原始数据作为震源子波,采用时间域或频率域有限差分或有限元方法进行波场的逆时重构,通过施加合适的成像条件获取逆时干涉震源定位成像,拾取定位成像在空间分布的极大值即可估算震源的位置。以二维弹性波方程为例,由下式估算每个时间步长逆时传播的波场:
$$ \rho \frac{{{\partial ^2}{\mathbf{u}}}}{{\partial {t^2}}} - (\lambda + 2\mu )\nabla \nabla \cdot {\mathbf{u}} + \mu \nabla \times \nabla \times {\mathbf{u}} = {\mathbf{d}}(x,z,T - t) $$ (1) 式中:d为接收到的微地震波形数据;t为时间步长;T为逆时延拓的总时长;
$ \lambda 和\mu $ 为拉梅系数;$ \rho $ 为介质密度;u为重构的逆时波场。为了保证逆时传播的波场能量最终能够收敛,T可设置为微地震主事件波形持续时间的2倍。目前,常用的成像条件是通过选定时间窗口逆时延拓波场模的积分作为成像条件,从而消除时间轴,得到只与空间位置相关的逆时干涉定位成像:$$ I(x,z) = \int\limits_{{T_1}}^{{T_2}} {|{\mathbf{u}}|dt} $$ (2) 式中:|u|为逆时波场的模;T1和T2为起始时刻和终止时刻;I为成像函数,逆时干涉定位成像的最大值即为推断的震源位置(x0,z0)。震源的起震时刻为逆时延拓波场在震源位置最大能量所对应的时刻如公式(3)所示。
$$ {t_0} = \max [{\mathbf{u}}({x_0},{z_0},t)] $$ (3) 微地震事件的震级采用公式(4)进行估算矩震级Mw。
$$ {M_w} = \frac{2}{3}{\log _{10}}({M_0}) - 6.06 $$ (4) 式中:M0为地震矩,可由地震波形的振幅谱进行估算,如公式(5)所示。
$$ {M_0} = \frac{{4\pi \rho {v^3}r{W_0}}}{U} $$ (5) 式中:v为波形速度;r为震源到接收器的距离;ρ为密度;U为震源辐射特性;W0为振幅谱的低频截止值。对于以剪切应力为主的震源可近似取Up = 0.52和Us = 0.63。由于单垂直井的微地震监测系统缺乏水平方向上对震源位置的约束,其逆时干涉震源定位成像在x–y平面为以检波器为中心、以震源至检波器距离为半径的圆,该圆上任何一点都是潜在的震源位置。因此,为了避免方位不确定性,采用微地震事件P波的偏振方向作为约束,选择距离热蒸汽注入中心较近的震源为最终确定的震源位置。图2为井中微地震监测不同时刻逆时延拓的波场快照,当波场传播至起震时刻时,逆时传播的波场会在真实的震源位置处干涉叠加至最大值。由于观测系统仅能采集到来自震源一侧的信息,因此震源逆时干涉定位成像为一个椭圆区域而非一个完美的点,该区域的大小为评价定位不确定性提供了理论依据。
3. SAGD快速预热微地震逆时干涉震源定位结果分析
3.1 SAGD快速预热微地震事件空间分布分析
实际采集的SAGD快速预热期间产生的微地震典型波形显示(图3),蓝、红和黑实线分别为同一道检波器的X、Y和Z分量波形,黑虚线与蓝虚线分别为拾取的纵波和横波初至。由于SAGD快速预热期间流体注入的压力较小,因此产生的微地震有效事件波形幅度较弱且包含强噪声干扰。尤其是部分纵波初至被湮没在背景噪声之中,难以准确地拾取,使得基于初至信息的常规定位方法可靠性较低。因此,笔者采用三维弹性波逆时干涉震源定位算法,对5天的SAGD高温蒸汽快速预热井中微地震监测数据进行处理,成功定位了33个有效的微地震事件。逆时干涉震源定位采用监测井F井的声波测井曲线,对监测目的层段进行速度分层,建立一维P波层状速度模型(图4a)。由于缺失横波测井信息,S波速度模型由P波速度模型与研究区域的纵横波比经验值进行估算。
本次研究的检波器安置在近似垂直的监测井中,缺乏在水平面上对震源位置的约束。因此,笔者采用微地震有效事件P波的偏振方向作为震源的方向,以该方向高斯射线束与逆时干涉定位成像x–y切片的乘积作为最终的成像结果(图4b)。由于单垂直井监测观测系统的震源定位结果具有180°的不确定性,来自真实震源位置和其关于检波器中心对称的位置都有可能是潜在的震源。为解决这个问题,以SAGD注入井的注入中心(图4b中的红星)为基准,近似认为与注入中心距离较近的成像椭圆的中心为真实的震源位置(图4b中的红圈)。图4c该事件三维弹性波逆时干涉震源定位结果在震源y坐标的x–z切片结果(图4c)。受制于稀疏的检波器阵列,逆时干涉成像在检波器阵列存在成像假象。由于SAGD井组的整体深度与检波器阵列存在一定的深度偏差,因此该成像假象不足以干扰真实震源位置的识别。
拾取所有事件逆时干涉震源定位成像最大能量所对应的位置作为估算的震源空间坐标,得到SAGD快速预热期间的微地震震源空间分布(图5)。由此可粗略估算此次注入预热产生的裂缝缝长为570.19 m,缝高为10.56 m,裂缝波及宽度为127.85 m,裂缝总体延伸方位为NE 95.21°,扩容蒸汽腔体的体积为7.7×105 m3。根据震源位置的空间分布得到以下几点认识。
(1)I井水平段垂深之上的事件有10个,占总数的30.3%,即 I井上方的非均质物性夹层(不均匀泥岩夹层)发育较多微地震事件,说明I井上方储层产生了较多的微裂缝,已经达到了储层预热改造的目的。
(2)I井与P井水平段垂深之间的事件有18个,占总数的54.6%,说明I井与P井之间已经连通。
(3)J1b油层顶界面之上的事件有0个,说明扩容区域有部分未延伸至油层顶界面。
(4)J1b油层底界面之下的事件有2个,说明扩容区域有小部分延伸至油层底界面。
(5)以I井水平段在水平面的投影为界,I井水平段以北有19个微地震事件,I井水平段以南有14个微地震事件,说明预热期间水平段以北更容易发生破裂、预热效果较好,而水平段以南由于存在非均匀夹层,使得微地震事件个数降低。
3.2 SAGD快速预热微地震空间分布动态分析
SAGD快速预热高温蒸汽注入每天所产生诱发微地震事件分布显示(图6,表1),扩容之前(9月25日)由于排量和压力较小,未能观测到有效的微地震事件;第一阶段扩容(9月25日~ 9月27日)期间,压力和排量增大,地层孔隙压力局部集中导致地层开始破裂,其对应的微地震事件个数急剧增加,这段时间微地震事件个数为23,占总数的69.7%;第二阶段扩容(9月28日04点~9月28日18点)对应的微地震事件个数为10个,占总数的30.3%;9月28日18点停泵,再未观测到微地震事件。
表 1 SAGD蒸汽腔几何参数随时间变化表Table 1. Geometric parameters of SAGD steam chamber with various date日期 蒸汽腔网络长(m) 蒸汽腔网络宽(m) 蒸汽腔网络高(m) 蒸汽腔
网络方位累积事
件个数蒸汽腔体积(m3) 9月25日 215.14 51.64 1.04 NE113.78° 4 0.11×105 9月26日 296.26 100.91 2.31 NE98.10° 11 0.69×105 9月27日 570.32 107.04 5.24 NE95.99° 23 3.20×105 9月28日 570.19 127.85 10.56 NE95.21° 33 7.70×105 为进一步分析高温蒸汽注入期间形成蒸汽腔体的发育情况,分别展示9月25日至9月28日的累积微地震事件空间分布(图7、图8)。图中不同颜色的圆点代表不同日期新增的微地震事件。9月25日开始压力和排量增大,地层开始发生破裂,此时的微地震事件主要集中在I井的水平段中心附近;9月26日,扩容段进一步增加,扩容区域沿着I井水平段进行延伸,此时微地震事件已经向上延伸,但还未延伸至油层顶界面;9月27日,扩容区域在水平方向上已经趋于稳定,在垂直方向上进一步延伸,且I井和P井已经连通;9月28日,随着第二段扩容,P井之下开始出现微地震事件,扩容区域向下延伸至油层底界面。
3.3 SAGD快速预热微地震能量分布动态分析
采用公式(4)和公式(5)计算已定位微地震有效事件的矩震级,对不同日期的震级能量进行三维插值和平滑,得到注入期间蒸汽腔体震源能量的动态变化(图9、图10)。其中红色区域为震级较强的部分,蓝色为震级较弱的部分。由图可知,以I井水平段为界,微地震能量分布在I井南北方向分布并不对称,其中北部事件较多、能量较为集中,这与北部微地震事件多而南部微地震事件少有关。整体上看,扩容区域按照震级大小大致可分为2个部分,如图9和图10d的虚线所示。两根虚线中间的区域震级较小,而两边的区域震级能量较大,这与本次监测的观测系统有关,在距离检波器阵列较远的位置只有震级能量较大的事件才能被接收,而震级较小的微地震事件在高温蒸汽腔中快速衰减,难以被监测。
4. 结论
(1)井中三维弹性波逆时干涉震源定位算法适用于SAGD快速预热产生的弱微地震有效事件震源定位,能够提供高精度的震源空间分布形态。高温蒸汽注入形成的蒸汽腔体长度为570.19 m,高度为10.56 m,宽度为127.85 m,长宽比为4.5,总体延伸方位为NE 95.21°,由此可粗略估算此次注入预热的扩容区域为7.7×105 m3。
(2)监测结果表明,I井上方储层产生了较多的微裂缝,已击破I井上方的非均质物性夹层,达到I井上方储层改造的目的;I井与P井之间已经连通,且扩容区域已部分延伸至油层底界面,但是未延伸至油层顶界面。
(3)SAGD快速预热期间产生的微地震能量在I井南北方向分布并不对称,以I井水平段为界,北部的微地震能量较为集中且事件个数更多,表明蒸汽腔体在I井水平段北部延伸更广。
致谢:本次研究由陕西省自然科学基础研究计划面上资助项目(2023-JC-YB-220)资助,中石油新疆油田分公司提供了宝贵数据资料。
-
图 1 石英(SiO2)同质多像变体的热力学稳定范围(据潘兆橹,1993;Swamy et al.,1994;Presnall,1995修)
Figure 1. Thermodynamic stability range of quartz (SiO2) homomorphic polymorphs
图 2 石英矿物晶格杂质元素类质同象分布示意图(据Götze,2009修改)
Figure 2. Schematic diagram of isomorphic distribution of impurity elements in quartz mineral lattic
图 3 黄玉花岗岩中石英的SEM-CL图像(Müller et al.,2003a)
a.石英斑晶(qz1),紧挨着另一期石英微斑晶(qz2); b.石英斑晶中的环带结构;c.大斑晶(3 mm),具有明亮(蓝色)、再吸收(圆形)生长区;d.斑岩中的两个相邻斑晶,右边的斑晶阻碍了左边斑晶的生长;所有石英晶体中的小而不规则的黑色区域都是岩浆后新结晶
Figure 3. SEM-CL images of quartz in the topaz-bearing granites of the Hub stock
图 4 不同类型热液石英的CL图像和相关发射光谱(Götze,2009)
a.石英晶体初始CL; b.电子辐照60 s后的CL,显示从蓝色变为褐色; c.400 nm和650 nm发射光的照下石英的发光行为;d.分带热液石英晶体; e. 玛瑙; f.由580 nm发射带引起的黄色CL
Figure 4. CL images and related emission spectra of different kinds of hydrothermal quartz
表 1 石英矿物系列表(Götze,2009)
Table 1 Quartz mineral series
矿物族 矿物 晶系 石英-磷石英-
方石英组
(表生或者低压)水晶(普通石英) 三方晶系 高温石英 六方晶系 磷石英 单斜晶系 高温磷石英 六方晶系 方石英 正方晶系 高温方石英 立方晶系 硫方石英 立方晶系 纤石英 斜方晶系 斜硅石 单斜晶系 热液石英-柯石英-
斯石英组
(高温和超高压)热液石英 正方晶系 柯石英 单斜晶系 斯石英(超石英) 正方晶系 Seifertite
(陨石撞击成因)斜方晶系 焦石英-蛋白石组
(非晶质)焦石英 天然玻璃 蛋白石 含水,固态SiO2凝胶 -
高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 027(02): 417-432 GAO Xiaoying, ZHENG Yongfei. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2): 417-432.
顾真安, 同继锋, 崔源声. 建材非金属矿产资源强国战略研究[J]. 中国工程科学, 2019, 21(01): 104-112 doi: 10.15302/J-SSCAE-2019.01.015 Gu Zhenan, Tong Jifeng, Cui Yuansheng, et al. Strategic Research on Nonmetallic Mineral Resources for Building Materials in China. Strategic Study of CAE, 2019, 21(01): 104-112. doi: 10.15302/J-SSCAE-2019.01.015
郭文达, 韩跃新, 朱一民, 等. 高纯石英砂资源及加工技术分析[J]. 金属矿山, 2019, (02): 22-28 GUO Wenda, HAN Yuexin, ZHU Yimin, et al. Analysis of High-purity Quartz Sand Resources and It’s Processing Technologies[J]. Metal Mine, 2019, 48(02): 22-28.
贺贤举, 管俊芳, 陈志强, 等. 安徽某地石英矿的工艺矿物学研究[J]. 硅酸盐通报, 2018, 37(08): 2543-2547+2554. HE Xianju, GUAN Junfang, CHEN Zhiqiang, et al. Study on Process Mineralogy of Quartz Ore in Anhui Province[J]. Bulletin Of The Chinese Ceramic Society, 2018, 37(8): 2543-2547.
焦丽香. 我国脉石英资源开发利用现状及供需分析[J]. 中国非金属矿工业导刊, 2019, (02): 11-14 doi: 10.3969/j.issn.1007-9386.2019.02.004 JIAO Lixiang. Current Situation and Supply Demand Analysis of the Development and Utiliza- tion of Vein Quartz Resources in China[J]. China Non-Metallic Minerals Industry, 2019, (02): 11-14. doi: 10.3969/j.issn.1007-9386.2019.02.004
刘国库, 张文军, 马正先, 等. 硅石选矿提纯工艺研究现状[J]. 有色矿冶, 2007, (06): 26-30 doi: 10.3969/j.issn.1007-967X.2007.06.008 LIU Guoku, ZHANG Wenjun, MA Zhengxian, et al. Present Situation of Researching on Purifying Silica by Mineral Processing[J]. Nonferrous Mining and metallurgy, 2007, (06): 26-30. doi: 10.3969/j.issn.1007-967X.2007.06.008
李金超, 栗亚芝, 孔会磊. 中国高纯石英产业链现状及发展建议[J]. 西北地质, 2023, 56(5): 214−222. doi: 10.12401/j.nwg.2023119 LI Jinchao, LI Yazhi, KONG Huilei. Current Situation and Development Suggestions of China’s High−Purity Quartz Industry Chain[J]. Northwestern Geology, 2023, 56(5): 214−222. doi: 10.12401/j.nwg.2023119
潘兆橹. 结晶学及矿物学[M]. 北京: 地质出版社, 1993 PAN Zhaolu. Crystallography and Mineralogy [M]. The Geological Publishing House, 1993.
申士富. 高纯石英砂研究与生产现状[J]. 中国非金属矿工业导刊, 2006, (05): 13-16 doi: 10.3969/j.issn.1007-9386.2006.05.004 SHEN Shifu. The Actuality of Study and Manufacture in Higher Purity Quartz[J]. China Non-Metallic Minerals Industry, 2006, (05): 13-16. doi: 10.3969/j.issn.1007-9386.2006.05.004
孙亚东, 严奉林. 不同成因类型石英与石英玻璃气泡缺陷间关系探讨[J]. 江苏地质, 2005, 29(4): 204-206 SUN Yadong, YAN Fenglin. Discussions on bubble defect relationship of quartz and quartz glass of different origins[J]. Journal of Geology, 2005, 29(4): 204-206.
唐宏, 张辉. 可可托海3号伟晶岩脉石英中微量元素组成特征与岩浆-热液演化[J]. 矿物学报, 2018, 0(1): 15-24 TANG Hong, ZHANG Hui. Characteristics of Trace Elements in Quartz from No. 3 Pegmatite, Koktokay area, Xinjiang Autonomous Region, China and implication for Magmatic-Hydrothermal Evolution[J]. Acta Mineralogica Sinica, 2018, 0(1): 15-24.
田冲, 寿立永, 崔拥军, 等, 南秦岭安康地区高纯石英用脉石英矿特征及质量影响因素[J]. 岩石矿物学杂志, 2022, 41(6): 1147~1158 doi: 10.3969/j.issn.1000-6524.2022.06.009 TIAN Chong, SHOU Liyong, CUI Yongjun, et al. Characteristics and quality influencing factors of vein quartz deposit for high- purity quartz in Ankang area, South Qinling Mountains[J]. Acta Petrologica et Mineralogica, 2022, 41(6): 1147~1158. doi: 10.3969/j.issn.1000-6524.2022.06.009
王勇. 西藏班公湖-怒江成矿带西段角西钨矿床成矿作用及找矿预测[D].北京: 中国地质大学(北京), 2020. WANG Yong. Metallogenesis and Prospecting Prediction of Jiaoxi Tungsten Deposit in the Western Section of the Bangong Lake Nujiang Metallogenic Belt, Tibet [D]. Beijing: China University of Geosciences (Beijing), 2020.
吴蒙, 秦云虎, 王晓青, 等. 宁东地区晚古生代煤中硫的地化特征及其对有害元素富集的影响[J]. 煤炭学报, 2020: 1-14. WU Meng, QIN Yunhu, WANG Xiaoqing, et al. Geochemical characteristics of sulfur and its impact on accumulation of hazardous trace elements in late Paleozoic coal from Ningdong area[J]. Journal of China Coal Society, 2020, 45(S2): 932-942.
杨晓勇, 孙超, 曹荆亚, 等. 高纯石英的研究进展及发展趋势[J]. 地学前缘, 2022, 29(1): 231-244 YANG Xiaoyong, SUN Chao, CAO Jingya, et al. High purity quartz: Research progress and perspective review[J]. Earth Science Frontiers, 2022, 29(1): 231-244.
张海啟, 朱黎宽, 赵海波, 等. 河南卢氏龙泉坪伟晶岩型高纯石英矿床的首次发现及找矿意义[J]. 矿产保护与利用, 2022a, 42(4): 153-158 ZHANG Haiqi, ZHU Likuan, ZHAO Haibo, et al. First Discovery of the Longquanping Pegmatitic High-purity Quartz Deposit in the Area of Lushi, Henan: Implications for Exploration[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 153-158.
张海啟, 谭秀民, 马亚梦, 等. 新疆阿尔泰伟晶岩型高纯石英矿床地质特征及4N8级产品制备技术[J]. 矿产保护与利用, 2022b, 42(5): 1-7. ZHANG Haiqi, TAN Xiumin, MA Yameng, et al. Geological characteristics of pegmatite type high-purity quartz in altai, xinjiang and preparation technology of 4N8 grade products[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 1−7.
张晔. 美国Spruce Pine和新疆阿尔泰伟晶岩地质—地球化学特征和高纯石英成矿前景[D]. 南京: 南京大学, 2010. ZHANG Ye. Geological and geochemical characteristics of the Spruce Pine pegmatite in the United States and the prospect of high-purity quartz mineralization in Altay, Xinjiang[D]. Nanjing: Nanjing University, 2010.
张晔, 陈培荣. 美国Spruce Pine与新疆阿尔泰地区高纯石英伟晶岩的对比研究[J]. 高校地质学报, 2010, 16(4): 426-435 doi: 10.3969/j.issn.1006-7493.2010.04.002 ZHANG Ye, CHEN Peirong. Characteristics of Granitic Pegmatite with High-Purity Quartz in Spruce Pine Region, USA and Altay Region of Xinjiang, China[J]. Geological Journal of China Universities, 2010, 16(4): 426-435. doi: 10.3969/j.issn.1006-7493.2010.04.002
周永恒, 顾真安. 石英玻璃原料矿的流体包裹体特征[J]. 矿物学报, 2002, 22(2), 143–146 doi: 10.3321/j.issn:1000-4734.2002.02.008 ZHOU Yongheng, GU Zhenan. Characteristics of Fluid Inclusions in Raw Minerals for Quartz Glass[J]. Acta Mineralogica Sinica| Acta Mineral Sin, 2002, 22(2), 143–146. doi: 10.3321/j.issn:1000-4734.2002.02.008
Ackerson M R, Tailby N D, Watson E B. Trace elements in quartz shed light on sediment provenance[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1894-1904. doi: 10.1002/2015GC005896
Beurlen H, Muller A, Silva D, et al. Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil[J]. Mineralogical Magazine, 2011, 75(5): 2703-2719. doi: 10.1180/minmag.2011.075.5.2703
Breiter K, Ackerman L, Dǔrišová J, Svojtka M, Novák M. Trace element composition of quartz from different types of pegmatites: A case study from the Moldanubian Zone of the Bohemian Massif (Czech Republic)[J]. Mineralogical Magazine, 2014, 78(3): 703-722. doi: 10.1180/minmag.2014.078.3.17
Breiter K, Ackerman L, Svojtka M, Müller A. Behavior of trace elements in quartz from plutons of different geochemical signature: A case study from the Bohemian Massif, Czech Republic[J]. Lithos, 2013, 175-176: 54-67. doi: 10.1016/j.lithos.2013.04.023
Breiter K, Ďurišová J, Dosbaba M. Quartz chemistry – A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Ore Geology Reviews, 2017, 90: 25-35. doi: 10.1016/j.oregeorev.2017.10.013
Breiter K, Müller A. Evolution of rare-metal granitic magmas documented by quartz chemistry[J]. European Journal of Mineralogy, 2009, 21(2): 335-346. doi: 10.1127/0935-1221/2009/0021-1907
Bruhn F, Bruckschen P, Meijer J, Stephan A, Richter D K, Veizer J. Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE; implications for diagenetic and provenance studies in sandstone[J]. The Canadian Mineralogist, 1996, 34(6): 1223-1232.
Černý P, Ercit T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005
Demars C, Pagel M, Deloule E, Blanc P. Cathodoluminescence of quartz from sandstones; interpretation of the UV range by determination of trace element distributions and fluid-inclusion PTX properties in authigenic quartz[J]. AMERICAN MINERALOGIST, 1996, 81(7-8): 891-901. doi: 10.2138/am-1996-7-812
Dennen W. Trace elements in quartz as indicators of provenance[J]. Geological Society of America Bulletin, 1967, 78(1): 125−130.
Dennen W H. Impurities in quartz[J]. Geological Society of America Bulletin, 1964, 75(3): 241-246. doi: 10.1130/0016-7606(1964)75[241:IIQ]2.0.CO;2
Dennen W H. Stoichiometric substitution in natural quartz[J]. Geochimica Et Cosmochimica Acta, 1966, 30(12): 1235-1241. doi: 10.1016/0016-7037(66)90122-0
Douce A E P. Titanium substitution in biotite: an empirical model with applications to thermometry, O 2 and H 2 O barometries, and consequences for biotite stability[J]. Chemical Geology, 1993, 108(1–4): 133-162. doi: 10.1016/0009-2541(93)90321-9
Fanderlik I. Silica glass and its application [M]. Elsevier, 1991.
Flem B, Larsen R B, Grimstvedt A, Mansfeld J. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 182(2-4): 237-247. doi: 10.1016/S0009-2541(01)00292-3
Götte T. Trace element composition of authigenic quartz in sandstones and its correlation with fluid–rock interaction during diagenesis[J]. Geological Society, London, Special Publications, 2018, 435(1): 373-387. doi: 10.1144/SP435.2
Götte T, Ramseyer K. Trace element characteristics, luminescence properties and real structure of quartz [A]. Quartz: Deposits, Mineralogy and Analytics[M]. Springer, 2012, 265−285.
Götte T, Ramseyer K, Pettke T, Koch‐Müller M. Implications of trace element composition of syntaxial quartz cements for the geochemical conditions during quartz precipitation in sandstones[J]. Sedimentology, 2013, 60(5): 1111-1127. doi: 10.1111/sed.12024
Götze J. Chemistry, textures and physical properties of quartz–geological interpretation and technical application[J]. Mineralogical Magazine, 2009, 73(4): 645-671. doi: 10.1180/minmag.2009.073.4.645
Götze J, Lewis R. Distribution of REE and trace elements in size and mineral fractions of high-purity quartz sands[J]. Chemical Geology, 1994, 114(1-2): 43-57. doi: 10.1016/0009-2541(94)90040-X
Götze J, Pan Y, Müller A, Kotova E, Cerin D. Trace element compositions and defect structures of high-purity quartz from the southern Ural region, Russia[J]. Minerals, 2017, 7(10): 189. doi: 10.3390/min7100189
Götze J, Plöetze M. Investigation of trace-element distribution in detrital quartz by Electron Paramagnetic Resonance (EPR)[J]. European Journal Of Mineralogy: 1997, 529-538.
Götze J, Plötze M, Graupner T, Hallbauer D K, Bray C J. Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography[J]. Geochimica Et Cosmochimica Acta, 2004, 68(18): 3741-3759. doi: 10.1016/j.gca.2004.01.003
Götze J, Plötze M, Habermann D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz–a review[J]. Mineralogy And Petrology, 2001, 71(3-4): 225-250. doi: 10.1007/s007100170040
Götte T, Pettke T, Ramseyer K, Koch-Müller M, Mullis J. Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics[J]. American Mineralogist, 2011, 96(5-6): 802-813. doi: 10.2138/am.2011.3639
Hallbauer D. The use of selected trace elements in vein quartz and quartz pebbles in identifying processes of formation and source rocks[J]. Geologcal Society of South Africa, 1992, 24: 157-159.
Henry D J. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms : American Mineralogist[J]. American Mineralogist, 2005, 90(2-3): 316-328. doi: 10.2138/am.2005.1498
Herrera R, Heurtebise M. Neutron activation analysis of trace elements in quartz sands: Its possibilities in the assessment of provenance[J]. Chemical Geology, 1974, 14(1): 81-93.
Hervig R L, Peacock S M. Implications of trace element zoning in deformed quartz from the Santa Catalina mylonite zone[J]. The Journal of Geology, 1989, 97(3): 343-350. doi: 10.1086/629307
Huang R, Audétat A. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration[J]. Geochimica Et Cosmochimica Acta, 2012, 84: 75-89. doi: 10.1016/j.gca.2012.01.009
Jacamon F, Larsen R B. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation[J]. Lithos, 2009, 107(3-4): 281-291. doi: 10.1016/j.lithos.2008.10.016
Jourdan A-L, Vennemann T, Mullis J, Ramseyer K. Oxygen isotope sector zoning in natural hydrothermal quartz[J]. Mineralogical Magazine, 2009a, 73(4): 615-632. doi: 10.1180/minmag.2009.073.4.615
Jourdan A-L, Vennemann T W, Mullis J, Ramseyer K, Spiers C J. Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins[J]. European Journal Of Mineralogy, 2009b, 21(1): 219-231. doi: 10.1127/0935-1221/2009/0021-1881
Kraishan G, Rezaee M, Worden R, Morad S. Significance of trace element composition of quartz cement as a key to reveal the origin of silica in sandstones: an example from the Cretaceous of the Barrow sub-basin, Western Australia[J]. Special Publication-International Association Of Sedimentologists, 2000, 29: 317-332.
Landtwing M R, Pettke T. Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz[J]. American Mineralogist, 2005, 90(1): 122-131. doi: 10.2138/am.2005.1548
Larsen R B, Henderson I, Ihlen P M, Jacamon F. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway[J]. Contributions To Mineralogy And Petrology, 2004, 147(5): 615-628. doi: 10.1007/s00410-004-0580-4
Larsen R B, Polve M, Juve G. Granite pegmatite quartz from Evje-Iveland: trace element chemistry and implications for the formation of high-purity quartz[J]. Norges Geologiske Undersokelse, 2000, 436: 57-66.
Lehmann G, Bambauer H U. Quartz crystals and their colors[J]. Angewandte Chemie International Edition in English, 1973, 12(4): 283-291. doi: 10.1002/anie.197302831
Lehmann K, Berger A, Gotte T, Ramseyer K, Wiedenbeck M. Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL-and SEM-CC-imaging[J]. Mineralogical Magazine, 2009, 73(4): 633-643. doi: 10.1180/minmag.2009.073.4.633
Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin D J, Stenina N G, Kronz A. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits[J]. Mineralium Deposita, 2010, 45(7): 707-727. doi: 10.1007/s00126-010-0302-y
Müller A, Ihlen P M . Trace elements of pegmatitic quartz and their regional distribution in two pegmatite fields of southern Norway [C]. Springer, 2012, 445−451.
Müller A, Ihlen P M, Snook B, Larsen R B, Flem B, Bingen B, Williamson B J. The chemistry of quartz in granitic pegmatites of southern Norway: Petrogenetic and economic implications[J]. Economic Geology, 2015, 110(7): 1737-1757. doi: 10.2113/econgeo.110.7.1737
Müller A, Ihlen P M, Wanvik J E, Flem B. High-purity quartz mineralisation in kyanite quartzites, Norway[J]. Mineralium Deposita, 2007, 42(5): 523-535. doi: 10.1007/s00126-007-0124-8
Müller A, Kronz A, Breiter K. Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesí Granite System (Krušne Hory, Czech Republic)[J]. Bulletin of the Czech Geological Survey, 2002, 77(2): 77-76.
Müller A, René M, Behr H-J, Kronz A. Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovský Les Mts. , Czech Republic)[J]. Mineralogy And Petrology, 2003a, 79(3-4): 167-191. doi: 10.1007/s00710-003-0238-3
Müller A, Wiedenbeck M, KERKHOF A M V D, Kronz A, Simon K. Trace elements in quartz-a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study[J]. European Journal Of Mineralogy, 2003b, 15(4): 747-763. doi: 10.1127/0935-1221/2003/0015-0747
Mao W, Rusk B, Yang F, Zhang M. Physical and chemical evolution of the dabaoshan porphyry mo deposit, South China: Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz[J]. Economic Geology, 2017, 112(4): 889-918. doi: 10.2113/econgeo.112.4.889
Mao W, Zhong H, Zhu W-G, Lin X-G, Zhao X-Y. Magmatic-hydrothermal evolution of the Yuanzhuding porphyry Cu-Mo deposit, South China: Insights from mica and quartz geochemistry[J]. Ore Geology Reviews, 2018, 101: 765-784. doi: 10.1016/j.oregeorev.2018.08.016
McCarthy T, Hasty R. Trace element distribution patterns and their relationship to the crystallization of granitic melts[J]. Geochimica Et Cosmochimica Acta, 1976, 40(11): 1351-1358. doi: 10.1016/0016-7037(76)90125-3
Miyoshi N, Yamaguchi Y, Makino K. Successive zoning of Al and H in hydrothermal vein quartz[J]. American Mineralogist, 2005, 90(2-3): 310-315. doi: 10.2138/am.2005.1355
Monecke T, Kempe U, Götze J. Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study[J]. Earth And Planetary Science Letters, 2002, 202(3-4): 709-724. doi: 10.1016/S0012-821X(02)00795-1
Monnier L, Lach P, Salvi S, Melleton J, Bailly L, Beziat D, Monnier Y, Gouy S. Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France[J]. Lithos, 2018, 320: 355-377.
Muller A, Knies J. Trace elements and cathodoluminescence of detrital quartz in Arctic marine sediments-a new ice-rafted debris provenance proxy[J]. Climate of the Past, 2013, 9(6): 2615-2630. doi: 10.5194/cp-9-2615-2013
Perny B, Eberhardt P, Ramseyer K, Mullis J, Pankrath R. Microdistribution of Al, Li, and Na in α quartz: Possible causes and correlation with short-lived cathodoluminescence[J]. American Mineralogist, 1992, 77(5-6): 534-544.
Peterková T, Dolejš D. Magmatic-hydrothermal transition of Mo-W-mineralized granite-pegmatite-greisen system recorded by trace elements in quartz: Krupka district, Eastern Krušné hory/Erzgebirge[J]. Chemical Geology, 2019, 523: 179-202. doi: 10.1016/j.chemgeo.2019.04.009
Platias S, Vatalis K I, Charalabidis G. Innovative Processing Techniques for the Production of a Critical Raw Material the High Purity Quartz[J]. Procedia Economics and Finance, 2013, 5: 597-604. doi: 10.1016/S2212-5671(13)00070-1
Presnall D C. Phase diagrams of Earth-forming minerals[J]. Mineral physics and crystallography: A handbook of physical constants, 1995, 2: 248-268.
Roedder, E. Fluid inclusion analysis-Prologue and epilogue[J]. Geochimica et Cosmochimica Acta, 1990, 54(3), 495–507. doi: 10.1016/0016-7037(90)90347-N
Rossman G R, Weis D, Wasserburg G. Rb, Sr, Nd and Sm concentrations in quartz[J]. Geochimica Et Cosmochimica Acta, 1987, 51(9): 2325-2329. doi: 10.1016/0016-7037(87)90286-9
Ruffini R, Borghi A, Cossio R, Olmi F, Vaggelli G. Volcanic quartz growth zoning identified by cathodoluminescence and EPMA studies[J]. Microchimica Acta, 2002, 139(1-4): 151-158. doi: 10.1007/s006040200054
Rusk B. Cathodoluminescent textures and trace elements in hydrothermal quartz [A]. Quartz: Deposits, Mineralogy and Analytics[M]. Springer, 2012, 307−329.
Rusk B, Koenig A, Lowers H. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry[J]. American Mineralogist, 2011, 96(5-6): 703-708. doi: 10.2138/am.2011.3701
Rusk B G, Lowers H A, Reed M H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation[J]. Geology, 2008, 36(7): 547-550. doi: 10.1130/G24580A.1
Rusk B G, Reed M H, Dilles J H, Kent A J. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana[J]. American Mineralogist, 2006, 91(8-9): 1300-1312. doi: 10.2138/am.2006.1984
Seyedolali A, Krinsley D H, Boggs Jr S, O'Hara P F, Dypvik H, Goles G G. Provenance interpretation of quartz by scanning electron microscope–cathodoluminescence fabric analysis[J]. Geology, 1997, 25(9): 787-790. doi: 10.1130/0091-7613(1997)025<0787:PIOQBS>2.3.CO;2
Stevens-Kalceff M A. Cathodoluminescence microcharacterization of point defects in α-quartz[J]. Mineralogical Magazine, 2009, 73(4): 585-605. doi: 10.1180/minmag.2009.073.4.585
Suttner L J, Leininger R K. Comparison of the trace element content of plutonic, volcanic, and metamorphic quartz from southwestern Montana[J]. Geological Society Of America Bulletin, 1972, 83(6): 1855-1862. doi: 10.1130/0016-7606(1972)83[1855:COTTEC]2.0.CO;2
Swamy V, Saxena S K, Sundman B, Zhang J. A thermodynamic assessment of silica phase diagram[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11787-11794. doi: 10.1029/93JB02968
Takahashi R, Müller A, Matsueda H, et al. Cathodoluminescence and trace elements in quartz: clues to metal precipitation mechanisms at the Asachinskoe gold deposit in Kamchatka [C]. 21st Century COE for Neo-Science of Natural History, Hokkaido University, 2008, 175−184.
Tanner D, Henley R W, Mavrogenes J A, Holden P. Combining in situ isotopic, trace element and textural analyses of quartz from four magmatic-hydrothermal ore deposits[J]. Contributions To Mineralogy And Petrology, 2013, 166(4): 1119-1142. doi: 10.1007/s00410-013-0912-3
Thomas J B, Watson E B, Spear F S, Shemella P T, Nayak S K, Lanzirotti A. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz[J]. Contributions To Mineralogy And Petrology, 2010, 160(5): 743-759. doi: 10.1007/s00410-010-0505-3
Thomas J B, Watson E B, Spear F S, Wark D. TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations[J]. Contributions To Mineralogy And Petrology, 2015, 169(3): 27. doi: 10.1007/s00410-015-1120-0
van den Kerkhof A M, Kronz A, Simon K, Scherer T. Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescence and trace element analysis (Bamble sector, Norway)[J]. Contributions To Mineralogy And Petrology, 2004, 146(5): 637-652. doi: 10.1007/s00410-003-0523-5
Van den Kerkhof, A. M. , Hein, F. U. Fluid inclusion petrography[J]. Lithos, 2001, 55, 27–47. doi: 10.1016/S0024-4937(00)00037-2
Wark D A, Watson E B. TitaniQ: a titanium-in-quartz geothermometer[J]. Contributions To Mineralogy And Petrology, 2006, 152(6): 743-754. doi: 10.1007/s00410-006-0132-1
Watt G R, Wright P, Galloway S, McLean C. Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts[J]. Geochimica Et Cosmochimica Acta, 1997, 61(20): 4337-4348. doi: 10.1016/S0016-7037(97)00248-2
Weil J. EPR of iron centres in silicon dioxide[J]. Applied Magnetic Resonance, 1994, 6(1-2): 1-16. doi: 10.1007/BF03162478
Weil J A. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz[J]. Physics And Chemistry Of Minerals, 1984, 10(4): 149-165. doi: 10.1007/BF00311472
Wu C M, Chen H X. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites[J]. Science Bulletin, 2015, 60(1): 116-121. doi: 10.1007/s11434-014-0674-y
Zhang Y, Cheng J, Tian J, Pan J, Sun S, Zhang L, Zhang S, Chu G, Zhao Y, Lai C. Texture and trace element geochemistry of quartz in skarn system: Perspective from Jiguanzui Cu–Au skarn deposit, Eastern China[J]. Ore Geology Reviews, 2019, 109: 535-544. doi: 10.1016/j.oregeorev.2019.05.007
Zhang Y, Zhao H B, Liu L, Pan J Y, Zhu L K, Liu G Q, Zhang X T. Timing of granite pegmatite-type high-purity quartz deposit in the Eastern Qinling, China: constraints from in-situ LA-ICP-MS trace analyses of quartz and monazite U–Pb dating[J]. Acta Geochimica, 2022, 41(2): 197-207. doi: 10.1007/s11631-021-00505-y