Fluid Inclusion Studies and the Genesis of the Kugadri Gold Deposit, Kazakhstan
-
摘要:
库尕德里金矿床位于哈萨克斯坦楚伊犁–天山成矿省楚伊犁成矿带之楚河–肯得克塔斯金、铅、锌、铜、钼成矿亚带,大地构造位置属于中亚造山带之哈萨克斯坦–准噶尔板块的穆云库姆–克齐尔库姆–伊犁微板块之肯得克塔斯地块。库尕德里金矿床为该区重要的大型矿床之一,该矿床成矿流体的研究,对深化矿床成因认识、区域成矿规律研究和找矿勘查工作有重要的指导意义。笔者在研究区地质调查和矿床地质特征研究的基础上,开展成矿阶段含矿石英脉流体包裹体岩相学、显微测温和激光拉曼分析。结果表明:库尕德里金矿流体包裹体有C、W、S等3种类型;C型包裹体完全均一温度为278~421 ℃,盐度为0~13.9 wt%NaCleqv;W型包裹体完全均一温度为119~378 ℃,盐度为1.1~22.9 wt%NaCleqv;S型包裹体完全均一温度为136~327 ℃,盐度为29.1~31.0 wt%NaCleqv。成矿压力和深度估算结果表明:成矿压力为95~200 MPa,成矿深度约为2~5 km,成矿温度为290~380 ℃。结合矿床地质特征认为,库尕德里金矿成矿流体具有富CO2、中低盐度的变质流体特征,矿床成因为造山型金矿。
Abstract:The Kugadri gold deposit is located in the Chuhe-Kendektas gold, lead, zinc, copper and molybdenum metallogenic subzone of the Chuhe-Kendektas gold, lead, zinc, copper and molybdenum metallogenic subzone of the Chuyili-Tianshan metallogenic province in Kazakhstan. The geotectonic location belongs to the Muyunkumu-Kezirkumu-Ili microplate of the Kazakhstan-Junggar plate in the Central Asian orogenic belt. The Kugadri gold deposit is one of the important large deposits in this area. The study of the ore-forming fluid of the deposit has important guiding significance for deepening the understanding of the genesis of the deposit, the study of the regional metallogenic regularity and the prospecting and exploration work. Based on the geological survey of the mining area and the study of the geological characteristics of the deposit, this paper carried out the petrography, microthermometry and laser Raman analysis of ore-bearing quartz vein fluid inclusions in the metallogenic stage. The results show that there are three types of fluid inclusions in Kugadri gold deposit: C, W and S; the complete homogenization temperature of C-type inclusions is 278~421 ℃, and the salinity is 0~13.9 wt% NaCleqv. The complete homogenization temperature of W-type inclusions is 119~378 ℃, and the salinity is 1.1~22.9 wt% NaCleqv. The complete homogenization temperature of S-type inclusions is 136~327 ℃, and the salinity is 29.1~31.0 wt% NaCleqv. The estimation of metallogenic pressure and depth shows that the metallogenic pressure is 95~200 MPa, the metallogenic depth is about 2~5 km, and the metallogenic temperature is 290~380 ℃. Combined with the geological characteristics of the deposit, it is considered that the ore-forming fluid of the Kugadri gold deposit has the characteristics of CO2-rich, medium-low salinity metamorphic fluid, and the genesis of the deposit is orogenic gold deposit.
-
Keywords:
- fluid inclusion /
- Kugadri gold deposit /
- orogenic gold deposit /
- Kazakhstan
-
-
图 1 哈萨克斯坦楚伊犁–北东天山地区地质及矿产简图(据肖文交,2019修改)
1.阿克巴卡依金矿床;2.巴鲁尔铅锌矿床;3.奇干纳克重晶石矿床;4.萨雷布拉克钨矿床;5.沙德库里铜矿床;6.库亚孜拜铅锌矿床;7.卡巴雷金(铜)矿床;8.蒂姆莱钒钛磁铁矿床;9.阿克达拉钒钛磁铁矿床;10.沙台尔科里钼矿床;11.坎得克塔斯铜矿床;12.库尕德里金矿床;13.热依桑铜矿床;14.齐纳含内赛铜锌矿床;15.尤别列佐姆钨钼矿床;16.包谷提钨矿床;17.图尤克多金属矿床;18.萨雷贾兹锡矿床;19.库姆托尔金矿床;20.达拉拜金矿床;21.阿尔哈尔雷金矿床;22.乌仁科布拉克金矿床;23.阿尔恰勒铅锌矿床;24.切特木斯铜银矿床;25.加曼台锰矿床;HZ12. 萨雷沙甘铜、钼成矿带;HZ22. 布鲁塔斯–热利套铅、锌、钨、锡成矿带;HZ3. 巴尔喀什–伊犁成矿区:HZ13. 伊犁铅、锌多金属成矿带;HZ5. 楚河–伊赛克成矿区:HZ15. 楚河–肯得克塔斯金、铅、锌、铜、钼成矿带;HZ25. 伊赛克钨、锡、铅、锌多金属成矿带;TL11. 哈尔克山金、锑成矿带;TL2. 塔里木北缘成矿区:TL12. 木扎尔特铜、铅、锌多金属成矿带
Figure 1. Geological and mineral map of Chuili-Northeast Tianshan area, Kazakhstan
图 12 造山型金矿、斑岩Cu-Au矿和浅成热液金矿的流体成分(底图据Ridley et al.,2000)
Figure 12. Ore forming fluid compositions of orogenic, porp-hyry and epithermal gold deposits
表 1 库尕德里金矿床显微测温结果及相关参数
Table 1 Microthermometry results and related parameters of the Kugadri gold deposit
阶段 类型 数量 大小(μm) v/tot.
(%)φ(CO2)(%) Tm(cla)
(℃)Tm(ice)
(℃)盐度(wt%) Th(CO2)
(℃)Th
(℃)ρCO2
(g/cm3)ρTot.
(g/cm3)φ(CO2)气(%) Q1 Cl 79 6~20 10~50 −59.7~−56.6 1.4~9.4 1.2~13.9 21.2~30.9 278~418 0.32~0.75 0.71~0.97 5~80 Cv 41 8~12 50~80 −59.3~−56.6 1.9~10 0~13.4 24.6~30.9 284~421 0.28~0.67 0.53~0.86 10~80 W 14 6~12 10~45 −52.1~−39.2 −11.1~−0.6 1.1~15.1 298~378 0.64~0.87 Q2 W 45 5~20 5~50 −32.2~−25.6 −20.8~−0.9 1.6~22.9 119~294 0.78~1.09 S 12 6~14 5~25 29.1~31.2 136~327 1.00~1.27 注:v/Tot.为气相充填度;φ(CO2)为CO2相占包裹体总体积的百分数;φ(CO2)气为气相CO2占CO2相总体积的百分数;Tm(cla)为笼合物熔化温度;Th(CO2)为CO2部分均一温度;Tm(ice)为冰点温度;Th为完全均一温度。 表 2 库尕德里金矿床与典型造山型金矿床特征对比表
Table 2 Comparison table of the characteristics of the Kugadri gold deposit and the typical orogenic gold deposit
地质特征 典型造山型金矿(Groves et al.,1998) 库尕德里金矿床 大地构造背景 挤压和转换挤压背景 中亚造山带之哈萨克斯坦–准噶尔板块的穆云库姆–克齐尔库姆–伊犁微板块之肯得克塔斯地块 控矿构造 矿体严格受构造控制,多位于大型挤压构造的二级或三级构造内 研究区断裂构造发育,主要为NW向和NE向,其次为NEE向;矿体产于接触带近岩体一侧 矿石类型 以石英脉为主,含有≤3%~5%的硫化物和≤5%~15%的碳酸盐矿物 以石英闪长斑岩内的石英脉为主,硫化物含量≤3% 围岩蚀变 碳酸盐化、硫化物化和绿泥石化、绢云母化等 硅化、绢云母化和钾长石化 成矿流体 以CO2-H2O-NaCl土CH4组合为特征,富含CO2 CO2-H2O-NaCl,富含CO2 成矿温度 200~700 ℃ 290~380 ℃ 成矿流体盐度 3~10 wt%NaCleqv 0.0~15.1 wt%NaCleqv -
陈衍景, 倪培, 范宏瑞, 等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007, 23(9): 2085-2108 doi: 10.3969/j.issn.1000-0569.2007.09.009 CHEN Yanjing, NI Pei, FAN Hongrui, et al. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Petrologica Sinica, 2007, 23(9): 2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009
陈衍景. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质, 2006, 33(06): 1181-1196 doi: 10.3969/j.issn.1000-3657.2006.06.001 CHEN Yanjing. Orogenic-type deposits and their metallogenic model and exploration potential[J]. Geology in China, 2006, 33(6): 1181-1196. doi: 10.3969/j.issn.1000-3657.2006.06.001
范宏瑞, 谢奕汉. 豫西上宫构造蚀变岩型金矿成矿过程中的流体—岩石反应[J]. 岩石学报, 1998, 14(4): 529-541 doi: 10.3321/j.issn:1000-0569.1998.04.012 FAN Hongrui, Xie Yihan, WANG Yinglan. Fluid-Rock Interaction during Mineralization of the Shanggong Structure-Controlled Alteration-Type Gold Deposit in Western Henan Province, Central China[J]. Acta Petrologica Sinica, 1998, 14(4): 529-541. doi: 10.3321/j.issn:1000-0569.1998.04.012
高俊, 朱明田, 王信水, 等. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 2019, 93(1): 24-71 doi: 10.3969/j.issn.0001-5717.2019.01.004 GAO Jun, ZHU Mingtian, WANG Xinshui, et al. Large- scale porphyry- type mineralization in the Central Asian metallogenic domain: tectonic background, fluid feature and metallogenic deep dynamic mechanism[J]. Acta Geologica Sinica, 2019, 93(1): 24-71. doi: 10.3969/j.issn.0001-5717.2019.01.004
何国琦, 朱永峰. 中国新疆及其邻区地质矿产对比研究[J]. 中国地质, 2006, 33(03): 451-460 doi: 10.3969/j.issn.1000-3657.2006.03.001 HE Guoqi, ZHU Yongfeng. Comparative study of the geology and mineral resources in Xinjiang, China, and its adjacent regions[J]. Geology in China, 2006, 33(03): 451-460. doi: 10.3969/j.issn.1000-3657.2006.03.001
何书跃, 林贵, 钟世华, 等. 造山作用孕育“青海金腰带”[J]. 西北地质, 2023, 56(6): 1−16. HE Shuyue, LIN Gui, ZHONG Shihua, et al. Geological Characteristics and Related Mineralization of “Qinghai Gold Belt” Formed by Orogeny[J]. Northwestern Geology, 2023, 56(6): 1−16.
黄杰, 安芳. 中亚成矿域核心区斑岩铜矿地质和地球化学特征研究现状综述[J]. 西北地质, 2018, 51(01): 192-208 doi: 10.3969/j.issn.1009-6248.2018.01.019 HUANG Jie, AN Fang. 2018: Geological and Geochemical Characteristics of Porphyry Copper Deposits in Core Part of Central Asian Metallogenic Domain: A review[J]. Northwestern Geology, 2018, 51(01): 192-208. doi: 10.3969/j.issn.1009-6248.2018.01.019
吕鹏瑞. 新形势下中国与中亚国家矿产资源合作研究[M]. 武汉: 中国地质大学出版社, 2022. 刘斌. 中高盐度NaCl-H2O包裹体的密度式和等容式及其应用[J]. 地质论评, 2001, (06): 617-622 doi: 10.3321/j.issn:0371-5736.2001.06.010 LIU Bin. Density and Isochoric Formulae for NaCl-H2O Inclusions with Medium and High Salinity and Their Applications[J]. Geological Review, 2001, 47(6): 617-622. doi: 10.3321/j.issn:0371-5736.2001.06.010
卢焕章, 池国祥, 朱笑青, 等. 造山型金矿的地质特征和成矿流体[J]. 大地构造与成矿学, 2018, 42(02): 244-265 doi: 10.16539/j.ddgzyckx.2018.02.005 LU Huanzhang, CHI Guoxiang, ZHU Xiaoqing, et al. Geological Characteristics and Ore Forming Fluids of Orogenic Gold Deposits[J]. Geotectonica et Metallogenia, 2018, 42(02): 244-265. doi: 10.16539/j.ddgzyckx.2018.02.005
孙非非, 张爱奎, 刘智刚, 等.东昆仑西段阿其音金矿成矿流体特征及其成因机制[J]. 西北地质, 2023, 56(6): 82−94. SUN Feifei, ZHANG Aikui, LIU Zhigang, et al. Analysis of the Genesis and H−O−S−Pb Isotopic Characteristics of Aqiyin Gold Deposit in the Western Section of the East Kunlun[J]. Northwestern Geology, 2023, 56(6): 82−94.
王广瑞. 新疆北部与邻区地质及成矿条件对比[J]. 新疆地质, 1994(01): 75-82 WANG Guangrui. Comparison of geological and metallogenic conditions between northern Xinjiang and adjacent areas[J]. Xin Jiang Geology, 1994(01): 75-82.
邱正杰, 范宏瑞, 丛培章, 等. 造山型金矿床成矿过程研究进展[J]. 矿床地质, 2015, 34(01): 21-38 doi: 10.16111/j.0258-7106.2015.01.002 QIU Zhengjie, FAN Hongrui, CONG Peizhang, et al. Recent progress in the study of ore-forming processes of orogenic gold deposits[J]. Mineral Deposits, 2015, 34(01): 21-38. doi: 10.16111/j.0258-7106.2015.01.002
王庆飞, 邓军, 赵鹤森, 等. 造山型金矿研究进展: 兼论中国造山型金成矿作用[J]. 地球科学, 2019, 44(6): 2155-2186 WANG Qingfei, Deng Jun, Zhao Hesen, ea al. Review on Orogenic Gold Deposits[J]. Earth Science, 2019, 44(6): 2155-2186.
肖文交, 宋东方, Brian FWINDLEY, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49(10): 1512-1545 XIAO W, SONG D, Brian FWINDLEY, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2019, 49(10): 1512-1545.
薛春纪, 赵晓波, 莫宣学. 中亚成矿域斑岩铜金成矿的地质环境问题[J]. 岩石学报, 2016, 32(5): 1249-1261 XUE Chunji, ZHAO Xiaobo, MO Xuanxue. Problem on porphyry Cu-Au metallogenic environment in Central Asian: An overview[J]. Acta Petrologica Sinica, 2016, 32(5): 1249-1261.
薛春纪, 赵晓波, 赵伟策, 等. 中-哈-吉-乌天山变形带容矿金矿床: 成矿环境和控矿要素与找矿标志[J]. 地学前缘, 2020, 27(02): 294-319 XUE Chunji, ZHAO Xiaobo, ZHAO Weice, et al. Deformed zone hosted gold deposits in the China-Kazakhstan-Kyrgyzstan-Uzbekistan Tian Shan: metallogenic environment, controlling parameters, and prospecting criteria[J]. Earth Science Frontiers, 2020, 27(2): 294-319.
杨林, 王庆飞, 赵世宇, 等. 造山型金矿构造控矿作用[J]. 岩石学报, 2023, 39(02): 277-292 YANG Lin, WANG Qingfei, ZHAO Shiyu, et al. Structural controls on orogenic gold deposits[J]. Acta Petrologica Sinica, 2023, 39(02): 277-292.
朱永峰. 中亚成矿域核心区地质演化和巨型成矿带划分[J]. 矿床地质, 2014, 33(03): 471-485 doi: 10.3969/j.issn.0258-7106.2014.03.002 ZHU Yongfeng. Geological evolution and division of giant metallogenic belts in core part ofCentral Asian Metallogenic Region[J]. Mineral Depostts, 2014, 33(03): 471-485. doi: 10.3969/j.issn.0258-7106.2014.03.002
薛春纪, 赵晓波, 莫宣学, 等. 西天山“亚洲金腰带”及其动力背景和成矿控制与找矿[J]. 地学前缘, 2014, 21(5): 128-155 doi: 10.13745/j.esf.2014.05.011 XUE Chunji, ZHAO Xiaobo, MO Xuanxue, et al. Asian Gold Belt in western Tianshan and its dynamic setting, metallogenic control and exploration[J], Earth Science Frontiers, 2014, 21(5): 128-155 doi: 10.13745/j.esf.2014.05.011
Burlinson K. Decrepitation in gold exploration. A case history from the Cotan prospect, N. T. In: S. E. Kesler (Editor), Fluid Inclusion Gas Analyses in Mineral Exploration[J]. Geochem Explor, 1991, 42: 143-156. doi: 10.1016/0375-6742(91)90064-2
Bodnar R J. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits[J]. Mineralogical Association of Canada Short Course Series, 1995, 23: 139-152.
Brown PE FLINCOR. A microcomputer program for the reduction and investigation of fluid-inclusion data[J]. Am. Mineralogist, 1989, 74: 1390-1393.
Brown PE , Lamb WM. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies[J]. Geochimica et Cosmochimica, 1989, 53 : 1209-1221. doi: 10.1016/0016-7037(89)90057-4
Goldfarb RJ, Baker T, Dubé B, et al. Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes [J]. One Hundredth Anniversary Volume, 2005, 407-450.
Goldfarb RJ, Groves DI. Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26. doi: 10.1016/j.lithos.2015.07.011
Groves, DI, Goldfarb RJ, Gebre-Mariam M, et al. Orogenic Gold Deposits: a Proposed Classification in theContext of Their Crustal Distribution and Relationshipto other Gold Deposit Types[J], Ore Geology Reviews, 1998, 13(1): 7-27.
Hall DL, Sterner SM , Bodnar RJ. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83: 197-202. doi: 10.2113/gsecongeo.83.1.197
Kerrich R, Goldfarb R, Groves D, et al. The Characteristics, Origins, and Geodynamic Settings of Supergiant Gold Metallogenic Provinces[J]. Science in China Series, Earth Sciences, 2000, 43(1): 1-68.
Mavrogenes J A, Bodnar RJ, Graney JR, et al. Comparison of decrepitation, microthermometric and compositional characteristics of fluid inclusions in barren and auriferous mesothermal quartz veins of the Cowra Creek Gold District, New South Wales, Australia[J]. Journal of Geochemical Exploration, 1995, 54(3): 167-175. doi: 10.1016/0375-6742(95)00031-3
Roedder E , Bodnar RJ. Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth and Planetary Sciences, 1980. 8: 263-301. doi: 10.1146/annurev.ea.08.050180.001403
Ridley JR, Diamond L W. Fluid chemistry of orogenic lodegold deposits and implications for genetic models[J]. Reviews in Economic Geology, 2000, 13: 141-162.