Nd–Hf Isotopic Characteristics, Evolution Trend and Tectonic Setting of Triassic Magmatic Rocks in the Eastern Segment of East Kunlun Orogeny
-
摘要:
作为中央造山系西段的重要组成部分,东昆仑造山带以大面积区域性展布的三叠纪岩浆岩为鲜明特色。依据收集的东昆仑东段三叠纪岩浆岩96件锆石U–Pb年代学数据,限定三叠纪岩浆作用时间为252~212 Ma。结合岩石组合,将其进一步划分为早(252~238 Ma)、中(238~226 Ma)、晚(226~212 Ma)3期,其中岩浆活动峰值为早期(252~238 Ma)。Nd同位素数据(106件)统计结果表明:东昆仑东段三叠纪岩浆岩εNd(t)值为–9.4~–1.7,大多为–6.5~–3.0;Nd模式年龄TDM(Nd)为0.72~1.88 Ga,大多为1.00~1.80 Ga。Hf同位素数据(全岩、锆石;41件)统计结果表明:东昆仑东段三叠纪岩浆岩εHf(t)值变化较大(–8.4~+12.4),主要为–4.5~+2.0;地壳模式年龄TDMC(Hf)值为0.49~ 1.80 Ga,大多为1.15~1.55 Ga。整体而言,三叠纪岩浆岩物源以中元古代壳源物质的再造为主,新生地壳(<1.0 Ga)和古元古代地壳有所参与,但比例小。从岩浆活动早期(252~238 Ma)到中期(238~226 Ma)再到晚期(226~212 Ma),εNd(t)值在岩浆活动早期(特别是在早三叠世)较高,正的εHf(t)值占据很大比例,物源中存在较多的新生物质;中期以较低的εNd(t)值和负的εHf(t)值为主,Hf模式年龄显示出现古元古代物质;晚期Nd–Hf模式年龄揭示较古老的壳源组分增多。这种岩浆岩物源演变趋势,与东昆仑东段三叠纪具俯冲到同碰撞再到碰撞后的构造演化背景一致。
Abstract:As a major component of the western segment of the Central Orogenic System, the East Kunlun Orogeny is characterized by the largely exposed of Triassic magmatic rocks. Based on the collected zircon U–Pb geochronological data of 96 Triassic magmatic rocks in the eastern segment of the East Kunlun orogeny, the Triassic magmatic activity is limited to 212~252 Ma, and can be further divided into three stages: early– (238~252 Ma), middle– (226~238 Ma) and late–stage (212~226 Ma). Among them, the peak magmatic period is the early stage (238~252 Ma). The statistical results of 106 Nd isotopes of Triassic magmatite in the eastern segment of the East Kunlun Orogeny show that εNd(t) values range from –9.4 to –1.7, mainly concentrated between –6.5 and –3.0, and the Nd model ages (TDM(Nd)) range from 0.72 to 1.88 Ga, mainly concentrated between 1.00 and 1.80 Ga. The statistical results of 41 Hf isotopes (whole rock, zircon) of Triassic magmatite show that εHf(t) values vary greatly (–8.4 to +12.4), mainly concentrated between –4.5 and +2.0, and the crustal model ages (TDMC(Hf)) range from 0.49 to 1.80 Ga, mainly concentrated between 1.15 and 1.55 Ga. Overall, the Triassic magmatic rocks are mainly derived from the reworking of Mesoproterozoic crustal materials, with minor involvement of juvenile crust (< 1.0 Ga) and Paleoproterozoic crustal materials. From the early stage (237~250 Ma) to middle stage (226~238 Ma) and then to late stage (212~226 Ma), the Nd–Hf isotopic parameters seems exhibit a certain evolutionary trend. In the early stage especially in the early Triassic, the εNd(t) values are higher, and positive εHf(t) values occupy a large proportion, indicating the presence of more juvenile material in the source. In the middle stage, lower εNd(t) values and negative εHf(t) values dominate the major proportion, and Hf model ages (TDMC(Hf)) reveals the presence of Paleoproterozoic crustal material. In the late stage, the Nd–Hf model ages reveal an increase in older crustal source components. This magmatic source evolutionary trend is consistent with the tectonic evolution setting of subduction to collision and then to post–collision in the eastern segment of the East Kunlun orogeny in Triassic period.
-
石炭系是准噶尔盆地周缘出露最广的古生代地层。乌鲁木齐市东南约20 km处的石人子沟和祁家沟地区(图1)是准噶尔盆地南缘石炭系发育最为典型的地区。该区缺失下石炭统,上石炭统主要出露柳树沟组(C2l)、祁家沟组(C2q)和奥尔吐组(C2ae)(新疆维吾尔自治区地质矿产局,1999)。祁家沟组和奥尔吐组富含海相化石,其中四射珊瑚最为常见。
柳树沟组为一套浅海相喷出岩,火山岩中有少量砂岩、粉砂岩和灰岩透镜体,含海相化石,与上覆祁家沟组为整合或不整合接触,未见下伏地层。祁家沟组为一套浅海相陆源碎屑岩和碳酸盐岩,夹少量的安山玢岩、凝灰质砂岩–粉砂岩,含大量珊瑚、腕足和䗴类化石,与上覆奥尔吐组整合接触。奥尔吐组为一套浅海相外陆架陆源细碎屑岩,夹少量薄层砂质灰岩、透镜状灰岩,含丰富的珊瑚、菊石及腕足类化石,与上覆石人沟组整合接触(新疆维吾尔自治区地质矿产局,1999)。
1. 祁家沟组四射珊瑚的主要类别
研究区柳树沟组为一套火山碎屑岩沉积,化石稀少。晚石炭世四射珊瑚主要集中在祁家沟组和奥尔吐组。其中祁家沟组四射珊瑚最为丰富。王增吉(1989)对乌鲁木齐祁家沟剖面的四射珊瑚做过详细研究,描述四射珊瑚12属,24种和亚种。其中,祁家沟组9属,16种和亚种,分别是Amplexus qijiagouensis,A. xinjiangensis,A. qijaigouensis convexotabulatus,Rotipyllum monophylloides trangulatum,Metriophyllum qijiagouense,M. minor,Bradyphyllum xinjiangense,Zaphrentites urumqiensis,Lophophyllidium pendulum qijiagouense,L. irregulare,L. urumuqiense,Caninophyllum urumuqiense,C. domheri,C. tamugangense,Bothrophyllum ellipticum,Cystilophophyllum minor。曾彩林等(1983)描述祁家沟地区四射珊瑚5属,4种和1相似种。其中祁家沟组3属,2种和1相似种。分别是Cyathocarinia tuberculata,Lophocarinophyllum major和Sochkineophyllum cf. artiense。
笔者依托中国地质调查局西安地质调查中心“北方石炭纪—二叠纪关键地质问题专题调查”工作项目下设专题“天山–兴蒙构造带石炭纪—二叠纪地层对比研究”,于2018年对乌鲁木齐祁家沟和石人子沟地区祁家沟组和奥尔吐组珊瑚化石进行系统采集,鉴定四射珊瑚12属11种、1亚种。其中祁家沟组11属10种1亚种,分别为Cyathocarinia tuberculata Soshkina,Rotiphyllum cuneatum Wu,Metriophyllum minor Wang,Zaphrentites urumqiensis Wang,Lophophyllidium pendulum qijiagouense Wang,Fomichevella hoeli (Holtedahl),Arctophyllum intermedium Toula,Caninia cornucopiae Michelin in Gervais,Gshelia minor Zeng,Caninella magma Zeng和Pseudozaphrentoides mapingensis (Lee et Yü)。
2. 古气候意义
祁家沟组四射珊瑚按照形态可以分为3类。小型单体无鳞板珊瑚9属15种(包括亚种和相似种):Amplexus qijiagouensis,A. xinjiangensis,A. qijaigouensis convexotabulatus,Rotiphyllum cuneatum,R. monophylloides trangulatum,Metriophyllum qijiagouense,M. minor,Bradyphyllum xinjiangense,Zaphrentites urumqiensis,Lophophyllidium pendulum qijiagouense,L. irregulare,L. urumuqiense,Lophocarinophyllum major,Cyathocarinia tuberculata, Sochkineophyllum cf. artiense。发育鳞板的单体珊瑚8属10种和亚种,分别是Caninophyllum urumuqiense,C. domheri,C. tamugangense,Bothrophyllum ellipticum,Cystilophophyllum minor, Arctophyllum intermedium,Caninia cornucopiae,Gshelia minor,Caninella magma, Pseudozaphrentoides mapingensis 。丛状复体珊瑚1属1种Fomichevella hoeli。在已知的18个四射珊瑚属中,小型单体无鳞板珊瑚9属,占50%;单体有鳞板珊瑚8属,约占44%;丛状复体珊瑚仅1属,约占6%。在已知的26个种中,小型单体无鳞板珊瑚15种,约占58%;单体有鳞板珊瑚10种,约占38%;丛状复体珊瑚约占5%。从属和种两级分类单元来看,小型单体无鳞板珊瑚都是祁家沟组四射珊瑚动物群的主体,显示较凉水体珊瑚组合特征。这可能与研究区晚石炭世所处的中、高纬度古地理位置有关。研究区晚石炭世位于安加拉植物群的分布范围,植物区系特征显示中纬度温带气候区。研究区祁家沟组(特别是下部)四射珊瑚个体极为丰富,常密集成层保存,数量以发育鳞板的单体珊瑚为主,表明这个珊瑚群生活在适于其生长的正常浅海环境中。这个珊瑚群中几乎不含复体四射珊瑚,可疑的丛状复体珊瑚仅1属1种Fomichevella hoeli,表明其生活在不适宜于复体珊瑚繁盛的环境中。另外,这个珊瑚群分异度低,几乎不含土著分子。丰富而分异度低且缺乏地方性分子是温带生物群的主要特征(殷鸿福,1989)。因此推断祁家沟组四射珊瑚群生活于温带气候条件下。
3. 生活环境
Hill(1938~1941)最早对各类型珊瑚的古生态特征进行了研究,划分出了3个主要的生态群类型:
①Cyathoxonia动物群,主要包含一些小型单体无鳞板珊瑚,结构简单,分异度较低。②Caniniid–Clisiophyllid动物群,主要包含大型双带型或三带型鳞板珊瑚,分异度相对较高,结构也更为复杂。③复体造礁类珊瑚,主要包含块状复体类型,能容忍较高水动能环境。这3种类群代表的水动能由低到高。Sando(1980)在美国西部落基山脉和大盆地地区密西西比纪(早石炭世)地层中划分出8种岩相带类型,从深水盆地到河流入海口岩相带依次为A~H;除A和G外,珊瑚可在其他的6个相带中产出,其中B、D、E 等3个岩相带中珊瑚丰度最高;小型单体无鳞板珊瑚多出现在较深水的B相带,而D和E相带则更多产出大型单体或复体类珊瑚。Somerville 等(2007)根据爱尔兰、大不列颠及西班牙西南部早石炭世维宪晚期珊瑚群的组成、保存状况和保存方向、沉积之上相、沉积微相、薄片下的组分及含量等特征综合研究提出了四射珊瑚组合的概念,即RCA(rugose coral associations),并识别出8个四射珊瑚组合(RCA1~RCA8)。其中RCA2位于正常浪基面之上的浅水陆架区,属中–高能的动荡环境,其中发育颗粒灰岩,珊瑚主要是中等丰度和分异度的单体珊瑚及不占优的丛状复体,与Hill(1938~1941)的Caniniid–Clisiophyllid动物群大致相当,珊瑚破损较严重,单体珊瑚鳞板带保存较差。RCA4位于正常浪基面上下的中等水动能浅水陆架区,水体偶尔变浅遭受暴露侵蚀,发育古喀斯特面,富含原地丛状和块状复体珊瑚以及具有较宽鳞板带的大型单体,丰度和分异度非常高,与Hill(1938~1941)的复体造礁珊瑚群(coral–reef)相当,其中复体珊瑚保存相对较好,而单体珊瑚存在磨损现象。RCA8位于正常浪基面下的低能中深斜坡环境,发育泥晶灰岩,光照弱,水体浑浊,珊瑚主要是一些小型单体无鳞板类型,分异度低,偶尔也可见一些具鳞板个体,相当于Hill(1938~1941)的Cyathoxonia动物群。Somerville等(2007)认为RCA8是典型的深水斜坡–盆地分子,但也可以生活在鳞板珊瑚难以生存的水流不畅的浅水浑浊环境中。 在祁家沟组可以识别出2种生态类型的四射珊瑚动物群,一种是Cyathoxonia动物群,以小型单体无鳞板类型为主,几乎不含或者很少含发育鳞板的珊瑚;另一种是Caniniid–Clisiophyllid动物群,以发育鳞板类型为主,偶含丛状复体珊瑚和小型单体无鳞板珊瑚。
Cyathoxonia动物群产于祁家沟剖面祁家沟组中上部,以D18003观察点为代表,四射珊瑚全为单体无鳞板类型,包括Metriophyllum,Lophophyllidium 和Cyathocarinia等,还有Multithecopora和Syingopora 等少量横板珊瑚。Hill(1938~1941)认为Cyathoxonia动物群代表了深水、多泥、浑浊、安静的环境。Sando(1980)认为小型单体无鳞板珊瑚多出现在水深超过100 m的深水盆地。Somerville 等(2007)认为小型单体无鳞板类型珊瑚是典型的深水斜坡–盆地分子,但也可以生活在有鳞板珊瑚难以生存的水流不畅的浑浊浅水环境中。小型单体无鳞板四射珊瑚为主的群落总体上来说生活在不利于四射珊瑚生存的环境中,既可以是深水环境,也可以是浅水环境。王训练等(1996)认为古生代小型单体无鳞板四射珊瑚为主的群落至少可以出现在下列5种不同的环境中:①正常温暖无障壁海岸的大陆斜坡下部深水环境。②大陆边缘断陷盆地中的深水环境。③浅海冷水环境。④有大量碎屑沉积物涌入的温暖正常浅海环境。⑤生物危机阶段的正常浅海环境。
祁家沟剖面祁家沟组中上部(D18003观察点)Cyathoxonia动物群中四射珊瑚保存完整(图2a~图2f),表明这些珊瑚生活在低能环境中。产出四射珊瑚的围岩为生物碎屑泥晶灰岩(图2a、图2b、图2g~图2j)。颗粒都为生物碎屑,含量约30%,主要是海百合碎屑(图2g~图2j),其次还有少量腕足壳体和介形虫。颗粒主要呈条状,次棱角状居多,少量次圆状,部分出现微弱重结晶,大小100 μm到2 mm不等,分选较差。基质主要是灰泥,含量70%左右。这种岩性特征相当于威尔逊(1981)碳酸盐岩标准微相类型中的SMF9,主要发育在正常浪基面之下的深水陆棚(FZ2)或外缓坡环境(Flügel,2006)。笔者认为,这种微相类型代表一种低能环境,不仅可以出现在正常浪基面或其下的深水陆棚(FZ2)或外缓坡环境,还可以出现在局限环境下的低能浅水环境中。祁家沟组与这个小型单体无鳞板珊瑚共生的还有横板珊瑚Syringopora和Multithecopora 。这2个属通常仅出现在极浅海水环境中。因此认为该组合生活在不利于四射珊瑚生存的障壁海低能浅水环境中。
图 2 祁家沟剖面祁家沟组 D18003观察点珊瑚化石与岩性特征图a. 产小型单体无鳞板四射珊瑚的生物碎屑泥晶灰岩;b. 产丛状复体横版珊瑚(Syringopora sp.)的生物碎屑泥晶灰岩;c~f. 保存完好的小型单体无鳞板四射珊瑚(c~d. Metriophyllum sp.;e.Cyathocarinia tuberculata .;f. Lophophyllidium sp.);g~j. 生物碎屑泥晶灰岩Figure 2. The coral fossils and lithologic characteristics of the observation site D18003 of the Qijiagou Formation in the Qijiagou sectionCaniniid–Clisiophyllid动物群主要产于祁家沟组近底部,在祁家沟剖面和石人子沟剖面上均有产出。在祁家沟剖面上以D18002观察点为代表。四射珊瑚均为单体珊瑚,除3个小型单体无鳞板个体Metriophyllum minor,Zaphrentites urumqiensis和Rotiphyllum cuneatum 的少量个体外,其余均为具鳞板类珊瑚, 以Gshelia和Caninia为代表,均属于Cyathopsidae和Bothrophyllidae两科(图3)。已知的珊瑚属种分异度比较低,仅5属5种,但丰度很大,以发育鳞板带的中大型单体为主,单体珊瑚直径多在20~25 mm,鳞板带都比较窄,轴部构造不发育,缺少复体类型,特别是缺少造礁的块状复体珊瑚。表明这个珊瑚群生活在正常浪基面之上适于珊瑚生存的中–高能正常浅海环境中。
Caniniid–Clisiophyllid动物群在石人子沟剖面以D18030观察点为代表。珊瑚以大型具鳞板类为主,分异度较低,仅计5属5种,包括Caninia cornucopiae, Arctophyllum intermedium,Pseudozaphrentoides mapingensis和 Caninella magma ,含丛状复体珊瑚1属1种Fomichevella hoeli,均属于Cyathopsidae和Bothrophyllidae两科,未见小型无鳞板单体珊瑚。珊瑚外壁相对较薄,隔壁未加厚或加厚不明显,或仅在主部有较明显加厚,均无轴部构造。石人子沟剖面祁家沟组近底部四射珊瑚群面貌与祁家沟剖面总体上相同。它们均生活在正常浪基面之上适于珊瑚生存但不适合造礁的正常浅海环境中。石人子沟剖面祁家沟组近底部四射珊瑚群全由发育鳞板的类型组成,包括1属1种丛状复体珊瑚,四射珊瑚的个体稍大,鳞板带相对较宽,鳞板也更大。这些特征表明石人子沟剖面祁家沟组底部珊瑚群当时生活在海水更加动荡的正常浅海环境中。
综上所述,研究区祁家沟组四射珊瑚组合均生活于正常浪基面之上的浅水环境中。其中祁家沟组中上部Cyathoxonia动物群生活在不利于四射珊瑚生存的较局限的低能浅水环境中,祁家沟组近底部Caniniid-Clisiophyllid动物群生活在正常浪基面之上适于珊瑚繁盛的中–高能正常浅海环境中。
4. 埋藏环境
祁家沟组2个生态类型的四射珊瑚组合埋藏环境完全不同。如前所述,祁家沟组上部Cyathoxonia动物群生活在障壁后的浅水低能环境中。除个别小型单体无鳞板珊瑚个体破损外,大部分珊瑚个体无明显磨损,保存完整(图2)。其他生物碎屑如海百合茎、腕足类和介形虫主要呈条状和次棱角状,分选和磨圆都比较差。这些特征都显示出这个组合为原地埋藏。
与此相反,祁家沟组近底部Caniniid–Clisiophyllid动物群中化石磨损和破损都十分明显(图4、图5),丛状复体珊瑚Fomichevella呈片断保存。一些层位化石分布十分密集,成层保存(图4、图6)。大部分珊瑚外壁几乎完全磨损,鳞板带被不同程度地损坏,一些个体整个鳞板带几乎完全被破坏,仅有加厚的隔壁内端的横板带被保存下来,绝大部分个体已经无法鉴定。鳞板的方向表明珊瑚个体保存方向杂乱无章,有些个体保存方向甚至完全相反,与四射珊瑚的原始生活状态完全不同。说明这些珊瑚化石经过一定距离的搬运,而且在搬运过程中发生过颗粒之间的碰撞和相互摩擦。
图5显示的祁家沟剖面和石人子沟剖面祁家沟组下部含Caniniid–Clisiophyllid动物群的(含)生物碎屑砂(粉)屑灰岩中没有被完全磨碎的珊瑚化石残骸,清楚表明在四射珊瑚化石搬运过程中大部分化石被完全粉碎,仅极少数珊瑚的横板带由于隔壁加厚而得以保存。粉屑灰岩应为正常浪基面以下的静水低能环境沉积,与珊瑚群的生存环境截然不同。
图4展示的是石人子沟剖面祁家沟组下部富含四射珊瑚化石的生物颗粒灰岩。生物颗粒主要为发育鳞板带的四射珊瑚。珊瑚破损严重,大小不等,形态不规则,无磨圆。鳞板带显示珊瑚排列方向杂乱无章,显示出快速堆积的特征。基质一般都很细,灰泥质,含量少。各种大小的沉积颗粒沉积于同一环境中,显示出快速沉积、分选差的重力流沉积的特征(图6)。这个珊瑚化石群的保存状态和岩相特征表明其形成于静水环境中。其中的珊瑚和其它粗颗粒在经过短距离搬运后便迅速沉积。推测产出这个珊瑚群埋藏的层位岩性为重力流沉积,形成环境为正常浪基面甚至风暴浪基面之下的静水低能环境。
祁家沟剖面祁家沟组 Caniniid–Clisiophyllid动物群(D18002观察点)的围岩主要为颗粒灰岩(图3a),包括砾屑灰岩和砂屑灰岩等,镜下可见泥晶生物碎屑灰岩。泥晶生物碎屑灰岩(图3f、图3g)中生物碎屑杂乱分布,含粗枝藻类、管孔藻类、棘皮类及苔藓虫类,破碎严重,分选磨圆差。个别棘皮类出现泥晶包边现象,颗粒含量占40%~60%,颗粒围绕珊瑚呈现出明显的定向排列特征。此微相相当于威尔逊(1981)标准微相中的SMF5,形成于台缘斜坡下部的低能静水环境。珊瑚的埋藏环境与生活环境差别明显,说明珊瑚是经过搬运后埋藏在台缘斜坡下部的低能静水环境。
祁家沟剖面祁家沟组Caniniid–Clisiophyllid动物群(D18030观察点)保存于海百合碎屑密集分布的泥晶生物碎屑灰岩(图7)中,碎屑普遍较大,最大可达3 mm,散乱排布,无分选,磨圆较差,主要呈棱角状–次棱角状。另外还可见少量藻类碎片,颗粒含量可达80%以上,海百合碎屑占比40%~80%,基质为灰泥,含量较少。相当于威尔逊标准微相中的SMF12–CRIN。此标准微相中海百合碎屑的聚集存在2种形式。一种是原地形成的,出现在开阔陆棚海(FZ2)、前陡坡(FZ4)和丘(FZ5);另一种是异地形成的,出现在深水陆棚边缘(FZ3)和前陡坡(FZ4)。异地聚集常为碎屑流和浊流作用所致。这与珊瑚埋藏特征反映出来的情况一致。因此,推测该点珊瑚经短距离搬运埋藏在台缘斜坡下的低能静水环境。
综上所述,祁家沟剖面祁家沟组下部Caniniid–Clisiophyllid动物群可能生活在温带气候条件下的与深水盆地相邻的碳酸盐台地边缘的高能浅水环境中,死后经过短距离搬运,迅速沉积在大陆斜坡中部的静水环境中。
翟晓先(1987)、李育慈等(1993)和曹小兵等(2010)曾报道祁家沟剖面祁家沟组广泛发育近源风暴岩,认为祁家沟组一些层段形成于正常浪击面之下、风暴浪基面之上的环境中。这个部位既可沉积风暴流产生的高能沉积,也可以在风暴间歇期形成近乎静水的低能沉积。
5. 形成过程
准噶尔地区在晚石炭世早期火山活动频繁,包括准噶尔盆地东北部的巴塔玛依内山组和准噶尔南缘柳树沟组发育火山沉积。祁家沟组下部也发育凝灰质砂岩、粉砂岩,说明在祁家沟组沉积早期,该区还伴随有微弱的火山作用。浅海火山喷发在研究区形成了上石炭统柳树沟组,并形成了一系列火山口,构成了环礁的火山岩基座(图8)。随着祁家沟组沉积开始,原来的火山口被海水几乎完全淹没。火山(口)岛周围适合珊瑚生长,于是大批珊瑚附着并迅速生长,逐渐发展成环礁。环礁外围面对海洋,海水能量较高,水体交换活跃,养料丰富,珊瑚生长速度快,珊瑚生长状况明显优于珊瑚礁内侧,形成了以发育具有鳞板带的单体珊瑚或者复体珊瑚为主的Caniniid–Clisiophyllid动物群,以祁家沟组近底部的珊瑚群为代表。环礁中间的洼地由于周围环礁的保护,受到海洋的作用不明显,海水能量较低,形成半封闭的礁湖(如果全封闭则形成潟湖)。礁湖内发育Cyathoxonia动物群,以祁家沟组近中上部的珊瑚群为代表。与祁家沟组中上部Cyathoxonia动物群共生的还有其他海相生物,说明这个环礁的潟湖没有完全封闭,是一个与外海保持比较充分沟通的低能浅水礁湖。这个Cyathoxonia动物群原地保存于礁湖沉积中(图8)。
环礁礁坪上的Caniniid–Clisiophyllid动物群位于较陡的礁前斜坡边缘,受到海浪冲击破坏而破碎垮塌。在海浪和重力共同作用下,破碎的珊瑚沿着礁前斜坡以重力流方式下滑。在下滑过程中珊瑚个体之间及珊瑚个体与其他碎屑之间发生碰撞摩擦,使珊瑚骨骼进一步遭受破坏,外壁几乎被全部破坏,鳞板带被不同程度地破坏或者全部破坏。以重力流方式下滑的珊瑚个体在礁前斜坡角以重力流方式沉积下来,个体破碎严重,大小混杂,排列方向杂乱无章。一些被严重磨蚀的个体保存在深水沉积的灰泥中。
-
表 1 东昆仑东段三叠纪岩浆岩锆石U–Pb年代学数据、全岩Nd同位素数据和全岩与锆石Hf同位素数据表
Table 1 zircon U–Pb ages, whole rock Nd isotopes and Hf isotopes (whole and zircon) of the Triassic Magmatite from the eastern part of East Kunlun orogeny
年龄
编号样品号 岩性 结晶
年龄误差 测年方法 εNd (t)值
(均值)Nd模式年龄TDM (Ma)值 (均值) εHf (t)值
(均值)Hf模式年龄TDMC (Ma)
值 (均值)数据来源 (Ma) (Ma) 1 08BL08-1 花岗闪长岩 252 3 LA–ICP–MS
锆石 U–Pb–5.30 1.58 Zhang et al.,2012 2 14-SST-37 花岗斑岩 252 3 LA–ICP–MS
锆石 U–Pb1.56~12.41 (6.14) 0.49~1.183 (0.89) Ren et al.,2016 3 DL09-21 花岗闪长岩 251 1 LA–ICP–MS
锆石 U–Pb–2.57 1.23 2.72 1.11 Huang et al.,2014 4 DL09-27 花岗闪长岩 251 1 LA–ICP–MS
锆石 U–Pb–2.63 1.19 2.11 1.15 Huang et al.,2014 5 10NM63-10 苏长辉长岩 251 2 LA–ICP–MS
锆石 U–Pb–7.36~–3.61
(–5.18)1.32~1.62
( 1.46)–2.39~1.06
(–0.88)1.21~1.43 (1.34) 熊富浩等,2011 6 XH040916-6 花岗闪长岩 251 5 LA–ICP–MS
锆石 U–Pb–4.00 1.15 Chen et al.,2012 7 DL09-18 花岗闪长岩 251 1 LA–ICP–MS
锆石 U–Pb–2.82 1.13 3.35 1.07 Huang et al.,2014 8 DL09-15 花岗闪长岩 250 1 LA–ICP–MS
锆石 U–Pb–4.12~–3.14 (–3.63) 1.32~1.36
( 1.34)3.30 1.07 Huang et al.,2014 9 XH040915-4 花岗闪长岩 250 5 LA–ICP–MS
锆石 U–Pb–4.41 1.26 Chen et al.,2012 10 DL09-31 镁铁质暗色微粒包体 250 2 LA–ICP–MS
锆石 U–Pb–2.15~–2.07 (–2.11) 0.74~0.74 (0.74) –3.08 1.47 Huang et al.,2014 1.54 1.18 11 DL09-13 花岗闪长岩 249 1 LA–ICP–MS
锆石 U–Pb–4.47~–2.15 (–3.31) 1.11~1.39
( 1.25)2.37 1.13 Huang et al.,2014 12 11BL03-1 granodiorite 249 2 LA–ICP–MS
锆石 U–PbXiong et al.,2014 13 DL09-30 花岗闪长岩 249 2 LA–ICP–MS
锆石 U–Pb–1.67 0.72 2.09 1.15 Huang et al.,2014 14 br01-1 角闪辉长岩 249 4 LA–ICP–MS
锆石 U–Pb熊富浩等,2011 15 DL09-17 镁铁质暗 249 1 LA–ICP–MS
锆石 U–Pb–3.92 1.61 4.35 1.00 Huang et al.,2014 16 DL09-22 镁铁质暗 249 1 LA–ICP–MS
锆石 U–Pb–2.95 1.27 4.44 1.00 Huang et al.,2014 17 DL09-07 镁铁质暗 249 1 LA–ICP–MS
锆石 U–Pb–2.19 1.31 3.89 1.03 Huang et al.,2014 18 DL09-08 花岗闪长岩 248 1 LA–ICP–MS
锆石 U–Pb–3.69 1.32 3.18 1.08 Huang et al.,2014 –1.38 1.37 19 XH040916-8B 花岗岩 248 5 LA–ICP–MS
锆石 U–PbChen et al.,2012 20 DL09-24 镁铁质暗 248 1 LA–ICP–MS
锆石 U–Pb–4.03 1.57 3.93 1.03 Huang et al.,2014 1.74 1.17 21 09NM66-1 quartz diorite 248 4 LA–ICP–MS
锆石 U–PbXiong et al.,2014 22 ZW-14 二长花岗岩 246 2 ICP–MS
锆石 U–Pb强娟,2008 23 XH040916-8A 英云闪长岩 245 4 LA–ICP–MS
锆石 U–Pb–4.73 1.45 Chen et al.,2012 24 BLGTC104-B1 granite 245 2 LA–ICP–MS
锆石 U–Pb–3.32~–3.31 (–3.31) 1.08~1.16 (1.12) –1.38~1.71 (0.23) 1.17~1.36 (1.26) Ding et al.,2014 25 HSG5-1 流纹岩 245 2 LA–ICP–MS
锆石 U–Pb–4.75~–4.17 (–4.49) 1.29~1.32 (1.31) –4.18~0.19 (–1.48) 1.26~1.54 (1.37) Li et al.,2015a 26 AK18 花岗斑岩 244 2 SIMS
锆石 U–Pb刘建楠等,2012 27 14-SST-51 花岗闪长岩 244 3 LA–ICP–MS
锆石 U–Pb–3.72~1.01 (–1.77) 1.21~1.51 (1.39) Ren et al.,2016 28 BLG-XJ-B8 granite 244 2 LA–ICP–MS
锆石 U–Pb–3.59 1.07 –3.68~1.33 (–0.16) 1.19~1.51 (1.28) Ding et al.,2014 29 BLG-XJ-B9 granite 244 2 LA–ICP–MS
锆石 U–Pb–3.24~–3.14 (–3.19) 0.99~1.16 (1.08) –1.52~1.67 (0.29) 1.17~1.37 (1.26) Ding et al.,2014 30 HSG1-2 流纹岩 244 2 LA–ICP–MS
锆石 U–Pb–5.93~–4.56 (–5.22) 1.31~1.45 (1.37) –2.94~1.37 (–0.79) 1.19~1.46 (1.32) Li et al.,2015a 31 ASH- 2# 闪长岩 244 1 LA–ICP–MS
锆石 U–Pb李碧乐等,2012 32 08BL10-1 花岗闪长岩 244 2 LA–ICP–MS
锆石 U–Pb–5.30~–4.74 (–5.02) 1.42~1.63 (1.53) Zhang et al.,2012 33 DG25-4 流纹质凝灰岩 244 2 LA–ICP–MS
锆石 U–Pb吴芳,2010 34 13NGT-04-1 Host granodioriteite 243 1 LA–ICP–MS
锆石 U–Pb–7.13~–5.76 (–6.31) 1.44~1.8 (1.61) –0.97~2.44 (0.4) 1.12~1.33 (1.25) Xia et al.,2015a 35 (13NGT-04-2) Dioritic enclave 243 1 LA–ICP–MS
锆石 U–Pb–8.30~–5.76 (–6.86) 1.40~1.88 (1.58) –3.51~1.67 (–1.02) 1.17~1.50 (1.34) Xia et al.,2015a 36 09dl36 -1 quartz diorite 243 1 LA–ICP–MS
锆石 U–Pb–5.24 1.52 –3.69~–2.38 (–2.99) 1.42~1.51 (1.46) Xiong et al.,2014 37 08BL01-2 花岗闪长岩 243 2 LA–ICP–MS
锆石 U–Pb–7.46~–5.22 (–6.10) (1.23~1.77)/ 1.49 Zhang et al.,2012 38 QW1032 花岗闪长岩 242 6 SHRIMPⅡ
锆石U–PbLiu et al.,2004 39 XH040916-1 碱性花岗岩 242 5 LA–ICP–MS
锆石 U–Pb–4.62 1.69 Chen et al.,2012 40 XH040915-5 花岗闪长岩 241 4 LA–ICP–MS
锆石 U–Pb–4.84 1.32 Chen et al.,2012 41 11BL01-2 granodiorite 241 1 LA–ICP–MS
锆石 U–PbXiong et al.,2014 42 08BL01-03 石英闪长岩 241 2 LA–ICP–MS
锆石 U–Pb–6.44 1.54 Zhang et al.,2012 43 09NM52-1 granodiorite 241 3 LA–ICP–MS
锆石 U–Pb–6.49 1.43 Xiong et al.,2014 44 Q1013 暗色微粒包体 241 5 SHRIMPⅡ
锆石U–PbLiu et al.,2004 45 XH040916-3 花岗闪长岩 241 4 LA–ICP–MS
锆石 U–Pb–4.84 1.32 Chen et al.,2012 46 QW1160 角闪辉长岩 239 6 SHRIMPⅡ
锆石U–PbLiu et al.,2004 47 XH040914-5 钾长花岗岩 239 5 LA–ICP–MS
锆石 U–Pb–9.40 1.67 Chen et al.,2012 48 09NM73-1 syenogranite 239 2 LA–ICP–MS
锆石 U–Pb–4.78 1.41 –6.85~–3.85 (–4.87) 1.51~1.7 (1.58) Xiong et al.,2014 49 11ASY-008 石英闪长岩 238 2 LA–ICP–MS
锆石 U–Pb李金超等,2014 50 WSA-6 黑云母花岗岩 238 2 ICP–MS
锆石 U–Pb强娟等,2008 51 14-SST-74 花岗闪长岩 237 3 LA–ICP–MS
锆石 U–Pb–8.39~0.51 (–2.80) 1.24~1.80 (1.45) Ren et al.,2016 52 09DL31-1 syenogranite 236 4 LA–ICP–MS
锆石 U–Pb–6.67 1.33 Xiong et al.,2014 53 09DL40-2 granitic porphyry 236 2 LA–ICP–MS
锆石 U–Pb–7.79~–6.89 (–7.34) 1.36~1.53 (1.45) Xiong et al.,2014 54 HMH-2 花岗闪长岩 235 2 LA–ICP–MS
锆石 U–Pb–4.40~–3.85 (–4.12) 1.23~1.29 (1.25) 张宏飞等,2006 55 11HR 07 花岗闪长斑岩 235 5 LA–ICP–MS
锆石 U–Pb宋忠宝等,2013 56 XH040917-1A 闪长岩 235 4 LA–ICP–MS
锆石 U–Pb–5.38 1.48 Chen et al.,2012 57 14-SST-59 钾长花岗岩 234 2 LA–ICP–MS
锆石 U–Pb–3.79~3.82 (–0.14) 1.02~1.51 (1.27) Ren et al.,2016 58 14-SST-44 钾长花岗岩 233 2 LA–ICP–MS
锆石 U–Pb–2.12~4.38 (–0.39) 0.99~1.40 (1.29) Ren et al.,2016 59 B-006 花岗闪长斑岩 233 1 LA–ICP–MS
锆石 U–PbXia et al.,2014 60 B-004 二长花岗斑岩 232 1 LA–ICP–MS
锆石 U–PbXia et al.,2014 61 14-SST-42 钾长花岗岩 232 3 LA–ICP–MS
锆石 U–Pb–2.46~4.96 (0.99) 0.95~1.42 (1.20) Ren et al.,2016 62 11BL06-1 syenogranite 232 1 LA–ICP–MS
锆石 U–Pb–6.39~–5.88 (–6.13) 1.09~1.19 (1.14) Xiong et al.,2014 63 08BL09 正长花岗岩 231 3 LA–ICP–MS
锆石 U–Pb–6.09 1.3 Zhang et al.,2012 64 XH040916-4 花岗闪长岩 229 4 LA–ICP–MS
锆石 U–Pb–5.53 1.11 Chen et al.,2012 65 1059 花岗岩 228 2 LA–ICP–MS
锆石 U–PbDai et al.,2013 66 RSX12-48 rhyolite porphyry 228 2 LA–ICP–MS
锆石 U–Pb–5.10 1.42 –0.93 1.32 Hu et al.,2016 –1.45 1.35 67 SQ-04-1 斜长花岗岩 227 1 LA–ICP–MS
锆石 U–Pb–8.21~0.15 (–5.1) 1.25~1.78 (1.58) Xia et al.,2015b 68 JDG-PD1-N22 granodiorite porphyry 227 1 LA–ICP–MS
锆石 U–Pb–8.29~–7.88 (–8.12) 1.59~1.66 (1.63) Li et al.,2015a 69 2228—8 花岗闪长岩 227 4 LA–ICP–MS
锆石U–Pb李小江等,2015 70 SQ-04-2 斜长花岗岩 227 1 LA–ICP–MS
锆石 U–Pb–6.92~0.42 (–4.48) 1.23~1.7 (1.54) Xia et al.,2015b 71 Jan-98 闪长岩 226 2 LA–ICP–MS
锆石 U–Pb李佐臣等,2013 72 12NM29-5 MMEs 225 1 LA–ICP–MS
锆石 U–PbXiong et al.,2014 73 11124/2 花岗闪长岩 225 5 LA–ICP–MS
锆石 U–Pb陈国超等,2013a 74 11124/1 闪长质包体 225 4 LA–ICP–MS
锆石 U–Pb陈国超等,2013a 75 DQ2-5 花岗闪长岩 224 2 LA–ICP–MS
锆石U–Pb杨拴海等,2015 76 09DL40-1 porphyritic granodiorite 224 1 LA–ICP–MS
锆石 U–Pb–5.89 1.22 –3.41~–1.05 (–2.53) 1.33~1.48 (1.42) Xiong et al.,2014 77 Sd-2 石英闪长玢岩 223 2 LA–ICP–MS
锆石 U–Pb刘建平等,2012 78 XA30-1 二长花岗岩 223 2 LA–ICP–MS
锆石 U–Pb–5.72~–3.82 (–4.91) 1.18~1.35 (1.26) 罗明非等,2014 79 ST05 石英闪长岩 223 2 LA–ICP–MS
锆石 U–Pb–2.05~4.06 (1.13) 1.00~1.39 (1.19) Wang et al.,2016 80 ZK2523B-02 石英闪长岩 223 2 LA–ICP–MS
锆石 U–PbWang et al.,2016 81 NMHX-1-2 Granodiorites 222 1 LA–ICP–MS
锆石 U–PbXia et al.,2014 82 NMHX-03 Gabbroic enclaves 222 1 LA–ICP–MS
锆石 U–PbXia et al.,2014 83 14-SST-08 Granodiorites 221 2 LA–ICP–MS
锆石U–PbRen et al.,2016 84 XA-63-1 花岗闪长岩 221 2 LA–ICP–MS
锆石 U–Pb–6.44~–5.23 (–5.83) 1.43~1.48 (1.46) 罗明非等,2014 85 NMHX-02 Diorite enclaves 220 1 LA–ICP–MS
锆石 U–PbXia et al.,2014 86 3154—5 granodiorite 220 3 LA–ICP–MS
锆石U–PbYang et al.,2015 87 Sg-1 花岗斑岩 220 3 LA–ICP–MS
锆石 U–Pb刘建平等,2012 88 3154-TW-5 花岗闪长岩 219 5 LA–ICP–MS
锆石U–Pb徐多勋等,2015 89 14-SST-20 花岗斑岩 219 3 LA–ICP–MS
锆石U–PbRen et al.,2016 90 11136/3 石英闪长岩 218 1 LA–ICP–MS
锆石 U–Pb陈国超等,2013a 91 WQ-4 花岗闪长岩 218 2 LA–ICP–MS
锆石 U–Pb–6.12~–4.77 (–5.56) 1.32~1.7 (1.53) 张宏飞等,2006 92 XI01-B1 diorite 215 3 LA–ICP–MS
锆石 U–Pb–5.06 1.32 –4.21~–0.61 (–2.27) 1.29~1.52 (1.4) Ding et al.,2014 93 XI01-B2 diorite 215 4 LA–ICP–MS
锆石 U–Pb–5.70~–5.16 (–5.43) 1.4~1.45 (1.43) –4.37~–2.19 (–3.05) 1.39~1.53 (1.44) Ding et al.,2014 94 ZW-06 二长花岗岩 215 1 ICP–MS
锆石U–Pb强娟,2008 95 DL09-01 流纹岩 214 1 LA–ICP–MS
锆石 U–Pb–2.96~–2.96 (–2.96) 1.37~1.42 (1.4) 1.05 1.18 丁烁等,2011 96 DL09-05 流纹岩 212 2 LA–ICP–MS
锆石 U–Pb–3.06~–3.04 (–3.05) 1.41~1.51 (1.46) 0.50 1.22 丁烁等,2011 -
陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带晚三叠世岩浆混合作用: 以和勒冈希里克特花岗闪长岩体为例[J]. 中国地质, 2013, 40(4): 1044-1065. CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Late Triassic magma mixing in the East Kunlun orogenic belt: A case study of Helegang Xilikete granodiorites[J]. Geology in China, 2013, 40(4):1044-1065.
陈国超, 裴先治, 李瑞保, 等. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报, 2013a, 87(02): 178-196 Chen G C, Pei X Z, Li R B, et al. Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun[J]. Acta Geologica Sinica, 2013a, 87(02): 178-196.
陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基的岩浆混合成因: 来自镁铁质微粒包体的证据[J]. 地学前缘, 2016, 23(04): 226-40 Chen G C, Pei X Z, Li R B, et al. Genesis of magma mixing and mingling of xiangjiananshan granite batholith in the eastern section of east kunlun orogen: evidence from mafic microgranular enclaves(mmes). Earth Science Frontiers, 2016, 23(04): 226-40.
陈宣华, 尹安, George G, 等. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学[J]. 地质学报, 2011, 85(2): 157-171. CHEN Xuanhua, YIN An, George G, et al. Chemical Geodynamics of Granitic Magmatism in the Basement of the Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau[J]. Acta Geological Sinica, 2011, 85(2): 157-171.
谌宏伟, 罗照华, 莫宣学, 等. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J]. 中国地质, 2005, 32(03): 386-395. Chen H W , Luo Z H , Mo X X , et al. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt[J]. Geology in China, 2005, 32(3): 393-395.
丁烁, 黄慧, 牛耀龄, 等. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因[J]. 岩石学报, 2011, 27(12): 3603-3614 Ding S, Huang H, Niu Y L, et al. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites[J]. Acta Petrologica Sinica, 2011, 27(12): 3603-3614.
郭正府, 邓晋福. 青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 1998, 12(03): 344-352 Guo ZF, Deng JF. Late palaeozoic mesozoic intracontinental orogenic process and intermedate acidic igneous rocks from the eastern kunlun mountains of northwestern china [J]. Geoscience, 1998, 12(03): 344-352.
侯增谦、郑远川、卢占武、许博、王长明、张洪瑞. 青藏高原巨厚地壳: 生长, 加厚与演化[J]. 地质学报, 2020, 94(10): 2797–2815 doi: 10.3969/j.issn.0001-5717.2020.10.001 HOU ZQ, ZHENG YC, LU ZW, et al. Growth, thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica, 2020, 94(10): 2797–2815. doi: 10.3969/j.issn.0001-5717.2020.10.001
姜春发. 中央造山带几个重要地质问题及其研究进展[J]. 地质通报, 2002, 21(8): 453-455. JIANG Chunfa. Several important geological problems about the Central Orogenic Belt and progress in its research [J]. Geological Bulletin of China, 2002, 21(8): 453-455.
李碧乐, 孙丰月, 于晓飞, 等. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J]. 岩石学报, 2012, (04): 1163-1172 LI BL, SUN FY, YU XF, et al. U-Pb dating and geochemistry of diorite in the eastern section from eastern Kunlun middle uplifted basement and granitic belt[J]. Acta Petrologica Sinica, 2012, 28(4): 1163-1172
李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244-254. LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun [J]. Earth Science Frontiers, 2012, 19(5): 244-254.
李金超, 贾群子, 杜玮, 等. 东昆仑东段阿斯哈矿床石英闪长岩 LA-ICP-MS锆石U-Pb定年及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1188-1199. LI Jinchao, JIA Qunzi, DU Wei, et al. LA-ICP-MS zircon dating and geochemical characteristics of quartz diorite in Asiha gold deposit in east segment of the eastern Kunlun[J]. Journal of Jilin University, 2014, 44(4):1188-1199
李小江, 李佐臣, 杨拴海, 等.西秦岭西段然果儿岗花岗闪长岩体锆石U-Pb定年及地质意义[J].新疆地质, 2015, 33(3): 1-66. LI Xiaojiang, LI Zuochen, YANG Shuanhai, et al. Zircon U-Pb Dating of Ranguoergang Granodiorite in Western Section of West Qinling, and its Geological Significance[J]. Xinjiang Geology, 2015, 33(3): 1-66.
李佐臣, 裴先治, 刘战庆, 等.东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学, 地球化学特征及其地质意义[J]. 地质学报, 2013, 87(8): 1089-1103. LI Zuochen, PEI Xianzhi, LIU Zhanqing, et al. Geochronology and geochemistry of the Gerizhuotuo diorites from the Buqingshan tectonic Melange belt in the Southern margin of East Kunlun and their geologic implications[J]. Acta Geologica Sinica, 2013, 87(8): 1089-1103.
刘成东, 莫宣学, 罗照华, 等. 东昆仑造山带花岗岩类Pb-Sr-Nd-O 同位素特征[J].地球学报, 2003, 58(6): 584-588. LIU Chengdong, Mo Xuanxue, LUO Zhaohua, et al. Pb-Sr-Nd-O isotope characteristics of granitoids in East Kunlun orogenic belt[J]. Acta Geoscientica Sinica, 2003, 58(6), 584-588.
刘成东, 张文秦, 莫宣学, 等. 东昆仑约格鲁岩体暗色微粒包体特征及成因[J]. 地质通报, 2002, 21(11): 739-744. LIU Chengdong, ZHANG Wenqin, MO Xuanxue, et al. Features and origin of mafic microgranular enclaves in the Yuegelu granite in the Eastern Kunlun[J]. Geological Bulletin of China, 2002, 21(11), 739-744.
刘建楠, 丰成友, 亓锋, 等. 青海都兰县下得波利铜钼矿区锆石U-Pb测年及流体包裹体研究[J]. 岩石学报, 2012, 28(02): 679-690 LIU JN, FENG CY, YUAN F, et al. SIMS zircon U-Pb dating and fluid inclusion studies of Xiadeboli Cu-Mo ore district in Dulan County, Qinghai Province, China[J]. Acta Petrologica Sinica, 2012, 28(02): 679-690.
刘建平, 赖健清, 谷湘平, 等. 青海赛什塘铜矿区侵入岩体地球化学及锆石LA-ICPMS U-Pb年代学[J]. 中国有色金属学报, 2012, 22(03): 622-632 LIU JP, LAI JQ, GU XP, et al. Geochemistry and zircon LA-ICPMS U-Pb geochronology of intrusive body in Saishitang copper deposit, Qinghai Province, China[J]. Chinese Journal of Nonferrous Metals, 2012, 22(03): 622-632.
罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241 LUO MF, MO XX, YU XH et al. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3229-3241.
罗照华, 曹永清. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(06): 292-297 Luo Z H, CAO YQ. Late Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 2002, 21(6): 292-297
罗照华, 邓晋福, 曹永清, 等. 青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化[J]. 现代地质, 1999, 13(01): 51-56 LUO ZH, DENG JF, CAO YQ, ET AL. On late Paleozoic early Mesozoic volcanism and regional tectonic evolution of eastern kunlun, qinghai province[J]. Geoscience, 1999, 13(01): 51-56.
马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-68. MA CQ, XIONG FH, YIN S, et al. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555-3568.
莫宣学. 岩浆作用与青藏高原演化[J]. 高校地质学报, 2011, 12(03): 351-67 doi: 10.16108/j.issn1006-7493.2011.03.004 Mo X X. Magmatism and evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 2011, 12(03): 351-67. doi: 10.16108/j.issn1006-7493.2011.03.004
莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3): 403-414 MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(3): 1089-1103.
潘裕生, 方爱民. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 2010, 45(1): 92-101. PAN Yusheng, FANG Aimin. Formation and evolution of the Tethys in the Tibetan Plateau[J]. Chinese Journal of Geology, 2010, 45(1): 92-101.
强娟. 青藏高原东北缘宗务隆构造带花岗岩及其构造意义[D]. 西安: 西北大学, 2008: 1−64 QIANG Juan. The granitiods in zongwulong tectonic zone on the northeastern margin of the qinghai-Tibet plateau and its tectonic significance[D]. Xi’an: Northwest University, 2008: 1−64.
任海东, 王涛. 东昆仑—西秦岭造山带对接处三叠纪花岗质岩石时空演化、物源特征对比及其大地构造意义[J]. 地球学报, 2017, 38(s): 59-63 Ren H D, Wang T. Temporal-spatial Variations, Sources and Tectonic Significances of the Triassic Granitic Rocks in the Junction Part of the East Kunlun and West Qinling Orogen, Central China[J]. Acta Geoscientica Sinica, 2017, 38(s): 59-63.
任纪舜. 昆仑—秦岭造山系的几个问题[J]. 西北地质, 2004, 1-5 REN JS. Some problems on the Kunlun-Qinling orogenic system[J]. Northwestern Geology, 2004, 1-5.
宋忠宝, 张雨莲, 陈向阳, 等. 东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义[J]. 矿床地质, 2013, 32(1): 157-168. SONG Zhongbao, ZHANG Yulian, CHEN Xiangyang, et al. Geochemical characteristics of Harizha granite diorite -porphyry in East Kunlun and their geological implications[J]. Mineral Deposits, 2013, 32(01): 157-168.
田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28-−45. TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28-45.
王涛, 黄河, 宋鹏, 等. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例[J].地球科学, 2020, 45(7): 2326-2344. WANG Tao, HUANG He, SONG Peng, et al. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang)[J]. Earth Science, 2020, 45(7): 2326-2344.
王涛, 侯增谦. 同位素填图与深部物质探测(Ⅰ): 揭示岩石圈组成演变与地壳生长[J]. 地学前缘, 2018, 25: 1-19 WANG T, HOU ZQ. Isotopic mapping and deep material probing (Ⅰ): revealing the compositional evolution of the lithosphere and crustal growth processes[J]. Earth Science Frontiers, 2018, 25: 1-19.
王新宇, 陈能松, 陈海, 等. 柴达木周缘印支期花岗岩同位素地球化学特征及其对基底属性的制约[J]. 矿物岩石地球化学通报, 2008, 27(1): 13-19. WANG Xinyu, CHEN Nengsong, CHEN Hai, et al. Isotopic Geochemistry Characters of Indosinian Granites around Qaidam Basin and its Constraints on Basement Affinity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 13-19.
王永标, 黄继春. 海西—印支早期东昆仑造山带南侧古海洋盆地的演化[J].地球科学: 中国地质大学学报, 1997, 22(4): 33-36. WANG Yongbiao, HUANG Jichun. Paleo-ocean evolution of the southern Eastern Kunlun orogenic belt during Heacy-early Indosinian[J]. Earth Science-Journal of China University of Geosciences, 1997, 22(4):33-36.
吴芳, 张绪教, 张永清, 等. 东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义[J]. 地质力学学报, 2010, 16(01): 44-50 Wu F, Zhang X J, Zhang Y Q, et al. Zircon u-pb ages for rhyolitic tuffs of the naocangjiangou formation in the east kulun orogenic belt and their implication[J]. Journal of Geomechanics, 2010, 16(01): 44-50.
吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92−108. WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92−108.
熊富浩, 马昌前, 张金阳, 等. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报, 2011, 27(11): 3350-3364 Xiong F H, Ma C Q, Zhang J Y, et al. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(11): 3350-3364
徐多勋, 杨拴海, 李瑞保, 等.西秦岭西段塔洞花岗闪长岩体年代学、地球化学特征及其地质意义[J].地球科学与环境学报, 2015, 37(3): 22-33. XU Duoxun, YANG Shuanhai, LI Ruibao, et al. Geochronological, geochemical characteristics and geological significance of tadong granodiorite pluton in the western section of West Qinling[J]. Journal of Earth Sciences & Environment, 2015, 37(3):22-33.
杨拴海, 李瑞保, 王伟峰, 等. 西秦岭西段曲如沟花岗闪长岩年代学、地球化学特征及构造意义研究[J]. 西北地质, 2015, 48 (2): 57-72. YANG Shuanhai, LI Ruibao, WANG Weifeng, et al. Geochronology,Geochemical Characteristics and Tectonic Significance of Qurugou Granodiorite in Western Section of West Qinling Orogen[J]. Northwestern Geology, 2015, 48 (2): 57-72.
殷鸿福, 张克信. 东昆仑造山带的一些特点[J]. 地球科学: 中国地质大学学报, 1997, 22(4): 3-6. YIN Hongfu, ZHANG Kexin. Characteristics of the Eastern Kunlun Orogenic belt[J]. Earth Science-Journal of China University of Geosciences, 1997, 22(4): 3-6.
袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(02): 203-211 doi: 10.3321/j.issn:0371-5736.2000.02.012 Yuan WM, Mo XX, Yu XH. The record of Indosinian tectonic setting from the granotoid of eastern Kunlun Mountains [J]. Geological Review, 2000, 46(02): 203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012
翟明国. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题——“岩石学报”花岗岩专辑代序[J]. 岩石学报, 2017, 33(01): 1-12 Zhai MG. Granites: Leading study issue for continental evolution[J]. Acta Petrologica Sinica, 201733(01): 1-12.
张国伟, 柳小明. 关于“中央造山带”几个问题的思考[J]. 地球科学, 1998: 9-14 ZHANG GW, LIU XM. Some remarks on china central orogenic system. Geological science, 1998: 9-14.
张宏飞, 陈岳龙, 徐旺春, 刘荣, 袁洪林, 柳小明. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J]. 岩石学报, 2006, 22(12): 2910-22 ZHANG HF, CHEN YL, XU WC, ET AL. Granitoids around Gonghe basin in Qinghai province: petrogenesis and tectonic implications. Acta Petrologica Sinica, 22(12): 2910-22.
钟大赉, 丁林, 张进江, 等. 中国造山带研究的回顾和展望[J]. 地质论评, 2002, 147-52 ZHONG DL, DING L, ZHANG JJ. Study of Orogenic Belts in China: Retrospects and Prospects[J]. Geological Review, 2002, 147-52.
张智勇, 殷鸿福, 王秉璋, 等. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据[J].地球科学: 中国地质大学学报, 2004, 29(6): 691-696. ZHANG Zhiyong, YIN Hongfu, WANG Bingzhang, et al. Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae between Kunlun-Qinling Mountains[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(6):691-696
翟明国, 张旗, 陈国能, 等. 大陆演化与花岗岩研究的变革[J]. 科学通报, 2016, 61(13): 1414-1420. ZHAI M G, ZHANG Q, CHEN G N, et al. Adventure on the research of continental evolution and related granite geochemistry (in Chinese). Chin Sci Bull, 2016, 61(13): 1414–1420
郑永飞, 陈伊翔, 戴立群, 等. 发展板块构造理论:从洋壳俯冲带到碰撞造山带[J]. 中国科学:地球科学, 2015, 45(6): 711-735. ZHENG Yongfei, CHEN Yixiang, DAI Liqun, et al. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China: Earth Sciences, 58: 1045–1069
CHEN XH, GEORGE G, YIN An, et al. Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai‐Tibet Plateau: LA‐ICP‐MS Zircon U‐Pb Geochronology and its Geological Significance[J]. Acta Geologica Sinica‐English Edition, 2012, 86(2): 350-369. doi: 10.1111/j.1755-6724.2012.00665.x
Chen X H, Gehrels G, Yin A, et al. Geochemical and Nd–Sr–Pb–O isotopic constrains on Permo–Triassic magmatism in eastern Qaidam Basin, northern Qinghai-Tibetan plateau: Implications for the evolution of the Paleo-Tethys[J]. Journal of Asian Earth Sciences, 2015, 114: 674-692
DAI JG, WANG C, HOURIGAN J, et al. Multi-stage tectono- Mag Matic events of the Eastern Kunlun Range, northern Tibet: Insights from U–Pb geochronology and (U–Th)/He thermochronology[J]. Tectonophysics, 2013, 599(0): 97-106.
DING QF, JIANG SY, SUN FY. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos, 2014, 205(0): 266-283.
DONG YP, HE DF, SUN SS, ET AL. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186, 231–261. . doi: 10.1016/j.earscirev.2017.12.006
Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust [J]. Journal of the Geological Society, 2010, 167(2):229-248.
Hawkesworth C, Cawood P, Dhuime B. 2013. Continental growth and the crustal record[J]. Tectonophysics, 2013, 609(1): 651−660.
Hu Y, Niu YL, Li J, et al. Petrogenesis and tectonic significance of the late Triassic Mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau[J]. Lithos, 2016, 245: 205−222.
Hawkesworth C J, Kemp A I. The differentiation and rates of generation of the continental crust [J]. Chemical Geology, 2006, 226: 134-143.
HUANG H, NIU YL, NOWELL G, et al. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic Mag Matism[J]. Chemical Geology, 2014, 370(0): 1-18.
LI BL, ZHI Y, ZHANG L, et al. U–Pb dating, geochemistry, and Sr–Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu–(Mo) deposit in the Eastern Kunlun metallogenic belt, Qinghai Province, China[J]. Ore Geology Reviews, 2015, 67: 1-10. doi: 10.1016/j.oregeorev.2014.11.008
LI XW, HUANG X, LUO MF, et al. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2015, 105(0): 32-47.
Liu C, Mo X, Luo Z, et al. Mixing events between the crust- and Mantle-derived Mag Mas in eastern kunlun: Evidence from zircon SHRIMP II chronology[J]. Chinese Science Bulletin, 2004, 49(8): 828−834.
Liu H. Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis[J]. Geochemical Journal, 2005, 39(1):1−20.
Niu Y L, Zhao Z D, Zhu D C, et al. Continental Collision Zones are Primary Sites for Net Continental Crust Growth: A Testable Hypothesis[J]. Earth‐Science Reviews, 2013, 127: 96-110
Ren H D, Wang T, Zhang L, et al. Ages, Sources and Tectonic Settings of the Triassic Igneous Rocks in the Easternmost Segment of the East Kunlun Orogen, central China[J]. Acta Geologica Sinica (English Edition), 2016, 90(2): 641-668.
Rudnick, R. L. Making continental crust[J]. Nature, 1995, 378, 571–578. doi: 10.1038/378571a0
Taylor S R, Mclennan S M, Mcculloch M T. Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta, 1983, 47(11):1897-1905.
Vervoort J D, Plank T, Prytulak J. The Hf–Nd isotopic composition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2011, 75 (20), 5903−5926
Wang H, Feng C, Li D, et al. Geology, geochronology and geochemistry of the Saishitang Cu deposit, East Kunlun Mountains, NW China: Constraints on ore genesis and tectonic setting[J]. Ore Geology Reviews, 2016, 72: 43−59.
Wang T, Jahn B M, Kovach V P, et al. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 2009, 110(1-4):359-372
XIA R, WANG C M, DENG J, et al. Crustal thickening prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton[J]. Journal of Asian Earth Sciences, 2014, 93: 193-210. doi: 10.1016/j.jseaes.2014.07.013
Xia R, Wang C, Qing M, et al. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and Mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys[J]. Lithos, 2015a, 234–235(3): 47–60.
XIA R, WANG C, QING M, et al. Molybdenite Re–Os, zircon U–Pb dating and Hf isotopic analysis of the Shuangqing Fe–Pb–Zn–Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 2015b, 66(0): 114-131.
XIONG FH, Ma CQ, ZHANG J, et al. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171(6): 847-863. doi: 10.1144/jgs2013-038
Yang G, Yang S, Wei L, et al. Petrogenesis and geodynamic significance of the Late Triassic Tadong adakitic pluton in West Qinling, central China[J]. International Geology Review, 2015, 57(13):1755−1771
ZHANG JY, MA CQ, XIONG FH, et al. Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 2012, 149(05): 892-908. doi: 10.1017/S0016756811001142
ZHU DC, WANG Q, WEINBERG RF, et al. Interplay between oceanic subduction and continental collision in building continental crust [J]. Nature communications, 2022, 13: 7141. doi: 10.1038/s41467-022-34826-0
ZHU DC, WANG Q, WEINBERG RF, et al. Continental Crustal Growth Processes Recorded in the Gangdese Batholith, Southern Tibet[J]. Annual Review of Earth and Planetary Sciences, 2023, 51: 155–88. doi: 10.1146/annurev-earth-032320-110452