ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义

    代新宇, 周斌, 李新林, 杜彪, 范鹏, 赵江林, 杨文博, 武忠山

    代新宇,周斌,李新林,等. 西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义[J]. 西北地质,2024,57(4):191−205. doi: 10.12401/j.nwg.2023188
    引用本文: 代新宇,周斌,李新林,等. 西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义[J]. 西北地质,2024,57(4):191−205. doi: 10.12401/j.nwg.2023188
    DAI Xinyu,ZHOU Bin,LI Xinlin,et al. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun[J]. Northwestern Geology,2024,57(4):191−205. doi: 10.12401/j.nwg.2023188
    Citation: DAI Xinyu,ZHOU Bin,LI Xinlin,et al. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun[J]. Northwestern Geology,2024,57(4):191−205. doi: 10.12401/j.nwg.2023188

    西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义

    基金项目: 中国地质调查局项目“新疆西昆仑地区1∶5万I44E002006等四幅区调”(1212011220654),陕西省地质勘查基金“陕西典型小岩体成矿预测与勘查示范”(61201908334)联合资助。
    详细信息
      作者简介:

      代新宇(1967−),男,高级工程师,主要从事区域地质调查工作。E−mail:505971533@qq.com

      通讯作者:

      李新林(1966−),男,正高级工程师,主要从事区域地质调查和成矿规律研究工作。E−mail:541475896@qq.com。

    • 中图分类号: P588.12;P597

    Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun

    • 摘要:

      奇台达坂位于新疆西昆仑新藏公路540 km处,在其北侧分布有小规模的中酸性侵入岩,呈NE向展布,岩性主要为石英二长岩。笔者以西昆仑地区东段奇台达坂北石英二长岩侵入体为研究对象,进行岩石地球化学、锆石LA−ICP−MS U−Pb年代学分析。结果表明,石英二长岩锆石U−Pb年龄加权平均值为(10.4±0.2)Ma,形成时代为中新世;岩石具有高SiO2(63.16%~68.20%)、贫Al2O3(13.39%~15.47%)、高K2O(4.23%~5.24%)、低MgO(1.06%~1.49%)、低TiO2(0.60%~0.83%)、准铝质(A/CNK=0.83~0.90)的地球化学性质,具有A型花岗岩特征;富集K、Rb、Th、U而亏损Ba、Sr等大离子亲石元素,相对亏损Nb、Ta、Ti等高场强元素,δEu具明显的负异常特征。岩石的地球化学特征和构造环境判别图解均指示,石英二长岩可能形成于深部岩石圈强烈伸展的环境下,地壳深部形成高温低压环境,促使下地壳发生低程度部分熔融并沿深大断裂快速上升侵位,代表了板内伸展背景作用下的岩浆响应。

      Abstract:

      Qitai Mountain is located in Xinjiang−Xizang Highway 540 km west of Xinjiang Kunlun area, there are small−scale medium acid intrusive rocks distributed around it, the lithology is mainly composed of the quartz monzonite. Here we present bulk-rock geochemistry, zircon U-Pb geochronology of the Miocene quartz monzonite in Qitai Mountain in Western Kunlun in order to shed light on this issue. Zircon U–Pb dating yielded Miocene ages of (10.4 ± 0.3) Ma. Geochemically, this early Miocene quartz monzonite is A-type granites with high SiO2 (63.16%~68.20%), K2O (4.23%~5.24%), and low Al2O3 (13.39%~15.47%), MgO (1.06%~1.49%), TiO2 (0.60%~0.83%). They are enriched in light rare earth elements (LREEs), large ion lithophile elements (LILEs, including K, Rb, Th, U, Ba and Sr), but depleted in high-field strength elements (Nb, Ta and Ti) and heavy rare earth elements (HREEs), and have obvious negative Eu anomalies. The geochemical characteristics of the rocks and the tectonic setting diagram indicate that the quartz monzonites may have been formed in an environment where the deep lithosphere was strongly extended, and a high temperature and low pressure environment was formed in the deep crust, which prompted a low degree of partial melting of the lower crust and rapid along deep and large faults. The uplift emplacement represents the magmatic response to the intraplate extensional background. We suggest that the Miocene magmas from the northern of Qita Mountain in Western Kunlun were likely sourced from low–degree partial melting of the lower crust with a high temperature and low pressure environment, there may have formed in the background of strong extension of the deep lithosphere, which promotes the magmas rapid uplift along deep and large faults.

    • 西昆仑地区位于西藏西北部和新疆西南部中间地带,是古亚洲、秦祁昆和特提斯三大古构造域的结合部位(任纪舜,1999计文化,2005莫宣学等,2006),显生宙以来经历了原特提斯和古特提斯两大构造域的复合演化,形成岩浆活动期次多 、岩浆类型复杂的一个大型构造岩浆岩带,岩浆岩主要形成于三叠纪至新近纪,年龄集中在258~210 Ma,172 Ma,18~3 Ma。基于刻画早、中三叠世受印支运动影响而最终导致的古特提斯洋盆闭合和继而发生的碰撞造山过程,前人对西昆仑地区的岩浆岩研究主要集中在三叠世—侏罗世(张玉泉等,1998袁超等,1999姜耀辉等,1999崔建堂等,2006张传林等,2007李荣社等,2008杨文强等,2011康磊等,2012乔耿彪等,2015赵江林等,2017)。区域上在西昆仑地区和羌塘微板块之间广泛分布着一系列新生代高钾钙碱性火山岩,在众多的前人研究资料中,对新生代岩浆岩研究侧重于火山岩方面,主要分布在普鲁、阿什库勒湖、泉水沟、大红柳滩、奇台达坂等地(刘嘉麒等,19901999边千韬等,1992Arnaud,1992张以佛,1996邓万明等,1998a,1998b丁林等,1999赖绍聪等,1999罗照华等,2000朱弟成等,2003莫宣学等,2007Zhang et al.,2008肖爱芳等,2010),而同时代侵入岩鲜为报导。新生代侵入岩作为板块俯冲、碰撞等深部地质过程的浅表响应,是探索新生代以来高原岩石圈的组成和演化、壳幔交互作用以及高原隆升机制的“天然场所”,一直为国内外地学研究者关注的热点。受地质调查程度和自然条件限制,在奇台达坂北无新近纪侵入岩研究报道。笔者在奇台达坂一带开展基础地质调查工作时,在新藏公路奇台达坂北东约10~20 km、海拔5380 m的黄羊岭群上板岩组、下砂板岩组中新发现中酸性侵入体4处(图1),对其开展了岩石学、全岩地球化学和锆石U-Pb年代学分析,对该期侵入体的岩石成因、岩浆源区及构造环境进行了探讨,为新生代构造–岩浆演化提供新的证据。

      图  1  研究区大地构造位置(a)及侵入岩分布图(b)
      1.塔里木陆块;Ⅰ2.铁克里克断裂带;Ⅱ1.北昆仑(其曼塔格)晚古生代岩浆弧带;Ⅱ2.中昆仑微陆块(早古生代与晚古生代构造叠加复合带);Ⅱ21.中昆仑微陆块北带;Ⅱ22.中昆仑微陆块南带;Ⅱ3.南昆仑晚古生代残弧带;Ⅲ.巴颜喀拉晚古生代—中生代边缘裂谷盆地;Ⅳ.甜水海–北羌塘微陆块群;Ⅳ1.甜水海微陆块;Ⅳ12.神仙湾二叠纪—三叠纪边缘裂陷带;Ⅴ.喀拉昆仑–南羌塘陆块;Ⅵ.班戈–腾冲燕山期岩浆弧带;Ⅶ.岗底斯–下察隅晚燕山期岩浆弧带;①.柯岗断裂;②.其曼于特–祁漫塔格蛇绿混杂岩带;③.蒙古–普守蛇绿混杂岩带;④.柳什塔格-向阳泉中昆仑断裂带;⑤.苏巴什–木孜塔格蛇绿混杂岩带;⑥.郭扎错–金沙江结合带;⑦.龙木错–双湖结合带;⑧.班公湖–怒江结合带;⑨.狮泉河结合带;1.第四系;2.雪被区;3.巴颜喀拉山群上组上段;4.巴颜喀拉山群上组下段;5.巴颜喀拉山群中组上段;6.巴颜喀拉山群中组下段;7.巴颜喀拉山群下组上段;8.黄羊岭群上板岩组第四段;9.黄羊岭群上板岩组第三段;10.黄羊岭群上板岩组第二段;11.黄羊岭群上板岩组第一段;12.黄羊岭群下砂板岩组第四段;13.黄羊岭群下砂板岩组第三段;14.黄羊岭群下砂板岩组第二段;15.黄羊岭群下砂板岩组第一段;16.奇台达坂构造片岩;17.中新世石英二长岩;18.晚三叠世石英闪长岩;19.晚三叠世花岗闪长岩;20.断层;21.测年采样品位置
      Figure  1.  (a) Geotectonic position and (b) distribution of the study area intrusive rocks

      研究区处于西昆仑–喀喇昆仑造山带,以郭扎错–金沙江缝合带为界,南、北分别为甜水海–北羌塘微陆块群、巴颜喀拉晚古生代—中生代边缘裂陷带两个二级构造单元,经历了长期的、多体制、多机制的构造演化,形成了复杂的构造格局和物质组成(韩芳林,2006李荣社等,2008)。研究区地层主体为上古生界二叠系黄羊岭群(PH)、下中生界三叠系巴颜喀拉山群(TB)和第四系沉积物(李新林等,2006)。其中,二叠系黄羊岭群主要为一套浅海–半深海相的以碎屑岩为主沉积岩建造,层内褶皱发育,三叠系巴颜喀拉山群主要是以细碎屑岩沉积为主的增生杂岩。区内构造发育,褶皱早期为NE向SW逆冲构造,晚期为转换为SW向NE逆冲褶皱,断裂构造主要为NW–SE向奇台达坂大断裂,卫片上线性影像特征清楚,地貌上呈槽形负地形线状延伸。岩浆岩较为发育,主要为晚三叠纪的石英闪长岩、石英二长岩、花岗闪长岩等,次为新近纪的石英二长岩(代新宇等,2015)。

      石英二长岩侵入体位于研究区北东一带,呈小岩枝产出,岩体受区域构造控制,多呈NE向展布,出露总面积约3 km2图1)。本次样品野外露头新鲜,代表性岩性特征如下所述。石英二长岩:呈浅灰色,中-细粒花岗结构、块状构造;主要矿物成分为主要由钾长石(55%~57%)、斜长石(30%~32%)、石英(5%~6%)、黑云母(4%)组成,矿物颗粒粒径为0.3~2 mm和2~4 mm。钾长石、斜长石多为半自形-自形板状相互嵌连均匀分布,他形粒状石英则充填于长石间隙。偶见斜长石具环带构造,以及少许颗粒嵌含在钾长石内。黑云母棕色片状,在岩石中不均匀分布(图2)。

      图  2  研究区石英二长岩野外照片(a)和镜下照片(b)
      Qtz.石英;Pth.条纹长石;Pl.斜长石;Chl.绿泥石;oηN1. 中新世石英二长岩;P1-2H1. 黄羊岭群上板岩组
      Figure  2.  (a) Outcrop photos and (b) microscopic picturesof the quartz monzonite in the study area

      笔者研究共采集5件样品,采自实测地质剖面中具代表性的新鲜岩石,均为石英二长岩。5件样品主、微量元素测试在核工业二〇三研究所测试中心完成,1件样品(PM013/1)LA-ICP-MS锆石U-Pb定年在西北大学大陆动力学国家重点实验室完成。

      锆石的分选和制靶采用标准化流程,首先在颚式破碎机下进行粗碎和粉碎过程,再进行浮选和电磁筛选,然后在双目镜下挑选出晶形完整且透明度高的锆石颗粒,经环氧树脂粘结固化后,抛光至锆石中心面出露,最后经过反射光、透射光和阴极发光图像分析,筛选出用于测年的锆石靶样品。锆石U-Pb同位素分析由美国Agilent公司生产的Agilent7500a型四极杆质谱仪进行测定,激光剥蚀系统是德国MicroLas公司生产的GeoLas200M,激光器为193 nm ArF准分子激光器,激光波长为193 nm,束斑直径为30 um,脉冲为8 Hz,能量为32~36 MJ,采样方式为单点剥蚀,实验仪器配置和分析流程参见袁洪林等(2003)。采用标准锆石91500作为外标校正元素分馏和仪器质量歧视效应,利用玻璃标样NIST SRM 610计算锆石的U、Th、Pb含量,29Si作为内标元素进行校正,普通铅校正采用Andersen (2002)的方法,数据处理采用GLITTER(ver 4.0, Macquarie University)程序,计算年龄与绘制谐和曲线采用Isoplot(ver3.75)程序。

      主量元素分析采用XRF方法,使用荷兰帕纳科制造的Axios型X射线荧光光谱仪进行测定,分析误差小于5%。经烧失量校正后进行主量元素换算,并借助Geokit Pro 程序建立标准曲线。微量元素分析采用日本岛津制造的ICPS-7510型电感耦合等离子体发射光谱仪与美国Thermo Fisher制造的XSERIESⅡ型ICP-MS进行测定,分析误差小于5%,对稀土元素测试结果进行球粒陨石数据标准化(Sun et al.,1989),计算主要稀土元素参数。

      本次在1件石英二长岩样品(PM013/1)(N 35°44′30″;E 79°42′18″)中挑选出的锆石颗粒呈浅黄色-无色透明,多呈自形长柱状,部分呈短柱状,长宽比约为2∶1~3∶1,粒径在0.4 mm×0.1 mm~0.1 mm×0.05 mm,长宽比多为2∶1~3∶1,个别可达4∶1或5∶1。在阴极发光图像中,结晶程度较好,内部结构简单,显示明显的岩浆型锆石振荡环带结构(图3)(冉亚洲等,2024)。锆石Th/U值为0.59~11.58(平均为1.35)(表1),与岩浆锆石Th/U值(>0.1)相当 (Rubatto,2002俞胜等,2023刘昊等,2024),表明石英二长岩样品的锆石均为岩浆成因锆石。

      图  3  研究区石英二长岩锆石阴极发光照片(a)、U-Pb年龄值(b)以及锆石U-Pb年龄谐和图(c)
      Figure  3.  (a) Zircon CL images for microbeam analyzed spost and (b) apparent U-Pb ages and (c)zircon U-Pb Concordia diagram of the quartz monzonite in the study area
      表  1  研究区石英二长岩LA-ICP-MS U-Pb年代学测试结果
      Table  1.  LA-ICP-MS zircon U-Pb dating results of the quartz monzonite in the study area
      分析点PbThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb年龄207Pb/235U年龄206Pb/238U年龄
      含量(10−6比值(±1σ)比值(±1σ)比值(±1σ)比值(±1σ)比值(±1σ)比值(±1σ)
      PM013/1-0196515691.140.086480.009020.001570.000040.018710.001911349189192100
      PM013/1-02104156460.640.054660.01070.001640.000040.012350.00241398388132110
      PM013/1-03119917341.350.051480.003310.001570.000030.011140.0007263141111100
      PM013/1-0463233490.930.057820.007910.001560.000050.012430.00165523275132100
      PM013/1-0574555330.850.054350.005690.00160.000040.011990.00122385220121100
      PM013/1-0698665281.640.196140.040660.001690.000120.045810.008982794304469111
      PM013/1-0797199250.780.054010.009830.001610.000070.011980.00212372365122100
      PM013/1-0883042531.200.060460.014990.001710.00010.01430.00344620460143111
      PM013/1-0966295621.120.142620.018090.001770.000080.034810.004132259204354111
      PM013/1-1064845430.890.048320.007250.001940.000070.012940.00189115320132130
      PM013/1-1186525781.130.053570.003990.001620.000030.011950.00087353160121100
      PM013/1-1265314781.110.06950.010880.001480.000060.014230.00215914293142100
      PM013/1-135532045911.580.047570.015640.001570.000040.010310.0033877638103100
      PM013/1-1456574801.370.053510.009590.001720.000070.012730.00222350361132110
      PM013/1-15112691222.200.048720.007730.001570.000060.010570.00164134335112100
      PM013/1-16103866580.590.049730.009490.001620.000070.011090.00207182393112100
      PM013/1-17109589241.040.189840.014840.001740.000060.045690.003282741123453110
      PM013/1-1812152312321.240.107080.024910.001710.000080.025250.005761750374256111
      PM013/1-1975857650.760.047120.008690.001770.000060.01150.0020955389122110
      PM013/1-2076466431.000.076350.00780.001680.000050.017720.001751104192182110
      PM013/1-2165584891.140.04730.007860.001780.000050.011620.0019164355122120
      PM013/1-2274264221.010.069490.007990.001590.000050.015220.00169913221152100
      PM013/1-2376847500.910.05950.019390.001550.000080.01270.00409586584134101
      PM013/1-2468226341.300.081370.009770.001680.000060.018810.002181231219192110
      PM013/1-25134695680.830.509770.01810.005010.000110.352270.010634270513068321
      PM013/1-2665436370.850.075680.008980.001730.000060.018070.002071087221182110
      PM013/1-2767596431.180.05440.009660.001550.000030.011670.00206388356122100
      PM013/1-2843275420.600.068920.024280.001560.000110.014870.00514896596155101
      PM013/1-2975906210.950.04670.01060.001650.000060.010610.0023834469112110
      PM013/1-3064324450.970.062390.012650.00170.000090.014610.00287687382153111
      PM013/1-3165673671.540.066950.014860.001780.000070.016480.0036836405174120
      PM013/1-3297856861.140.212360.022950.00190.000090.055820.005482924165555121
      PM013/1-3395986560.910.058130.023860.001660.000080.013340.00544534711145110
      PM013/1-3478767761.130.063350.007810.001640.000050.014370.00172720242152110
      PM013/1-3575786650.870.052250.006250.001660.000040.011940.00141296252121110
      PM013/1-3676438690.740.046260.007750.001730.000030.011070.0018511360112110
      下载: 导出CSV 
      | 显示表格

      对样品PM013/1进行了 LA-ICP-MS锆石U-Pb测年,所有测点均位于锆石的振荡环带微区,在U⁃Pb谐和图中显示出良好的谐和性,年龄分布较为集中,并且较为均匀地分布于一致曲线上或附近,表明U⁃Pb 体系在锆石形成之后处于封闭状态。样品PM017/1共测定36个点,有16个测点的年龄值明显偏离谐和线,可能为捕获锆石或继承锆石的年龄,不参与计算,其余20个测点位于谐和线附近,206Pb/238U加权平均值为(10.4±0.2) Ma(图3a),代表区内石英二长岩的成岩年龄。

      本次研究样品的主量、微量元素测试结果件表2。5件石英二长岩样品具高SiO2(63.16%~68.20%,平均为66.49%),贫铝Al2O3(13.39%~15.47%,平均为13.69%),高K2O(4.23%~5.24%,平均为4.71%),低MgO(1.06%~1.49%,平均为1.21%),低TiO2(0.60%~0.83%,平均为0.70%),K2O/Na2O值为1.13%~1.37%,ALK为7.90%~9.87%。在花岗岩类TAS分类图解(图4a)中,多数样品均投入石英二长岩区。在SiO2-K2O图解(图4b)中,绝大部分样品投点位于钾玄岩系列。样品铝饱和指数A/CNK=0.83~0.90,属偏铝质系列,在A/CNK-A/NK图解(图4c)中,所有样品投点均位于偏铝质区域。在K2O+Na2O-CaO-SiO2图解中,多数样品投点均位于碱钙质区域,处于A型花岗岩和I型花岗岩重叠区(图4d)。

      表  2  研究区石英二长岩主量元素(%)、稀土元素以及微量元素(10−6)分析结果
      Table  2.  Major elements(%), rare earth elements(10−6) and trace elements compositions of the quartz monzonite in the study area
      样品编号PM017/1PM017/2PM017/3PM017/4PM013/1
      岩性 石英二长岩
      SiO2 68.20 66.52 66.59 67.97 63.16
      TiO2 0.65 0.73 0.67 0.60 0.83
      Al2O3 13.39 13.42 13.67 13.83 15.47
      Fe2O3 1.89 1.97 2.12 1.98 2.63
      FeO 2.58 2.79 2.36 2.08 2.19
      MnO 0.08 0.09 0.09 0.08 0.13
      MgO 1.15 1.23 1.12 1.06 1.49
      CaO 2.33 2.74 2.55 2.27 2.52
      Na2O 3.67 3.81 3.92 3.79 4.63
      K2O 4.23 4.49 4.97 4.60 5.24
      P2O5 0.26 0.34 0.28 0.30 0.35
      LOI 1.05 1.23 1.10 1.01 0.87
      Σ 99.48 99.36 99.44 99.57 99.51
      TFe2O3 4.76 5.07 4.74 4.29 5.06
      K2O/Na2O 1.15 1.18 1.27 1.21 1.13
      ALK 7.90 8.30 8.89 8.39 9.87
      Mg# 36 36 36 37 41
      AR 3.02 3.11 3.43 3.18 3.43
      A/NK 1.26 1.21 1.16 1.23 1.16
      A/CNK 0.90 0.83 0.83 0.90 0.87
      DI 81 81 83 83 81
      TZr(℃) 821 831 808 832 853
      σ 2.45 2.89 3.31 2.79 4.76
      A/MF 2.51 2.39 2.49 2.75 2.29
      C/MF 0.80 0.89 0.84 0.82 0.68
      Sr 529 545 534 538 1042
      Zr 306 338 264 343 426
      Ba 484 569 627 586 1364
      Rb 247 237 246 260 202
      Th 87.2 53.2 55.0 63.8 44.1
      U 5.32 5.63 5.21 4.23 8.55
      Nb 61.9 67.3 49.9 51.6 44.7
      Ta 10.0 12.0 5.76 7.95 3.34
      La 162 120 96.1 112 159
      Ce 263 223 184 193 324
      Pr 24.1 22.8 19.2 18.4 34.6
      Nd 74.8 76.7 65.9 60.6 118
      Sm 10.3 11.5 10.2 8.89 17.7
      Eu 1.57 1.69 1.61 1.32 2.97
      Gd 9.47 10.6 9.00 8.07 15.6
      Tb 0.71 0.94 0.84 0.72 1.40
      Dy 3.46 4.87 4.22 3.64 6.66
      Ho 0.54 0.78 0.66 0.60 1.04
      Er 1.79 2.39 2.10 1.97 3.45
      Tm 0.20 0.29 0.24 0.23 0.35
      Yb 1.54 2.13 1.72 1.72 2.50
      Lu 0.22 0.29 0.22 0.24 0.36
      Y 16.4 22.6 19.6 17.8 33.0
      ΣREE 554.00 477.68 396.01 411.00 687.53
      LREE 536.07 455.39 377.01 393.81 656.17
      HREE 17.93 22.29 19.00 17.19 31.36
      LREE/HREE 29.90 20.43 19.84 22.91 20.92
      (La/Yb)N 70.97 37.82 37.67 43.74 42.96
      (La/Sm)N 9.90 6.54 5.93 7.90 5.66
      (Gd/Yb)N 4.96 4.02 4.22 3.79 5.04
      δEu 0.48 0.46 0.50 0.47 0.54
      下载: 导出CSV 
      | 显示表格
      图  4  研究区石英二长岩TAS图解(据Middlemoet,1994)、SiO2-K2O图解(Peccerillo et al.,1976)、A/CNK-A/NK(据Maniar et al.,1989)图解、(Na2O+K2O-CaO)-SiO2图解(据Frost et al.,2001
      Figure  4.  TAS, SiO2-K2O, A/CNK-A/NK and (Na2O+K2O-CaO)-SiO2 diagrams of the quartz monzonite in the study area

      稀土元素球粒陨石标准化配分模式图(图5a)中,配分曲线总体呈右倾,稀土元素总量较高,ΣREE=396.01×10−6~687.53×10−6(平均为505.24×10−6),轻、重稀土元素比值ΣLREE/ΣHREE=19.84~29.90(平均值为22.80),(La/Yb)N=37.67~70.97(平均值为46.63),均表明轻稀土较重稀土富集,样品的稀土元素分异程度较高。(La/Sm)N=5.66~9.90(平均值为7.18),表明轻稀土元素存在明显的分馏作用,而(Gd/Yb)N=3.79~5.04(平均值为4.40),表明重稀土元素也存在一定的分馏作用。δEu=0.46~0.54(平均值为0.49)显示明显的负异常,反映在岩浆源区斜长石有残留或经历了分离结晶作用。稀土元素配分曲线走势基本一致,反映样品各单元元素相关性较好,为同源岩浆演化产物。

      图  5  研究区石英二长岩原始地幔标准化微量元素蛛网图(据Boynton,1984)(a)和球粒陨石标准化稀土元素配模式图(b)(据Sun et al.,1989
      Figure  5.  (a) Primitive mantle-normalized trace elements pattern and (b) Chondrite-normalized rare earth elements pattern of the quartz monzonite in the study area

      在微量元素原始地幔标准化蛛网图(图5b)中,曲线整体右倾,大离子亲石元素K、Rb、Th、U等相对富集,Ba、Sr等相对亏损,Nb、Ta、Ti等高场强元素相对亏损。Ba、Sr相对亏损,反映斜长石的分离结晶作用,这与Eu的负异常一致。Zr相对富集。样品中Nb、Ta亏损反映岩浆源区有壳源物质的混入,Ti的亏损指示可能岩浆起源于富集地幔或地壳岩石,也可能与钛铁矿的分离结晶密切相关。蛛网图曲线上Rb-Th呈峰,Nb-Ta呈槽,则指示岩浆受到上地壳混染。不同样品微量元素相关性较好,曲线形态相似,反映为同源岩浆演化产物。

      近20年来,前人依据区域对比,一直认为研究区中酸性侵入岩为上中二叠世—晚三叠世(258~210 Ma)(李新林等,2006)。笔者通过对1∶5万区域地质调查发现的侵入于二叠系黄羊岭岩群砂板岩中的石英二长岩进行系统研究,获得石英二长岩的锆石206Pb/238U年龄加权平均值分别为(10.4±0.2) Ma,故将奇台达坂北分布的石英二长岩形成时代新厘定为中新世,与西昆仑–东昆仑新近纪火山-侵入岩带岩浆活动时间基本一致(邓万明,19911998杨经绥等,2002王权等,2005林清茶等,2006赵江林等,2017赵波等,2020)。

      花岗岩的分类也一直是花岗岩类研究的主要问题,M、I、S和A型是目前最常用的花岗岩成因分类方案。而高分异I型、S型花岗岩与A型花岗岩在地球化学特征及矿物学特征方面十分相似(King et al.,1997),因此有必要对花岗岩是否经历高程度结晶分异作用进行判断。TFeO*/MgO值较低(3.06~3.81),全部小于4,属于未分异或分异作用相当微弱的花岗岩。样品TFe2O3含量为4.29%~5.07%、MgO含量为1.06%~1.48%,TFe2O3/MgO值为3.02~4.23,明显区别于高分异I型(2.27)、S型(2.38)及M型(2.37)花岗岩(Whalen et al.,1987Frost et al., 2001贾小辉等,2009高源等,2013汪洋等,2013段政等,2017)。Zr+Nb+Ce+Y的含量为517.5×10−6~828.2×10−6,平均为649.8×10−6,与A型花岗岩的Zr+Nb+Ce+Y含量>350×10−6一致(Whalen et al.,1987牛腾等,2023)。在(K2O+Na2O)/CaO-(Zr+Nb+Ce+Y)岩浆岩成因类型判别图中(图6),样品均投入A型花岗岩区中。利用Watson 等(2005)提出的全岩锆石饱和温度计算公式,得到奇台达坂北石英二长岩锆石饱和温度介于808~853 ℃,平均为829 ℃,与A型花岗岩平均成岩温度一致(833 ℃)(Whalen et al.,1987张旗等,2007),明显高于S型花岗岩形成的平均温度(764 ℃)(Chappell,1999张培烈等,2022)和低于I型花岗岩的平均成岩温度(>900 ℃)(张旗等,2007)。此外,样品具高SiO2(平均为66.49%),贫铝Al2O3(平均为13.69%),高K2O(平均为4.71%),Sr、Ba、Ti、Eu等亏损,具明显的负铕异常等特征,与张旗等(2012)总结的A型花岗岩的地球化学特征(富SiO2、贫Al2O3(大多为12%~13%,很少有>14%)、富钾(K2O=4%~6%或更高))一致。因此,上述岩浆岩成因类型图解及特征参数均指示研究区侵入岩为A型花岗岩。

      图  6  研究区石英二长岩Zr+Nb+Ce+Y-(K2O + Na2O)/CaO图解(据Whalen et al.,1987
      Figure  6.  Zr+Nb+Ce+Y-(K2O + Na2O)/CaO diagrams of the quartz monzonite in the study area

      研究区石英二长岩样品的Rb、Th、U等元素富集,Ba、Sr、Ti、Nb等元素相对亏损,表明岩体是以岛弧物质为物源的壳源花岗岩(Ma et al.,1998)。Ba、Sr的弱亏损应与Eu的负异常对应,反映其可能是壳源物质低程度部分熔融的产物(Harris et al.,1992)。对于角闪石和石榴子石来说,Yb具有比Y更高的分配系数,角闪石或石榴子石的分离结晶会导致残留熔体中Y/Yb的值升高,但是该套岩体Y/Yb的变化不大(10.35~13.20,平均值为11.24),说明在岩浆演化过程中可能未发生角闪石和石榴子石的分离结晶(康磊等,2012)。样品的Nd/Th=0.86~2.66,Nb/Ta=5.61~13.38,均明显低于幔源岩石(Nd/Th>15,Nb/Ta≈22,BEA et al.,2001),而与壳源岩石相近(Nd/Th≈3,Nb/Ta≈12)(Bea et al.,2001),表明其岩浆源区应以壳源为主。Nb亏损同时还伴随着Nb/Ta值下降,表明Nb、Ta已开始分馏,这是典型的壳源的成因类型(李佐臣等,2013薛富红等,2015),Nb/Ta值(平均为8.07)也十分接近下地壳(8.3)(Rudnick et al.,2003)。La/Nb(1.78~3.56,平均2.41)均大于1.0而区别于地幔来源的岩浆(Depaolo et al.,2000)。样品Mg#=36~41(平均值37),与来源于地壳部分熔融的岩石一致(<40)(Atherton et al.,1993),表明其岩浆源区应以地壳物质为主。研究区样品在La-La/Yb图解中,显示该岩体在形成过程中以部分熔融为主,样品亏损Sr、Ba、Ti及Eu负异常,表明部分熔融过程中源区存在斜长石和钛铁矿的残留体,而不是分离结晶造成的,这与花岗质岩浆粘度大,表现为晶粥体(Pitcher,1997张旗等2007武昱东等,2014),很难发生分离结晶作用(Reid et al., 1993张旗等2007武昱东等,2014)。花岗岩熔体中CaO/Na2O值与温度和压力无关,主要受源岩成分的控制(Jung et al.,2007)。因此,可以用CaO/Na2O值可以用来推断中酸性岩浆的源区特征。花岗岩的CaO/Na2O值可以很好的指示岩浆源区的成分,富斜长石、贫黏土的砂屑岩熔融生成的花岗岩CaO/Na2O值一般大于0.3(Skjerlie et al.,1992)。样品的CaO/Na2O介于0.54~0.73(平均值为0.63),反映了岩浆源区主要由杂砂岩的部分熔融形成。在(Na2O+K2O+FeO+MgO+TiO2)-(Na2O+K2O)/(FeO+MgO+TiO2)(图7a)和C/FM-A/MF成因判别图(图7b)中,样品主要落入变质杂砂岩范围。综上所述,研究区石英二长岩可能来自下地壳岩石发生部分熔融的产物。

      图  7  研究区石英二长岩(Na2O+K2O+FeO+MgO+TiO2)-(Na2O+K2O)/(FeO+ MgO+TiO2)图解(a)和C/FM-A/MF(b)图解(Altherr et al.,2000
      Figure  7.  (a) (Na2O+K2O+FeO+MgO+TiO2) -(Na2O+K2O) /(FeO+ MgO+TiO2) and (b) C/FM-A/MF diagrams of the quartz monzonite in the study area

      研究区石英二长岩属A型花岗岩,张旗等(2012)认为A型花岗岩形成于地壳减薄环境,出现在碰撞后(造山后)和板内构造背景。在Y−Nb(图8a)、Y−Ta(图8b)图解中,样品全部落在板内环境区域。Eby(1990)系统总结了A型花岗岩的岩石学和地球化学特征,并根据物质来源和构造背景的差异,将A型花岗岩分为A1和A2两个亚类,其中A1产于非造山环境(大陆裂谷或板内环境),A2产于碰撞后环境,即形成于板内伸展阶段(Bonin,2007曲晓明等,2012解龙等,2015)。在Nb−Y−Ce图解(图8c)上,样品全部投入A1型花岗岩区域,同样体现出了板内环境的构造背景。综上所述,笔者认为研究区石英二长岩形成于板内伸展构造环境。

      图  8  研究区石英二长岩(Y+Nb)-Rb(a)、Yb-Ta(b)(据Pearce et al.,1984)和Nb-Y-Ce图解(c)(Eby,1992
      Figure  8.  (a) (Y+Nb)-Rb, (b) Yb-Ta and (c) Nb-Y-Ce diagrams of the quartz monzonite in the study area

      自古新世以来,受印度板块与欧亚板块碰撞及撞碰后的远程效应的影响,对青藏高原的窿升有很大的影响,西昆仑进入了陆内造山阶段(丁林等,1999莫宣学等,2006)。受区域性深大断裂多期次活动影响,新生代青藏高原北缘岩浆活动频繁。邓万明(1993)认为青藏高原北部的岩浆岩和塔里木、昆仑山之间的板内相互作用密切相关,相对较冷而刚性较强的塔里木地体的南向俯冲是昆仑山快速隆升、岩浆活动、地震等动力学机制,但Gao等(2001)认为在可可西里–西昆仑岩浆活动区缺少塔里木岩石圈向南深俯冲的证据。肖爱芳等(2010)认为青藏高原北缘晚新生代火山岩的分布规律显示大型断裂为青藏高原北缘的岩浆活动提供了良好的通道。但多数学者认为青藏高原北缘的晚新生代火山岩浆的形成与印度板块和欧亚板块碰撞后的地幔拆沉作用引起的大规模减薄作用有关,软流圈上涌引起岩石圈地幔发生部分熔融是西昆仑地区晚新生代火山岩浆形成的直接原因(罗照华等,2001)。地震层析成像推测在可可西里–西昆仑钾质火山岩带下可能存在EW向巨型地幔低速体(Replumaz et al.,2010)。另有研究提出在该地幔低速体之下未发现高密度块体,推测地幔低速体的上涌是软流圈深部作用引起,而非岩石圈拆沉引发的,巨型地幔低速体的上涌是原因,岩石圈地幔的对流减薄是结果。岩石圈地幔减薄,引起岩浆活动向外迁移,这导致了青藏高原新生代钾质-超钾质岩浆活动由羌塘地区开始,并向南北两侧迁移(迟效国等,2017);也控制着可可西里–昆仑中新世以来岩浆活动和分布(许志琴等,2006)。区域上,沿康西瓦–大红柳滩–泉水沟断裂分布一系列的火山岩,均发生在10~8 Ma(李海兵等,2007赵振明等,2009肖爱芳,2010),而研究区样品在构造环境判别图上均落入为非造山环境,且石英二长岩侵入体总体呈NE向展布,南邻区域NE向深大断裂,研究区在深部岩石圈强烈伸展的背景下,导致壳幔作用加剧和区域深大断裂带活化,在地壳深部形成高温低压环境,并促使下地壳在贫水条件下发生低程度部分熔融,深部形成A1型花岗质岩浆沿断裂快速上升侵位。

      (1)奇台达坂北石英二长岩LA-ICP-MS测年显示锆石206Pb/238U年龄加权平均值为(10.4±0.2)Ma,形成于中新世,代表了板内伸展背景作用下的岩浆响应。

      (2)岩石化学、岩石地球化学及同位素地球化学研究表明:奇台达坂北的石英二长岩具高SiO2,贫铝Al2O3,高K2O,富集大离子亲石元素K、Rb、Th、U和轻稀土元素,Sr、Ba、Ti、Eu等亏损以及明显的负铕异常,为A型花岗岩特征。

      (3)奇台达坂北石英二长岩形成于深部岩石圈强烈伸展的环境下,地壳深部形成高温低压环境,促使下地壳发生低程度部分熔融并沿深大断裂快速上升侵位。

      致谢:成文过程中得到了审稿专家提出的恳切意见与建议,在此表示由衷的感谢,同时感谢野外工作同事的帮助。

    • 图  1   研究区大地构造位置(a)及侵入岩分布图(b)

      1.塔里木陆块;Ⅰ2.铁克里克断裂带;Ⅱ1.北昆仑(其曼塔格)晚古生代岩浆弧带;Ⅱ2.中昆仑微陆块(早古生代与晚古生代构造叠加复合带);Ⅱ21.中昆仑微陆块北带;Ⅱ22.中昆仑微陆块南带;Ⅱ3.南昆仑晚古生代残弧带;Ⅲ.巴颜喀拉晚古生代—中生代边缘裂谷盆地;Ⅳ.甜水海–北羌塘微陆块群;Ⅳ1.甜水海微陆块;Ⅳ12.神仙湾二叠纪—三叠纪边缘裂陷带;Ⅴ.喀拉昆仑–南羌塘陆块;Ⅵ.班戈–腾冲燕山期岩浆弧带;Ⅶ.岗底斯–下察隅晚燕山期岩浆弧带;①.柯岗断裂;②.其曼于特–祁漫塔格蛇绿混杂岩带;③.蒙古–普守蛇绿混杂岩带;④.柳什塔格-向阳泉中昆仑断裂带;⑤.苏巴什–木孜塔格蛇绿混杂岩带;⑥.郭扎错–金沙江结合带;⑦.龙木错–双湖结合带;⑧.班公湖–怒江结合带;⑨.狮泉河结合带;1.第四系;2.雪被区;3.巴颜喀拉山群上组上段;4.巴颜喀拉山群上组下段;5.巴颜喀拉山群中组上段;6.巴颜喀拉山群中组下段;7.巴颜喀拉山群下组上段;8.黄羊岭群上板岩组第四段;9.黄羊岭群上板岩组第三段;10.黄羊岭群上板岩组第二段;11.黄羊岭群上板岩组第一段;12.黄羊岭群下砂板岩组第四段;13.黄羊岭群下砂板岩组第三段;14.黄羊岭群下砂板岩组第二段;15.黄羊岭群下砂板岩组第一段;16.奇台达坂构造片岩;17.中新世石英二长岩;18.晚三叠世石英闪长岩;19.晚三叠世花岗闪长岩;20.断层;21.测年采样品位置

      Figure  1.   (a) Geotectonic position and (b) distribution of the study area intrusive rocks

      图  2   研究区石英二长岩野外照片(a)和镜下照片(b)

      Qtz.石英;Pth.条纹长石;Pl.斜长石;Chl.绿泥石;oηN1. 中新世石英二长岩;P1-2H1. 黄羊岭群上板岩组

      Figure  2.   (a) Outcrop photos and (b) microscopic picturesof the quartz monzonite in the study area

      图  3   研究区石英二长岩锆石阴极发光照片(a)、U-Pb年龄值(b)以及锆石U-Pb年龄谐和图(c)

      Figure  3.   (a) Zircon CL images for microbeam analyzed spost and (b) apparent U-Pb ages and (c)zircon U-Pb Concordia diagram of the quartz monzonite in the study area

      图  4   研究区石英二长岩TAS图解(据Middlemoet,1994)、SiO2-K2O图解(Peccerillo et al.,1976)、A/CNK-A/NK(据Maniar et al.,1989)图解、(Na2O+K2O-CaO)-SiO2图解(据Frost et al.,2001

      Figure  4.   TAS, SiO2-K2O, A/CNK-A/NK and (Na2O+K2O-CaO)-SiO2 diagrams of the quartz monzonite in the study area

      图  5   研究区石英二长岩原始地幔标准化微量元素蛛网图(据Boynton,1984)(a)和球粒陨石标准化稀土元素配模式图(b)(据Sun et al.,1989

      Figure  5.   (a) Primitive mantle-normalized trace elements pattern and (b) Chondrite-normalized rare earth elements pattern of the quartz monzonite in the study area

      图  6   研究区石英二长岩Zr+Nb+Ce+Y-(K2O + Na2O)/CaO图解(据Whalen et al.,1987

      Figure  6.   Zr+Nb+Ce+Y-(K2O + Na2O)/CaO diagrams of the quartz monzonite in the study area

      图  7   研究区石英二长岩(Na2O+K2O+FeO+MgO+TiO2)-(Na2O+K2O)/(FeO+ MgO+TiO2)图解(a)和C/FM-A/MF(b)图解(Altherr et al.,2000

      Figure  7.   (a) (Na2O+K2O+FeO+MgO+TiO2) -(Na2O+K2O) /(FeO+ MgO+TiO2) and (b) C/FM-A/MF diagrams of the quartz monzonite in the study area

      图  8   研究区石英二长岩(Y+Nb)-Rb(a)、Yb-Ta(b)(据Pearce et al.,1984)和Nb-Y-Ce图解(c)(Eby,1992

      Figure  8.   (a) (Y+Nb)-Rb, (b) Yb-Ta and (c) Nb-Y-Ce diagrams of the quartz monzonite in the study area

      表  1   研究区石英二长岩LA-ICP-MS U-Pb年代学测试结果

      Table  1   LA-ICP-MS zircon U-Pb dating results of the quartz monzonite in the study area

      分析点PbThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb年龄207Pb/235U年龄206Pb/238U年龄
      含量(10−6比值(±1σ)比值(±1σ)比值(±1σ)比值(±1σ)比值(±1σ)比值(±1σ)
      PM013/1-0196515691.140.086480.009020.001570.000040.018710.001911349189192100
      PM013/1-02104156460.640.054660.01070.001640.000040.012350.00241398388132110
      PM013/1-03119917341.350.051480.003310.001570.000030.011140.0007263141111100
      PM013/1-0463233490.930.057820.007910.001560.000050.012430.00165523275132100
      PM013/1-0574555330.850.054350.005690.00160.000040.011990.00122385220121100
      PM013/1-0698665281.640.196140.040660.001690.000120.045810.008982794304469111
      PM013/1-0797199250.780.054010.009830.001610.000070.011980.00212372365122100
      PM013/1-0883042531.200.060460.014990.001710.00010.01430.00344620460143111
      PM013/1-0966295621.120.142620.018090.001770.000080.034810.004132259204354111
      PM013/1-1064845430.890.048320.007250.001940.000070.012940.00189115320132130
      PM013/1-1186525781.130.053570.003990.001620.000030.011950.00087353160121100
      PM013/1-1265314781.110.06950.010880.001480.000060.014230.00215914293142100
      PM013/1-135532045911.580.047570.015640.001570.000040.010310.0033877638103100
      PM013/1-1456574801.370.053510.009590.001720.000070.012730.00222350361132110
      PM013/1-15112691222.200.048720.007730.001570.000060.010570.00164134335112100
      PM013/1-16103866580.590.049730.009490.001620.000070.011090.00207182393112100
      PM013/1-17109589241.040.189840.014840.001740.000060.045690.003282741123453110
      PM013/1-1812152312321.240.107080.024910.001710.000080.025250.005761750374256111
      PM013/1-1975857650.760.047120.008690.001770.000060.01150.0020955389122110
      PM013/1-2076466431.000.076350.00780.001680.000050.017720.001751104192182110
      PM013/1-2165584891.140.04730.007860.001780.000050.011620.0019164355122120
      PM013/1-2274264221.010.069490.007990.001590.000050.015220.00169913221152100
      PM013/1-2376847500.910.05950.019390.001550.000080.01270.00409586584134101
      PM013/1-2468226341.300.081370.009770.001680.000060.018810.002181231219192110
      PM013/1-25134695680.830.509770.01810.005010.000110.352270.010634270513068321
      PM013/1-2665436370.850.075680.008980.001730.000060.018070.002071087221182110
      PM013/1-2767596431.180.05440.009660.001550.000030.011670.00206388356122100
      PM013/1-2843275420.600.068920.024280.001560.000110.014870.00514896596155101
      PM013/1-2975906210.950.04670.01060.001650.000060.010610.0023834469112110
      PM013/1-3064324450.970.062390.012650.00170.000090.014610.00287687382153111
      PM013/1-3165673671.540.066950.014860.001780.000070.016480.0036836405174120
      PM013/1-3297856861.140.212360.022950.00190.000090.055820.005482924165555121
      PM013/1-3395986560.910.058130.023860.001660.000080.013340.00544534711145110
      PM013/1-3478767761.130.063350.007810.001640.000050.014370.00172720242152110
      PM013/1-3575786650.870.052250.006250.001660.000040.011940.00141296252121110
      PM013/1-3676438690.740.046260.007750.001730.000030.011070.0018511360112110
      下载: 导出CSV

      表  2   研究区石英二长岩主量元素(%)、稀土元素以及微量元素(10−6)分析结果

      Table  2   Major elements(%), rare earth elements(10−6) and trace elements compositions of the quartz monzonite in the study area

      样品编号PM017/1PM017/2PM017/3PM017/4PM013/1
      岩性 石英二长岩
      SiO2 68.20 66.52 66.59 67.97 63.16
      TiO2 0.65 0.73 0.67 0.60 0.83
      Al2O3 13.39 13.42 13.67 13.83 15.47
      Fe2O3 1.89 1.97 2.12 1.98 2.63
      FeO 2.58 2.79 2.36 2.08 2.19
      MnO 0.08 0.09 0.09 0.08 0.13
      MgO 1.15 1.23 1.12 1.06 1.49
      CaO 2.33 2.74 2.55 2.27 2.52
      Na2O 3.67 3.81 3.92 3.79 4.63
      K2O 4.23 4.49 4.97 4.60 5.24
      P2O5 0.26 0.34 0.28 0.30 0.35
      LOI 1.05 1.23 1.10 1.01 0.87
      Σ 99.48 99.36 99.44 99.57 99.51
      TFe2O3 4.76 5.07 4.74 4.29 5.06
      K2O/Na2O 1.15 1.18 1.27 1.21 1.13
      ALK 7.90 8.30 8.89 8.39 9.87
      Mg# 36 36 36 37 41
      AR 3.02 3.11 3.43 3.18 3.43
      A/NK 1.26 1.21 1.16 1.23 1.16
      A/CNK 0.90 0.83 0.83 0.90 0.87
      DI 81 81 83 83 81
      TZr(℃) 821 831 808 832 853
      σ 2.45 2.89 3.31 2.79 4.76
      A/MF 2.51 2.39 2.49 2.75 2.29
      C/MF 0.80 0.89 0.84 0.82 0.68
      Sr 529 545 534 538 1042
      Zr 306 338 264 343 426
      Ba 484 569 627 586 1364
      Rb 247 237 246 260 202
      Th 87.2 53.2 55.0 63.8 44.1
      U 5.32 5.63 5.21 4.23 8.55
      Nb 61.9 67.3 49.9 51.6 44.7
      Ta 10.0 12.0 5.76 7.95 3.34
      La 162 120 96.1 112 159
      Ce 263 223 184 193 324
      Pr 24.1 22.8 19.2 18.4 34.6
      Nd 74.8 76.7 65.9 60.6 118
      Sm 10.3 11.5 10.2 8.89 17.7
      Eu 1.57 1.69 1.61 1.32 2.97
      Gd 9.47 10.6 9.00 8.07 15.6
      Tb 0.71 0.94 0.84 0.72 1.40
      Dy 3.46 4.87 4.22 3.64 6.66
      Ho 0.54 0.78 0.66 0.60 1.04
      Er 1.79 2.39 2.10 1.97 3.45
      Tm 0.20 0.29 0.24 0.23 0.35
      Yb 1.54 2.13 1.72 1.72 2.50
      Lu 0.22 0.29 0.22 0.24 0.36
      Y 16.4 22.6 19.6 17.8 33.0
      ΣREE 554.00 477.68 396.01 411.00 687.53
      LREE 536.07 455.39 377.01 393.81 656.17
      HREE 17.93 22.29 19.00 17.19 31.36
      LREE/HREE 29.90 20.43 19.84 22.91 20.92
      (La/Yb)N 70.97 37.82 37.67 43.74 42.96
      (La/Sm)N 9.90 6.54 5.93 7.90 5.66
      (Gd/Yb)N 4.96 4.02 4.22 3.79 5.04
      δEu 0.48 0.46 0.50 0.47 0.54
      下载: 导出CSV
    • 边千韬, 郑祥身. 青海可可西里地区构造特征与构造演化, 大陆岩石圈构造与资源[M]. 北京: 海洋出版社, 1992, 2: 19−20.
      迟效国, 张蕊, 范乐夫, 等. 藏北新生代玄武质火山岩起源的深部机制-大陆俯冲和板片断离驱动的地幔对流上涌模式[J]. 岩石学报, 2017, 33(10): 3011-3026

      CHI Xiaoguo, ZHANG Rui, FAN Lefu, et al. The Formatting Mechanism of Cenozoic Basaltic Volcanic Rocks in the Northern Tibet: Continental Subduction and Slab Break⁃off Driven by Mantle Convection and Upwelling[J]. Acta Petrologica Sinica, 2017.33(10): 3011-3026.

      崔建堂, 王炬川, 边小卫, 等. 西昆仑康西瓦北侧早古生代角闪闪长岩、英云闪长岩的地质特征及其锆石SHRIMP U-Pb测年[J]. 地质通报, 2006, 25(12): 1441-1449

      CUI Jiantang, WANG Juchuan, BIAN Xiaowei, et al. Geological characteristics of Early Paleozoic amphibolite and tonalite in northern Kangxiwar, West Kunlun, China and their zircon SHRIMP U-Pb dating[J]. Geological Bulletin of China, 2006.25(12): 1441-1449.

      代新宇, 杜彪, 赵江林, 等. 新疆西昆仑甜水海地区4幅1∶5万区域地质调查成果报告[R]. 西安: 陕西省地质调查中心, 2015.
      邓万明. 中昆仑造山带钾玄岩质火山岩的地质、地球化学和时代[J]. 地质科学, 1991(03): 201-213

      DENG Wangming. The geology geochemistry and forming age of the shoshonites from middle Kunlun mountain[J]. Chinese Journal of Geology, 1991, 26(3): 201-213.

      邓万明. 青藏北部新生代钾质火山岩微量元素和Sr、Nd同位素地球化学研究[J]. 岩石学报, 1993(04): 379-387

      DENG Wangming. Trace element and Sr, Nd isotopic features of the Cenozoic potassium-volcanic rocks from northern Qinghai-Tibet plateau[J]. Acta Petrologica Sinica, 1993, 9(4): 379-387.

      邓万明. 青藏高原北部新生代板内火山岩[M]. 北京: 地质出版社, 1998: 1−179

      DENG Wanming. Cenozoic intraplate volcanic rocks in the northern Qinghai-Tibet Plateau[M]. Beijing: Geological Press, 1998: 1−179.

      邓万明, 孙宏娟. 青藏北部板内火山岩的同位素地球化学与源区特征[J]. 地学前缘, 1998, 5(4): 307-317

      DENG Wangming, SUN Hongjuan. Features of isotopic geochemistry and source region for the intraplate volcanic rocks from northern Qinghai-Tibet plateau[J]. Earth Science Frontiers, 1998, 5(4): 307-317.

      丁林, 张进江, 周勇, 等. 青藏高原岩石圈演化的记录: 藏北超钾质及钠质火山岩的岩石学与地球化学特征[J]. 岩石学报, 1999, 15(1): 408-421

      DING Lin, ZHANG Jinjiang, ZHOU Yong, et al. Tectonic implication on the lithosphere evolution of the Tibet Plateau: Petrology and geochemistry of sodic and ultrapotassic volcanism in Northern Tibet[J]. Acta Petrologica Sinica, 1999, 15(3): 408-421.

      段政, 邢光福, 余明刚, 等. 浙江外北山铝质A-1型花岗岩成因: 矿物学、年代学、地球化学及Hf同位素制约[J]. 地质学报, 2017, 91(01): 180-197

      DUAN Zheng, XING, Guangfu, YU Mingguang, et al. The petrogenesis of Waibeishan aluminous A1-type granite in Zhejiang province: Constraints from mineralogy, zircon U-Pb dating, geochemistry and Hf isotope[J]. Acta Geological Sinica, 2017, 91(1): 180-197.

      高源, 郑常青, 姚文贵, 等. 大兴安岭北段哈多河地区骆驼脖子岩体地球化学和锆石U-Pb年代学[J]. 地质学报, 2013, 87(9): 1293-1310

      GAO Yuan, ZHENG Changqing, YAO Wenggui, et al. Geochemistry and zircon U-Pb geochronology of the Luotuobozi Pluton in the Haduohe Area in the northern Daxing’anling[J]. Acta Geologica Sinica, 2013, 87: 1293-1310.

      韩芳林. 西昆仑增生造山带演化及成矿背景[M]. 中国地质大学(北京), 2006,141−160.
      姜耀辉, 周珣若. 西昆仑造山带花岗岩岩石学及构造岩浆动力学[J]. 现代地质, 1999, 13(4): 378

      JIANG Yaohui, ZHOU Xunruo. The petrology and tectonic magmatic dynamics of the Western Kunlun[J]. Geoscience, 1999, 13(4): 378.

      计文化. 西昆仑-喀喇昆仑晚古生代-早中生代构造格局[D]. 北京: 中国地质大学, 2005, 16−106

      JI Wenhua. Western Kunlun-Karakoram Late Paleozoic-Early Mesozoic Tectonic Pattern[D]. Beijing: China University of Geosciences, 2005, 16−106.

      贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480 doi: 10.3969/j.issn.1001-1552.2009.03.017

      JIA Xiaohui, WANG Qiang, TANG Gongjian. A-type granites: Research progress and implications[J]. Geotectonica et Metallogenia, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

      康磊, 校培喜, 高晓峰, 等. 西昆仑慕士塔格岩体的LA-ICP-MS锆石U-Pb定年: 对古特提斯碰撞时限的制约[J]. 地质论评, 2012, 58(4): 763-774.

      KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. Neopaleozoic and Mesozoic granitoid magmatism and tectonic? evolution of the western West Kunlun Mountains[J]. Geology in China, 2012, 42(3): 533-552.

      赖绍聪. 青藏高原北部新生代火山岩的成因机制[J]. 岩石学报, 1999, 15(1): 98-101 doi: 10.3321/j.issn:1000-0569.1999.01.011

      LAI Shaocong. The genetic mechanism of Cenozoic volcanic rocks in the northern Qinghai-Tibet Plateau[J]. Chinese Journal of Petrology, 1999, 15(1): 98-101. doi: 10.3321/j.issn:1000-0569.1999.01.011

      李佐臣, 裴先治, 李瑞保, 等. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义[J]. 岩石学报, 2013, 08: 2617-2634

      LI Zuocheng, PEI Xianzhi, LI Ruibao, et al. LA-ICP-MS zircon U-Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance[J]. Acta Petrologica Sinica, 2013, 29(8): 2617-2634.

      李荣社, 计文化, 杨永成. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008, 1−5.
      李新林, 周小康, 黎敦朋, 等. 新疆西昆仑甜水海地区4幅1: 5万区域地质调查成果报告[R]. 西安: 陕西省地质调查院, 2006.
      李海兵, 许志琴, 杨经绥, 等. 阿尔金断裂带最大累积走滑位移量—900km?[J]. 地质通报, 2007(10): 1288-1298

      LI Haibin, XU Zhiqin, YANG Jinshui, et al. The maximum cumulative strike-slip displacement of the Altyn Tagh fault—900 km (in Chinese)? Geol Bull China, 2007, 26: 1288–1298.

      牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2 Ga B.P.伸展-裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503.

      NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2 Ga B.P. in the central segment of northern margin of North China Craton [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(4): 486−503.

      刘嘉麒, 买卖提·依明. 西昆仑山第四纪火山的分布与K-Ar年龄[J]. 中国科学B辑: 化学, 生命科学, 地学, 1990, (2): 180-187

      LIU Jiaqi, MAIMAITI Yiming. K-Ar Age and distribution of Xikunlun Volcano in Quaternary[J]. Science in China (Series D), 1990, 20(2): 180-187.

      刘嘉麒. 中国火山[M]. 北京: 科学出版社, 1999: 75−90.
      刘昊, 崔军平, 金玮, 等. 松辽盆地东部地区花岗岩地球化学特征及其地质意义[J]. 西北地质, 2024, 57(2): 46−58.

      LIU Hao, CUI Junping, JIN Wei, et al. Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin[J]. Northwestern Geology, 2024, 57(2): 46−58.

      林清茶, 夏斌, 张玉泉. 西昆仑-喀喇昆仑地区钾质碱性岩Ar-Ar年龄—以羊湖、昝坎和苦子干岩体为例[J]. 矿物岩石, 2006(02): 66-70

      LIN Qingcha, XIA Bin, ZHANG Yuquan. Ar-Ar dating of Potassic Alkali-Rocks in the Western Kunlun-Kalako- rum Mountains[J]. Mineral Petrology, 2006, 26(2): 66-70.

      罗照华, 肖序常, 曹永清, 等. 青藏高原北缘新生代幔源岩浆活动及构造运动性质[J]. 中国科学(D辑: 地球科学), 2001(S1): 8-13.

      LUO Zhaohua, XIAO Xuchang, CAO Yongqing, et al. 2001. The Cenozoic man tle magmatism and motion of lithosphere on the north margin of the Tibetan Plateau[J]. Science in China(Series D), 44(Suppl): 10-17.

      罗照华, 张文会, 邓晋福, 等. 西昆仑地区新生代火山岩中的深源包体[J]. 地学前缘, 2000, 7(1): 295-298 doi: 10.3321/j.issn:1005-2321.2000.01.028

      LUO Zhaohua, ZHANG Wenhui, DENG Jinfu, et al. Characteristic and geological significance of the deep-seated xenoliths in Cenozoic basalt in Kangxiwa, western Kunlun Mountains, China[J]. Earth Science Frontiers, 2000, 7(1): 295-298. doi: 10.3321/j.issn:1005-2321.2000.01.028

      莫宣学, 潘桂堂. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43−51.

      MO Xuanxue, PAN Guitang. From the Tethys to the formation of the Qinghai-Tibet Plateau: constrained by tectono-magmatic events[J]. Earth Science Frontiers, 2006, 13(6): 43−51.

      莫宣学, 赵志丹, 邓晋福, 等. 青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡: 壳幔深部物质流的暗示[J]. 现代地质, 2007, 21(2): 255-264 doi: 10.3969/j.issn.1000-8527.2007.02.010

      MO Xuanxue, ZHAO Zhidan, DENG Jinfu, et al. Migration of the Tibetan Cenozoic potassic volcanism and its transition to eastern basaltic province: Implications for crustal and mantle flow[J]. Geoscience, 2007, 21(2): 255-264. doi: 10.3969/j.issn.1000-8527.2007.02.010

      乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 07: 1180-1194

      QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al. Petrogenesis of the Dahongliutan monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb geochronology and geochemical characteristics[J]. Acta Geologica Sinica, 2015, 89(7): 1180-1194.

      曲晓明, 辛洪波, 杜德道, 等. 西藏班公湖—怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J]. 地球化学, 2012, 41(1): 1-14 doi: 10.3969/j.issn.0379-1726.2012.01.001

      QU Xiaoming, XIN, Hongbo, DU, Dedao, et al. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau[J]. Geochimica, 2012, 41(1): 1-14. doi: 10.3969/j.issn.0379-1726.2012.01.001

      冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121.

      RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.

      汪洋, 焦永玲, 仝立华, 等. 再论A型花岗岩的实质-与张旗先生等商榷[J]. 岩石矿物学杂志, 2013, 32(2): 260-266

      WANG Yang, JIAO Yongling, TONG Lihua, et al. The essence of A-type granitoids: A discussion on the opinions held by Prof. Zhang Qi and some other researchers[J]. Acta Petrologica et Mineralogica, 2013, 32(2): 260-266.

      王权, 杨五宝, 张振福, 等. 藏西北黑石北湖一带新近纪火山岩的特征及构造意义[J]. 地质通报, 2005, (01): 80-86 doi: 10.3969/j.issn.1671-2552.2005.01.012

      WANG Quan, YANG Wubao, ZHANG Zhenfu, et al. Geological ch aract eristics of Neogene volcanic rock s in the H eishi n orth lake area, n orthwest ern Tibet, and their impli cation f or the Neogene t ect onic evolution[J]. Geological Bulletin of China, 2005, 24(1): 80-86. doi: 10.3969/j.issn.1671-2552.2005.01.012

      武昱东, 王宗起, 罗金海, 等. 滇东北东川下田坝A型花岗岩LA-ICP-MS锆石U-Pb年龄, 地球化学特征及其构造意义[J]. 地质通报, 2014, 33(6): 860-873

      WU Yudong, WANG Zongqi, LUO Jinhai, et al. LA-ICP-MS zircon U-Pb age and geochemistry of Xiatianba A-type granites in Dongchuan, Northeast Yunnan, and their tectonic significance[J]. Geological Bulletin of China, 2014, 33(6): 860-873.

      肖爱芳, 黎敦朋. 新藏公路奇台达坂晚中新世火山岩的发现及~(40)Ar-~(39)Ar定年[J]. 地质通报, 2010, 29(Z1): 237-242

      XIAO Aifang, LI Dunpeng. Discovery of Late Miocene volcanic rocks at Qitaidaban of Xinjiang-Tibet Highway, Chnia and its 40Ar-39Ar dating[J]. Geological Bulletin of China, 2010, 29(2/3): 237-242.

      解龙, 顿都, 朱利东, 等. 西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义[J]. 中国地质, 2015, 42(5): 1214-1227 doi: 10.3969/j.issn.1000-3657.2015.05.004

      XIE Long, DUN Du, ZHU Lidong, et al. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in northern Gangdise, Tibet[J]. Geology in China, 2015, 42(5): 1214-1227. doi: 10.3969/j.issn.1000-3657.2015.05.004

      许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 02: 221-238

      XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Qinghai—plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and mechanisms for the rise of the plateau[J]. Geology In China, 2006, 33(2): 221-238.

      薛富红, 张晓晖, 邓江夏, 等. 内蒙古中部达来地区晚侏罗世A型花岗岩: 地球化学特征、岩石成因与地质意义[J]. 岩石学报, 2015, 31(06): 1774-1788

      XUE Fuhong, ZHANG Xiaohui, DENG Jiangxia, et al. Late Jurassic Atype granite from the Dalai region of central Inner Mongolia: Geochemistry, petrogenesis and tectonic implication[J]. Acta Petrologica Sinica, 2015, 31(6): 1774-1788.

      杨文强, 刘良, 曹玉亭, 等. 西昆仑塔什库尔干印支期(高压)变质事件的确定及其构造地质意义[J]. 中国科学: 地球科学, 2011, 41(8): 1047−1060.

      YANG Wengqiang, LIU Liang, CAO Yuting, et al. Geochronological evidence of Indosinian (high-pressure)metamorphic event and its tectonic significance in Taxkorgan area of the Western Kunlun Mountains, NW China[J]. Science China (Earth Science), 2010, 53(10): 1445−1459.

      杨经绥, 吴才来, 史仁灯, 等. 青藏高原北部鲸鱼湖地区中新世和更新世两期橄榄玄粗质系列火山岩[J]. 岩石学报, 2002, (02): 161-176

      YANG Jingshui, WU Cailai, SHI Rendeng, et al. Miocene and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area, north of the Qinghai-Tibet Plateau[J]. Acta Petrologica Sinica, 2002, 18(2): 161-176.

      俞胜, 贾轩, 姚皓骞, 等. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究[J]. 西北地质, 2023, 56(5): 245−261.

      YU Sheng, JIA Xuan, YAO Haoqian, et al. Geochemistry Characteristics and Detrital Zircon In–Site U–Pb Geochronology of Silurian Diebu Formation in Bailongjiang Area, West Qinling Mountains[J]. Northwestern Geology, 2023, 56(5): 245−261.

      袁超, 孙敏, 李继亮. 西昆仑中带两个花岗岩的年龄和可能的源区[J]. 科学通报, 1999, 44(5): 534-537.

      YUAN Chao, SUN Ming, LI Jiliang. Two granitic plutons in central western Kunlun belt: Their ages and possible sources[J]. Chinese Science Bulletin, 1999, 44(19): 534-537.

      袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48(14): 1511−1520.

      YUAN Honglin, WU Fuyuan, GAO Shan, et al. Zircon laser probe U-Pb age determination and REE composition analysis of Cenozoic invasions in Northeast China[J]. Chinese Science Bulletin, 2003, 48(14): 1511−1520.

      张以佛, 郑祥身, 郑健康. 青海可可西里地区地质演化[M]. 北京: 科学出版社, 1996, 50−55
      张旗, 潘国强, 李承东, 等. 花岗岩结晶分离作用问题—关于花岗岩研究的思考之二[J]. 岩石学报, 2007, 23(6): 1239-1251

      ZHANG Qi, PAN Guoqiang, LI Chengdong, et al. Does fractional crystallization occur in granitic magma? Some crucial questions on granite study (2) [J]. Acta Petrologica Sinica, 2007, 23(6): 1239-1251.

      张旗, 冉白皋, 李承东. A型花岗岩的实质是什么? [J]. 岩石矿物学杂志, 2012, 31(4), 621-626.

      ZHANG, Qi, Ran Baigao, LI Chengdong. The criteria and discrimination for A–type granites: A reply to the question put forward by Wang Yang and some other persons for “A–type granite: what is the essence?” [J]. Acta Petrologica Et Mineralogica, 2013, 33(2): 267–274.

      张玉泉, 朱炳泉, 谢应雯, 等. 青藏高原西部的抬升速率: 叶城一狮泉河花岗岩40Ar-39Ar年龄的地质解释[J]. 岩石学报, 1998, 14 (l): 11-22.

      ZHANG Yuquan, ZHU Bingquan, XIE Yingwen, et al. The uplifting rates for the western Qinghai–Xizang Plateau: interpretation of 40Ar–39Ar dating data for the granites in the area from Yecheng to Shiquanhe[J]. Acta Petrologica Sinica, 1998, 14(1): 11–21.

      张传林, 陆松年, 于海峰, 等. 西昆仑造山带构造演化: 来自锆石SHRIMP及LA-ICP-MS测年的证据[J]. 中国科学: 地球科学, 2007, 37(2): 145−155.

      ZHANG Chuanlin, LU Songnian, YU Haifeng, et al. Tectonic evolution of the Western Kunlun orogenic belt in northern Qinghai-Tibet Plateau: Evidence from zircon SHRIMP and LA-ICP-MS U-Pb geochronology[J]. Science in China (Series D), 2007, 37(2): 145−155.

      张培烈, 王根厚, 冯翼鹏, 等. 古特提斯洋闭合时限: 来自南羌塘唐古拉岩浆带查吾拉岩体的证据[J]. 成都理工大学学报(自然科学版), 2022, 49(3): 311−323.

      ZHANG Peilie, WANG Genhou, FENG Jipeng, et al. Closure time of the Paleo-Tethys Ocean: Evidence from the southern Qiangtang Tanggula magmatic belt, Tibet, China [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(3): 311−323.

      赵波, 李有波, 陈思尧, 等. 西昆仑甜水海地区新近纪侵入岩地球化学特征及锆石U-Pb年龄[J]. 新疆地质, 2020, 38(03): 319-324 doi: 10.3969/j.issn.1000-8845.2020.03.007

      ZHAO Bo, LI Youbo, CHEN Siyao, et al. Geochemical Characteristics and Zircon U-Pb Dating of Neogene Period Intrusive Rock in the Tianshuihai Area, West Kunlun[J]. Xin Jiang Geology, 2020, 38(03): 319-324. doi: 10.3969/j.issn.1000-8845.2020.03.007

      赵江林, 曾忠诚, 贺宁强, 等. 新疆大红柳滩地区奇台达坂北侧新近系泉水沟组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2017, 36(07): 1129-1146 doi: 10.3969/j.issn.1671-2552.2017.07.004

      ZHAO Jianglin, ZENG Zongcheng, HE Ningqiang, et al. LA ‐ICP ‐ MS Zircon U‐Pb Ages, Geochemical Characteristics and Geological Significance of the Neogene Quanshuigou Formation Volcanic Rocks in the North of Dahongliutan‐Qitaidaban Area, Xinjiang[J]. Geological Bulletin of China, 2017, 36(7): 1129-1146. doi: 10.3969/j.issn.1671-2552.2017.07.004

      赵江林, 贺宁强, 杜彪, 等. 西昆仑奇台达坂一带晚三叠世中酸性侵入岩锆石LA-ICP-MS年龄、地球化学特征及其构造意义[J]. 地质论评, 2017, 63(05): 1337-1360

      ZHAO Jianglin, HE Ningqiang, DU Biao, et al. LA-ICP-MS Zircon U-Pb ages, geochemical characteristics of Late Triassic Intermediate—Acid intrusive rocks in Qitaidaban area, Western Kunlun and their tectonic significance[J]. Geological review, 2017, 63(5): 1337-1360.

      赵振明, 计文化, 李荣社, 等. 青藏高原北部巴颜喀拉与东昆仑地区新近纪以来火山岩的地球化学特征及其成因[J]. 地球化学, 2009, 38(03): 205-230

      ZHAO Zhenming, JI Wenhua, LI Rongshe, et al. Geochemical characteristics and petrogenesis of volcanic rocks since the Neogene in the Bayankala and East Kunlun region, northern Tibetan Plateau. Geochimica, 2009, 38(3): 205-230.

      朱弟成, 潘桂棠, 莫宣学, 等. 青藏高原及邻区新生代火山岩Sr-Nd-Pb同位素特征[J]. 沉积与特提斯地质, 2003, 23(3): 1-11 doi: 10.3969/j.issn.1009-3850.2003.03.001

      ZHU Dicheng, PAN Guitang, MO Xuanxue, et al. Sr-Nd-Pb isotopic variations of the Cenozoic volcanic rocks from the Qinghai Xizang Plateau and its adjacent areas[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(3): 1-11. doi: 10.3969/j.issn.1009-3850.2003.03.001

      任纪舜. 从全球看中国大地构造(中国及邻区大地构造图)[M]. 北京: 地质出版社, 1999, 1−15.

      Altherr R, Holl A, Heger E, et al. High potassium calc-alkaline I-type plutism in the European Variscides[M]. Northern Vosges (France) and Northern Schwarcwald (Germany), 2000.

      Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59-79.

      Arnaud N O, Vidal P H, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implications[J]. Earth and Planetary Science Letters, 1992, 111: 351-367. doi: 10.1016/0012-821X(92)90189-3

      Atherton M, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0

      Bea F, Arzamastsev A, Montero P, et al. Aonmalous alkalin rocks of Soustov, Kola: evidence of mantle derived matasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy and Petrology, 2001, 140: 554-566. doi: 10.1007/s004100000211

      Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1): 1-29.

      Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies[J]. In: Henderson P (Ed). Rare Earth Element Geochemistry[M]. Elsevier, Amsterdam, 1984, 63-114.

      Chappell B W. Aluminium saturation in I - and S - type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46: 535-551. doi: 10.1016/S0024-4937(98)00086-3

      DePaolo D J, Daley E E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J]. Chemical Geology, 2000, 169(1-2): 157-185. doi: 10.1016/S0009-2541(00)00261-8

      Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

      Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis [J]. Lithos, 1990, 26: 115-134. doi: 10.1016/0024-4937(90)90043-Z

      Frost B R, Arculus R J, Barnes C G, et al. A geochemical classification of granitic rocks[J]. Journal of Petrology, 2001, 42: 2033-2048. doi: 10.1093/petrology/42.11.2033

      Gao R, Li P W, Li Q S, et al. Deep process of the collision and deformation on the northern margin of the Tibetan Plateau:Revelation from investigation of the deep seismic profiles[J]. Science in China (Series D), 2001, 44(S1): 71–78.

      Harris N B W, Inger S. Trace element modeling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110: 46-56. doi: 10.1007/BF00310881

      King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Petrology, 1997, 38: 371−391.

      Jung S, Pfander J A. Source composition and melting temperatures of orogcnic granitoid: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy, 2007.19: 859-870. doi: 10.1127/0935-1221/2007/0019-1774

      MA Changqian, LI Zhichang, EHLERS Carl, et al. A post-collisional magmatic plumbing system: Mesozoic granitoid plutonsfrom the Dabieshan high-pressure and ultrahigh-pressuremetamorphic zone, east-central China[J]. Lithos, 1998, 45(1-4): 431-456. doi: 10.1016/S0024-4937(98)00043-7

      Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101: 615-643.

      Middlemoet E A. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

      Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81 doi: 10.1007/BF00384745

      Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of graniticrocks[J]. Journal of Petrology, 1984.25(4): 956-983. doi: 10.1093/petrology/25.4.956

      Pitcher W S. The nature and origin of granite[M]. Springer Science & Business Media, 1997.

      Reid J B, Murray D P, Hermes O D, et al. Fractional crystallization in granites of the Sierra Nevada: How important is it?[J]. Geology, 1993, 21(7): 587−590.

      Replumaz A, Negredo A M, Villasenor A ,et al. Indian continental subduction and slab break-off during Tertiary collision[J]. Terra Nova, 2010, 22(4): 290−296

      Rubatto D. Zircon Trace Element Geochemistry: Parti ⁃ tioningwith Garnetandthe Linkbetween U-Pb Ages and Metamorphism[J]. Chemical Geology, 2002, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2

      Rudnick R L, Gao S. Composion of the continental crust[M]. Treatise on Geochemistry, Oxford: Elsevier, 2003, 3: 1−64.

      Skjerlie K P, Johnston A D. Vapor-absent melting at 10k bar of a biotite-and amphibole-bearing tonalitic gneiss: Implications for the gen-eration of A-type g ranites[J]. Geology, 1992, 20(3): 263-266. doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

      Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts[J]. Implications for mantle composition and processes. Geological Society of London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

      Watson E B, HARRISON T M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth[J]. Science, 2005, 308(5723): 841-844. doi: 10.1126/science.1110873

      Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202

      ZHANG Zhaochong, XIAO Xuchang, WANG Jun, et al. Post-Collisional Plio-Pleistocene Shoshonitic Volcanism in the Western Kunlun Mountains, NW China: Geochemical Constraints on Mantle Source Characteristics and Petrogenesis[J]. Journal of Asian Earth Sciences, 2008, 31: 379-403. doi: 10.1016/j.jseaes.2007.06.003

    • 期刊类型引用(4)

      1. 李状,周训,方斌,沈晔,徐艳秋,陈柄桦,拓明明,隋丽嫒. 安徽省大别山区温泉水化学特征与演化机制分析. 地质通报. 2025(01): 158-172 . 百度学术
      2. 刘海,黄健敏,宋阳,赵国红,王旭东,魏伟. 太湖县花凉亭水库流域地下水水化学特征及水质评价. 环境科学. 2025(02): 809-820 . 百度学术
      3. 陈陆望,武明辉,侯晓伟,胡永胜,张苗,蔡欣悦,殷晓曦,施小平. 帷幕墙影响下侏罗系砾岩含水层地下水化学时空演化规律. 煤田地质与勘探. 2025(01): 174-183 . 百度学术
      4. 刘芳. 区域地下水污染因子定量识别研究——以辽西地区为例. 水利科学与寒区工程. 2024(03): 111-113 . 百度学术

      其他类型引用(2)

    图(8)  /  表(2)
    计量
    • 文章访问数:  82
    • HTML全文浏览量:  16
    • PDF下载量:  45
    • 被引次数: 6
    出版历程
    • 收稿日期:  2022-10-17
    • 修回日期:  2023-08-10
    • 网络出版日期:  2024-05-29
    • 刊出日期:  2024-08-19

    目录

    /

    返回文章
    返回