ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

基于水槽试验的矿渣型泥石流启动特征研究:以栾川县康山金矿区为例

刘向东, 黄虹霖, 刘星宇, 孙建伟, 贾煦, 赵兴志, 张旭晃, 程贤达, 孙亚柯

刘向东,黄虹霖,刘星宇,等. 基于水槽试验的矿渣型泥石流启动特征研究:以栾川县康山金矿区为例[J]. 西北地质,2025,58(1):300−314. doi: 10.12401/j.nwg.2023194
引用本文: 刘向东,黄虹霖,刘星宇,等. 基于水槽试验的矿渣型泥石流启动特征研究:以栾川县康山金矿区为例[J]. 西北地质,2025,58(1):300−314. doi: 10.12401/j.nwg.2023194
LIU Xiangdong,HUANG Honglin,LIU Xingyu,et al. Study on the Starting Characteristics of Mine Debris Flow Based on Flume Test: Take the Kangshan Gold Mining Area in Luanchuan County as an example[J]. Northwestern Geology,2025,58(1):300−314. doi: 10.12401/j.nwg.2023194
Citation: LIU Xiangdong,HUANG Honglin,LIU Xingyu,et al. Study on the Starting Characteristics of Mine Debris Flow Based on Flume Test: Take the Kangshan Gold Mining Area in Luanchuan County as an example[J]. Northwestern Geology,2025,58(1):300−314. doi: 10.12401/j.nwg.2023194

基于水槽试验的矿渣型泥石流启动特征研究:以栾川县康山金矿区为例

基金项目: 中国地质调查局项目“熊耳山-伏牛山矿集区生态修复支撑调查”(ZD20220218),国家科技资源共享服务平台项目“陕西典型矿床标本资源收集及馆藏标本数字化”(NCSTI-RMF20230214)联合资助。
详细信息
    作者简介:

    刘向东(1982−),男,正高级工程师,从事地质信息化、矿山生态修复等研究。E−mail:lxiangdong@mail.cgs.gov.cn

    通讯作者:

    黄虹霖(1996−),男,工程师,从事矿山生态修复等研究工作。E−mail:2231097363@qq.com

  • 中图分类号: P694

Study on the Starting Characteristics of Mine Debris Flow Based on Flume Test: Take the Kangshan Gold Mining Area in Luanchuan County as an example

  • 摘要:

    矿渣型泥石流是一种以大规模的开采矿产资源产生的废石弃渣为主要物源演化形成的一种典型的人为泥石流,具有频发性、人为性、污染性、可控性等特点。为进一步探索底床坡度、冲水流量和颗粒级配等因子对泥石流启动过程的影响和控制作用及各因子间的关系,基于相似性原理,采用比尺结构,以河南省栾川县康山金矿区采矿产生的废石渣堆为主要物源进行水槽试验。通过传感器记录矿渣型泥石流形成过程中的孔隙水压力和含水率的变化情况,并用高清摄像机观测矿渣启动形成泥石流的现象。试验结果表明:①矿渣型泥石流主要以顶面侵蚀型、流态化型、顶面侵蚀+流态化型3种方式启动。②泥石流启动临界孔隙水压力与底床坡度呈负相关关系、与细颗粒含量变化关系不明显。③级配、坡度一定时,随着冲水流量不断增大,泥石流启动临界水量呈现先减小、后增大、再减小趋势,并存在一个最有利于矿渣启动的冲水流量。④冲水流量、级配一定,坡度越大,矿渣越容易启动。⑤坡度、冲水流量一定,细颗粒含量为30.36% 矿渣最容易启动。研究结果进一步丰富了对矿渣型泥石流启动机理的认识,可为矿渣型泥石流预警、防治和矿山生态修复提供参考。

    Abstract:

    Mine debris flow is a typical anthropogenic debris flow formed by the evolution of waste rock and slag generated by large-scale mining of mineral resources, which has the characteristics of frequency, human nature, pollution, controllability, and so on. In order to further explore the influence and control of factors such as bottom bed slope, flushing flow and particle gradation on the start-up process of debris flow and the relationship between the factors, based on the principle of similarity, the scale structure is used to carry out flume Test with the waste rock slag pile produced by mining in Kangshan gold mining area in Luanchuan County, Henan Province. The changes of pore water pressure and water content during the formation of mine debris flow were recorded by sensors, and the phenomenon of slag initiation forming debris flow was observed with high-definition cameras. The test shows that the mine debris flow is mainly started in three ways: top erosion type, fluidization type, and top erosion fluidization type; the critical pore water pressure of the debris flow is negatively correlated with the slope of the bottom bed, and the relationship with the change of fine particle content is not obvious; when the gradation and slope are constant, as the flushing flow continues to increase, the critical water volume of the debris flow at the start of the debris flow shows, and there is a flushing flow rate that is most conducive to slag starting; The flushing flow rate and gradation are certain. The larger the slope, the easier it is for slag to start. The slope and flushing flow are certain, and the fine particle content is 30.36%. Slag is the easiest to start. The research results further enrich the mechanism research of mine debris flow initiation, and can provide reference for early warning, prevention and ecological restoration of mine debris flow.

  • 图  1   研究区2015~2022年5~10月平均降雨量情况

    Figure  1.   The monthly average rainfall in the study area from May to October 2015 to 2022

    图  2   栾川县1958~2022年全年降雨量情况

    Figure  2.   The rainfall in Luanchuan County from 1958 to 2022

    图  3   典型矿渣堆积体形态参数(a)及断面剖面图(b)

    Figure  3.   (a) Morphological parameters and (b)cross-sectional view of typical slag deposits

    图  4   康山沟历史泥石流证据照片

    Figure  4.   Evidence of historical debris flow in Kangshan Gully

    图  5   大南沟沟口渣堆形态参数(a)及断面剖面图(b)

    Figure  5.   (a) Morphological parameters and (b) cross-sectional view of the slag pile at the outfall of Danangou

    图  6   泥石流启动水槽试验装置、物料铺设及传感器布置图

    Figure  6.   Layout of water tank material laying and sensor for physical simulation test of debris flow startup

    图  7   泥石流启动物理模拟试验水槽参数

    Figure  7.   Parameters of the water tank for the physical simulation test of debris flow startup

    图  8   试验材料颗粒级配图

    Figure  8.   Particle gradation diagram of test material

    图  9   D24组次试验泥石流启动过程

    Figure  9.   Debris flow start-up process of sub-test D24

    图  10   D07组次试验泥石流启动过程

    Figure  10.   Debris flow start-up process of sub-test D07

    图  11   D19组次试验泥石流启动过程

    Figure  11.   Debris flow start-up process of sub-test D19

    图  12   D24组次试验体积含水率和孔隙水压力变化过程

    Figure  12.   Variation process of volumetric water content and pore water pressure in D24 sub-test

    图  13   D07组次试验体积含水率和孔隙水压力变化过程

    Figure  13.   Variation process of volumetric water content and pore water pressure in D07 sub-test

    图  14   D19组次试验体积含水率和孔隙水压力变化过程

    Figure  14.   Variation process of volumetric water content and pore water pressure in D19 sub-test

    图  15   泥石流启动临界孔压与坡度变化关系图

    Figure  15.   The relationship between the critical pore pressure and slope change at the start of debris flow

    图  16   泥石流启动临界孔压与细颗粒含量变化关系图

    Figure  16.   The relationship between the critical pore pressure and the content of fine particles at the start of debris flow

    图  17   冲水流量与临界水量的关系

    Figure  17.   Relationship between flushing water flow and critical water volume

    图  18   底床坡度与临界水量的关系

    Figure  18.   The relationship between the slope of the bed and the critical water volume

    图  19   细颗粒含量与临界水量的关系

    Figure  19.   Relationship between fine particle content and critical water amount

    表  1   康山金矿区泥石流物源所在沟谷基本情况表

    Table  1   The basic situation of the valley where the source of debris flow is located in the Kangshan gold mining area

    沟谷 流域面积(km2 最高点高程(m) 最低点高程(m) 沟谷长度(m) 相对高差(m) 纵坡降比(‰)
    后木寺 1.08 1580 1235 1434 345 240.59
    大南沟 0.72 1589 1235 1410 354 251.06
    小北沟 0.50 1576 1203 1338 373 278.77
    韭菜沟 0.43 1610 1172 1423 438 307.80
    排土场 0.19 1494 1176 843 318 377.22
    星星印 1.71 1614 1079 2221 535 240.88
    杏树芽 0.84 1411 1052 1424 359 252.11
    下载: 导出CSV

    表  2   泥石流启动水槽试验装置相似比

    Table  2   Similar ratio of physical simulation test devices for debris flow startup

    物理量 宽度 容重 应力 内聚力 泊松比 内摩擦角 雨强 流量
    计算式 $ {C}_{l} $ $ {C}_{r} $ $ {C}_{\sigma }={C}_{l} \cdot {C}_{r} $ $ {C}_{c}={C}_{r} $ $ {C}_{\mu } $ $ {C}_{\varPhi } $ $ {S}_{p}={{C}_{l}}^{\frac{1}{2}} $ $ Q={{C}_{l}}^{\frac{5}{2}} $
    相似比 100 1 100 1 1 1 10 105
    下载: 导出CSV

    表  3   泥石流启动物理模拟试验所用传感器参数

    Table  3   Parameters of sensors used in physical simulation test of debris flow startup

    传感器类型 型号 规格 精度 输出信号
    体积含水率 YTDY0102 0~100% 0.1%F.S RS485数字信号
    孔隙水压力 YTYL0101 100 Kpa 0.1%F.S RS485数字信号
    下载: 导出CSV

    表  4   泥石流启动物理模拟试验条件参数

    Table  4   Debris flow startup physical simulation test parameters

    试验水槽条件 试验参数设计
    长度尺寸(cm) 断面尺寸(cm) 物料堆放(cm) 水槽坡度(°) 颗粒级配(细颗粒含量,%)
    400 50×40 70×50×10 5,8,10,15,20 7,15,20,25,30,35,40
    下载: 导出CSV

    表  5   泥石流启动物理模拟试验结果汇总

    Table  5   Summary of physical simulation test results of debris flow initiation

    试验
    组次
    冲水流
    量(L/s)
    底床坡
    度(°)
    细颗粒
    含量(%)
    启动方式
    D01 0.82 10 7 顶面侵蚀+流态化
    D02 0.88 10 7 顶面侵蚀+流态化
    D03 1.19 10 7 顶面侵蚀+流态化
    D04 1.24 10 7 顶面侵蚀+流态化
    D05 1.40 10 7 顶面侵蚀+流态化
    D06 1.45 10 7 流态化
    D07 1.48 10 7 流态化
    D08 1.99 10 7 顶面侵蚀
    D09 2.07 10 7 顶面侵蚀
    D10 2.32 10 7 顶面侵蚀
    D11 2.43 10 7 顶面侵蚀
    D12 2.97 10 7 顶面侵蚀
    D13 3.10 10 7 顶面侵蚀
    D14 3.52 10 7 顶面侵蚀
    D15 5.95 10 7 顶面侵蚀
    D16 1.48 5 7 顶面侵蚀
    D17 1.48 8 7 顶面侵蚀
    D18 1.48 15 7 流态化
    D19 1.48 20 7 顶面侵蚀+流态化
    D20 1.48 10 15 流态化
    D21 1.48 10 20 顶面侵蚀
    D22 1.48 10 25 顶面侵蚀
    D23 1.48 10 30 顶面侵蚀
    D24 1.48 10 35 顶面侵蚀
    D25 1.48 10 40 顶面侵蚀
    下载: 导出CSV

    表  6   不同冲水流量条件下泥石流启动临界水量

    Table  6   Critical water volume for debris flow initiation under different flushing flow conditions

    试验
    组次
    物源状态 细颗粒
    含量(%)
    底床坡
    度(°)
    冲水流
    量(L/s)
    临界水
    量(L)
    D01 散粒干渣 7 10 0.82 42.94
    D02 散粒干渣 7 10 0.88 39.56
    D03 散粒干渣 7 10 1.19 34.31
    D04 散粒干渣 7 10 1.24 33.21
    D05 散粒干渣 7 10 1.40 30.22
    D06 散粒干渣 7 10 1.45 28.51
    D07 散粒干渣 7 10 1.48 26.46
    D08 散粒干渣 7 10 1.99 28.71
    D09 散粒干渣 7 10 2.07 29.71
    D10 散粒干渣 7 10 2.32 31.35
    D11 散粒干渣 7 10 2.43 31.64
    D12 散粒干渣 7 10 2.97 33.22
    D13 散粒干渣 7 10 3.10 28.54
    D14 散粒干渣 7 10 3.52 27.58
    D15 散粒干渣 7 10 5.95 17.85
    下载: 导出CSV

    表  7   不同底床坡度条件下泥石流启动临界水量

    Table  7   Critical water volume for debris flow initiation under different bed slope conditions

    试验
    组次
    物源状态 细颗粒含
    量(%)
    底床坡
    度(°)
    冲水流
    量(L/s)
    临界水
    量(L)
    D16 散粒干渣 7 5 1.48 71.23
    D17 散粒干渣 7 8 1.48 53.44
    D07 散粒干渣 7 10 1.48 26.46
    D18 散粒干渣 7 15 1.48 19.27
    D19 散粒干渣 7 20 1.48 15.01
    下载: 导出CSV

    表  8   不同颗粒级配条件下泥石流启动临界水量

    Table  8   Critical water volume for debris flow initiation under different particle gradation conditions

    试验
    组次
    物源状态 底床坡
    度(°)
    细颗粒
    含量(%)
    冲水流
    量(L/s)
    临界水
    量(L)
    D07 散粒干渣 10 7 1.48 26.40
    D20 散粒干渣 10 15 1.48 18.84
    D21 散粒干渣 10 20 1.48 17.36
    D22 散粒干渣 10 25 1.48 15.20
    D23 散粒干渣 10 30 1.48 14.93
    D24 散粒干渣 10 35 1.48 16.00
    D25 散粒干渣 10 40 1.48 16.21
    下载: 导出CSV
  • 曹琰波. 矿渣型泥石流起动机理试验研究[D]. 西安: 长安大学, 2008.

    CAO Yanbo. Experimental Study on Starting Mechanism of Slag Debris Flow [D]. Xi’an: Chang ’an University, 2008.

    丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(3): 209−216.

    CONG Kai, LI Ruidong, BI Yuanhong. Benefite Valuation of Debris Flow Control Engineering based on the FLO-2D Model[J]. Northwestern Geology,2019,52(3):209−216.

    费祥俊, 舒安平. 泥石流运动机理与灾害防治[M]. 北京: 清华大学出版社, 2004.

    FEI Xiangjun, SHU Anping. Mechanism of Debris Flow Movement and Disaster Prevention[M]. Beijing: Tsingh-ua University Publishing House, 2004.

    黄家华, 冯文凯. 台风暴雨矿渣型泥石流形成机制与动力特征——以兴宁乌石坑沟泥石流为例[J]. 地质论评, 2023, 69(4): 1387−1397.

    HUANG Jiahua, FENG Wenkai. Formation Mechanism and Dynamic Characteristics of Mine-Slag Debris Flow in Typhoon Rainstorm: Take Wushikeng Gully in Xingning as an Example[J]. Geological Review,2023,69(4):1387−1397.

    洪磊, 马润勇, 章晓余. 青海加吾矿区玛日当沟泥石流启动机理研究[J]. 工程地质学报, 2017, 25(2): 472−479.

    HONG Lei, MA Runyong, ZHANG Xiaoyu. Starting Mechanism of Debris Flow at Maridang Gully in Jiawu Gold Mine in Qinghai Tibetan Plateau[J]. Journal of Engineering Geology,2017,25(2):472−479.

    康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004: 56–59.

    KANG Zhicheng, LI Chuofen, MA Ainai, et al. Research on Debris Flow in China[M]. Beijing: Science Press, 2004: 56–59.

    吕学军, 倪化勇, 徐如阁等. 四川峨边县蒋沟矿渣侵蚀泥石流成因与特征[J]. 水土保持研究, 2011, 18(03): 83−87.

    LV Xuejun, NI Huayong, XU Ruge, et al. Formation and Characteristics of Mine-Slag Debris Flow from Jianggou Ravine in Ebian County Sichuan Province[J]. Research of Soil and Water Conservation,2011,18(03):83−87.

    李晓晨. 矿山排土场泥石流形成机理及其防治对策[J]. 化工矿物与加工, 2014, 43(5): 37−39.

    LI Xiaochen. The Formation Mechanism of Debris Flow in Mine Dumps and its Prevention and Control Strategies[J]. Industrial Minerals & Sprocessing,2014,43(5):37−39.

    李宁, 唐川, 龚凌枫, 等. 急陡沟道泥石流起动特征模型试验研究——以汶川县福堂沟为例[J]. 地质学报, 2020, 94(2): 634−647.

    LI Ning, TANG Chuan, GONG Lingfeng, et al. An Experimental Study of Starting Characteristics of Steep Channel Debris Flow: A Case Study of the Futang Gully in the Wenchuan County[J]. Acta Geologica Sinica,2020,94(2):634−647.

    李书钦, 高建恩, 邵辉, 等. 选沙对水力侵蚀比尺模拟试验侵蚀过程相似的影响[J]. 水土保持学报, 2009, 23(3): 6−10.

    LI Shuqin, GAO Jian’en, SHAO Hui, et al. Influence of Sand Selection on Erosion Process in Hydraulic Erosion Scale Simulation Test[J]. Journal of Soil and Water Conservation,2009,23(3):6−10.

    林斌, 张友谊, 罗珂, 等. 沟道松散物质起动模型试验及冲出量预测——四川省以北川青林沟为例[J]. 人民长江, 2019, 50(5): 113−118+126.

    LIN Bin, ZHANG Youyi, LUO Ke, et al. Model Test of Channel Loose Material Starting and Prediction of Rush Amount: A Case Study of Qinglin Gully in the Beichuan County, Sichuan Province[J]. People's Changjiang,2019,50(5):113−118+126.

    刘兴荣, 崔鹏, 王飞, 等. 不同粒径级配条件下工程弃渣泥石流启动机理研究[J]. 工程地质学报, 2018, 26(6): 1593−1599.

    LIU Xingrong, CUI Peng, WANG Fei, et al. Study on the Threshold Motion Mechanism of Engineering Slag Debris Flow with Different Particle Size Grading Conditions[J]. Journal of Engineering Geology,2018,26(6):1593−1599.

    罗阳. 攀枝花徐家沟矿渣型泥石流起动机理及防治对策研究[D]. 成都: 成都理工大学, 2018.

    LUO Yang. Research on Starting Mechanism and Prevention Countermeasures of Slag Debris Flow in Xujia Gully, Panzhihua [D]. Chengdu:Chengdu University of Technology, 2018.

    孟华君, 姜元俊, 张向营. 基于模型试验的震区沟道泥石流阈值研究[J]. 人民黄河, 2017, 39(7): 80−85+95.

    MENG Huajun, JIANG Yuanjun, ZHANG Xiangying. Study on Threshold of Debris Flow in Seismic Zone Based on Model Test[J]. People’s Yellow River,2017,39(7):80−85+95.

    倪化勇, 唐川. 中国泥石流起动物理模拟试验研究进展[J]. 水科学进展, 2014, 25(04): 606−613.

    NI Huayong, TANG Chuan. Advances in the Physical Simulation Experiment on Debris Flow Initiation in China[J]. Advances in Water Science,2014,25(04):606−613.

    乔建平, 李明俐, 杨宗佶, 等. 基于模型试验的泥石流坡面物源启动预警模型[J]. 水科学进展, 2018, 29(1): 64−72.

    QIAO Jianping, LI Mingli, YANG Zongji, et al. Early Warning Model of Debris Flow Slope Source Based on Model Test[J]. Progress in Water Science,2018,29(1):64−72.

    唐亚明, 武立, 冯凡, 等. 泥石流风险减缓措施及经济决策——以山西吉县城北沟为例[J]. 西北地质, 2021, 54(4): 227−238.

    TANG Yaming, WU Li, FENG Fan, et al. Risk Mitigation Measures and Economic Decicions on Debris Flow: Taking Begou of Jixin County, Shanxi Province as an Example[J]. Northwestern Geology,2021,54(4):227−238.

    王永清, 宋卫东, 杜翠凤, 等. 金属矿山井下泥石流发生机理分析[J]. 金属矿山, 2006(8): 62−67.

    WANG Yongqing, SONG Weidong, DU Cuifeng, et al. Mechanism Analysis of Mud-Rock Flow Occurrence in Underground Metal Mines[J]. Metal Mine,2006(8):62−67.

    王锴, 朱涛, 苏生瑞, 等. 颗粒级配对矿渣型泥石流启动影响的机理研究[J]. 河北工程大学学报(自然科学版), 2019, 36(4): 90−97.

    WANG Kai, ZHU Tao, SU Shengrui, et al. The Influence Mechanism of Grain Gradation on Initiation of Slag Type Debris Flows[J]. Journal of Hebei University of Engineering (Natural Science Edition),2019,36(4):90−97.

    王协康, 方铎. 泥石流模型试验相似律分析[J]. 四川大学学报(工程科学版), 2000(3): 9−12.

    WANG Xiekang, FANG Duo. Similarity Law Analysis of Debris Flow Model Test[J]. Journal of Sichuan University (Engineering Science Edition),2000(3):9−12.

    徐友宁, 曹琰波, 张江华, 等. 基于人工模拟试验的小秦岭金矿区矿渣型泥石流起动研究[J]. 岩石力学与工程学报, 2009, 28(7): 1388−1395.

    XU Youning, CAO Yanbo, ZHANG Jianghua, et al. Research on Starting of Mine Debris Flow based on Artificial Simulation Expeiument in Xiao Qingling Gold Ore Area[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1388−1395.

    徐友宁, 何芳, 袁汉春, 等. 中国西北地区矿山环境地质问题调查与评价[M]. 北京: 地质出版社, 2006.

    XU Youning, HE Fang, YUAN Hanchun, et al. Investigation and Evaluation of Mine Environmental Geology in Northwest China[M]. Beijing: Geological Publishing House, 2006.

    杨敏, 徐友宁. 小秦岭金矿区矿渣型泥石流成因机理及防治对策[M]. 北京: 冶金工业出版社, 2021.

    YANG Min, XU Youning. Formation Mechanism and Prevention Countermeasures of Slag Debris Flow in Xiaoqinling Gold Ore Area[M]. Beijing: Metallurgical Industry Press, 2021.

    张丽萍, 唐克丽. 矿山泥石流[M]. 北京: 地质出版社, 2001: 1−9.

    ZHANG Liping, TANG Keli. Mine Debris Flow[M]. Beijing: Geological Publishing House, 2001: 1−9.

    Berti M, Simoni A. Experimental evidences and numerical modelling of debris flow initiated by channel runoff[J]. Landslides,2005,2(3):171−182. doi: 10.1007/s10346-005-0062-4

    Gregoretti C, Fontana D G. The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff[J]. Hydrol Process,2008,22(13):2248−2263. doi: 10.1002/hyp.6821

    Hungr O, Dawson R F, Kent A, et al. Rapid flow slides of coal mine waste in British Columbia, Canada[A]. In: Evans S G, DeCraf J V (eds.). Catastrophic landslides: Effects, occur-rence and mechanisms: Boulder, Colorado[M]. Geological Society of America Reviews in Engineering Geology,2002,15:191−208.

图(19)  /  表(8)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  25
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-28
  • 修回日期:  2023-10-05
  • 录用日期:  2023-11-01
  • 网络出版日期:  2024-01-24
  • 刊出日期:  2025-02-19

目录

    /

    返回文章
    返回