Study on the Starting Characteristics of Mine Debris Flow Based on Flume Test: Take the Kangshan Gold Mining Area in Luanchuan County as an example
-
摘要:
矿渣型泥石流是一种以大规模的开采矿产资源产生的废石弃渣为主要物源演化形成的一种典型的人为泥石流,具有频发性、人为性、污染性、可控性等特点。为进一步探索底床坡度、冲水流量和颗粒级配等因子对泥石流启动过程的影响和控制作用及各因子间的关系,基于相似性原理,采用比尺结构,以河南省栾川县康山金矿区采矿产生的废石渣堆为主要物源进行水槽试验。通过传感器记录矿渣型泥石流形成过程中的孔隙水压力和含水率的变化情况,并用高清摄像机观测矿渣启动形成泥石流的现象。试验结果表明:①矿渣型泥石流主要以顶面侵蚀型、流态化型、顶面侵蚀+流态化型3种方式启动。②泥石流启动临界孔隙水压力与底床坡度呈负相关关系、与细颗粒含量变化关系不明显。③级配、坡度一定时,随着冲水流量不断增大,泥石流启动临界水量呈现先减小、后增大、再减小趋势,并存在一个最有利于矿渣启动的冲水流量。④冲水流量、级配一定,坡度越大,矿渣越容易启动。⑤坡度、冲水流量一定,细颗粒含量为30.36% 矿渣最容易启动。研究结果进一步丰富了对矿渣型泥石流启动机理的认识,可为矿渣型泥石流预警、防治和矿山生态修复提供参考。
Abstract:Mine debris flow is a typical anthropogenic debris flow formed by the evolution of waste rock and slag generated by large-scale mining of mineral resources, which has the characteristics of frequency, human nature, pollution, controllability, and so on. In order to further explore the influence and control of factors such as bottom bed slope, flushing flow and particle gradation on the start-up process of debris flow and the relationship between the factors, based on the principle of similarity, the scale structure is used to carry out flume Test with the waste rock slag pile produced by mining in Kangshan gold mining area in Luanchuan County, Henan Province. The changes of pore water pressure and water content during the formation of mine debris flow were recorded by sensors, and the phenomenon of slag initiation forming debris flow was observed with high-definition cameras. The test shows that the mine debris flow is mainly started in three ways: top erosion type, fluidization type, and top erosion fluidization type; the critical pore water pressure of the debris flow is negatively correlated with the slope of the bottom bed, and the relationship with the change of fine particle content is not obvious; when the gradation and slope are constant, as the flushing flow continues to increase, the critical water volume of the debris flow at the start of the debris flow shows, and there is a flushing flow rate that is most conducive to slag starting; The flushing flow rate and gradation are certain. The larger the slope, the easier it is for slag to start. The slope and flushing flow are certain, and the fine particle content is 30.36%. Slag is the easiest to start. The research results further enrich the mechanism research of mine debris flow initiation, and can provide reference for early warning, prevention and ecological restoration of mine debris flow.
-
Keywords:
- mine debris flow /
- starting characteristics /
- flume test /
- Kangshan gold mining area
-
-
表 1 康山金矿区泥石流物源所在沟谷基本情况表
Table 1 The basic situation of the valley where the source of debris flow is located in the Kangshan gold mining area
沟谷 流域面积(km2) 最高点高程(m) 最低点高程(m) 沟谷长度(m) 相对高差(m) 纵坡降比(‰) 后木寺 1.08 1580 1235 1434 345 240.59 大南沟 0.72 1589 1235 1410 354 251.06 小北沟 0.50 1576 1203 1338 373 278.77 韭菜沟 0.43 1610 1172 1423 438 307.80 排土场 0.19 1494 1176 843 318 377.22 星星印 1.71 1614 1079 2221 535 240.88 杏树芽 0.84 1411 1052 1424 359 252.11 表 2 泥石流启动水槽试验装置相似比
Table 2 Similar ratio of physical simulation test devices for debris flow startup
物理量 宽度 容重 应力 内聚力 泊松比 内摩擦角 雨强 流量 计算式 $ {C}_{l} $ $ {C}_{r} $ $ {C}_{\sigma }={C}_{l} \cdot {C}_{r} $ $ {C}_{c}={C}_{r} $ $ {C}_{\mu } $ $ {C}_{\varPhi } $ $ {S}_{p}={{C}_{l}}^{\frac{1}{2}} $ $ Q={{C}_{l}}^{\frac{5}{2}} $ 相似比 100 1 100 1 1 1 10 105 表 3 泥石流启动物理模拟试验所用传感器参数
Table 3 Parameters of sensors used in physical simulation test of debris flow startup
传感器类型 型号 规格 精度 输出信号 体积含水率 YTDY0102 0~100% 0.1%F.S RS485数字信号 孔隙水压力 YTYL0101 100 Kpa 0.1%F.S RS485数字信号 表 4 泥石流启动物理模拟试验条件参数
Table 4 Debris flow startup physical simulation test parameters
试验水槽条件 试验参数设计 长度尺寸(cm) 断面尺寸(cm) 物料堆放(cm) 水槽坡度(°) 颗粒级配(细颗粒含量,%) 400 50×40 70×50×10 5,8,10,15,20 7,15,20,25,30,35,40 表 5 泥石流启动物理模拟试验结果汇总
Table 5 Summary of physical simulation test results of debris flow initiation
试验
组次冲水流
量(L/s)底床坡
度(°)细颗粒
含量(%)启动方式 D01 0.82 10 7 顶面侵蚀+流态化 D02 0.88 10 7 顶面侵蚀+流态化 D03 1.19 10 7 顶面侵蚀+流态化 D04 1.24 10 7 顶面侵蚀+流态化 D05 1.40 10 7 顶面侵蚀+流态化 D06 1.45 10 7 流态化 D07 1.48 10 7 流态化 D08 1.99 10 7 顶面侵蚀 D09 2.07 10 7 顶面侵蚀 D10 2.32 10 7 顶面侵蚀 D11 2.43 10 7 顶面侵蚀 D12 2.97 10 7 顶面侵蚀 D13 3.10 10 7 顶面侵蚀 D14 3.52 10 7 顶面侵蚀 D15 5.95 10 7 顶面侵蚀 D16 1.48 5 7 顶面侵蚀 D17 1.48 8 7 顶面侵蚀 D18 1.48 15 7 流态化 D19 1.48 20 7 顶面侵蚀+流态化 D20 1.48 10 15 流态化 D21 1.48 10 20 顶面侵蚀 D22 1.48 10 25 顶面侵蚀 D23 1.48 10 30 顶面侵蚀 D24 1.48 10 35 顶面侵蚀 D25 1.48 10 40 顶面侵蚀 表 6 不同冲水流量条件下泥石流启动临界水量
Table 6 Critical water volume for debris flow initiation under different flushing flow conditions
试验
组次物源状态 细颗粒
含量(%)底床坡
度(°)冲水流
量(L/s)临界水
量(L)D01 散粒干渣 7 10 0.82 42.94 D02 散粒干渣 7 10 0.88 39.56 D03 散粒干渣 7 10 1.19 34.31 D04 散粒干渣 7 10 1.24 33.21 D05 散粒干渣 7 10 1.40 30.22 D06 散粒干渣 7 10 1.45 28.51 D07 散粒干渣 7 10 1.48 26.46 D08 散粒干渣 7 10 1.99 28.71 D09 散粒干渣 7 10 2.07 29.71 D10 散粒干渣 7 10 2.32 31.35 D11 散粒干渣 7 10 2.43 31.64 D12 散粒干渣 7 10 2.97 33.22 D13 散粒干渣 7 10 3.10 28.54 D14 散粒干渣 7 10 3.52 27.58 D15 散粒干渣 7 10 5.95 17.85 表 7 不同底床坡度条件下泥石流启动临界水量
Table 7 Critical water volume for debris flow initiation under different bed slope conditions
试验
组次物源状态 细颗粒含
量(%)底床坡
度(°)冲水流
量(L/s)临界水
量(L)D16 散粒干渣 7 5 1.48 71.23 D17 散粒干渣 7 8 1.48 53.44 D07 散粒干渣 7 10 1.48 26.46 D18 散粒干渣 7 15 1.48 19.27 D19 散粒干渣 7 20 1.48 15.01 表 8 不同颗粒级配条件下泥石流启动临界水量
Table 8 Critical water volume for debris flow initiation under different particle gradation conditions
试验
组次物源状态 底床坡
度(°)细颗粒
含量(%)冲水流
量(L/s)临界水
量(L)D07 散粒干渣 10 7 1.48 26.40 D20 散粒干渣 10 15 1.48 18.84 D21 散粒干渣 10 20 1.48 17.36 D22 散粒干渣 10 25 1.48 15.20 D23 散粒干渣 10 30 1.48 14.93 D24 散粒干渣 10 35 1.48 16.00 D25 散粒干渣 10 40 1.48 16.21 -
曹琰波. 矿渣型泥石流起动机理试验研究[D]. 西安: 长安大学, 2008. CAO Yanbo. Experimental Study on Starting Mechanism of Slag Debris Flow [D]. Xi’an: Chang ’an University, 2008.
丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(3): 209−216. CONG Kai, LI Ruidong, BI Yuanhong. Benefite Valuation of Debris Flow Control Engineering based on the FLO-2D Model[J]. Northwestern Geology,2019,52(3):209−216.
费祥俊, 舒安平. 泥石流运动机理与灾害防治[M]. 北京: 清华大学出版社, 2004. FEI Xiangjun, SHU Anping. Mechanism of Debris Flow Movement and Disaster Prevention[M]. Beijing: Tsingh-ua University Publishing House, 2004.
黄家华, 冯文凯. 台风暴雨矿渣型泥石流形成机制与动力特征——以兴宁乌石坑沟泥石流为例[J]. 地质论评, 2023, 69(4): 1387−1397. HUANG Jiahua, FENG Wenkai. Formation Mechanism and Dynamic Characteristics of Mine-Slag Debris Flow in Typhoon Rainstorm: Take Wushikeng Gully in Xingning as an Example[J]. Geological Review,2023,69(4):1387−1397.
洪磊, 马润勇, 章晓余. 青海加吾矿区玛日当沟泥石流启动机理研究[J]. 工程地质学报, 2017, 25(2): 472−479. HONG Lei, MA Runyong, ZHANG Xiaoyu. Starting Mechanism of Debris Flow at Maridang Gully in Jiawu Gold Mine in Qinghai Tibetan Plateau[J]. Journal of Engineering Geology,2017,25(2):472−479.
康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004: 56–59. KANG Zhicheng, LI Chuofen, MA Ainai, et al. Research on Debris Flow in China[M]. Beijing: Science Press, 2004: 56–59.
吕学军, 倪化勇, 徐如阁等. 四川峨边县蒋沟矿渣侵蚀泥石流成因与特征[J]. 水土保持研究, 2011, 18(03): 83−87. LV Xuejun, NI Huayong, XU Ruge, et al. Formation and Characteristics of Mine-Slag Debris Flow from Jianggou Ravine in Ebian County Sichuan Province[J]. Research of Soil and Water Conservation,2011,18(03):83−87.
李晓晨. 矿山排土场泥石流形成机理及其防治对策[J]. 化工矿物与加工, 2014, 43(5): 37−39. LI Xiaochen. The Formation Mechanism of Debris Flow in Mine Dumps and its Prevention and Control Strategies[J]. Industrial Minerals & Sprocessing,2014,43(5):37−39.
李宁, 唐川, 龚凌枫, 等. 急陡沟道泥石流起动特征模型试验研究——以汶川县福堂沟为例[J]. 地质学报, 2020, 94(2): 634−647. LI Ning, TANG Chuan, GONG Lingfeng, et al. An Experimental Study of Starting Characteristics of Steep Channel Debris Flow: A Case Study of the Futang Gully in the Wenchuan County[J]. Acta Geologica Sinica,2020,94(2):634−647.
李书钦, 高建恩, 邵辉, 等. 选沙对水力侵蚀比尺模拟试验侵蚀过程相似的影响[J]. 水土保持学报, 2009, 23(3): 6−10. LI Shuqin, GAO Jian’en, SHAO Hui, et al. Influence of Sand Selection on Erosion Process in Hydraulic Erosion Scale Simulation Test[J]. Journal of Soil and Water Conservation,2009,23(3):6−10.
林斌, 张友谊, 罗珂, 等. 沟道松散物质起动模型试验及冲出量预测——四川省以北川青林沟为例[J]. 人民长江, 2019, 50(5): 113−118+126. LIN Bin, ZHANG Youyi, LUO Ke, et al. Model Test of Channel Loose Material Starting and Prediction of Rush Amount: A Case Study of Qinglin Gully in the Beichuan County, Sichuan Province[J]. People's Changjiang,2019,50(5):113−118+126.
刘兴荣, 崔鹏, 王飞, 等. 不同粒径级配条件下工程弃渣泥石流启动机理研究[J]. 工程地质学报, 2018, 26(6): 1593−1599. LIU Xingrong, CUI Peng, WANG Fei, et al. Study on the Threshold Motion Mechanism of Engineering Slag Debris Flow with Different Particle Size Grading Conditions[J]. Journal of Engineering Geology,2018,26(6):1593−1599.
罗阳. 攀枝花徐家沟矿渣型泥石流起动机理及防治对策研究[D]. 成都: 成都理工大学, 2018. LUO Yang. Research on Starting Mechanism and Prevention Countermeasures of Slag Debris Flow in Xujia Gully, Panzhihua [D]. Chengdu:Chengdu University of Technology, 2018.
孟华君, 姜元俊, 张向营. 基于模型试验的震区沟道泥石流阈值研究[J]. 人民黄河, 2017, 39(7): 80−85+95. MENG Huajun, JIANG Yuanjun, ZHANG Xiangying. Study on Threshold of Debris Flow in Seismic Zone Based on Model Test[J]. People’s Yellow River,2017,39(7):80−85+95.
倪化勇, 唐川. 中国泥石流起动物理模拟试验研究进展[J]. 水科学进展, 2014, 25(04): 606−613. NI Huayong, TANG Chuan. Advances in the Physical Simulation Experiment on Debris Flow Initiation in China[J]. Advances in Water Science,2014,25(04):606−613.
乔建平, 李明俐, 杨宗佶, 等. 基于模型试验的泥石流坡面物源启动预警模型[J]. 水科学进展, 2018, 29(1): 64−72. QIAO Jianping, LI Mingli, YANG Zongji, et al. Early Warning Model of Debris Flow Slope Source Based on Model Test[J]. Progress in Water Science,2018,29(1):64−72.
唐亚明, 武立, 冯凡, 等. 泥石流风险减缓措施及经济决策——以山西吉县城北沟为例[J]. 西北地质, 2021, 54(4): 227−238. TANG Yaming, WU Li, FENG Fan, et al. Risk Mitigation Measures and Economic Decicions on Debris Flow: Taking Begou of Jixin County, Shanxi Province as an Example[J]. Northwestern Geology,2021,54(4):227−238.
王永清, 宋卫东, 杜翠凤, 等. 金属矿山井下泥石流发生机理分析[J]. 金属矿山, 2006(8): 62−67. WANG Yongqing, SONG Weidong, DU Cuifeng, et al. Mechanism Analysis of Mud-Rock Flow Occurrence in Underground Metal Mines[J]. Metal Mine,2006(8):62−67.
王锴, 朱涛, 苏生瑞, 等. 颗粒级配对矿渣型泥石流启动影响的机理研究[J]. 河北工程大学学报(自然科学版), 2019, 36(4): 90−97. WANG Kai, ZHU Tao, SU Shengrui, et al. The Influence Mechanism of Grain Gradation on Initiation of Slag Type Debris Flows[J]. Journal of Hebei University of Engineering (Natural Science Edition),2019,36(4):90−97.
王协康, 方铎. 泥石流模型试验相似律分析[J]. 四川大学学报(工程科学版), 2000(3): 9−12. WANG Xiekang, FANG Duo. Similarity Law Analysis of Debris Flow Model Test[J]. Journal of Sichuan University (Engineering Science Edition),2000(3):9−12.
徐友宁, 曹琰波, 张江华, 等. 基于人工模拟试验的小秦岭金矿区矿渣型泥石流起动研究[J]. 岩石力学与工程学报, 2009, 28(7): 1388−1395. XU Youning, CAO Yanbo, ZHANG Jianghua, et al. Research on Starting of Mine Debris Flow based on Artificial Simulation Expeiument in Xiao Qingling Gold Ore Area[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1388−1395.
徐友宁, 何芳, 袁汉春, 等. 中国西北地区矿山环境地质问题调查与评价[M]. 北京: 地质出版社, 2006. XU Youning, HE Fang, YUAN Hanchun, et al. Investigation and Evaluation of Mine Environmental Geology in Northwest China[M]. Beijing: Geological Publishing House, 2006.
杨敏, 徐友宁. 小秦岭金矿区矿渣型泥石流成因机理及防治对策[M]. 北京: 冶金工业出版社, 2021. YANG Min, XU Youning. Formation Mechanism and Prevention Countermeasures of Slag Debris Flow in Xiaoqinling Gold Ore Area[M]. Beijing: Metallurgical Industry Press, 2021.
张丽萍, 唐克丽. 矿山泥石流[M]. 北京: 地质出版社, 2001: 1−9. ZHANG Liping, TANG Keli. Mine Debris Flow[M]. Beijing: Geological Publishing House, 2001: 1−9.
Berti M, Simoni A. Experimental evidences and numerical modelling of debris flow initiated by channel runoff[J]. Landslides,2005,2(3):171−182. doi: 10.1007/s10346-005-0062-4
Gregoretti C, Fontana D G. The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff[J]. Hydrol Process,2008,22(13):2248−2263. doi: 10.1002/hyp.6821
Hungr O, Dawson R F, Kent A, et al. Rapid flow slides of coal mine waste in British Columbia, Canada[A]. In: Evans S G, DeCraf J V (eds.). Catastrophic landslides: Effects, occur-rence and mechanisms: Boulder, Colorado[M]. Geological Society of America Reviews in Engineering Geology,2002,15:191−208.