Reservoir Characteristics and Favorable Areas of the Karamay Formation in the Mahu 446 Well District
-
摘要:
玛湖斜坡446井区克拉玛依组是克拉玛依油田重要的产油层,三叠系克上组(克拉玛依组上段)有利砂体的准确刻画一直是制约该区增储上产的关键问题。笔者基于对克上组沉积储层特征的重新认识和有利砂体地球物理相应特征的再梳理,结合沉积相展布特征和地震反演方法,对446井区克上组T2k22段有利砂体进行了刻画,为进一步勘探开发提供了重要指导。研究发现,玛湖446井区属于辫状河三角洲前缘亚相沉积,包括水下分流河道、水下分流河道间湾、河口砂坝、席状砂4种沉积微相,其中水下分流河道为有利储层。T2k22段水下分流河道最发育,物源整体来自WN方向,中部河道最发育,沉积背景最为有利。拟声阻抗地震反演方法对识别T2k22砂体具有显著效果,砂体阻抗界限在
8900 g/cm3·m/s,可在本区识别出两套有利的河道砂体,具有强振幅和高拟声波阻抗的特征。综合考虑沉积相展布、地震反演和构造特征,预测了T2k22段控制含油面积以外的一个岩性圈闭及范围,该圈闭呈U型展布,发育约为6 m油层,由高往低油层减薄,面积为8.4 km2,闭合度约为300 m。Abstract:The Karamay Formation in the Mahu 446 well district is an important oil-producing layer in the Karamay oilfield. However, the unclear characterization of favorable sandstone bodies in the Upper Karamay Formation has constrained further exploration and development in this area. This paper provides sedimentary facies distribution characteristics and seismic inversion methods to characterize the favorable sandbodies in the T2k22 section of the Upper Karamay Formation in the 446 well area, based on a re-understanding of the sedimentary reservoir and geophysical response characteristics of favorable sandstone bodies in the Upper Karamay Formation. The research suggests that this area belongs to a braided river delta front subfacies sedimentation, which can be mainly divided into four sedimentary microfacies: underwater distributary channels, inter-distributary bays, mouth bars, and sheet sands. The T2k22 section of underwater distributary channels is the most developed and is the primary favorable reservoir development section in this area. The overall provenance of the T2k22 section comes from the northwest, with the central channels being the most developed and having the most favorable sedimentary background. The pseudo-acoustic impedance seismic inversion method has a good effect on identifying T2k22 sandbodies, with the impedance boundary at
8900 g/cm3·m/s, which can identify two sets of favorable channel sandbodies with strong amplitude and high pseudo-acoustic impedance characteristics. Combining sedimentary facies distribution, seismic inversion, and structural features, this study predicts one lithological trap and its range beyond the oil-containing area controlled by the T2k22 section. The trap exhibits a U-shaped distribution, develops approximately 6 m of oil layer, which thins from high to low, covers an area of 8.4 km2, and has a closure of approximately 300 m. -
准噶尔盆地位于中国西北部,是中国重要的石油天然气生产区之一(何登发等,2004;王小军等,2021)。近年来,在准噶尔盆地的玛湖地区和克乌断裂带进行了大量的勘探开发工作,取得了显著的成果(何登发等,2004;陶国亮等,2006;涂智杰,2020)。446井区三叠系克上组为克乌断裂控制的岩性油藏(匡立春等,2005),该油藏含油面积为28.5 km2,已完成控制储量申报
1229 ×104 t。446井区探明区以及外围的三叠系克上组目前试油12井14层,其中9井见工业油流,含油层3井3层,水层1井1层。同时,在446油藏外围的玛湖068井,2019年在克上组T2k22(2520.5 ~2525.5 m)试油日产油19.2 t,截止到2022年12月底,累积天数851 d,累产5621 t,玛湖068井的突破,展现了八区外围巨大的评价潜力(王战永,2011;叶颖,2012)。然而,随着勘探开发的深入, 446井区三叠系克拉玛依组在地质构造、沉积特征及油气成藏规律等方面的问题逐渐显现(郑占等,2010;连奕驰,2016;孙乐等,2017;刘文锋等,2020;Xi et al.,2021)。不仅面临着新增储量不足的问题,而且446井区外围高部位还有多口井出水,预示该区油水关系复杂,油气成藏规律及主控因素不清(何登发等,2010;张仲培等,2022),油藏继续扩边遇到了技术难题,给该区勘探开发带来了一定的挑战。究其原因,是克拉玛依组目的层系的砂体分布类型种类繁多,沉积相变快,分布规律不尽相同。目前446井区克拉玛依组由于有利储集砂体展布和边界刻画仍不清晰,已经制约了进一步的勘探部署,明确克–乌断裂下盘三叠系克拉玛依组储层特征和分布规律已经成为了迫切的需求(贾凡建等,2010;李宏涛等,2020;高阳等,2020)。厘定不同沉积相的地球物理响应特征,会极大程度地提升该区砂体刻画精度,从而有助于储层的预测和下一步勘探部署。
笔者基于对446井区克上组沉积储层和地球物理特征的重新梳理,寻找克上组有利含油砂体发育段,总结不同沉积相岩性组合测井响应特征,明确沉积相平面展布规律。最后,结合地震电阻率拟声波阻抗反演方法,刻画两套砂体分布和边界,最后综合预测了研究区控制含油面积外的一个岩性圈闭,为446井区克上组油藏勘探提供新方向,同时为克乌断裂下盘三叠系克拉玛依组沉积储层分布预测方法提供了新思路。
1. 地质概况
446井区三叠系克拉玛依组油藏地理上位于克拉玛依油田白碱滩地区,构造位置为准噶尔盆地西北缘克–乌断裂带下降盘,地面平均海拔265 m,地势平缓,具备较好的开发条件。准噶尔盆地应属于哈萨克斯坦–准噶尔板块,被古生代褶皱山系所环绕,先后经历了多期构造运动,从而形成了现在复杂的地质面貌(朱明等,2021)。盆地西北缘基底形成于石炭纪,在该时期,由于受到晚华力西运动的强烈影响,地壳被逐渐抬升,此时形成了克拉玛依-乌尔禾断裂带(张顺存等,2010;陈永波等,2018;何登发等,2018)。克乌断裂带是一个长期活动的同生断层,该断裂带现今呈封闭性,所以能够对油气起到富集作用(高岗等,2010;彭文利等,2011;Gao 等,2020)。盆地西北缘在二叠纪—侏罗纪时期,广泛发育冲积扇、水下扇、扇三角洲、湖底扇等砾质粗碎屑储集体,共发育 13 套地层,剖面上呈楔形或近楔形,平面上近似扇形(丘东洲,1994)。
研究区地层发育较全,自下而上发育有石炭系(何登发等,2010)、二叠系(吴孔友等,2002;李亚龙等,2017)、三叠系(鲜本忠等,2008)和侏罗系(张年富等,2002;鲍志东等,2005)地层,其中三叠系发育百口泉组、克拉玛依组、白碱滩组。中三叠纪,湖水相对较浅,在盆地边缘的断裂带下盘形成了冲积扇及辫状河三角洲砂体,是该区的重要含油层位(周洪瑞等,2006;吴胜和等,2012)。自晚三叠纪起,湖水逐渐上升,厚层泥岩开始发育,成为其下克拉玛依组的有利盖层;到了三叠纪末,地壳再次被抬升,使得白碱滩组遭受剥蚀,顶部发育风化面。三叠纪早期发育洪冲积扇-河湖三角洲-水下扇相粗碎屑体系;中期发育冲积扇-水下扇-扇三角洲-三角洲和滨浅湖相混合沉积沉积体系;三叠世晚期,以滨浅湖相泥岩-沉积为主,厚度较大(图1)。
2. 沉积特征及有利砂体识别
2.1 沉积相类型及识别标志
研究区主要发育辫状河三角洲前缘亚相,属三角洲的水下延伸部分(李峰峰等,2016)。岩性为灰色含砾砂岩,砂岩及粉砂岩,沉积构造多发育斜层理、小型槽状交错层理、波状层理、水平层理及冲刷-充填构造等。辫状河三角洲前缘粒度概率累积曲线复杂多样,但主要以两段式为主,总体反映了一种牵引流较强的水动力环境(张传林等,2003;朱筱敏等,2008)。根据岩性特征及其组合规律的差异三角洲前缘亚相可进一步划分为水下分流河道、水下分流河道间湾、河口砂坝、席状砂等沉积微相(厚刚福等,2017)。
2.1.1 水下分流河道
水下分流河道沉积微相,其岩性可为浅灰、灰绿色砂岩、粉砂岩组成正韵律沉积,研究区一般由灰色含砾砂岩及砂岩向上过渡为泥质粉砂岩粉砂质泥岩和泥岩,剖面上呈现正韵律(赵小庆等,2013;岳欣欣等,2020)。沉积构造见块状层理、中小型板状交错层理、槽状交错层理及平行层理。本区以后者为主,辫状河三角洲前缘河道砂特征,为灰色泥质粉砂岩->泥质粉细砂岩->细砂岩->含砾砂岩的岩性组合序列,磨圆度中等,分选较差,含有煤屑、碳质泥岩(图2)。
2.1.2 河口砂坝
河口砂坝是由于河流带来的砂泥物质在河口处因流速降低堆积而成(朱筱敏等,2013)。其岩性主要由泥-泥质粉砂岩-粉砂岩-细砂岩序列组成,一般分选较好,质较纯净。砂层呈中层至厚层状;发育有楔形交错层理或“S”形前积纹理和水平纹理。其前积纹层的倾向多变,反映水流方向的变化。偶见水流波痕和波浪波痕等层面构造。河口砂坝的形态在平面上多呈长轴方向与河流方向平行的椭圆形,横剖面上呈近于对称的双透镜状,其周围为前缘泥沉积。
2.1.3 前缘席状砂
前缘席状砂是由于三角洲前缘的河口砂坝经湖水冲刷作用使之再行分布于其侧翼而形成的薄而面积大的砂层(秦润森等,2020)。这种砂层分选好,质较纯净、可成为好的储集层。其沉积构造常见有平行纹理和水流线理。
2.1.4 前缘河道间湾
前缘河道间湾为水下分支河道之间相对凹陷的湖湾地区。当三角洲向前推进时,在分支河道间形成一系列尖端指向陆地的楔形泥质沉积体,称为“泥楔”。故分流间湾以黏土沉积为主,含少量粉砂和细砂。砂质沉积多是洪水季节河床漫溢沉积的结果,常为黏土夹层或呈薄透镜状。河道间湾沉积微相以发育波状层理、透镜层理及沙纹层理等,其间夹灰色水平层理泥岩(图3)。
2.2 单井沉积相特征
克下组岩性为一套灰色粉砂质泥岩与泥质粉砂岩互层,中间夹有灰色泥岩,中下部见细砂岩、泥质细砂岩,靠近克-乌断裂见砂砾岩,厚度较薄。克下组地层厚度发育稳定,厚度为130~160 m,自上而下可分两个砂层组,即S6、S7砂层组。同时发育TST和HST体系域,为一个上升下降旋回。S7发育辫状河三角洲前缘河道间-席状砂-河口坝-河道微相,微相变换较快,表明沉积期河道摆动频繁,湖动力改造较强。S6发育辫状河三角洲前缘河道间-席状砂-河口坝微相,底部为层序的最大湖泛面,为河道间微相,上部缺乏河道相,席状砂和河口坝砂体较发育,岩性偏细。
克上组岩性为一套灰色细砂岩、粉砂岩、泥质粉砂岩、粉砂质泥岩与泥岩互层,局部夹含砾砂岩以及煤层,与上伏地层不整合接触。克上组厚度为200~260 m,自上而下可分为5个砂层组,即T2k21、T2k22、T2k23、T2k24、T2k25,各砂层组厚度均较稳定。同时发育TST和HST体系域,为一个上升下降旋回。T2k25主要发育河道间微相,其次为河口坝、席状砂,底部未见河道砂。T2k24主要发育河道间微相,为泥岩夹煤层,砂体不发育。T2k23主要发育河口坝、河道间微相,河道砂不发育,顶部为层序的最大湖泛面,为河道间微相。T2k22主要发育河口坝和河道微相,其中河道微相油气显示活跃。T2k21主要发育河道间微相,顶部发育薄层席状砂(图4)。
2.3 测井响应特征
分流河道砂体伽马及电阻曲线形态主要为中幅锯齿状箱型或钟形(图5),具有明显正旋回特征,GR偏低而电阻率较高,SP曲线在渗透性最好的砂体中部偏高,对岩性界面不敏感。岩性为细砂岩-粉砂岩为主,顶部为粉砂质泥岩,底部常和泥岩或粉砂质泥岩成突变接触;河口坝沉积微相的GR及RT曲线形态主要为锯齿状漏斗型,AC呈中幅锯齿状,具有明显反旋回特征,岩性为泥岩-粉砂岩-细砂岩;席状砂SP曲线接近于基线,中阻中速,GR、RT、SP和AC都呈低幅锯齿状箱型,粉砂岩、泥质粉砂岩、泥岩为主;河道间煤层为指状,煤层发育处具有特高电阻和特低声波速度特点;前缘河道间则为直线-似直线型的伽马曲线,接近于泥岩基线,自然电位曲线呈齿化或微齿的直线或似直线形,低电阻低声波时差,曲线波动较小,以岩性相近的泥岩为主。本区沉积微相测井响应特征与前人在邻区的报道(高阳等,2016;徐子煜等,2020)相似,沉积相和对应测井响应在克—乌断裂带克上组具有共性,分析原因可能是处于相同的沉积体系(山前辫状河三角洲)的结果。
对比沉积相和测井曲线关系发现,自然伽马(GR)及电阻曲线(RT)对岩性识别较为敏感,能够准确反映出砂、泥岩。纯泥岩一般GR值较高,电阻值较低,为分流间湾相;粉砂质泥岩和泥质粉砂岩GR及电阻值大致相等;纯砂岩的伽马值最低,有明显的幅度差,电阻值最大,一般发育分流河道、河口砂坝相,孔渗性好。
3. 有利砂体展布特征
玛湖24井、玛湖31井、玛湖63井和玛湖69井的勘探实践证实,克上组T2k22砂层组的河道砂体物性好、含油性好。因此,笔者通过沉积相测井相应特征和连井剖面,绘制研究区T2k22沉积相平面分布,结合地震RT拟声波阻抗反演方法,综合刻画有利砂体展布。
3.1 沉积相展布
建立平行于克乌断裂的3条沉积连井剖面(图1b),西北剖面(AA’)T2k22砂层组砂体孤立,以大套泥岩包粗粒河道透镜砂体为特征,横向可对比性差;中部剖面(BB’) T2k22砂层组砂体明显增厚,砂体连片分布,砂岩粒度变细、分选变好,横向测井曲线可对比性强,代表中部河道发育,多期多条河道叠置,形成连片砂体;东南剖面(CC’) T2k22沙层组砂体分布减少,以前缘席状砂为主,砂岩粒度细且厚度薄,被大套河道间泥岩包裹,代表远离物源。综合来看,446井区的克上组T2k22全区以辫状河三角洲前缘沉积为主,整体物源来自WN方向(雷振宇等,2005),北部靠近克乌断裂带T2k22以河道和河道间间隔发育为主,工区中部T2k22发育河道、河口坝等微相,河道沉积微相为有利相带,再往南T2k22以河道间微相为主。相比较而言,工区中部河道最发育,沉积背景最为有利(图6)。
从T2k22砂地比等值线图来看(图7a),发现研究区WN部砂地比差异较大,河道发育处砂地比高,而在河道间发育较厚泥岩,相变很快;中部砂地比最高,沿北东向延伸,代表分支河道发育,多砂体连片叠置、相互连通;东南部砂地比降低但梯度不大,代表远离物源方向砂泥混合沉积,相变不快。
从T2k22沉积相平面分布图来看(图7b),同样看出物源来自西北方向克乌断裂上盘,近源可能发育局部重力流沉积,西北部以过路的河道沉积为主,河道宽但数量少;到了中部,河道分叉、频繁摆动,形成了沿NW向展布的大面积河道砂,物性和分选相对较好;在东南部,水动力减弱,以更细颗粒的前缘席状砂体和河道间大套泥岩沉积为主。
3.2 地震属性特征
由于本区砂泥互层、岩性差异不明显等特点,导致声波曲线对有利河道砂体并不敏感,主要原因是声波速度对岩性、岩石结构、地层埋深和地层年代等多种因素具有复杂关系(屠志慧等,2005)。例如,岩性和地层年代相同,但地层埋深不同的地层,声波速度是不同的,因为不同埋深下的岩石结构、孔隙度等岩石物理参数都存在差异。这种现象进而导致地震中的原始阻抗(IMP)也无法有效区分有利砂体(孙宝宗等,2001;曾富英等,2011)。通过对测井中多种曲线的分析,发现RT曲线在该层段对含油的有利砂体敏感(图8a)。因为液态烃和石英均表现为高阻,这导致含油的有利砂体表现为异常高电阻率,而泥岩和含水砂岩则表面为低阻。泥岩中的黏土矿物表面具有活跃电子且常吸附地层水,含水砂岩由于充满富含离子的地层水,因此两者均具有较好的导电能力(张妮,2018)。因此,笔者利用RT的高频信息和AC的低频信息重构曲线(尹正武等,2014;卢伟,2016;李财等,2018),并计算得到拟声波阻抗曲线(AI)来区分有利砂体,获得了较好效果。对比发现,原始声波阻抗难以通过特定阈值区分T2k22层的有利砂体(图8b),而RT拟声阻抗与岩性关系紧密,能够更好的区分含油有利砂体,有利砂体阻抗的阈值在
8900 g/cm3·m/s(图8c)。从T2k22振幅和拟声阻抗平面分布可以看出(图9),砂体向南逐渐展开,主要分布在研究区中部和东北部。紧邻断裂的下盘存在NE向分布的强振幅带,可能代表存在近源的重力成因扇体沉积。在T2k22段主要识别出A、B两套有利的河道砂体,具有强振幅和高拟声波阻抗的特征。A砂体位于研究区中部,向南展开,分布范围较广,振幅强但连续性稍差,代表岩性变化更快,砂体相对薄;B砂体位于A砂体东北部,向东南展开,范围较A砂体小,但振幅更强且更连续,代表砂体厚度更大。
4. 有利区预测
根据沉积相和地震属性分布,结合研究区构造特征,圈定了T2k22层控制含油面积外的有利岩性圈闭一个(匡立春等,2014),并根据钻井资料进行了验证(图10)。
该圈闭位于A砂体前端,呈U型展布,从反演剖面和连井剖面上可以看出(图11),玛湖068,玛湖067和玛湖31井发育同一套有利砂,其中玛湖068井位于构造高部位,发育约为6 m油层,该井在这套有利砂体试油获得高产,日产油达到了19.2 t,玛湖067和玛湖31井位于该岩性圈闭构造低部位,录井显示为荧光,测井解释结果也表明玛湖067井发育2 m油层,玛湖31发育2.3 m油层,整体油气显示活跃,表明套砂整体含油,由高往低油层减薄,含油性也逐渐变差,整体比较有利。该圈闭面积为8.4 km2,高点海拔−2100 m,闭合度300 m。
5. 结论
(1)研究区属于辫状河三角洲前缘亚相沉积,呈现牵引流较强的水动力环境。根据岩性特征及其组合规律差异,将克上组划分为水下分流河道、水下分流河道间湾、河口砂坝、席状砂4种沉积微相。T2k22段水下分流河道最发育,是该区主要的有利储层发育层段。
(2)T2k22物源整体来自WN方向,来自克–乌断裂上盘。中部河道最发育,河道分叉、频繁摆动,形成了沿NW向展布的大面积河道砂,物性和分选相对较好。水动力向ES部减弱,以更细颗粒的前缘席状砂体和河道间大套泥岩沉积为主。近源发育局部重力流沉积,以过路的河道沉积为主。
(3)RT拟声阻抗地震反演方法对识别T2k22砂体具有显著效果,砂体阻抗界限在
8900 g/cm3·m/s。在T2k22段识别出A、B两套有利的河道砂体,具有强振幅和高拟声波阻抗的特征。A砂体位于研究区中部,分布范围较广,但砂体厚度相对薄;B砂体位于A砂体EN部,范围较A砂体小,但厚度更大。(4)结合沉积相展布、地震反演和构造特征,发现T2k22段控制含油面积外的1个岩性圈闭:该圈闭位于A砂体前端,呈U型展布,圈闭面积为8.4 km2,高点海拔−
2100 m,闭合度为300 m。 -
-
鲍志东, 刘凌, 张冬玲, 等. 准噶尔盆地侏罗系沉积体系纲要[J]. 沉积学报, 2005, 23(2): 194-202 doi: 10.3969/j.issn.1000-0550.2005.02.002 BAO Zhidong, LIU Ling, ZHANG Dongling, et al. Depositional System Frameworks of the Jurassic in Junggar Basin[J]. Acta Sedimentologica Sinica, 2005, 23 (2): 194-202. doi: 10.3969/j.issn.1000-0550.2005.02.002
陈永波, 程晓敢, 张寒, 等. 玛湖凹陷斜坡区中浅层断裂特征及其控藏作用[J]. 石油勘探与开发, 2018, 45(6): 985-994 doi: 10.11698/PED.2018.06.06 CHEN Yongbo, CHENG Xiaogan, ZHANG Han, et al. Fault characteristics and control on hydrocarbon accumulation of middle-shallow layers in the slope zone of Mahu sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 985-994. doi: 10.11698/PED.2018.06.06
高岗, 柳广弟, 黄志龙. 断层对油气的相对封闭性和绝对开启性分析——以准噶尔盆地西北缘八区—百口泉区二叠系油气特征为例[J]. 石油实验地质, 2010, 32(3): 218-222 doi: 10.3969/j.issn.1001-6112.2010.03.003 GAO Gang, LIU Guangdi, HUANG Zhilong. Analysis of relative sealing and absolute permeability of fault—taking Permian hydrocarbon characteristics of the region 8 and the Baikouquan area, northwest margin, the Junggar Basin for example[J]. Petroleum Geology & Experiment, 2010, 32(3): 218-222. doi: 10.3969/j.issn.1001-6112.2010.03.003
高阳, 刘文峰, 于兴河, 等. 准噶尔西北缘红山嘴地区克上组辫状河三角洲沉积-储层耦合关系与综合定量评价[J]. 中国地质, 2020, 47(4): 971-984 GAO Yang, LIU Wenfeng, YU Xinghe, et al. Coupling relationship of sedimentation-reservoir and comprehensive quantitative evaluation of braided river delta facies in Upper Karamay Formation, Hongshanzui area, northwestern margin of Junggar Basin[J]. Geology in China, 2020, 47(4): 971-984.
高阳, 于兴河, 刘文峰, 等. 准噶尔盆地红山嘴地区克拉玛依组砂体展布特征及其主控因素分析[J]. 西安石油大学学报(自然科学版), 2016, 31(5): 11-19 GAO Yang, YU Xinghe, LIU Wenfeng, et al. Analysis of Characteristics and Dominating Factors of Sandbody Distribution of Karamay Formation in Hongshanzui Area, Junggar Basin [J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(5): 11-19.
何登发, 陈新发, 张义杰, 等. 准噶尔盆地油气富集规律[J]. 石油学报, 2004, 25(3): 1-10 doi: 10.3321/j.issn:0253-2697.2004.03.001 HE Dengfa, CHEN Xinfa, ZHANG Yijie, et al. Enrichment characteristics of oil and gas in Jungar Basin[J]. Acta Petrolei Sinica, 2004, 25 (3): 1-10. doi: 10.3321/j.issn:0253-2697.2004.03.001
何登发, 尹成, 杜社宽, 等. 前陆冲断带构造分段特征——以准噶尔盆地西北缘断裂构造带为例[J]. 地学前缘, 2004, 11(3): 91-101 HE Dengfa, YIN Cheng, DU Shekuan, et al. Characteristics of structural segmentation of foreland thrust belts—A case study of the fault belts in the northwestern margin of Junggar Basin[J]. Earth Science Frontiers, 2004, 11(3): 91-101.
何登发, 陈新发, 况军, 等. 准噶尔盆地石炭系油气成藏组合特征及勘探前景[J]. 石油学报, 2010, 31(1): 1-11 doi: 10.7623/syxb201001001 HE Dengfa, CHEN Xinfa, KUANG Jun, et al. Characteristics and exploration potential of Carboniferous hydrocarbon plays in Junggar Basin[J]. Acta Petrolei Sinica, 2010, 31(1): 1-11. doi: 10.7623/syxb201001001
何登发, 吴松涛, 赵龙, 等. 环玛湖凹陷二叠—三叠系沉积构造背景及其演化[J]. 新疆石油地质, 2018, 39(1): 35-47 HE Dengfa, WU Songtao, ZHAO Long, et al. Tectono-Depositional Setting and Its Evolution during Permian to Triassic around Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 35-47.
厚刚福, 吴爱成, 邹志文, 等. 玛湖凹陷八道湾组辫状河三角洲沉积特征及模式[J]. 新疆石油地质, 2017, 38(6): 678-685 HOU Gangfu, WU Aicheng, ZOU Zhiwen, et al. Depositional Characteristics and Models of Braided River Delta in Badaowan Formation of Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017, 38(6): 678-685.
贾凡建, 姚卫江, 梁则亮, 等. 准噶尔盆地西北缘克百断裂下盘二叠系储层成岩作用特征及其孔隙演化[J]. 天然气地球科学, 2010, 21(3): 458-463 JIA Fanjian, YAO Weijiang, LIANG Zeliang, et al. Diagenic Feature and Evolution of Reservoir Pore of Permian Reservoir under the Kebai Fault in the Northwestern Margin, Junggar Basin[J]. Natural Gas Geoscience, 2010, 21(3): 458-463.
匡立春, 吕焕通, 齐雪峰, 等. 准噶尔盆地岩性油气藏勘探成果和方向[J]. 石油勘探与开发, 2005, 31(6): 32-37+65 doi: 10.3321/j.issn:1000-0747.2005.06.008 KUANG Lichun, LV Huantong, QI Xuefeng, et al. Exploration and targets for lithologic reservoirs in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2005, 31(6): 32-37+65. doi: 10.3321/j.issn:1000-0747.2005.06.008
匡立春, 唐勇, 雷德文, 等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践[J]. 中国石油勘探, 2014, 19(6): 14-23 doi: 10.3969/j.issn.1672-7703.2014.06.002 KUANG Lichun, TANG Yong, LEI Dewen, et al. Exploration of Fan-Controlled Large-Area Lithologic Oil Reservoirs of Triassic Baikouquan Formation in Slope Zone of Mahu Depression in Junggar Basin[J]. China Petroleum Exploration, 2014, 19(6): 14-23. doi: 10.3969/j.issn.1672-7703.2014.06.002
李财, 安绍鹏. 拟声波阻抗反演技术方法及应用[J]. 石化技术, 2018, 25(4): 66 doi: 10.3969/j.issn.1006-0235.2018.04.049 LI Cai, AN Shaopeng. Method and application of quasi-acoustic impedance inversion technique[J]. Petrochemical Technology, 2018, 25(4): 66. doi: 10.3969/j.issn.1006-0235.2018.04.049
雷振宇, 卞德智, 杜社宽, 等. 准噶尔盆地西北缘扇体形成特征及油气分布规律[J]. 石油学报, 2005, 26(1): 8-12 doi: 10.7623/syxb200501002 LEI Zhenyu, BIAN Dezhi, DU Shekuan, et al. Characteristics of fan forming and oil-gas distribution in west-north margin of Junggar Basin[J]. Acta Petrolei Sinica, 2005, 26(1): 8-12. doi: 10.7623/syxb200501002
李峰峰, 李军, 高志前, 等. 浅水辫状河三角洲前缘沉积特征及储层砂体预测——以黄骅坳陷埕北低断阶沙二段为例[J]. 东北石油大学学报, 2016, 40(6): 74-81+105+8-9 LI Fengfeng, LI Jun, GAO Zhiqian, et al. Sedimentary characteristics and reservoir prediction of shallow water braided river delta front: An example from Sha2 member of Chengbei low step fault block, Huanghua depression[J]. Journal of Northeast Petroleum University, 2016, 40(6): 74-81.
李亚龙, 于兴河, 单新, 等. 准噶尔盆地南缘四工河剖面中二叠统乌拉泊组辫状河三角洲沉积模式及沉积序列[J]. 天然气地球科学, 2017, 28(11): 1678-1688 LI Yalong, YU Xinghe, SHAN Xin, et al. The characteristics and model of the braided-river delta of the Wulabo Formation of the Sigonghe section in the southern Junggar Basin[J]. Natural Gas Geoscience, 2017, 28(11): 1678-1688.
连奕驰. 准噶尔盆地西北缘克百地区地质结构与构造形成演化[D]. 北京: 中国地质大学(北京), 2016 LIAN Yichi. Geological structure and tectonic evolution of Ke-Bai area in the northwestern margin of Junggar Basin[D]. Beijing: China University of Geosciences (Beijing), 2016.
李宏涛, 马立元, 史云清, 等. 基于井-震结合的水下分流河道砂岩储层展布分析与评价——以什邡气藏JP35砂组为例[J]. 岩性油气藏, 2020, 32(2): 78-89 LI Hongtao, MA Liyuan, SHI Yunqing, et al. Distribution and evaluation of underwater distributary channel sandstone reservoir based on well-seismic combination: a case study of JP35 sand group in Shifang gas reservoir[J]. Lithologic Reservoirs, 2020, 32(2): 78-89.
刘文锋, 王林生, 汤传意, 等. 准噶尔盆地玛湖西北地区M井区三叠系克上组构造特征研究[J]. 科技创新导报, 2020, 17(7): 120-121 LIU Wenfeng, WANG Linsheng, TANG Chuanyi, et al. Study on structural characteristics of Triassic Upper Karamay Formation in M well area of northwest Mahu, Junggar Basin[J]. Science and Technology Innovation Herald, 2020, 17(7): 120-121.
卢伟. 拟声波重构技术在巴彦呼舒凹陷储层预测中的应用[J]. 断块油气田, 2016, 23(3): 310-313 LU Wei. Application of pseudo-acoustic curve reconstruction to reservoir prediction in Bayanhushu Sag[J]. Fault-Block Oil & Gas Field, 2016, 23(3): 310-313.
彭文利, 崔殿, 吴孔友, 等. 准噶尔盆地西北缘南白碱滩断裂成岩封闭作用研究[J]. 岩性油气藏, 2011, 23(5): 43-48 doi: 10.3969/j.issn.1673-8926.2011.05.009 PENG Wenli, CUI Dian, WU Kongyou, et al. Research on diagenetic sealing of Nanbaijiantan fault in northwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(5): 43-48. doi: 10.3969/j.issn.1673-8926.2011.05.009
秦润森, 岳红林, 周凤军, 等. 河控浅水三角洲前缘席状砂沉积特征及沉积模式探讨——以黄河口凹陷渤中34地区明下段为例[J]. 沉积学报, 2020, 38(2): 429-439 QIN Runsen, YUE Honglin, ZHOU Fengjun, et al. Characteristics and Sedimentary Models of Sheet Sand in Shallow Lacustrine Fluvial-dominated Delta Front: A case study from lower member of Minghuazhen Formation in BZ34 area, Huanghekou Sag[J]. Acta Sedimentologica Sinica, 2020, 38(2): 429-439.
丘东洲. 准噶尔盆地西北缘三叠-侏罗系隐蔽油气圈闭勘探[J]. 新疆石油地质, 1994, 15(1): 1-9 QIU Dongzhou. Exploration of the concealed oil-gas trap of Triassic-Jurassic in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 1994, 15(1): 1-9.
孙宝宗, 温东山. 准噶尔盆地石南油田三工河组储集层沉积特征与油气分布[J]. 新疆石油地质, 2001, 22(2): 126-128+86-87 doi: 10.3969/j.issn.1001-3873.2001.02.012 SUN Baozong, WEN Dongshan. Sedimentary Characteristics and Oil-Gas Distribution of Sangonghe Formation Reservoir of Lower Jurassic in Shinan Oilfield, Junggar Basin[J]. Xinjiang Petroleum Geology, 2001(2): 126-128. doi: 10.3969/j.issn.1001-3873.2001.02.012
孙乐, 王志章, 于兴河, 等. 克拉玛依油田五2东区克上组扇三角洲储层构型分析[J]. 油气地质与采收率, 2017, 24(4): 8-15 doi: 10.3969/j.issn.1009-9603.2017.04.002 SUN Le, WANG Zhizhang, YU Xinghe, et al. Study on reservoir architecture of fan delta in the Upper Karamay Formation of eastern Block Wu2, Karamay Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(4): 8-15. doi: 10.3969/j.issn.1009-9603.2017.04.002
陶国亮, 胡文瑄, 张义杰, 等. 准噶尔盆地西北缘北西向横断裂与油气成藏[J]. 石油学报, 2006, 27(4): 23-28 doi: 10.3321/j.issn:0253-2697.2006.04.005 TAO Guoliang, HU Wenxuan, ZHANG Yijie, et al. NW-trending transverse faults and hydrocarbon accumulation in the northwestern margin of Junggar Basin[J]. Acta Petrolei Sinica, 2006, 27(4): 23-28. doi: 10.3321/j.issn:0253-2697.2006.04.005
屠志慧, 成世琦, 慈建发. 有利砂体识别与解释[J]. 西南石油学院学报, 2005, 7(1): 24-27+94 TU Zhihui, CHENG Shiqi, CI Jianfa. Identification and interpretation of beneficial sand[J]. Journal of Southwest Petroleum University, 2005, 7(1): 24-27+94.
涂智杰. 乌夏南斜坡克上组沉积微相及演化特征研究[J]. 特种油气藏, 2020, 27(5): 45-52 doi: 10.3969/j.issn.1006-6535.2020.05.007 TU Zhijie. Sedimentary Microfacies and Evolution Characteristics of Keshang Formation in Wuxia South Slope[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 45-52. doi: 10.3969/j.issn.1006-6535.2020.05.007
吴胜和, 范峥, 许长福, 等. 新疆克拉玛依油田三叠系克下组冲积扇内部构型[J]. 古地理学报, 2012, 14(3): 331-340 WU Shenghe, FAN Zheng, XU Changfu, et al. Internal architecture of alluvial fan in the Triassic Lower Karamay Formation in Karamay Oilfield, Xinjiang[J]. Journal of Palaeogeography, 2012, 14(3): 331-340.
吴孔友, 查明, 柳广弟. 准噶尔盆地二叠系不整合面及其油气运聚特征[J]. 石油勘探与开发, 2002, 28(2): 53-57 WU Kongyou, ZHA Ming, LIU Guangdi. The unconformity surface in the Permian of Junggar basin and the characters of oil-gas migration and accumulation[J]. Petroleum Exploration and Development, 2002, 28(2): 53-57.
王小军, 宋永, 郑孟林, 等. 准噶尔盆地复合含油气系统与复式聚集成藏[J]. 中国石油勘探, 2021, 26(4): 29-43 WANG Xiaojun, SONG Yong, ZHENG Menglin, et al. Composite petroleum system and multi-stage hydrocarbon accumulation in Junggar Basin[J]. China Petroleum Exploration, 2021, 26(4): 29-43.
王战永. 克拉玛依油田八区克上组砂体展布规律研究[D]. 成都: 成都理工大学, 2011 WANG Zhanyong. Study on sand body distribution of Upper Karamay Formation in the 8th district of Karamay Oilfield[D]. Chengdu: Chengdu University of Technology, 2011.
鲜本忠, 徐怀宝, 金振奎, 等. 准噶尔盆地西北缘三叠系层序地层与隐蔽油气藏勘探[J]. 高校地质学报, 2008, 14(2): 139-146 doi: 10.3969/j.issn.1006-7493.2008.02.002 XIAN Benzhong, XU Huaibao, JIN Zhenkui, et al. Sequence Stratigraphy and Subtle Reservoir Exploration of Triassic System in Northwestern Margin of Junggar Basin[J]. Geological Journal of China Universities, 2008, 14(2): 139-146. doi: 10.3969/j.issn.1006-7493.2008.02.002
徐子煜, 王安, 韩长城, 等. 玛湖地区三叠系克拉玛依组优质砂砾岩储层形成机制[J]. 岩性油气藏, 2020, 32(3): 82-92 doi: 10.12108/yxyqc.20200308 XU Ziyu, WANG An, HAN Changcheng, et al. Formation mechanism of high-quality sandy-conglomerate reservoir of Triassic Karamay Formation in Mahu area [J]. Lithologic Reservoirs, 2020, 32(3): 82-92. doi: 10.12108/yxyqc.20200308
尹正武, 陈超, 彭嫦姿. 拟声波反演技术在优质泥页岩储层预测中的应用——以焦石坝页岩气田为例[J]. 天然气工业, 2014, 34(12): 33-37 YIN Zhengwu, CHEN Chao, PENG Changzi. Application of pseudo-acoustic impedance inversion to quality shale reservoir prediction: A case study of the Jiaoshiba shale gas field, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 33-37.
岳欣欣, 杨道庆, 林社卿, 等. 地震沉积学在辫状河三角洲水下分流河道演化分析中的应用——以春光探区新近系沙湾组一段为例[J]. 石油地质与工程, 2020, 34(6): 1-7 YUE Xinxin, YANG Daoqing, LIN Sheqing, et al. Application of seismic sedimentology on evolution analysis of underwater distributary channels in braided river delta — by taking the first member of Neogene Shawan formation in Chunguang oilfield of Junggar basin as an example[J]. Petroleum Geology and Engineering, 2020, 34(6): 1-7.
叶颖. 克拉玛依油田八区三叠系克上组沉积微相研究[D]. 荆州: 长江大学, 2012 YE Ying. Study on sedimentary microfacies of Upper Karamay Formation in the 8th district of Karamay Oilfield[D]. Jingzhou: Changjiang University, 2012.
周洪瑞, 王训练, 刘智荣, 等. 准噶尔盆地南缘上三叠统黄山街组辫状河三角洲沉积[J]. 古地理学报, 2006, 7(2): 187-198 doi: 10.7605/gdlxb.2006.02.003 ZHOU Hongrui, WANG Xunlian, LIU Zhirong, et al. Braided river delta sediments of the Huangshanjie Formation of Upper Triassic in southern Junggar Basin[J]. Journal of Palaeogeography, 2006, 7(2): 187-198. doi: 10.7605/gdlxb.2006.02.003
张妮. 电阻率曲线在地震反演中的应用研究[J]. 当代化工研究, 2018(3): 70-71. ZHANG Ni. Application Research of Resistivity Curve in Seismic Inversion[J]. Contemporary Chemical Research, 2018(3): 70-71.
张年富, 齐雪峰, 王英民, 等. 准噶尔盆地侏罗系Ⅲ层序底界上下砂体预测与有利区评价[J]. 石油与天然气地质, 2002, 23(2): 145-149 doi: 10.11743/ogg20020209 ZHANG Nianfu, QI Xuefeng, WANG Yingmin, et al. Prediction of upper and lower sandbodies in the bottom boundary of III sequence of Jurassic in Junggar basin and evaluation of favourable areas[J]. Oil & Gas Geology, 2002, 23(2): 145-149. doi: 10.11743/ogg20020209
张传林, 赵省民, 文志刚. 准噶尔盆地南缘辫状河三角洲沉积特征及储集性[J]. 新疆石油地质, 2003, 24(3): 202-204+176 ZHANG Chuanlin, ZHAO Shengmin, WEN Zhigang. Sedimentary characteristics and reservoir quality of braided deltas in southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2003, 24(3): 202-204+176.
张顺存, 杨兆臣, 刘振宇, 等. 成岩作用对克百断裂下盘二叠系砂砾岩储层物性的控制作用研究[J]. 天然气地球科学, 2010, 21(5): 755-761 ZHANG Shuncun, YANG Zhaochen, LIU Zhenyu, et al. Diagenesis Constrain to Physical Property of Permian Conglomerate Reservoir in Underlying Block of Kebai Fault[J]. Natural Gas Geoscience, 2010, 21(5): 755-761.
朱明, 袁波, 梁则亮, 等. 准噶尔盆地周缘断裂属性与演化[J]. 石油学报, 2021, 42(9): 1163-1173 doi: 10.7623/syxb202109004 ZHU Ming, YUAN Bo, LIANG Zeliang, et al. Fault properties and evolution in the periphery of Junggar Basin[J]. Acta Petrolei Sinica, 2021, 42(9): 1163-1173. doi: 10.7623/syxb202109004
曾富英, 金惠, 杨威, 等. 川中—川南地区须家河组有利储集砂体地震识别及其分布预测[J]. 油气地质与采收率, 2011, 18(1): 30-33+113 ZENG Fuying, JIN Hui, YANG Wei, et al. Seismic identification and distribution of favorable reservoir sandbodies, Xujiahe formation, central Sichuan-south Sichuan region[J]. Oil & Gas Geology and Recovery Efficiency, 2011, 18(1): 30-33+113.
朱筱敏, 张义娜, 杨俊生, 等. 准噶尔盆地侏罗系辫状河三角洲沉积特征[J]. 石油与天然气地质, 2008, 29(2): 244-251 doi: 10.11743/ogg20080214 ZHU Xiaomin, ZHANG Yina, YANG Junsheng, et al. Sedimentary characteristics of the shallow Jurassic braided river delta, the Junggar Basin[J]. Oil & Gas Geology, 2008, 29(2): 244-251. doi: 10.11743/ogg20080214
朱筱敏, 邓秀芹, 刘自亮, 等. 大型坳陷湖盆浅水辫状河三角洲沉积特征及模式: 以鄂尔多斯盆地陇东地区延长组为例[J]. 地学前缘, 2013, 20(2): 19-28 ZHU Xiaomin, DENG Xiuqin, LIU Ziliang, et al. Sedimentary characteristics and model of shallow braided delta in large-scale lacustrine: An example from Triassic Yanchang Formation in Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 19-28.
赵小庆, 鲍志东, 刘宗飞, 等. 河控三角洲水下分流河道砂体储集层构型精细分析——以扶余油田探51区块为例[J]. 石油勘探与开发, 2013, 40(2): 181-187 doi: 10.11698/PED.2013.02.06 ZHAO Xiaoqing, BAO Zhidong, LIU Zongfei, et al. An in-depth analysis of reservoir architecture of underwater distributary channel sand bodies in a river-dominated delta: A case study of T51 Block, Fuyu Oilfield[J]. Petroleum Exploration and Development, 2013, 40(2): 181-187. doi: 10.11698/PED.2013.02.06
郑占, 吴胜和, 许长福, 等. 克拉玛依油田六区克下组冲积扇岩石相及储层质量差异[J]. 石油与天然气地质, 2010, 31(4): 463-471 doi: 10.11743/ogg20100410 ZHENG Zhan, WU Shenghe, XU Changfu, et al. Lithofacies and reservoirs of alluvial fan in the Lower Keramay Formation in the block-6 of Karamay oilfield, the Junggar Basin[J]. Oil & Gas Geology, 2010, 31(4): 463-471. doi: 10.11743/ogg20100410
张仲培, 张宇, 张明利, 等. 准噶尔盆地中部凹陷区二叠系—三叠系油气成藏主控因素与勘探方向[J]. 石油实验地质, 2022, 44(4): 559-568 ZHANG Zhongpei, ZHANG Yu, ZHANG Mingli, et al. Main controlling factors and exploration direction of Permian to Triassic reservoir in the central sag of Junggar Basin[J]. Experimental Petroleum Geology, 2022, 44(4): 559-568.
GAO Y, HUANG H, TAO H, et al. Paleoenvironmental setting, mechanism and consequence of massive organic carbon burial in the Permian Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2020, 194: 104222. doi: 10.1016/j.jseaes.2019.104222
XI K, CAO Y, HAILE B G, et al. Diagenetic variations with respect to sediment composition and paleo-fluids evolution in conglomerate reservoirs: A case study of the Triassic Baikouquan Formation in Mahu Sag, Junggar Basin, Northwestern China[J]. Journal of Petroleum Science and Engineering, 2021, 197: 107943. doi: 10.1016/j.petrol.2020.107943
-
期刊类型引用(1)
1. 师学耀,高超利,孟旺才,赵逸,陈立军,王彩霞,冷丹凤,马洪志,马裕武,孙宁亮. 鄂尔多斯盆地东缘成家庄地区二叠系山西组三角洲前缘露头构型分析. 西北地质. 2025(01): 135-149 . 本站查看
其他类型引用(0)