Evaluation of Copper Mineral Resource Potential Using Concentration–Area Fractal Model and Fuzzy Evidence Weighting: A Case Study of the Jiurui Region in Jiangxi
-
摘要:
中国江西省的九瑞地区是长江中下游成矿带中最重要的铜矿产地之一,其中花岗闪长斑岩与铜成矿关系密切。基于水系沉积物与矿化相关的信息,采用因子分析(FA)、浓度–面积分形法(C–A)和模糊证据权方法(FWofE)相结合建立成矿潜力预测模型。使用因子分析处理包含32个元素的255份水系沉积物样本数据,找到能够指示铜矿化的组合元素(即主因子)。采用多重分形反距离加权插值法(MIDW)创建主因子得分栅格图并用C–A分形模型提取与铜矿化相关的地化异常。将得到和铜矿化相关的地球化学异常图与地质、遥感解译数据相结合,应用模糊证据权方法建立预测模型。结果表明:已知铜矿床位于圈定预测概率高值区,且受花岗闪长斑岩和断裂的分布共同控制;除已知铜矿床区域外,圈定的3个一级远景区域内也具有较高的概率,值得进一步铜勘查找矿工作的进行。
Abstract:The Jiurui region in Jiangxi Province, China, is one of the most significant copper mining areas in the middle and lower reaches of the Yangtze River mineralization belt, with a close relationship between granodiorite porphyry and copper mineralization. In this study, a predictive model for mineralization potential was established by combining factor analysis (FA), concentration-area (C-A) fractal method, and fuzzy weight of evidence (FWofE) based on information related to stream sediment and mineralization. ϕfactor analysis was applied to a dataset of 255 stream sediment samples containing 32 elements to identify combinations of elements (principal factors) indicative of copper mineralization. κ the principal factor scores were interpolated using the multiple inverse distance weighted (MIDW) method to create a raster map, and the C-A fractal model was employed to extract geochemical anomalies associated with copper mineralization. λ the geochemical anomaly map related to copper mineralization was integrated with geological and remote sensing interpretation data, and a predictive model was established using the fuzzy weight of evidence method. The results indicated that: known copper deposits are located within high-probability zones defined by the model and are influenced by the distribution of granodiorite porphyry and faults; in addition to the known copper deposit areas, three primary prospective areas identified within the defined regions also exhibit a high probability, meriting further exploration efforts for copper prospecting.
-
以苏里格气田为代表的鄂尔多斯盆地致密砂岩气的开发目前正处于快速发展阶段。目前,中国已有多位学者对研究区致密砂岩储层进行了深入的研究(白慧等,2015,2020;董会等,2016;田清华等,2022)。苏里格气田位于鄂尔多斯盆地伊陕斜坡的西北部,苏59井区位于苏里格气田的西部。而河道砂体是常规油气勘探开发的主要研究对象。对于这类砂岩储层的评价通常以单一岩性为主,岩相组合分析较少。岩相组合指的是沉积序列的垂向构成,包括岩石的岩性、成分、结构、构造、亚相(微相)等,例如,可以按照粒度特征分为向上变粗、向上变细和复合3种类型 (邱隆伟等,2012;胡一然,2015;张荣,2016;孟德伟等,2016;张洪洁,2020)。岩相组合分析能够反映一段沉积期内的沉积水动力条件、沉积原始物质组成,甚至后期成岩改造的程度(雷开强,2003;陈俊亮等,2004;陈克勇,2006;白涛,2008;张延庆,2008;张广权等,2011;李晓慧,2020)。不同的岩相组合具有特殊的测井曲线形态,分布在特定的沉积微相中,具有“易识别、可预测”的典型特征。然而,前人已经开展过单一岩相类型及其储层物性特征等方面研究(覃伟,2011;叶爽清,2015;印森林等,2016;张荣,2016;魏修平等,2019;林建力等,2019;Zhang et al.,2020),但岩相组合对储层物性的影响尚不明确。
鄂尔多斯盆地苏里格气田上古生界石盒子组和山西组具有良好的开发前景。苏里格气田石盒子组和山西组沉积在海陆过渡沉积环境,广泛发育三角洲分流河道和水下分流河道砂体,以中–粗粒的岩屑砂岩以及岩屑石英砂岩为主。笔者拟通过岩心观察分析、薄片鉴定、图像分析对苏里格气田石盒子组和山西组开展岩石学特征研究,划分岩相类型和岩相组合,并从岩性、粒度、压实强度、溶蚀程度等特征进行分析,明确岩相组合对砂岩储层物性的控制作用。
1. 地质背景
苏里格气田是中国陆上发现的最大的天然气田,位于长庆靖边气田西北侧的苏里格庙地区(图1a)。区域构造属于鄂尔多斯盆地陕北斜坡北部中带(图1),行政区属内蒙古自治区鄂尔多斯市的乌审旗和鄂托克旗所辖,勘探范围西起内蒙古鄂托克前旗、北抵鄂托克后旗的敖包加汗,勘探面积约
20000 km(汪正江等,2002;王光强,2010)。苏里格气田上古生界自下而上发育石炭系本溪组、二叠系山西组、下石盒子组、上石盒子组和石千峰组,总厚度700 m左右。中二叠世下石盒子组初期伴随区域构造活动继续加剧,北部物源区持续抬升,丰富的物源碎屑导致河流沉积体系快速向南推移,致使冲积平原向南增大,湖泊相区缩小。该期岩相古地理面貌特征与山西期有一定的继承性,也发生了较大的变化,以多河道的辫状河与曲流河交替发育为主要特征,多心滩、边滩沉积,河道相互叠置,砂体厚度较山西组有较大增加。在山西组,早期的时候,发生强烈的构造活动,北部物源区迅速上升(汪正江等,2002;陈昭佑等,2010;谭晨曦,2010),使研究区在该时期形成大面积的砂体发育区。受古气候影响,山西组沉积期沼泽普遍发育,发育多套煤层。早二叠世山西期沉积在海陆过渡的三角洲环境,山西组下部发育三角洲前缘相,上部发育三角洲平原相(袁芳政,2008;陈洪德,2011;张广权,2011)。石盒子组和山西组三角洲平原相发育分流河道、分流间湾、天然堤、决口扇、泛滥洼地和泥炭沼泽微相;三角洲前缘发育水下分流河道、水下分流间湾和河口坝微相(王少鹏,2006;郑婷,2015)。依据沉积旋回,研究区石盒子组由上而下分为盒8-3至盒8-4两个小层,盒8段上段以暗紫红色、紫红色泥岩、粉砂岩、泥岩为主,夹薄~中厚层状棕红色、浅棕红色细砂岩、中砂岩;中段以暗紫色、暗紫红色、深灰色、灰绿色泥岩为主夹浅灰色细砂岩;下段为中厚~厚层状浅灰色、灰白色细砂岩、中砂岩、含砾粗砂岩为主、薄层深灰色泥岩、粉砂质泥岩;底部为厚层状灰白色小砾岩;而山西组由下而上分为山1和山2段,并可进一步细分为S1-1至S2-2五个小层(图1)。山1段岩性为砾质砂岩、含砾粗砂岩、粗砂岩、中砂岩、细砂岩、泥岩和煤层,且煤层在山1段最为发育;山2段岩性与山1段基本一致,但煤层厚度较薄(罗东明等,2008;万旸璐,2016)。
2. 岩相类型
通过苏里格气田西部的SU59-4-13、SU59-13-51B的岩心观察和薄片分析,石盒子组盒8和山西组12主要发育石英砂岩和岩屑石英砂岩,含少量岩屑砂岩。通过镜下对100余个薄片鉴定结果进行统计,储集层碎屑主要成分为石英,碎屑颗粒中石英含量为69%~88%,石英颗粒平均含量为80.3%;储集层碎屑次要为变质岩岩屑,变质砂岩含量较少,长石含量极低,胶结物以硅质胶结和铁方解石胶结为主,杂基以云母和高岭石为主,少见绿泥石(图2、图3)。
图 3 苏59井区山西组岩石中主要岩屑类型a. 变质岩岩屑 变质石英岩SU59-4-13井2660.33 m S2-1;b. 沉积岩岩屑 粉砂岩 SU59-4-13井2600.76 m S1-2;c. 沉积岩岩屑 鲕粒灰岩SU59-4-13井2660.33 m S2-1;d. 沉积岩岩屑 泥板岩 SU59-4-13井2597.27 m S1-2; e. 变质岩岩屑 SU59-13-51B井2621.82 m S1-1;f .变质岩岩屑SU59-13-51B井2551.12 m S2-2Figure 3. Main rock chip types in the rocks of Shanxi Formation in Su59 well area苏里格气田西区储集层物性总体表现为低孔隙度、低渗透率的特征。根据岩心物性资料统计,孔隙 度范围 4%~12%,平均为 7.24%;渗透率范围0.01×10−3~10×10−3 μm2 ,平均为 0.52×10−3 μm2 ;孔隙度与渗透 率之间具有明显的正相关关系,表明渗透率的变化主 要受控于孔隙度的发育程度(张春英等,1995)。其中渗透率大于0.5×10−3 μm2的砂岩可视为良好的储层,渗透率小于0.5×10−3 μm2的砂岩物性较差(赵靖舟,2012;王少飞,2013)。
石盒子组和山西组三角洲平原分流河道以及辫状河心滩微相砂岩的粒度普遍较粗,根据取心段岩心描述与统计的结果,中粒以上的砂岩占总砂岩厚度90%以上,平均厚度在2~5 m之间。根据粒度分析结果,山西组砂岩的粒度中值Φ为−1.08~3.98,平均为0.64,粒度较粗;标准偏差为0.28~1.05,分选好至中等;偏度普遍大于0,具有明显的正偏态。砂岩结构普遍具有颗粒支撑特征,局部含泥中砂岩具有杂基支撑结构。颗粒支撑砂岩的碎屑颗粒之间普遍呈线接触,仅部分样品可见点接触特征,指示了较强的压实作用。
研究区三角洲平原分流河道和心滩微相砂岩的沉积构造特征明显,主要发育粒序层理、纹层层理、槽状交错层理、板状交错层理、和平行层理。根据研究区沉积构造和岩石粒度差异,可将盒8段主要划分为5类岩相(图4、表1)。
表 1 鄂尔多斯气田研究区主要岩相类型Table 1. Main lithological types in the Ordos gas field study area粒度分级 沉积构造 岩相类型 (含砾)粗砂岩 板状交错层理 板状交错层理粗砂岩 中砂岩 块状层理 块状层理中砂岩 平行层理 平行层理中砂岩 小型交错层理 小型交错层理中砂岩 细-中砂岩 平行层理 平行层理细-中砂岩 细砂岩 平行层理 平行层理细砂岩 粉砂岩 小型交错层理 小型交错层理细砂岩 3. 岩相组合
层理类型和粒度是沉积水动力条件的直接反映(刘忠群,2008;李成等,2015),岩相类型能够反映一段时期内的水动力条件,而岩相组合能够反映河道沉积期内的水动力条件的变化特征。本研究根据纵向上岩石粒度变化,将岩相组合分为向上变细的正韵律组合和向上变粗的反韵律组合以及先变细再变粗的复合韵律组合(图5)。复合韵律组合为由多个正/反韵律相互叠置构成,表现为上部与下部粗-中砂岩与煤层互层,中部夹杂含泥中砂岩的复合韵律特征;复合韵律组合指示了河道水动力条件较强但不稳定,组合中部发育的含泥中砂岩具有密度流的特点。正韵律组合具有下粗上细的结构,下部发育中-粗砂岩,中部发育中砂岩、上部发育粉-细砂岩,具有河道沉积充填的典型特征;反韵律组合砂体垂向粒度变化表现为下细上粗的渐变,上部发育粗-中砂岩,下部发育粉-细砂岩,具有河口坝沉积充填的特征。
根据对研究区对两口井取心井的分析,石盒子组砂体垂向上主要以正韵律、反韵律和符合韵律为主而山西组砂体垂向上主要以正韵律和复合韵律为主,粒度向上逐渐变细的正韵律最常见。通过对取心段的统计,3类岩相组合所发育的岩相类型存在较大差异(图6)。岩相组合和岩相组合II的岩相类型中粒度整体较粗,粗砂岩/中-粗砂岩所占比例较高,且以块状层理为主。岩相组合III的岩相类型的粒度偏细。
4. 讨论
4.1 不同岩相和岩相组合储层的孔渗特征
苏59井区山西组为海相–陆相沉积体系。在砂体垂向相主要以正韵律和复合韵律为主,从整体来看表现为粒度向上变细的正韵律。且正韵律往往在砂体下部分布于高孔渗的物性值,向上逐步过渡减小;复合韵律在单砂体内部渗透率变化规律并不显著,垂向表现出高低渗透率交替出现。
通过对取心井76个柱塞样品孔渗数据分析,相比石盒子组山西组含砾粗砂岩、粗砂岩、中-粗砂岩的物性相对较好,孔隙度普遍大于4%,渗透率大于0.5×10−3 μm2。含泥中砂岩和中砂岩物性较差,排除微裂缝的样品,渗透率普遍低于0.5×10−3 μm2。山西组主要岩相类型的孔渗差异明显。据前人研究,苏里格气田低渗透致密砂岩储层可分为 4 种类型:①渗透率大于 1×10−3 µm2的砂岩储层。②渗透率介于 0.5×10−3 µm2~ 1×10−3 µm2的砂岩储层。③ 渗透率在0.1×10−3 µm2~0.5×10−3 µm2之间的砂岩储层。④渗透率小于 0.1×10−3 µm2砂岩储层。其中渗透率大于 0.5×10−3 µm2的砂岩储层可视为良好储层,渗透率小于0.5×10−3µm2的砂岩储层物性较差,在勘探开发过程中通常只将前两种砂岩储层作为开发对象(赵靖舟,2012;王少飞,2013)。
通过对平均孔隙度和平均渗透率的统计,物性最好的岩相为粒序层理含砾中砂岩、块状含砾粗砂岩、板状交错层理粗砂岩和块状粗砂岩,平均孔隙度大于8%,平均渗透率大于1×10−3 μm2(图7、图8)。根据对不同岩相组合中这4类相对高孔渗岩相发育程度的统计,在复合韵律组合I和正韵律组合II中相对高孔渗岩相更加发育,且组合II中最发育(图9)。由此可见,岩相组合之间存在物性差异主要与所发育的岩相类型有关。
4.2 不同岩相组合和杂基含量
研究区山西组砂岩段岩石组合Ⅰ杂基含量较低且黏土以伊利石为主,石英含量高,胶结物含量较少;Ⅱ类岩石组合杂基含量较高,压实程度相对较高,高岭石含量较高,石英含量较低,溶蚀程度较强;Ⅲ类岩石组合,杂基含量高,压实程度高,高岭石含量低,溶蚀程度低(图10)。
4.3 不同岩相组合砂岩的岩石成分差异
由于不同岩相组合形成的沉积水动力条件不同,会导致岩石组成的不同,对储层物性产生明显影响。通过XRD全岩分析表明,研究区砂岩的碎屑颗粒都以石英为主,其次为岩屑,几乎未见长石。岩屑组分包括沉积岩岩屑、变质岩岩屑、火山岩岩屑、云母以及少量燧石,且以沉积岩岩屑为主。通过对研究区体薄片进行统计分析可知,在岩相组合Ⅰ和II中石英含量高于组合III,但岩屑含量低于组合III,而在岩石组合Ⅲ中石英含量相对较低而岩屑含量较高,特别是沉积岩岩屑分布较多(图11)。不同类型的岩屑的抗压实能力差异较大,沉积岩岩屑中碳酸盐岩岩屑抗压实能力最强,其次为粉砂岩岩屑,泥岩岩屑最易于压实。
通过对杂基含量与物性关系的分析,表明研究区山西组颗粒支撑的砂岩中杂基的含量与孔隙度和渗透率均存在明显的正相关性(图12)。通过对不同岩相组合中所发育砂岩的杂基含量的统计对比,发现组合III中的杂基含量明显高于组合I和组合II,是造成岩相组合III物性相对较差的主要原因。
4.4 不同岩相组合的溶蚀程度差异
根据对研究区山西组成岩作用类型的分析,溶蚀作用的结果导致了砂岩中次生孔隙的形成。压实作用和溶蚀作用对储层的发育具有明显影响。压实作用的强度与颗粒粒径、塑性颗粒含量、埋藏深度等因素有关。压实相对较弱的砂岩能够保留较多连通性好的原生孔隙,形成相对高渗的储层。反之,在胶结作用较弱的砂岩中,原生孔较发育指示所经历的压实作用相对较弱。通过统计3类岩相组合的原生孔发育程度,岩相组合I和岩相组合II中的原生孔所占比例明显高于组合III(图13、图14),表明在较高的石英含量和相对较少的沉积岩岩屑的岩石组成背景下岩相组合I和II砂岩所经历的岩石作用程度相对于组合III低。
研究区山西组颗粒支撑结构的砂岩中溶蚀作用普遍发育,但发育程度差异较大,局部甚至可见强烈溶蚀形成的矿物铸模孔。通过对研究区砂岩铸体薄片和扫描电镜观察,山西组砂岩溶孔大部分为岩屑溶蚀后形成,部分为长石溶蚀后形成,并在溶孔中残留较多蠕虫状自生高岭石(图15)。溶蚀作用的程度与压实程度密切相关,在压实相对较弱的砂岩中后期有机酸易于流动循环,促使溶蚀作用的进行。不同岩相组合的次生溶蚀孔隙的发育程度存在明显差异。岩相组合I和组合II溶蚀孔较为发育,并且在岩相组合II砂岩中发育一定铸模孔(图4~图9)。这种溶蚀差异是由岩相组合的原始物质组成而产生的,由岩相组合I和组合II的较高的石英含量和较低的沉积岩岩屑含量导致在压实过程中仍然能够保留一定数量的原生孔,从而使溶蚀作用较强。
5. 结论
(1)苏里格气田盒8段岩屑石英砂岩和岩屑砂岩为主;山西组主要以石英砂岩和岩屑石英砂岩为主,分选程度中等至好,颗粒间以线接触为主。根据岩石粒度和沉积构造,研究区主要岩相类型可划分为5种。根据岩性的韵律变化特征,可将岩相组合划分为3种类型,分别为复合韵律组合、正韵律组合和反韵律组合,其中反韵律组合砂岩粒度偏细。
(2)研究区不同岩相的物性差异明显,相对高孔渗岩相为粒序层理砾质砂岩、块状含砾粗砂岩、板状交错层理粗砂岩和块状粗砂岩,平均孔隙度大于8%,平均渗透率大于1×10−3 μm2。复合韵律和正韵律岩相组合中相对高孔渗岩相所占比例较高,是两类有利的岩相组合。
(3)原始物质组成导致了不同岩相组合的物性差异。复合韵律和正韵律岩相组合相对于反韵律组合的石英含量较高,沉积岩岩屑含量较低,杂基含量较低,导致在压实过程中保留了一定原生孔,并且形成较多的溶蚀孔隙,使其孔隙度和渗透率相对较高。
-
图 1 长江中下游成矿带简易地质图(据Pan et al.,1999修)
Figure 1. Simplified geological map of the Mid-Lower Yangtze metallogenic belt
图 2 九瑞铜矿区地质图(据Yang et al.,2011修)
Figure 2. Geological map of the Jiurui region ore copper district
表 1 32种元素的检出限表
Table 1 Detection limits of 32 elements
序号 元素 检出限 序号 元素 检出限 1 Ag 0.01 17 Mo 0.5 2 As 2.82 18 Nb 5 3 Au 0.0003 19 Ni 5 4 B 5 20 P 30 5 Ba 10 21 Pb 5.4 6 Be 0.5 22 Sb 0.2 7 Bi 0.16 23 Sn 0.14 8 Cd 0.1 24 Sr 5 9 Co 1 25 Th 5.1 10 Cr 7.2 26 Ti 30 11 Cu 1 27 U 1 12 F 13 28 V 2 13 Hg 0.01 29 W 0.5 14 La 10 30 Y 10 15 Li 5 31 Zn 10 16 Mn 30 32 Zr 10 注:元素含量为10-6。 表 2 R型因子分析的正交旋转因子载荷矩阵表
Table 2 Orthometric rotating factor loading matrix for R-factor analysis
变量 因子载荷 F1 F2 F3 F4 F5 F6 F7 Ag 0.101 −0.031 0.954 −0.065 0.030 0.039 −0.062 As 0.059 0.329 −0.099 0.854 −0.039 −0.027 −0.203 Au −0.012 0.717 −0.041 0.007 −0.026 0.005 −0.069 B −0.303 −0.072 −0.021 −0.072 0.716 0.163 −0.104 Ba 0.101 −0.031 0.954 −0.065 0.030 0.039 −0.062 Be 0.910 −0.023 0.175 0.068 0.015 0.170 −0.016 Bi −0.025 0.941 −0.006 0.062 −0.017 −0.032 0.007 Cd 0.055 0.249 −0.098 0.917 −0.099 −0.014 0.102 Co 0.767 −0.006 0.093 0.435 0.224 −0.021 −0.112 Cr 0.831 0.001 0.007 −0.061 −0.013 0.082 0.036 Cu −0.089 0.786 0.022 0.324 −0.022 0.014 0.288 F 0.835 0.043 −0.057 −0.051 −0.087 0.102 0.123 Hg 0.063 0.221 0.023 0.196 0.100 0.173 −0.443 La 0.235 −0.093 0.068 −0.125 0.153 0.760 0.047 Li 0.890 −0.019 0.124 0.013 0.059 0.177 −0.038 Mn 0.489 0.005 0.065 0.328 0.198 0.016 −0.212 Mo −0.009 0.489 0.015 0.229 0.015 0.044 0.679 Nb 0.254 0.104 0.118 −0.045 0.611 0.123 0.029 Ni 0.875 −0.069 0.049 −0.070 −0.026 0.181 0.052 P 0.464 −0.049 0.417 0.025 −0.226 −0.218 0.100 Pb 0.075 0.918 −0.014 0.050 −0.002 −0.026 −0.157 Sb 0.048 0.926 −0.062 0.169 0.022 −0.059 −0.053 Sn 0.274 0.287 0.064 0.053 −0.094 0.572 0.068 Sr 0.209 0.058 0.736 −0.077 −0.411 −0.093 0.068 Th 0.332 −0.015 −0.241 0.010 0.603 −0.116 0.094 Ti 0.569 0.011 0.586 0.006 0.252 −0.002 −0.110 U 0.170 −0.022 −0.193 −0.058 0.073 0.089 0.289 V 0.931 0.042 0.146 0.049 0.036 0.134 0.032 W −0.077 0.657 0.171 0.144 0.064 −0.022 0.444 Y 0.108 −0.216 −0.181 0.031 0.152 0.739 −0.141 Zn 0.026 0.049 −0.017 0.959 −0.055 −0.023 0.041 Zr −0.570 −0.070 −0.166 −0.098 0.546 0.097 0.007 注:该因子分析采用的提取方法为主成分分析法,旋转方法为Kaiser标准化最大方差法,旋转在七次迭代后已经收敛。 表 3 各证据层隶属度表(MSF)及模糊证据权重计算表
Table 3 Table of membership of each evidence layer (MSF) and calculation of fuzzy weights of evidence
缓冲距离分类 主要赋矿地层 断裂 花岗闪长斑岩 绿泥石化蚀变 地球化学异常分类 C-A分形模型 分类值 缓冲
距离(m)隶属度 证据
权重隶属度 证据
权重隶属度 证据
权重隶属度 证据
权重分类值 C-A分形 隶属度 证据
权重1 100 1 0.60 1 0.37 1 4.06 1 2.05 1 高异常 1 2.06 2 200 1 0.60 1 0.37 0.67 3.46 1 2.05 2 异常 0.67 2.00 3 300 1 0.60 1 0.37 0.33 2.64 0.8 1.99 3 弱异常 0.33 1.83 4 400 1 0.60 1 0.37 0 0.69 0.6 1.91 4 背景 −0.37 −0.37 5 500 0.8 0.58 0.86 0.36 0 0.69 0.4 1.78 5 − − − 6 600 0.6 0.55 0.71 0.36 − − 0.2 1.56 6 − − − 7 700 0.4 0.38 0.57 0.35 − − 0 1.03 7 − − − 8 800 0.2 −0.03 0.43 0.34 − − 0 1.03 8 − − − 9 900 0 −0.03 0.29 0.32 − − − − 9 − − − 10 1000 0 − 0.14 0.30 − − − − 10 − − − 11 1100 − − 0 0.26 − − − − 11 − − − 12 1200 − − 0 0.26 − − − − 12 − − − 13 1300 − − 0 0.26 − − − − 13 − − − 注:“−”为空值。 -
陈风河, 王建兴, 董国明, 等. 模糊证据权法在承德多金属矿产资源预测中的应用[J]. 新疆有色金属, 2015, 38(2): 76-78+82 CHEN Fenghe, WANG Jianxing, DONG Guoming, et al. Application of fuzzy weight of evidence method in prediction of polymetallic mineral resources in Chengde[J]. Xinjiang Nonferrous Metals, 2015, 38(2): 76-78+82.
成秋明, 陈志军, Ali Khaled. 模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用[J]. 地球科学(中国地质大学学报), 2007, 32(2): 175-184 CHENG Qiuming, CHEN Zhijun, Ali Khaled. Application of Fuzzy Weigh of Evidence Method in Mineral Resource Assessment for Gold in Zhenyuan District, Yunnan Province, China[J]. Earth Science (Journal of China University of Geosciences), 2007, 32(2): 175-184.
邓军, 战明国, 周伟金, 等. 基于模糊证据权法的广西典型金矿矿产定量预测[J]. 地质力学学报, 2021, 27(3): 374-390 DENG Jun, ZHAN Mingguo, ZHOU Weijin, et al. Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method[J]. Chinese Journal of Geomechanics, 2021, 27(3): 374-390.
董庆吉, 陈建平, 唐宇. R型因子分析在矿床成矿预测中的应用——以山东黄埠岭金矿为例[J]. 地质与勘探, 2008, 44(4): 64-68 DONG Qingji, CHEN Jianping, TANG Yu. Application of R type Factor Analyses in Mineralization prognosis: by an example of Huangbuling Gold deposit, Shandong province[J]. Geology and Exploration, 2008, 44(4): 64-68.
黄鑫怀, 李红利, 李增华, 等. 基于模糊证据权法的江西相山盆地火山岩型铀矿成矿潜力评价[J]. 世界核地质科学, 2023, 40(2): 226-235 doi: 10.3969/j.issn.1672-0636.2023.02.009 HUANG Xinghuai, LI Hongli, LI Zenghua, et al. Application of fuzzy weights of evidence method to prediction of mineralization in the volcanic-type uranium deposit in Xiangshan basin, Jiangxi[J]. World Nuclear Geology, 2023, 40(2): 226-235. doi: 10.3969/j.issn.1672-0636.2023.02.009
黄秀, 张钊, 陈建平, 等. 混合模糊证据权模型在河北承德煤炭资源预测中的应用[J]. 地质通报, 2010, 29(7): 1075-1081 HUANG Xiu, ZHANG Zhao, CHEN Jianping, et al. Application of hybrid fuzzy weights of evidence model in mineral resource assessment for coal in Chengde area, Hebei, China[J]. Geological Bulletin of China, 2010, 29(7): 1075-1081.
霍雨佳. 基于模糊证据权的川滇相邻地区铜矿预测[D]. 吉林: 吉林大学, 2023 HUO Yujia. Prediction of Copper Minerals in Sichuan-Yunnan Adjacent Region based on Fuzzy Evidence Weight [D]. Jilin: Jilin University, 2023.
蒋少涌, 徐耀明, 朱志勇, 等. 九瑞矿集区燕山期构造-岩浆作用及其与铜金多金属成矿关系研究[J]. 岩石学报, 2013, 29(12): 4051-4068 JIANG Shaoyong, XU Yaoming, ZHU Zhiyong, et al. Study on Mesozoic tectonics and granitic magmatism and their relationship with Cu-Au mineralization in the Jiurui ore district, Jiangxi province[J]. Acta Petrologica Sinica, 2013, 29(12): 4051-4068.
孔凡斌. 江西九瑞铜多金属矿深部成矿规律与找矿预测研究[D]. 南京: 南京大学, 2014 KONG Fanbin. Deep copper polymetallic metallogenic regularities and prospecting studies of favorable locations in Jiurui region of Jiangxi province[D]. Nanjing: Nanjing University, 2014.
李文明, 刘拓, 孙吉明, 等. 新疆北山白山地区地球化学特征及找矿远景预测[J]. 西北地质, 2021, 54(4): 42-48 LI Wenming, LIU Tuo, SUN Jiming, et al. Geochemical Characteristics and Prospecting Prognosis in Baishan Area of Xinjiang Beishan[J]. Northwestern Geology, 2021, 54(4): 42-48.
欧阳渊, 刘洪, 李光明, 等. 基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩−浅成低温热液型铜多金属矿为例[J].中国地质, 2023, 50(2): 303−330. OUYANG Yuan, LIU Hong, LI Guangming, et al. 2023. Mineral search prediction based on Random Forest algorithm: A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt[J]. Geology in China, 2023, 50(2): 303−330.
所颖萍. 江西九瑞地区成矿时空结构与铜金成矿作用[D]. 南京: 南京大学, 2013 SUO Yingping. The Metallogensis and space-time structure of copper and gold in Jiurui district, Jiangxi province[D]. Nanjing: Nanjing University, 2013.
王佳营, 曾威, 张祺, 等. 模糊证据权方法在纳米比亚白岗岩型铀矿预测中的应用[J]. 地质通报, 2023, 42(8): 1318-1333 WANG Jiaying, ZENG Wei, ZHANG Qi, et al. Application of fuzzy weights of evidence method in metallogenic prediction for alaskite-type uranium deposits in Namibia[J]. Geological Bulletin of China, 2023, 42(8): 1318-1333.
王兆强, 张岩. 长江中下游成矿带鸡笼山矽卡岩型铜金钼矿床花岗闪长斑岩对成岩-成矿的指示: 来自地球化学和锆石U-Pb年龄的证据[J]. 地质通报, 2023, 42(9): 1480−1493. WANG Zhaoqiang, ZHANG Yan. Geochemistry and zircon U-Pb age of granodiorite porphyry: Constraints on diagenetic and metallogenic processes of the Jilongshan Cu-Au-Mo deposit, Middle-Lower Yangtze River Valley Metallogenic Belt, China[J]. Geological Bulletin of China, 2023, 42(9): 1480−1493.
武进. 基于模糊证据权的找矿远景区预测方法研究与应用-以西藏米拉山为例[D]. 成都: 成都理工大学, 2017 WU Jin. Research and application of the forecasting method based on fuzzy evidence right in the search for distant scenic spot-Mila mountain as an example[D]. Chengdu: Chengdu University of Technology, 2017.
徐耀明. 江西九瑞矿集区燕山期岩浆岩成岩成矿作用地球化学及矿床预测研究[D]. 南京: 南京大学, 2014 XU Yaoming. Geochemistry of late Mesozoic magmatic rocks and related mineralizations and mineral prospecting in the Jiurui district of Jiangxi province[D]. Nanjing: Nanjing University, 2014.
薛琮一, 王嘉伟, 杨征, 等. 新疆和田布雅煤矿一带水系沉积物测量地球化学特征及找矿方向[J]. 西北地质, 2020, 53(4): 66-72 XUE Congyi, WANG Jiawei, YANG Zheng, et al. A Review of Geochemical Characteristics and Prospecting Direction of Stream Sediment of Buya Coal Mine in Hetian, Xinjiang[J]. Northwestern Geology, 2020, 53(4): 66-72.
张津瑞, 陈华, 任军平, 等. 矿产资源潜力评价方法对比及其发展趋势探讨[J]. 西北地质, 2023, 56(2): 292-305. ZHANG Jinrui, CHEN Hua, REN Junping, et al. Mineral Resource Assessment Methods Comparison and Its Development Trend Discussion[J]. Northwestern Geology, 2023, 56(2): 292-305.
周光锋. 基于机器学习的个旧地区锡铜多金属矿成矿预测[D]. 北京: 中国地质大学(北京), 2021 ZHOU Guangfeng. Mapping mineral prospectivity for Tin-Copper polymetallic mineralization by maschine learning methods in Gejiu, Yunnan province, China[D]. Beijing: China University of Geosciences (Beijing), 2021.
Agterberg F P. Computer Programs for Mineral Exploration[J]. Science, 1989, 245(4913): 76–81. doi: 10.1126/science.245.4913.76
Agterberg F P, Bonham-Carter G F. Statistical applications in the earth sciences[M]. Canada: Geological Survey of Canada, 1990.
Agterberg F P, Bonharn-Carter G F. Weights of Evidence Modeling And Weighted Logistic Regression For Mineral Potential Mapping[M]. New York: Oxford University Press, 1994.
Ali K, Cheng Q M, Chen Z J. Multifractal power spectrum and singularity analysis for modelling stream sediment geochemical distribution patterns to identify anomalies related to gold mineralization in Yunnan Province, South China[J]. Geochemistry: Exploration, Environment, Analysis, 2007, 7(4): 293-301. doi: 10.1144/1467-7873/06-116
Ayres R U, Ayres L W, Råde I. The Life Cycle of Copper, Its Co-Products and Byproducts[M]. Dordrecht: Springer Netherlands, 2003.
Carranza E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]. Boston: Elsevier, 2009.
Chauhan S, Sharma M, Arora M K, et al. Landslide Susceptibility Zonation through ratings derived from Artificial Neural Network[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(5): 340–350. doi: 10.1016/j.jag.2010.04.006
Chen Y L, Wu W. A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis[J]. Ore Geology Reviews, 2016, 74: 26–38. doi: 10.1016/j.oregeorev.2015.11.011
Cheng Q M. GeoData Analysis System (GeoDAS) for mineral exploration: user’s guide and exercise manual[C] .Canada: Material for the training workshop on GeoDAS held at York University, 2000.
Cheng Q M. A New Model for Quantifying Anisotropic Scale Invariance and for Decomposition of Mixing Patterns[J]. Mathematical Geology, 2004, 36(3): 345–360. doi: 10.1023/B:MATG.0000028441.62108.8a
Cheng Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1–2): 314–324. doi: 10.1016/j.oregeorev.2006.10.002
Cheng Q M. Non-Linear Theory and Power-Law Models for Information Integration and Mineral Resources Quantitative Assessments[J]. Mathematical Geosciences, 2008a, 40(5): 503–532. doi: 10.1007/s11004-008-9172-6
Cheng Q M. Modeling Local Scaling Properties for Multiscale Mapping[J]. Vadose Zone Journal, 2008b, 7(2): 525–532. doi: 10.2136/vzj2007.0034
Cheng Q M. Multifractal interpolation method for spatial data with singularities[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2015, 115(3): 235-240. doi: 10.17159/2411-9717/2015/v115n3a9
Cheng Q M, Agterberg F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 1999, 8(1): 27-35. doi: 10.1023/A:1021677510649
Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2): 109–130. doi: 10.1016/0375-6742(94)90013-2
Cheng Q M, Zhang S Y. Fuzzy weights of evidence method implemented in GeoDAS GIS for information extraction and integration for prediction of point events[C]. Toronto: International Geoscience and Remote Sensing Symposium, 2002, 5: 2933-2935.
Egan J P. Signal detection theory and ROC-analysis[M]. New York: Academic Press, 1975.
Fabrigar L R, Wegener D T, MacCallum R C, et al. Evaluating the use of exploratory factor analysis in psychological research. [J]. Psychological Methods, 1999, 4(3): 272–299. doi: 10.1037/1082-989X.4.3.272
Hassanpour S, Afzal P. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran[J]. Arabian Journal of Geosciences, 2013, 6(3): 957–970. doi: 10.1007/s12517-011-0396-2
HUO Yujia, WANG Yongzhi, WU Qinghua, et al. Analysis method of gold reserve mineral deposit in Yunnan Province based on fuzzy evidence weight[J]. Progress in Geophysics, 2022, 37(6): 2552-2561.
Xiao F, Wang K Q, Hou W S, et al. Prospectivity Mapping for Porphyry Cu–Mo Mineralization in the Eastern Tianshan, Xinjiang, Northwestern China[J]. Natural Resources Research, 2020, 29(1): 89–113. doi: 10.1007/s11053-019-09486-5
Yang S Y, Jang S Y, Li L, et al. Late Mesozoic magmatism of the Jiurui mineralization district in the Middle–Lower Yangtze River Metallogenic Belt, Eastern China: Precise U–Pb ages and geodynamic implications[J]. Gondwana Research, 2011, 20(4): 831-843. doi: 10.1016/j.gr.2011.03.012
Keller C P. Geographic information systems for geoscientists: Modelling with GIS[J]. Computers & Geosciences, 1995, 21(9): 1110-1112.
Li H L, Li Z H, Ouyang Y P, et al. Application of principal component analysis and a spectrum-area fractal model to identify geochemical anomalies associated with vanadium mineralization in northeastern Jiangxi Province, South China[J]. Geochemistry: Exploration, Environment, Analysis, 2022, 22(3): 2021-090.
Mandelbrot B B. The fractal geometry of nature[M]. Deutschland: W. H. Freeman and Company, 1982.
Mudd G. M. , Jowitt S. M. Growing Global Copper Resources, Reserves and Production: Discovery Is Not the Only Control on Supply[J]. Economic Geology, 2018, 113(6): 1235-1267. doi: 10.5382/econgeo.2018.4590
Nykänen V. Radial Basis Functional Link Nets Used as a Prospectivity Mapping Tool for Orogenic Gold Deposits Within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield[J]. Natural Resources Research, 2008, 17(1): 29-48. doi: 10.1007/s11053-008-9062-0
Nykänen V, Lahti I, Niiranen T, et al. Receiver operating characteristics (ROC) as validation tool for prospectivity models — A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland[J]. Ore Geology Reviews, 2015, 71: 853-860. doi: 10.1016/j.oregeorev.2014.09.007
Pan Y M, Dong P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 1999, 15(4): 177-242. doi: 10.1016/S0169-1368(99)00022-0
Parsa M, Maghsoudi A, Yousefi M, et al. Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets[J]. Journal of African Earth Sciences, 2017, 128: 5-15. doi: 10.1016/j.jafrearsci.2016.11.021
Porwal A, Carranza E J M, Hale M. A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping[J]. Natural Resources Research, 2006, 15(1): 1-14 . doi: 10.1007/s11053-006-9012-7
Rossi M, Guzzetti F, Reichenbach P, et al. Optimal landslide susceptibility zonation based on multiple forecasts[J]. Geomorphology, 2010, 114(3): 129-142. doi: 10.1016/j.geomorph.2009.06.020
Swets J A. Signal Detection Theory and ROC Analysis in Psychology and Diagnostics Psychology Press[M]. New York: Psychology Press, 2014.
Zhang D J, Agterberg F, Cheng Q M, et al. A Comparison of Modified Fuzzy Weights of Evidence, Fuzzy Weights of Evidence, and Logistic Regression for Mapping Mineral Prospectivity[J]. Mathematical Geosciences, 2014, 46(7): 869-885. doi: 10.1007/s11004-013-9496-8
Zhang Z J, Zuo R G, Xiong Y H. A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China[J]. Science China Earth Sciences, 2016, 59(3): 556-572. doi: 10.1007/s11430-015-5178-3
Zheng Y Y, Sun X, Gao S B, et al. Analysis of stream sediment data for exploring the Zhunuo porphyry Cu deposit, southern Tibet[J]. Journal of Geochemical Exploration, 2014, 143: 19-30. doi: 10.1016/j.gexplo.2014.02.012
Zou K H, O’Malley A J, Mauri L. Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models[J]. Circulation, 2007, 115(5): 654-657. doi: 10.1161/CIRCULATIONAHA.105.594929
Zuo R G, Carranza E J M, Cheng Q. Fractal/multifractal modelling of geochemical exploration data[J]. Journal of Geochemical Exploration, 2012, 122: 1-3. doi: 10.1016/j.gexplo.2012.09.009
Zuo R G, Xia Q L, Zhang D J. A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas[J]. Applied Geochemistry, 2013, 33: 165-170. doi: 10.1016/j.apgeochem.2013.02.009
-
期刊类型引用(12)
1. 张元,王红岩,李育,杨剑,胡杨,李永恒,李彩霞,任涛. 西秦岭夏河-合作地区断裂构造分形结构特征及成矿预测. 矿床地质. 2024(02): 359-372 . 百度学术
2. 张柯凡,郭娜,李伟,姚艺欣. 基于红外光谱技术的赣南铜岭下铜多金属矿床蚀变及矿化特征研究. 矿床地质. 2024(02): 339-358 . 百度学术
3. 李康宁,汤庆艳,栾晓刚,王玉玺,邓小华,杨宗枫. 西秦岭三叠纪大河坝组砂岩构造背景与物质来源. 西北地质. 2024(03): 113-127+301 . 本站查看
4. 陆茂欣,向连格,王红,马彦云,汪栋刚,李通. 宁夏区域成矿规律概论. 西北地质. 2024(04): 229-239 . 本站查看
5. 姜寒冰,杨合群,赵国斌,王永和,温志亮,谭文娟,李宗会,辜平阳,李健强,郭培虹,董增产,任华宁. 西秦岭成矿带古生界控矿特征及有关成矿作用. 西北地质. 2024(04): 218-228 . 本站查看
6. 王立峰,薛志强,王振强,王鹏飞,张苏坤,孙保花,王社全,杨智超,张鹏. 小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义. 西北地质. 2024(05): 74-87 . 本站查看
7. 王洁明,董苏庆,雷群英. 陕西金矿成矿规律与找矿靶区圈定. 西北地质. 2023(05): 308-321 . 本站查看
8. 王瑞廷,秦西社,李青锋,成欢,任朝辉,冀月飞. 西秦岭凤太铅锌矿集区成矿特征、找矿预测及勘查方法技术组合. 西北地质. 2023(05): 85-97 . 本站查看
9. 葛战林,顾雪祥,章永梅,郑艳荣,刘明,郝迪,王元伟. 南秦岭柞水-山阳矿集区金盆梁金矿床载金硫化物矿物学特征及成矿指示. 西北地质. 2023(05): 278-293 . 本站查看
10. 俞胜,贾轩,姚皓骞,徐磊,赵斌斌,贾新勇. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究. 西北地质. 2023(05): 245-261 . 本站查看
11. 刘永胜,罗先熔,曹佰迪,刘秀娟,刘攀峰,梁鸣,郭家欣,杨青松,石佳磊. 甘肃省礼县三峪地区土壤地球化学特征及找矿预测. 西北地质. 2023(06): 340-351 . 本站查看
12. 杨永. 甘肃天水喂儿沟金矿地质特征及找矿标志. 世界有色金属. 2023(23): 52-54 . 百度学术
其他类型引用(0)