ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

白云凹陷深层压实作用和超压成因讨论及其对深层流体运聚的影响

祁妙, 王震亮, 王晨, 闫昕宇, 何星辰

祁妙,王震亮,王晨,等. 白云凹陷深层压实作用和超压成因讨论及其对深层流体运聚的影响[J]. 西北地质,2024,57(1):151−164. doi: 10.12401/j.nwg.2023200
引用本文: 祁妙,王震亮,王晨,等. 白云凹陷深层压实作用和超压成因讨论及其对深层流体运聚的影响[J]. 西北地质,2024,57(1):151−164. doi: 10.12401/j.nwg.2023200
QI Miao,WANG Zhenliang,WANG Chen,et al. Study on Deep Compaction and Formation of Overpressure in Baiyun Depression[J]. Northwestern Geology,2024,57(1):151−164. doi: 10.12401/j.nwg.2023200
Citation: QI Miao,WANG Zhenliang,WANG Chen,et al. Study on Deep Compaction and Formation of Overpressure in Baiyun Depression[J]. Northwestern Geology,2024,57(1):151−164. doi: 10.12401/j.nwg.2023200

白云凹陷深层压实作用和超压成因讨论及其对深层流体运聚的影响

基金项目: 国家自然科学基金青年基金项目“白云凹陷新生代深源流体活动对能量场的影响及其油气运聚效应”(42102169)资助。
详细信息
    作者简介:

    祁妙(2000−),女,硕士研究生,主要从事油气运移与成藏动力与输导格架研究。E−mail:1252699311@qq.com

    通讯作者:

    王震亮(1966−),男,博士,教授,主要从事国内外油气运移和成藏、CO2地质封存研究。E−mail:wangzl@nwu.edu.cn

  • 中图分类号: P618.130.1

Study on Deep Compaction and Formation of Overpressure in Baiyun Depression

  • 摘要:

    珠江口盆地白云凹陷含有丰富的油气资源,勘探潜力巨大。深层目的层发育强烈的超压,文中对白云凹陷深层的超压成因及压实作用进行研究;利用三维地震资料和地球物理测井资料对白云凹陷深层的超压详细了解,利用综合压实曲线方法和盆地模拟技术对钻、测井资料进行处理,分析深层的异常压力成因。以分区块、分层位的原则总结压力分布规律和异常高压产生的原因,并利用流体势的评价手段对白云凹陷深层油气的运聚进行预测,为白云凹陷下一步的勘探部署提供依据。研究认为:白云凹陷发育超压的区块主要有主洼中心、主洼东、主洼西南、北坡(以超压发育规模排序);深层超压发育在珠海组及以下地层,不同层位超压成因的贡献亦不相同。其中,恩平组超压成因主要为压实作用增压和生烃增压、而珠海组异常压力主要来源则是压实作用增压与传递型超压。不同区块的欠压实作用不同。此外,受地热等因素影响,各区块发育的化学压实作用不同。由于主洼发育较强的超压,气势较大,东洼和西洼等小洼陷在晚期也形成了气势高值区;主洼−北坡、主洼−西南部和主洼东由于地势较高而形成了明显的气势低值区。恩平组气势梯度较大的区域逐渐向斜坡带和低隆起上扩张,有利于油气晚期向北坡和主洼东部等地区运移。

    Abstract:

    Baiyun sag in the Pearl River Mouth Basin is rich in oil and gas resources and has great exploration potential. The development of strong overpressure in the deep target layer is studied in this article, focusing on the causes and compaction effects of overpressure in the deep Baiyun depression; Using 3D seismic data and geophysical logging data to gain a detailed understanding of the deep overpressure in Baiyun depression, using comprehensive compaction curve method and basin simulation technology to process drilling and logging data, and analyzing the causes of abnormal pressure in the deep layers. Summarize the pressure distribution pattern and the causes of abnormal high pressure based on the principles of zoning and layering, and use fluid potential evaluation methods to predict the migration and accumulation of deep oil and gas in Baiyun Depression, providing a basis for the next exploration deployment in Baiyun Depression. Research suggests that the areas where overpressure develops in the Baiyun Depression mainly include the center of the main depression, the east of the main depression, the southwest of the main depression, and the north slope (sorted by the scale of overpressure development); Deep overpressure develops in the Zhuhai Formation and below; The contribution of overpressure causes in different layers is also different; Among them, the main causes of overpressure in the Enping Formation are compaction pressurization and hydrocarbon generation pressurization, while the main sources of abnormal pressure in the Zhuhai Formation are compaction pressurization and transfer type overpressure. The undercompaction effect varies among different blocks. In addition, influenced by factors such as geothermal energy, the chemical compaction processes developed in each block are different. Due to the strong development of overpressure in the main depression. Therefore, the momentum is relatively high, and small depressions such as Dongwa and Xiwa also formed high-value areas of momentum in the late stage; The main depression to the north slope, the main depression to the southwest, and the main depression to the east have formed obvious low value areas due to their high terrain. The areas with larger gas gradients in the Enping Formation gradually expand towards the slope zone and low uplift, which is conducive to the migration of oil and gas towards the northern slope and the eastern part of the main depression in the later stage.

  • 图  1   白云凹陷及周边构造区划图

    Figure  1.   Zoning map of Baiyun depression and its surrounding structures

    图  2   白云凹陷地层综合柱状图

    Figure  2.   Comprehensive histogram of Baiyun depression strata

    图  3   白云凹陷中央泥岩底辟带地震剖面

    Figure  3.   Seismic profile of the central mudstone diapir zone in Baiyun depression

    图  4   单井实测地层压力及压力系数图

    a.白云北坡;b.番禺低隆起;c.白云主洼;d.主洼东;e.云荔低隆起

    Figure  4.   Single well measured formation pressure and pressure coefficient diagram

    图  5   T70压力系数分布图

    Figure  5.   T70 pressure coefficient distribution diagram

    图  6   BY5井测井交汇图识别泥岩化学压实作用图

    a. 密度-声波时差交会图;b.密度-电阻率交会图

    Figure  6.   Identification of chemical compaction of mudstones by the crossplot of well BY5 logging

    图  7   PY33井黏土矿物转化指示的泥岩化学压实作用图

    Figure  7.   Depth range of mudstone chemical compaction indicated by clay mineral transformation in well PY33

    图  8   PY33井样品扫描电镜图像

    a.伊利石贴附在颗粒表面;b.绿泥石、伊利石贴附在颗粒表面

    Figure  8.   SEM image of py33 well sample

    图  9   BY13井综合压实曲线图

    Figure  9.   Well-BY13 comprehensive compaction curve

    图  10   LW9井综合压实曲线图

    Figure  10.   LW9 comprehensive compaction curve

    图  11   白云主洼恩平组下段剩余压力演化曲线图

    Figure  11.   Evolution curve of residual pressure in the lower section of the Enping formation in Baiyun main depression

    图  12   泥岩压实作用的分段模型(据Fan et al.,2021

    Figure  12.   Segmented model diagram of mudstone compaction

    图  13   BY5井传递型超压的识别图

    Figure  13.   Identification diagram of transmission type overpressure in well BY5

    图  14   白云凹陷天然气密度和地层压力的关系散点图

    Figure  14.   Scatter plot of the relationship between natural gas density and formation pressure in Baiyun Depression

    图  15   白云凹陷恩平组上段在现今(距今0 Ma)的油气运聚成藏模式图

    Figure  15.   Oil and gas migration and accumulation patterns of the upper segment of the Enping formation in the Baiyun depression at present (0 Ma ago)

  • 郭小文, 何生. 珠江口盆地白云凹陷烃源岩热史及成熟史模拟[J]. 石油实验地质, 2007, 2904): 420425.

    GUO Xiaowen, HE Sheng. Source rock thermal and maturity history modeling in the BaiYun Sag of the Pearl river mouth basin[J]. Petroleum Geology & Experiment, 2007, 2904): 420425.

    郭志峰, 刘震, 吕睿, 等. 南海北部深郭志峰水区白云凹陷钻前地层压力地震预测方法[J]. 石油地球物理勘探, 2012, 47(1): 126−132+188+198.

    GUO Zhifeng, LIU Zhen, LV Rui, et al. Seismic prediction method of pre-drilling formation pressure in Baiyun sag, deep water area, northern South China Sea [J]. Petroleum Geophysical Exploration, 2012, 47 (1): 126-132+188+198.

    郝芳, 邹华耀, 倪建华, 等. 沉积盆地超压系统演化与深层油气成藏条件[J]. 地球科学, 2002, 2705): 610615.

    HAO Fang, ZOU Huayao, NI Jianhua, et al. Evolution of Overpressured Systems in Sedimentary Basins and Conditions for Deep Oil/Gas Accumulation[J]. Earth Science, 2002, 2705): 610615.

    郝芳,李思田,孙永传,等.莺歌海-琼东南盆地的有机成熟作用及油气生成模式[J].中国科学(D辑:地球科学), 1996, 26(6): 555−560.

    HAO Fang, LI Sitian, SUN Yongchuan, et al. Organic Maturation and Hydrocarbon Generation Model in Yinggehai-Qiongdongnan Basin [ J ]. Chinese Science (Series D: Earth Sciences), 1996, 26(6): 555−560.

    贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 3612): 14571469.

    JIA Chengzao, PANG Xiongqi. Research progress and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 3612): 14571469.

    孔令涛. 珠江口盆地白云深水区汇聚式流体流动系统建模[D]. 武汉: 中国地质大学, 2020: 1−128.

    KONG Lingtao. Modeling of convergent fluid flow system in Baiyun deep-water area of Pearl River Estuary Basin[D]. Wuhan: China University of Geosciences, 2020: 1−128.

    李超, 罗晓容, 张立宽. 泥岩化学压实作用的超压响应与孔隙压力预测[J]. 中国矿业大学学报, 2020, 4905): 951973.

    LI Chao, LUO Xiaorong, ZHANG Likuan. Overpressure response for chemical compaction of mudstones and the pore prediction[J]. Journal of China University of Mining and Technology, 2020, 4905): 951973.

    李超, 罗晓容. 泥岩化学压实作用研究进展[J]. 地球科学与环境学报, 2017, 3906): 761772.

    LI Chao, LUO Xiaorong. Review Mudstone on Chemical Compaction[J]. Journal of Earth Sciences and Environment, 2017, 3906): 761772.

    李明诚. 油气运移基础理论与油气勘探[J]. 地球科学, 2004, 2904): 379383. doi: 10.3321/j.issn:1000-2383.2004.04.001

    LI Mingcheng. Basic Principles of Migration and Hydrocarbon Exploration[J]. Earth Science, 2004, 2904): 379383. doi: 10.3321/j.issn:1000-2383.2004.04.001

    李明诚, 李剑, 万玉金. 盆地封隔体及其地质内涵[J]. 中国海上油气(地质), 1999, 13(6):8−12.

    LI Mingcheng, LI Jian, WAN Yujin. Basin packer and its geological connotation [J]. ChinaOffshore Oil and Gas (Geology), 1999, 13 (6) : 8−12.

    刘树根, 文龙, 宋金民, 等. 四川盆地中二叠统构造-沉积分异与油气勘探[J]. 成都理工大学学报(自然科学版), 2022, 49(4): 385−413.

    LIU Shugen, WEN Long, SONG Jinmin, et al. Sedimentary topography and tectonic differentiation on the Middle Permian platform and hydrocarbon exploration in Sichuan Basin, SW China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(4): 385−413.

    米立军, 张向涛, 庞雄, 等. 珠江口盆地形成机制与油气地质[J]. 石油学报, 2019, 40S1): 110. doi: 10.7623/syxb2019S1001

    MI Lijun, ZHANG Xiangtao, PANG Xiong, et al. Formation mechanism and petroleum geology of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40S1): 110. doi: 10.7623/syxb2019S1001

    唐玮玮, 吴晓明, 王为林, 等. 鄂尔多斯盆地环县北地区延长组长72亚段重力流特征及油气地质意义[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 561−569+585.

    TANG, Weiwei, WU Xiaoming, WANG Weilin, et al. Gravity flow characteristics and geological significance of oil and gas of the Chang 72 sub-member of the Yanchang Formation in the northern Huanxian area, Ordos Basin, China [J], Journal of Chengdu University of Technology (Science Technology Edition), 2022, 49(5): 561−569+585.

    田立新, 张忠涛, 庞雄, 等. 白云凹陷中深层超压发育特征及油气勘探新启示[J]. 中国海上油气, 2020, 326): 111.

    TIAN Lixin, ZHANG Zhongtao, PANG Xiong, et al. Characteristics of overpressure development in the mid-deep strata of Baiyun Sag and its new enlightenment in exploration activity[J]. China Offshore Oil and Gas, 2020, 326): 111.

    王家豪, 庞雄, 王存武, 等. 珠江口盆地白云凹陷中央底辟带的发现及识别[J]. 地球科学, 2006, 31(2): 209−213.

    WANG Jiahao, PANG Xiong, WANG Cunwu, et al. Discovery and Recognition of the Central Diapiric Zone in Bai yun Depression,Pearl River Mouth Basin[J]. Earth Science−Journal of China University of Geosciences, 2006, 31(2): 209−213.

    王震亮. 盆地流体动力学及油气运移研究进展[J]. 石油实验地质, 2002, 3402): 99103+109.

    WANG Zhenliang. Developments in the fluid dynamics and hydrocarbon migration of sedimentary basin[J]. Petroleum Geology & Experiment, 2002, 342): 99103+109.

    姚泾利, 段毅, 徐丽, 等. 鄂尔多斯盆地陇东地区中生界古地层压力演化与油气运聚[J]. 天然气地球科学, 2014, 255): 649656.

    YAO Jingli, DUAN Yi, XU Li, et al. Pressure Evolution and Oil-gas Migration And Accumulation in Mesozoic Palaeo-stratigraphic Longdong Area of the Ordos Basin[J]. Natural Gas Geoscience, 2014, 255): 649656.

    邹才能, 张光亚, 陶士振, 等. 全球油气勘探领域地质特征、重大发现及非常规石油地质[J]. 石油勘探与开发, 2010, 372): 129145. doi: 10.1016/S1876-3804(10)60021-3

    ZOU Caineng, ZHANG Guangya, TAO Shizhen, et al. Geological features major discoveries and unconventional petroleum geology in the global petroleum exploration[J]. Petroleum Exploration and Development, 2010, 372): 129145. doi: 10.1016/S1876-3804(10)60021-3

    Dyman T S, Crovelli R A, Bartberger C E , et al. Worldwide Estimates of Deep Natural Gas Resources Based on the U. S. Geological Survey World Petroleum Assessment 2000[J]. Natural Resources Research, 2002, 113): 207218

    Fan C, Wang G. The significance of a piecemeal geometric model of mudstone compaction: Pinghu Slope, Xihu Depression, Eastern China[J]. Marine and Petroleum Geology, 2021, 1317): 105138.

    Luo X, Vasseur G. Overpressure dissipation mechanisms in sedimentary sections consisting of alternating mud-sand layers[J]. Marine and Petroleum Geology, 2016, 78: 883894. doi: 10.1016/j.marpetgeo.2016.04.001

    Schowalter T T. Mechanics of Secondary Hydrocarbon Migration and Entrapment[J]. AAPG Bulletin, 1979, 63(5): 723−760.

图(15)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  10
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-11-22
  • 录用日期:  2023-11-29
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-01-07

目录

    /

    返回文章
    返回