Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area
-
摘要:
小岩体成(大)矿理论是汤中立院士在多年找矿实践工作过程中总结出来的重要成果。该理论以岩浆铜镍硫化物矿床为研究起点,逐渐延伸至与中酸性岩浆活动有关的热液型矿床,发展成为基性–超基性与中酸性两类岩浆并行的完整成矿理论体系。研究发现,以勉–略–宁矿集区为代表的成矿区带分布有众多两类岩浆活动的叠加区,并且两类岩浆活动导致的叠加成矿作用在该区显著。其中,煎茶岭镍钴金多金属矿床形成过程经历了早期初步的超镁铁质岩浆熔离作用使成矿元素预富集,后期花岗斑岩岩浆流体成矿作用叠加之上,最终使钴镍矿和金矿均达到了大型规模。此外,该区在白雀寺基性杂岩体中新发现的何家垭镍钴矿同样具有两类岩浆叠加成矿的特征,这为小岩体成(大)矿理论提供了新的研究方向。目前,中国新一轮找矿突破战略行动已全面开启,以Ni、Co为代表的战略性关键金属矿产仍是本轮找矿工作的重中之重,两类岩浆的小岩体叠加成(大)矿作用是Ni、Co矿形成的重要地质过程。笔者通过介绍小岩体成(大)矿理论的发展过程,并以勉-略-宁矿集区为代表,提出了两类岩浆叠加成(大)矿作用的基本内涵。在此基础上,对其找矿应用和理论研究两方面做了展望,以期助力中国新一轮找矿突破战略行动。
Abstract:The theory of (large) ore deposit forming in the small intrusion is an important result of decades of prospecting practice by academician Tang Zhongli. The theory started from magmatic copper-nickel sulfide deposits, gradually extended to hydrothermal deposits associated with intermediate-acid magmatism, and developed into a complete metallogenic theoretical system of basic-ultra-basic and intermediate-acid magmatism in parallel. In recent years, it has been found that the metallogenic belt represented by the Mian-Luo-Ning ore concentration area is distributed in many superimposed areas of basic-ultra-basic and intermediate-acid magmatic activities, among which the formation process of the Jianchaling cobalt-nickel-gold polymetallic deposit experienced the preliminary ultramafic magmatic liquation in the earlier stage to achieve the pre-enrichment of ore-forming elements, and the later superimposed acid magmatic fluid on eventually led to both cobalt-nickel and gold mines reaching large scale. In recent years, the Hejiaya cobalt-nickel deposit was found in the Baiqisi basic complex also has the characteristics of superimposed mineralization of two kinds of magmatism, which provides a new research direction for the theory of (large) ore deposit forming in the small intrusion. At present, the new round of prospecting breakthrough action has been fully launched. The strategic key metal minerals represented by Co and Ni are still the top priority of the prospecting work. The superposition of small rock bodies is an important geological process in the formation of Co and Ni ores. In this paper, the development process of the theory of (large) ore deposit forming in the small intrusion is introduced, and the basic connotation of the superimposition of two kinds of magmas into (large) ore is put forward by taking the Mian-Lue-Ning ore concentration area as the representative. On this basis, the prospect of prospecting application and theoretical research is made, which is expected to support the new round of prospecting breakthrough action.
-
钾盐作为钾肥的主要原料一直是中国最为紧缺的战略性矿产资源之一(李文光,1998;张宇轩等,2022),其广泛应用于农肥、化工、医药、纺织、印染、制革、玻璃、陶瓷、炸药等领域,特别是大量被用于制造复合肥。中国钾资源占世界总储量的2.6%,2008~2016年中国钾盐自给率维持在50%左右,耗量巨大。作为世界人口最多的农业大国,钾盐对中国至关重要,积极开拓国外钾盐市场十分必要。
1. 区域地质
万象平原位于中国南方–东印支板块之东印板块内,属呵叻盆地的一部分。呵叻盆地是世界上重要的钾盐矿分布区之一,呵叻盆地位于泰国东北部和老挝中部,盆地四周被深大断裂控制,北为湄公河断裂(F15)、西为南乌江断裂(F8)、南为北柬埔寨断裂(F13)、东为边和断裂(F9),盆地总面积约17万 km2(图1)。
呵叻盆地由普潘(Phu Phan)隆起将呵叻盆地分成2个次一级盆地,即北部的沙空那空(Sakon Nakhon)盆地和南部的呵叻(Khorat)盆地,盆地矿产以钾镁盐矿为主。万象平原具体位于沙空那空盆地西北三角形地带,西起班农阿布,东至班南罗,北自班当坎,南到湄公河,面积约5 452 km2;出露二叠系—第四系,受近东西向的挤压或引张;区内构造较发育,以北北西向纵断层、褶皱及近北东向横断层为主。其中,塔贡背斜为控矿构造;岩浆活动不发育。
2. 矿区地质特征
矿区位于万象盆地东北部,地表大面积被第四系所覆盖,除了河流切割外,未见典型的地形、地貌构造特征,构造不发育;矿区无岩浆岩出露。万象盆地基底为下白垩统班塔拉组(K1bt2)砂岩,盖层为古近系古新统塔贡组(E1tg)。矿区大面积被第四系沉积物覆盖;古近系班塔博组(E1−2bt)粉砂质泥岩、砂岩局部出露,但钻孔中未见到该层;下白垩统班塔拉组(K1bt)在详查区地表未见出露,只在钻孔中见到。
古近系古新统塔贡组(E1tg)为矿区含盐地层(冯明刚等,2005),主要由膏盐岩和碎屑岩组成,发育3个成盐旋回(严城民等,2006),可划分为3个岩性段,6个亚段,15个岩性层。钾镁盐矿层(E1tg1-1-3):岩性主要为桔红色、桔黄色、白色半透明–透明中厚层状光卤石岩,灰白色、白色半透明–透明中厚层状钾石盐岩次之;由下向上依次为:钾石盐矿层、光卤石矿层和钾石盐矿层。光卤石中见多层石盐夹石,钾石盐中少见夹石,个别钻孔见钾石盐中夹有薄层光卤石(王少华,2012)。光卤石矿石KCl品位大于8%的厚度为2.00~176.00 m,矿石KCl品位大于15%的厚度为0.65~165.00 m。钾镁盐矿层(E1tg2-1-2)岩性主要为淡紫色、浅红色、白色、灰白色半透明–透明状中厚层状钾石盐岩,白色半透明–透明中厚层状光卤石岩次之。
3. 物探测量方法
3.1 重力异常
依据前期吉林大学通过1∶5万重力测量(宋小超等,2015),在矿区内圈定剩余负异常约101 km2(图2)。以等值线−1×10−5m/s2圈闭的低值区域,可作为寻找钾盐矿有利部位;共圈定7个寻找钾盐矿的I类找矿靶区(图3)和11个寻找钾盐矿的II类找矿靶区(图4)。各个靶区分述如下。
3.1.1 I类找矿靶区
A1靶区呈北西向展布,异常面积约3 km2,预测有利成矿目标延深范围为50~400 m;A2异常面积约5 km2,预测有利成矿目标延深范围为50~600 m;A3呈东西转南北的马鞍形,异常面积约2 km2,预测有利成矿目标延深范围为100~300 m;A4呈穹窿状,异常面积约呈1 km2,深部向北延伸出勘查区,预测有利成矿目标范围为100~200 m;A5呈穹窿状,异常面积约2 km2,预测有利成矿目标延深范围为100~400 m;A6面积约面积约1 km2,预测有利成矿目标延深范围为50~400 m;A7面积约1 km2,预测有利成矿目标延深范围为100~300 m。
3.1.2 Ⅱ类找矿靶区
B1呈北西向串珠状展布,异常面积约5 km2,预测有利成矿目标延深范围为50~400 m;B2异常面积约1 km2,预测有利成矿目标延深范围为100~200 m;B3异常面积约1 km2,预测有利成矿目标延深范围为100~400 m;B4异常面积约1 km2,预测有利成矿目标延深范围为50~300 m;B5呈北西转向串呈北西转向串珠状展布,异常面积约1.5 km2,预测有利成矿目标延深范围为50~400 m;B6异常面积约0.5 km2,深部向北移动超出勘查区范围,预测有利成矿目标延范围为100~200 m;B7异常面积约0.5 km2,预测有利成矿目标延深范围为100~200 m;B8异常面积约0.5 km2,预测有利成矿目标延深范围为100~200 m;B9异常面积约0.5 km2,预测有利成矿目标延深范围为100~200 m;B10异常面积约0.5 km2,预测有利成矿目标延深范围为100~200 m;B11异常面积约0.7 km2,预测有利成矿目标延深范围为100~200 m。
3.2 钻探工程综合测井部署
根据重力测量推断,在I类找矿靶区A3、A4及Ⅱ类找矿靶区B6、B7、B9地区开展Ⅱ号区详查工作,共设计施工18个钻孔;Ⅱ号区及外围钾盐矿部署详查钻探工程综合测井(图5)。
3.3 综合测井
3.3.1 综合测井
综合测井采集选取伽玛、视电阻率、井径参数曲线,对钾盐矿和围岩的特征反映幅值差异大,测井曲线随不同岩层而呈现显著的起伏变化(尉中良,2005);测井曲线能准确定位钾盐矿的位置和厚度,从伽玛曲线的起伏变化可以进一步区分矿层品级的相对差异。测井曲线对地层的细小变化也有反映,综合实测的几个测井参数,总结、归纳出适合本地区岩性特征,依据多个测井曲线为判别岩性的基本准则,提升测井曲线的应用效果(表1)。
表 1 主要岩性的物性特征表Table 1. Physical properties of main lithologies参数
岩性伽玛(PA/kg) 视电阻(Ω·m) 井径(mm) 泥 岩 140~180 5~10 150~180 石盐岩 5~15 300~550 120~130 光卤石 170~230 200~300 140~180 钾石盐 300~650 260~500 120~140 3.3.2 综合测井成果
图6是ZK62-12钻孔综合测井成果图。通过综合测井曲线可见,伽玛、视电阻率、井径参数曲线对钾盐矿和围岩的特征反映幅值差异大,测井曲线随不同岩层而呈现显著的起伏变化。测井曲线能准确定位钾盐矿的位置和厚度;光卤石矿体为411.60~492.10 m,矿体厚度为80.50 m。
由图6可看出,钻孔揭露的岩性为泥岩、含盐泥岩、石盐、光卤石。泥岩具有较高放射性,低电阻率,井径变化平缓;含盐泥岩具有略低放射性,较低电阻率,井径变化大;石盐具有低放射性,较高电阻率,井径变化趋于直线;光卤石具有较高放射性,较高电阻率,井径变化大。
3.4 矿石密度
测量采用蜡封样品的体积。测量综合化学分析结果,光卤石平均密度为1.73 g/cm3,钾石岩平均密度为2.04 g/cm3。
3.5 矿石品位
矿体平均品位由该工程中各矿层内的所有单个样品的KCl测试值用厚度加权平均法求得,矿体KCL品位见表2。
表 2 Ⅱ区钻孔见矿表Table 2. List of ore occurrences in area II孔号 矿层编号 位 置(m) 矿层视厚度(m) KCl品位(%) 矿石
类型含矿
层位备注 起 止 ZK30-0 Ⅵ 247.46 249.78 2.32 16.61 光卤石 E1tg3-1 Ⅴ 306.80 308.94 2.14 14.89 钾石盐 E1tg2-1 Ⅱ 385.37 485.06 79.21 17.97 光卤石 E1tg1-1 含夹石 ZK34-44 Ⅴ 418.39 419.40 0.50 20.46 钾石盐 E1tg2-1 Ⅱ 489.40 534.56 27.39 16.27 光卤石 E1tg1-1 含夹石 Ⅰ 534.56 535.50 0.94 17.18 钾石盐 E1tg1-1 ZK40-40 Ⅶ 267.09 267.53 0.44 33.46 钾石盐 E1tg3-1 Ⅵ 267.53 273.33 3.21 16.00 光卤石 E1tg3-1 Ⅴ 362.91 365.04 0.54 28.60 钾石盐 E1tg2-1 Ⅱ 439.37 466.83 13.60 15.59 光卤石 E1tg1-1 Ⅰ 466.83 471.18 1.09 22.15 钾石盐 E1tg1-1 ZK40-2 Ⅴ 312.79 313.86 0.54 21.71 钾石盐 E1tg2-1 Ⅱ 390.80 459.10 53.55 17.27 光卤石 E1tg1-1 含夹石 ZK44-48 Ⅴ 326.40 328.44 2.05 20.66 钾石盐 E1tg2-1 Ⅳ 328.44 331.20 2.76 18.63 光卤石 E1tg2-1 Ⅱ 356.39 432.70 37.93 15.26 光卤石 E1tg1-1 含夹石 ZK48-2 Ⅱ 294.51 333.12 35.75 18.36 光卤石 E1tg1-1 Ⅰ 333.70 349.00 4.51 17.32 钾石盐 E1tg1-1 含夹石 ZK52-5 Ⅲ 237.74 240.19 2.45 36.95 钾石盐 E1tg1-1 Ⅱ 240.19 296.30 10.13 18.26 光卤石 E1tg1-1 含夹石 Ⅰ 296.30 298.43 1.12 19.60 钾石盐 E1tg1-1 ZK52-8 Ⅱ 445.80 465.41 9.81 19.08 光卤石 E1tg1-1 含夹石 ZK54-2 Ⅴ 171.07 172.67 1.60 24.12 钾石盐 E1tg2-1 Ⅱ 269.19 287.86 1.16 17.74 光卤石 E1tg1-1 Ⅰ 298.54 311.53 6.25 16.74 钾石盐 E1tg1-1 ZK60-8 Ⅱ 250.59 321.30 38.03 17.81 光卤石 E1tg1-1 含夹石 Ⅰ 323.52 326.00 1.80 21.62 钾石盐 E1tg1-1 含夹石 ZK62-12 Ⅲ 410.60 411.30 0.70 15.50 钾石盐 E1tg1-1 Ⅱ 411.30 492.00 65.70 18.29 光卤石 E1tg1-1 含夹石 ZK64-6 Ⅱ 330.51 351.34 3.47 14.58 光卤石 E1tg1-1 ZK74-12 Ⅴ 170.52 172.32 1.80 22.05 钾石盐 E1tg2-1 Ⅲ 293.35 299.72 4.20 24.88 钾石盐 E1tg1-1 含夹石 Ⅱ 328.00 385.91 28.34 16.58 光卤石 E1tg1-1 含夹石 ZK1 Ⅶ 287.57 289.37 0.74 29.97 钾石盐 E1tg3-1 Ⅲ 545.70 546.70 1.00 20.25 钾石盐 E1tg1-1 Ⅱ 546.70 553.70 2.00 16.82 光卤石 E1tg1-1 ZK5 Ⅴ 351.38 353.28 1.90 23.06 钾石盐 E1tg2-1 Ⅳ 354.14 357.02 1.79 15.79 光卤石 E1tg2-1 Ⅱ 425.92 484.54 38.22 17.67 光卤石 E1tg1-1 含夹石 ZK7 Ⅴ 97.17 101.17 2.00 15.66 钾石盐 E1tg2-1 Ⅳ 105.74 127.06 19.32 21.34 光卤石 E1tg2-1 Ⅱ 156.25 157.55 0.65 15.46 光卤石 E1tg1-1 ZK10 Ⅱ 126.57 303.57 165.00 20.04 光卤石 E1tg1-1 ZK11 Ⅱ 195.51 306.51 103.00 20.38 光卤石 E1tg1-1 4. 矿体特征
Ⅱ区钾盐矿详查共施工18个钻孔,经综合测井及取样分析验证均为见矿孔。按照矿层产出的层位及矿石类型,可划分为7个矿(层)体,由下至上依次划分为:Ⅰ号钾石盐矿体、Ⅱ号光卤石矿体、Ⅲ号钾石盐矿体、Ⅳ号光卤石矿体、Ⅴ号钾石盐矿体、Ⅵ号光卤石矿体、Ⅶ号钾石盐矿体。其中,Ⅶ是本次工作新发现矿体(李占游等,2018)。各钻孔均见到多层矿体,矿体指标采用12%~15%指标(表2)。
(1)Ⅰ号钾石盐矿层:产于塔贡组下岩段盐岩层(E1tg1-1),为本区产出的第一层钾盐矿体,矿石矿物主要为钾石盐、石盐、光卤石,矿体呈透镜状产出,局部分布,厚度较小,无夹石;本次工作只在ZK60-8中见到该层。
(2)Ⅱ号光卤石矿层:产于塔贡组下岩段(E1tg1-1),Ⅰ号钾石盐矿体或盐岩层上部,为本区产出的第二层钾盐矿体,层状产出,矿体连续性好,厚度大,普遍存在夹石,夹石为石盐岩;矿石矿物组成为光卤石、溢晶石、水氯镁石、石盐;此矿体是本区的主要矿体,为工作区的重点目的矿层。
(3)Ⅲ号钾石盐矿层:产于塔贡组下岩段(E1tg1-1),为本区产出的第三层钾盐矿体,与Ⅱ号光卤石矿体连续沉积,矿体呈透镜状产出,局部分布,矿体连续性差,矿层厚度较小,无夹石;矿石矿物组成为钾石盐、石盐、光卤石。
(4)Ⅳ号光卤石矿层:产于塔贡组中岩段盐岩层(E1tg2-1)上部,矿体连续性差,局部分布,矿层厚度较小,大多无夹石;矿石矿物组成为光卤石、石盐。
(5)Ⅴ号钾石盐矿层:产于塔贡组中岩段盐岩层(E1tg2-1)上部,矿体连续性差,局部分布,矿层厚度较小,大多无夹石;矿石矿物组成为钾石盐、石盐。
(6)Ⅵ号光卤石矿层:产于塔贡组上岩段盐岩层(E1tg3-1)上部,矿体连续性极差,分布范围很有限,矿层厚度较小;矿石矿物组成为光卤石、石盐。
(7)Ⅶ号钾石盐矿层:产于塔贡组上岩段盐岩层(E1tg3-1)上部,为本次工作新发现矿体;矿体连续性极差,分布范围很有限,矿层厚度较小;矿石矿物组成为钾石盐、石盐。
5. 结论
(1)通过重力测量的晕圈和数据资料,圈定了I类7个、Ⅱ类11个的钾盐找矿靶区。
(2)物探综合测井准确定位钾盐矿体位置和厚度,取样分析计算矿层品位、密度等参数。
(3)为钾盐矿体的圈定和资源(储)量的估算,提供了重要的基本参数和依据。
-
图 1 基性–超基性岩浆的小岩体成大矿作用模型(据汤中立等,2021修)
Figure 1. The model of small mafic-ultramafic intrusions mineralization
图 2 中酸性岩浆的小岩体成大矿作用模型(据汤中立等,2021修)
Figure 2. The model of small intermediate-felsic intrusions mineralization
图 3 勉略宁矿集区大地构造位置图(a)及地质简图(b)(据岳素伟等,2013修)
Figure 3. (a) Simplified tectonic and (b) geological map of the Mian-Lue-Ning belt
图 4 煎茶岭镍钴矿床地质平面及剖面图(据李文渊,1996修)
Figure 4. Geological map of Jianchaling mining area
图 6 何家垭镍钴矿地质简图(据张小明等,2022修)
Figure 6. Geological map of Hejiaya Co-Ni mining area
表 1 两类岩浆的小岩体叠加成矿作用矿床地质特征
Table 1 Geological characteristics of superimposed mineralization by two types small intrusion
地质特征 矿 床 Bou Azzer钴矿 蕴都卡拉钴矿 煎茶岭镍钴矿床 何家垭镍钴矿床 赋矿围岩 蛇纹岩 镁铁-超镁铁岩 蛇纹石化超镁铁岩 镁铁-超镁铁岩 矿体产出位置 蛇纹岩和闪长岩/石英闪长岩接触带 闪长岩与玄武岩接触带 叶蛇纹岩与花岗斑岩外接触带 辉长岩与闪长岩接触带 矿体形态 脉状、透镜状 脉状、透镜状 脉状、透镜状 脉状、透镜状 围岩蚀变 硅化、黄铁矿化、砷黄铁矿化、磁黄铁矿化、绿泥石化、蛇纹石化、绿帘石化、碳酸盐化等 硅化、绢云母化、黄铁矿化、孔雀石化、绿帘石化、碳酸盐化等 硅化、黄铁矿化、磁黄
铁矿化、绿泥石化、
绢云母化、蛇纹石化、
绿帘石化、碳酸盐化等硅化、黄铁矿化、磁黄
铁矿化、绢云母化矿化类型 细脉状、网脉状、块状、稠密浸染状等 细脉状、网脉状、浸染状、薄膜状、块状等 脉状、细脉浸染状、
稠密浸染状、块状等脉状、网脉状、浸
染状、块状等成矿物质来源 蛇纹岩 镁铁-超镁铁岩 蛇纹石化超镁铁岩 镁铁-超镁铁岩 成矿元素组合 Co、Ni、As、
Cu、Cr、AuCo、Ni、Cu、
Mo、Cr、AuCo、Ni、As、
Cu、Cr、Ag、AuCo、Ni、Cu、
As、Cr注:表中资料引自文献(Slack et al.,2017;张华添等,2019;Tourneur et al.,2021;Hajjar et al.,2021,2022;张小明等,2022;Williams-Jones et al.,2022;张照伟等,2023) -
陈衍景 . 为什么中酸性小岩体成大矿?[J]. 西北地质,2012 ,45 (4 ):128 −133 . doi: 10.3969/j.issn.1009-6248.2012.04.011CHEN Yanjing . Why Small Granitic Stocks Associate with Giant Mineral System?[J]. Northwestern Geology,2012 ,45 (4 ):128 −133 . doi: 10.3969/j.issn.1009-6248.2012.04.011代军治, 陈荔湘, 石小峰, 等 . 陕西略阳煎茶岭镍矿床酸性侵入岩形成时代及成矿意义[J]. 地质学报,2014 ,88 (10 ):1861 −1873 .DAI Junzhi, CHEN Lixiang, SHI Xiaofeng, et al . Geocheronology of Acid Intrusice Rocksof the Jianchaling Nickel Deposit in Lueyang, Shaanxi and Its Metallogenic Implications[J]. Acta Geologica Sinica,2014 ,88 (10 ):1861 −1873 .胡建明, 董广法 . 略阳县煎茶岭金矿矿体的空间展布规律及找矿方向[J]. 大地构造与成矿学,2002 ,26 (1 ):75 −80 .HU Jianming, DONG Guangfa . Rule of Spatial Extention and Direction in Prospecting of the Jianchaling Gold Deposit in Lueyang County[J]. Geotectonic et Metallogenia,2002 ,26 (1 ):75 −80 .黄婉康, 甘先平, 陈荔湘, 等 . 陕西煎茶岭金矿区的岩石及成矿时代研究[J]. 地球化学,1996 ,25 (2 ):150 −156 . doi: 10.3321/j.issn:0379-1726.1996.02.006HUANG Wankang, GAN Xianping, CHEN Lixiang, et al . A Study of Petrology and Met-allogenetic Epoch of Gold in Jianchaling Deposit, Shaanxi Province[J]. Geochimica,1996 ,25 (2 ):150 −156 . doi: 10.3321/j.issn:0379-1726.1996.02.006姜修道, 魏钢锋, 聂江涛 . 煎茶岭镍矿—是岩浆还是热液成因[J]. 矿床地质,2010 ,29 (6 ):1112 −1124 . doi: 10.3969/j.issn.0258-7106.2010.06.013JIANG Xiudao, WEI Gangfeng, NIE Jiangtao . Jianchaling nickel deposit: Magmatic or hy-drothermal origin[J]. Mineral Deposits,2010 ,29 (6 ):1112 −1124 . doi: 10.3969/j.issn.0258-7106.2010.06.013罗明伟, 张晨曦, 杜春阳, 等 . 洛南—豫西中酸性小岩体宏观特征及与钼矿床成矿的关系[J]. 中国钼业,2018 ,42 (3 ):22 −27 .LUO Mingwei, ZHANG Chenxi, DU Chunyang, et al . The Relationship Between Macroscopic Characteristics of the Medium Acidic Rock Mass and the Molybdenum Deposit-Mine Ralization in Luonan-West of Hennan Province[J]. China Molybdenum Industry,2018 ,42 (3 ):22 −27 .罗照华 . 小岩体成大矿学说的内涵和意义[J]. 西北地质,2012 ,45 (4 ):204 −215 . doi: 10.3969/j.issn.1009-6248.2012.04.019LUO Zhaohua . The Theoury of Metallogeny by the Small Magmatic Intrusion: Meaning –and Implications[J]. Northwestern Geology,2012 ,45 (4 ):204 −215 . doi: 10.3969/j.issn.1009-6248.2012.04.019罗照华, 苏尚国, 刘翠 . 岩浆成矿系统的尺度效应[J]. 地球科学与环境学报,2014 ,36 (1 ):1 −9 .LUO Zhaohua, SU Shangguo, LIU Cui . Scale Effects of the Magma-related Metallogenic Systems[J]. Journal of Earth Sciences and Environment,2014 ,36 (1 ):1 −9 .李世金, 孙丰月, 高永旺, 等 . 小岩体成大矿理论指导与实践—青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质,2012 ,45 (4 ):185 −191 . doi: 10.3969/j.issn.1009-6248.2012.04.017LI Shijin, SUN Fengyue, GAO Yongwang, et al . The Theoretical Guidance and the Practi-ce of Small Intrusions Forming Large Deposits—The Enlightenment and Significance -for Searching Breakthrough of Cu-Ni Sulfide Deposit in Xiarihamu, East Kunlun, Qin-ghai[J]. Northwestern Geology,2012 ,45 (4 ):185 −191 . doi: 10.3969/j.issn.1009-6248.2012.04.017李文渊, 张照伟, 陈博 . 小岩体成大矿的理论与找矿实践意义—以西北地区岩浆铜镍硫化物矿床为例[J]. 中国工程科学,2015 ,17 (2 ):29 −34 . doi: 10.3969/j.issn.1009-1742.2015.02.004LI Wenyuan, ZHANG Zhaowei, CHEN Bo . The theory on small intrusions forming large deposits and its exploration significance—Taking for magmatic Ni-Cu sulfide deposits example in the northwestern of China[J]. Strategic Study of CAE,2015 ,17 (2 ):29 −34 . doi: 10.3969/j.issn.1009-1742.2015.02.004李文渊. 中国铜镍硫化物矿床成矿系列与地球化学[M]. 西安: 西安地图出版社, 1996. 聂江涛. 陕西省煎茶岭金镍矿田构造特征及其控岩控矿作用[D]. 西安: 长安大学, 2010. NIE Jiangtao. Struture Characteristics of Jianchaling Gold and Nickel Orefeild and Functi-on of Rock-controlling and Ore-controlling, in Shaanxi Province[D]. Xi’an: Chang’an -University, 2010.
庞春勇, 陈民扬 . 煎茶岭地区同位素地质年龄数据及其地质意义[J]. 矿产与地质,1993 ,7 (5 ):354 −360 .PANG Chunyong, CHEN Minyang . Isotopic Geochronological Data and Their Geological-Significance in Jianchaling Region, Shaanxi Province[J]. Mineral Resources and Geology,1993 ,7 (5 ):354 −360 .平先权, 郑建平, 熊庆, 等 . 扬子西北缘碧口块体花岗质岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 吉林大学学报 (地球科学版),2014 ,44 (4 ):1200 −1218 .PING Xianquan, ZHENG Jianping, XIONG Qing, et al . Zircon U-Pb Ages and Hf Isotope Characteristics of the Granitic Plutons in Bikou Terrane, Northwestern Yangtze Block, and Their Geological Significance.[J]. Journal of Jilin University (Earth Science Edition),2014 ,44 (4 ):1200 −1218 .宋谢炎, 陈列锰 . “小岩体成大矿”的核心—岩浆通道系统成矿原理、 特征及找矿标志[J]. 西北地质,2012 ,45 (4 ):117 −127 . doi: 10.3969/j.issn.1009-6248.2012.04.010SONG Xieyan, CHEN Liemeng . The Core Issue of the Large-scale Mineralization in Sma-ll Intrusion: Mineralization in Magmatic Plumbing System Principles, Key Features and Exploration Marks[J]. Northwestern Geology,2012 ,45 (4 ):117 −127 . doi: 10.3969/j.issn.1009-6248.2012.04.010汤中立 . 金川硫化铜镍矿床成矿模式[J]. 现代地质,1990 ,4 (4 ):54 −64 .TANG Zhongli . Minerogenetic Model of the Jinchuan Copper and Nickel Sulfide Deposit[J]. Geoscience,1990 ,4 (4 ):54 −64 .汤中立 . 金川含铂硫化铜镍矿床成矿模式[J]. 甘肃地质,1991 (2 ):104 −124 .TANG Zhongli . Minerogenetic Model of the Jinchuan Copper and Nickel Sulfide Deposit[J]. Gansu Geology,1991 (2 ):104 −124 .汤中立, 李小虎 . 两类岩浆的小岩体成大矿[J]. 矿床地质,2006 ,25 (S1 ):5 −38 .TANG Zhongli, LI Xiaohu . Small Intrusions Forming Large Deposits in Two Types of M-agma[J]. Mineral Deposits,2006 ,25 (S1 ):5 −38 .汤中立, 徐刚, 王亚磊, 等 . 岩浆成矿新探索—小岩体成矿与地质找矿突破[J]. 西北地质,2012 ,45 (4 ):1 −16 . doi: 10.3969/j.issn.1009-6248.2012.04.002TANG Zhongli, XU Gang, WANG Yalei, et al . The New Exploration of Magmatic Mineraliz-ation: Small Intrusion Mineralization and Geological Prospecting Breakthrough[J]. Northwestern Geology,2012 ,45 (4 ):1 −16 . doi: 10.3969/j.issn.1009-6248.2012.04.002汤中立, 焦建刚, 闫海卿, 等 . 小岩体成 (大) 矿理论体系[J]. 中国工程科学,2015 ,17 (2 ):4 −19 . doi: 10.3969/j.issn.1009-1742.2015.02.002TANG Zhongli, JIAO Jiangang, YAN Haiqing, et al . Theoretical System for (Large) Seposit Formed by Smaller Intrusion[J]. Strategic Study of CAE,2015 ,17 (2 ):4 −19 . doi: 10.3969/j.issn.1009-1742.2015.02.002汤中立, 钱壮志, 姜常义, 等. 中国矿产地质志—小岩体成 (大) 矿理论体系[M]. 北京: 地质出版社, 2021. 仝立华, 汪洋 . 千里山钨锡金属矿床物质运移模式与成岩成矿关系—小岩体成大矿的一个实例[J]. 西北地质,2012 ,45 (4 ):380 −389 . doi: 10.3969/j.issn.1009-6248.2012.04.033TONG Lihua, WANG Yang . The Explanation of the Metallogeny about Qianlishan Tungst-en-tin by the Theory of Small Magmatic Intrusion Mineralization[J]. Northwestern Geology,2012 ,45 (4 ):380 −389 . doi: 10.3969/j.issn.1009-6248.2012.04.033王登红, 何晗晗, 黄凡, 等 . 对华南小岩体找大矿问题的探讨[J]. 地球科学与环境学报,2014 ,36 (1 ):10 −18 .WANG Denghong, HE Hanhan, HUANG Fan, et al . Discussion on the Issues of Explorat-ion Large Deposits Around Small Intrusions in South China[J]. Journal of Earth Sciences and Environment,2014 ,36 (1 ):10 −18 .王瑞廷, 郑崔勇, 高菊生, 等. 秦岭勉县-略阳-宁强矿集区成矿规律与找矿预测[M]. 北京: 科学出版社, 2021. WANG Ruiting, ZHENG Cuiyong, GAO Jusheng, et al. Metallogenic Regularity and Pros-pecting Prediction of Mianxian-Lueyang-Ningqiang Ore Concentration Area in Qinling Mountains[M]. Beijing: Science Press, 2021.
王瑞廷, 毛景文, 任小华, 等 . 煎茶岭硫化镍矿床矿石组分特征及其赋存状态[J]. 地球科学与环境学报,2005 ,27 (1 ):34 −38 .WANG Ruiting, MAO Jingwen, REN Xiaohua, et al . Ore Composition and Hosting Cond-ition in the Jianchaling Sulfide Nickel Deposit, Shaanxi Province[J]. Journal of Earth Sciences and Environment,2005 ,27 (1 ):34 −38 .王瑞廷, 王东生, 李福让, 等 . 煎茶岭大型金矿床地球化学特征、成矿地球动力学及找矿标志[J]. 地质学报,2009 ,83 (11 ):1739 −1751 . doi: 10.3321/j.issn:0001-5717.2009.11.016WANG Ruiting, WANG Dongsheng, LI Furang, et al . Geochemical Characteristics, Met-allogenic Geodynamics and Prospecting Indicator of the Jianchaling Large Gold OreDeposit[J]. Acta Geologica Sinica,2009 ,83 (11 ):1739 −1751 . doi: 10.3321/j.issn:0001-5717.2009.11.016王瑞廷, 赫英, 王东生 . 略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义[J]. 地质论评,2003 ,49 (2 ):205 −211 . doi: 10.3321/j.issn:0371-5736.2003.02.014WANG Ruiting, HE Ying, WANG Dongsheng, et al . Re-Os Isotope Age and Its Application to the Jianchaling Nickel-Copper Sulfide Deposit, Lueyang, Shaanxi Province[J]. Geological Review,2003 ,49 (2 ):205 −211 . doi: 10.3321/j.issn:0371-5736.2003.02.014王瑞廷, 赫英, 汤中立, 等 . 煎茶岭大型含钴硫化镍矿床微量元素地球化学研究[J]. 矿床地质,2002 ,21 (S1 ):1041 −1044 .WANG Ruiting, HEYing, TANG Zhongli, et al . Study on Minor Elements Geochemistry -in Jianchaling Large Cobalt-Bearing Sulfide Nickel Deposit[J]. Mineral Deposits,2002 ,21 (S1 ):1041 −1044 .岳素伟, 林振文, 邓小华, 等 . 陕西省煎茶岭金矿 C、H、O、S、Pb 同位素地球化学示踪[J]. 大地构造与成矿学,2013 ,37 (4 ):653 −670 .YUE Suwei, LIN Zhenwen, DENG Xiaohua, et al . C, H, O, S, Pb Isotopic Geochemistry of the Jianchaling Gold Deposit, Shaanxi Province[J]. Geotectonic et Metallogenia,2013 ,37 (4 ):653 −670 .游军, 张小明, 杨运军 . 略阳白雀寺-石瓮子双峰式侵入岩锆石U-Pb定年、地球化学特征及意义[J]. 矿产勘查,2018 ,9 (12 ):2365 −2377 .YOU Jun, ZHANG Xiaoming, YANG Yunjun . Zircon U-Pb Geochronology and Geochemistry of Baiquesi-Shiwengzi Bimodal Intrusive Rocks in Lueyang, and Their Significance[J]. Mineral Exploration,2018 ,9 (12 ):2365 −2377 .张旗 . 关于“小岩体为什么有利于成矿”的探讨[J]. 甘肃地质,2013 ,22 (4 ):1 −7 .ZHANG Qi . Discussion on “Small Intrusions Associate with Large Deposits” and “Large Intrusions are Not Mineralization”[J]. Gansu Geology,2013 ,22 (4 ):1 −7 .张照伟, 李文渊 . 小岩体成大矿与岩浆通道成矿理论的比较[J]. 地球科学与环境学报,2014 ,36 (1 ):48 −57 .ZHANG Zhaowei, LI Wenyuan . Comparison of Theories Between Large Orebodies Hostedin Small Intrusion and Magma Conduit Mineralization[J]. Journal of Earth Sciences and Environment,2014 ,36 (1 ):48 −57 .张照伟, 张江伟, 王亚磊, 等 . 准噶尔北缘成矿带蕴都卡拉钴矿成矿特征[J]. 西北地质,2023 ,56 (1 ):1 −10 . doi: 10.12401/j.nwg.2022009ZHANG Zhaowei, ZHANG Jiangwei, WANG Yalei, et al . Metallogenic Characteristics ofYundukala Co Deposit in Northern Margin of Junggar Metallogenic Belt, Northwest -China[J]. Northwestern Geology,2023 ,56 (1 ):1 −10 . doi: 10.12401/j.nwg.2022009郑崔勇, 刘建党, 袁波, 等 . 与煎茶岭金矿有关超基性岩体地球化学特征[J]. 地质与勘探,2007 ,43 (6 ):52 −57 . doi: 10.3969/j.issn.0495-5331.2007.06.010ZHENG Cuiyong, LIU Jiandang, YUAN Bo, et al . Geological and Geochemical Character-istics of Rock Mass Related with Gold Minerallization in the Jianchaling Deposit[J]. Geology and Prospecting,2007 ,43 (6 ):52 −57 . doi: 10.3969/j.issn.0495-5331.2007.06.010张小明, 吴应忠, 曾忠诚, 等 . 陕西勉略宁地区基性杂岩体中新发现镍钴矿化体[J]. 中国地质,2022 ,49 (2 ):669 −670 .ZHANG Xiaoming, WU Yingzhong, ZENG Zhongcheng, et al . Discovery of a New Nickel Cobalt Mineralization Body of the Basic Complex in Mian-Lue-Ning Area, Shaanxi[J]. Geology in China,2022 ,49 (2 ):669 −670 .张华添, 李江海 . 蛇纹岩化对洋中脊超基性岩热液硫化物成矿的影响: 来自青藏高原德尔尼铜矿床的启示[J]. 大地构造与成矿,2019 ,43 (1 ):111 −122 .ZHANG Huatian, LI Jianghai . Impacts of Serpentinization on Ultramafic Rock-Hosted Hy-drothermal System along Mid-Ocean Ridges: Insight from Dur’ngoi Copper Massive -Sulfide Deposit, Tibetan Plateau[J]. Geotectonica et Metallogenia,2019 ,43 (1 ):111 −122 .Gao Y H, Wang C Y, Wei B . Magma oxygen fugacity of Permian to Triassic Ni-Cu sulf-ide-bearing maficultramafic intrusions in the central Asian orogenic belt, North China[J]. Journal of Asian Earth Sciences,2019 ,173 (15 ):250 −262 .Han Z H, Wang R, Tong X S, et al. Multi-scale exploration of giant Qulong porphyry d-eposit in a collisional setting[J]. Ore Geology Reviews, 2021, 139(Part A): 104455.
Hajjar Z, Gervilla F, Fanlo I, et al. Formation of serpentinite-hosted, Fe-rich arsenide ores at the latest stage of mineralization of the Bou-Azzer mining district (Morocco) [J]. Ore Geology Reviews, 2021: 103926.
Hajjar Z, Ares G, Fanlo I, et al . Cr-spinel tracks genesis of Co-Fe ores by serpentinite r-eplacement at Bou Azzer, Morocco[J]. Journal of African Earth Sciences,2022 ,188 :104471 . doi: 10.1016/j.jafrearsci.2022.104471Hui B, Dong Y P, Zhang F F, et al . Geochronology, Geochemistry, and Isotopic Composi-tion of the Early Neoproterozoic Granitoids in the Bikou Terrane Along the Northwe-sternMargin of the Yangtze Block, South China: Petrogenesis and Tectonic Implications[J]. Pre-cambrian Research,2022 ,377 :106724 . doi: 10.1016/j.precamres.2022.106724Jiang J Y, Zhu Y F . Geology and geochemistry of the Jianchaling hydrothermal nickel de-posit: T-pH-fO2-fS2 conditions and nickel precipitation mechanism[J]. Ore Geology Re-views,2017 ,91 :216 −235 . doi: 10.1016/j.oregeorev.2017.10.005Lv L S, Mao J W, Li H B, et al . Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of -the Hongqiling Ni–Cu sulfide deposits in Northeast China[J]. Ore Geology Reviews,2010 ,43 (1 ):106 −119 .Li H Y, Ye H S, Wang X X, et al . Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China[J]. Journal of Asian Earth Sciences,2014 ,79 (Part B ):641 −654 .Mou N N, Wang G W, Sun X . Identification of geochemical anomalies related to mineral-ization: A case study from porphyry copper deposits in the Qulong-Jiama mining dist-rict of Tibet, China[J]. Journal of Geochemical Exploration,2023 ,244 :107126 . doi: 10.1016/j.gexplo.2022.107126Peng B, Sun F Y, Li B L, et al . The geochemistry and geochronology of the Xiarihamu -II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications forthe enesis of magmatic Ni-Cu sulfide deposits[J]. Ore Geology Reviews,2016 ,73 (1 ):13 −28 .Slack J F, Kimball B E, Shedd K B, et al. Critical Mineral Resources of the United StatesEconomic and Environmental Geology and Prospects for Future Supply[R]. U. S. Geological Survey, Professional Paper, 2017, 1802: p. F1-F40.
Tourneur E, Chauvet A, Kouzmanov K, et al . Co-Ni-arsenide mineralisation in the Bou Azzer district (Anti-Atlas, Morocco): Genetic model and tectonic implications[J]. Ore Geology Reviews,2021 ,134 :104128 .Vasyukova O V, Williams-Jones A E . Constrains on the genesis of cobalt deposits: Part II, application to natural systems[J]. Economic Geology,2022 ,117 :529 −544 . doi: 10.5382/econgeo.4888Wang K Y, Song X Y, Yi J N, et al . Zoned orthopyroxenes in the Ni-Co sulfide ore-bea-ring Xiarihamu mafic-ultramafic intrusion in northern Tibetan Plateau, China: Implicat-ions for multiple magma replenishments[J]. Ore Geology Reviews,2019 ,113 :103082 . doi: 10.1016/j.oregeorev.2019.103082Wang Y, Yang X Y, Kang X N, et al . Geochemical and mineralogical studies of zircon, -apatite, and chlorite in the giant Dexing porphyry Cu-Mo-Au deposit, South China: I-mplications for mineralization and hydrothermal processes[J]. Journal of Geochemical Exploration,2022 ,240 :107042 . doi: 10.1016/j.gexplo.2022.107042Wang G G, Ni P, Li L, et al . Petrogenesis of the Middle Jurassic andesitic dikes in the -giant Dexing porphyry copper ore field, South China: Implications for mineralization[J]. Journal of Asian Earth Sciences,2020 ,196 (1 ):104375 .Williams-Jones A E, Vasyukova O V . Constraints on the genesis of cobalt deposits: Part I, theoretical considerations[J]. Economic Geology,2022 ,117 :513 −528 . doi: 10.5382/econgeo.4895Xu L L, Bi X W, Zhang X C, et al . Mantle contribution to the generation of the giant Jinduicheng porphyry Mo deposit, Central China: New insights from combined in-situ element and isotope compositions of zircon and apatite[J]. Chemical Geology,2023 ,616 (12 ):121238 .Yue W S, Deng X H, Bagas L, et al . Fluid inclusion geochemistry and 40Ar/39Ar geochronology constraints on the genesis of the Jianchaling Au deposit, China[J]. Ore Geology Reviews,2017 ,80 :676 −690 . doi: 10.1016/j.oregeorev.2016.08.024 -
期刊类型引用(1)
1. 张寿庭,邹灏,方乙,曹华文,裴秋明,唐利,王亮,高永璋,张伟,徐旃章. 热液脉型萤石矿床隐伏矿体定位预测综合技术方法. 矿床地质. 2024(04): 785-801 . 百度学术
其他类型引用(0)