ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    钙稀土氟碳酸盐矿物电子探针定量分析方法研究

    叶美芳, 周宁超, 王国强, 魏小燕, 董会

    叶美芳,周宁超,王国强,等. 钙稀土氟碳酸盐矿物电子探针定量分析方法研究[J]. 西北地质,2024,57(5):298−307. doi: 10.12401/j.nwg.2024018
    引用本文: 叶美芳,周宁超,王国强,等. 钙稀土氟碳酸盐矿物电子探针定量分析方法研究[J]. 西北地质,2024,57(5):298−307. doi: 10.12401/j.nwg.2024018
    YE Meifang,ZHOU Ningchao,WANG Guoqiang,et al. Quantitative Determination of Calcium Rare Earth Fluoro-carbonate Minerals by Electron Probe Microanalyzer[J]. Northwestern Geology,2024,57(5):298−307. doi: 10.12401/j.nwg.2024018
    Citation: YE Meifang,ZHOU Ningchao,WANG Guoqiang,et al. Quantitative Determination of Calcium Rare Earth Fluoro-carbonate Minerals by Electron Probe Microanalyzer[J]. Northwestern Geology,2024,57(5):298−307. doi: 10.12401/j.nwg.2024018

    钙稀土氟碳酸盐矿物电子探针定量分析方法研究

    基金项目: 国家自然科学青年基金项目“甘肃北山泥盆纪高镁安山岩岩石成因及其地球动力学意义”(41703038)资助。
    详细信息
      作者简介:

      叶美芳(1980−),女,高级工程师,硕士,主要从事岩矿分析和岩石矿物地球化学研究。E−mail:yemeif@163.com

      通讯作者:

      王国强(1984−),男,正高级工程师,博士,主要从事地质矿产调查及研究工作。E−mail:gqwangmint@gmail.com

    • 中图分类号: P57

    Quantitative Determination of Calcium Rare Earth Fluoro-carbonate Minerals by Electron Probe Microanalyzer

    • 摘要:

      稀土氟碳酸盐矿物是工业开发利用轻稀土元素的主要赋存矿物。钙稀土氟碳酸盐矿物化学成分的准确测定,是快速鉴别其种属的前提,也是研究稀土矿床的成因和高效开发利用稀土矿产的必然要求。通过测试条件优选、C含量直接测定并校正计算,完善了利用电子探针准确分析钙稀土氟碳酸盐矿物化学成分的定量分析方法。采用理论分子式法和电荷平衡法对样品中C含量进行校准计算,结果显示理论分子式法计算结果更合理。笔者对赋存在金川正长花岗岩中的钙稀土氟碳酸盐矿物化学成分进行电子探针分析和结构拉曼光谱分析。结果表明,该矿物组合存在多种物相,以新奇钙铈矿为主,氟碳钙铈矿和伦琴钙铈矿呈微细针状分布于新奇钙铈矿中。结合矿物共生关系,认为金川正长花岗岩中钙稀土氟碳酸盐矿物为岩浆作用晚期,富F、CO2、REE3+流体与磷灰石交代反应生成。

      Abstract:

      Rare earth fluoro-carbonate minerals are the most important LREE-bearing minerals in industrial development. Accurate determination of the chemical composition of calcium rare earth fluoro-carbonates is a prerequisite for rapid identification of their species and an essential requirement for studying the genesis of rare earth deposits and the efficient development and utilization of rare earth resources. In this study, by optimizing the experimental conditions, direct determination of carbon content with a subsequent calibration, we have improved the quantitative analytical method for accurately analyzing the chemical composition of calcium rare earth fluoro-carbonate minerals using an EPMA. The calibration calculation of carbon content in the samples was performed using both theoretical crystallochemical formula and charge balance methods, and the results showed that the theoretical crystallochemical formula method yielded more reasonable results. Based on compositional analysis by EPMA and structural analysis by Laser Raman Spectroscopy, Jinchuan syenogranite comprises at least two species of calcium rare earth fluoro-carbonate minerals. The predominant phase is synchysite, the minor phase that exhibited as radial needles is parasite or roentgenite-(Ce). Based on the mineral paragenesis, it is believed that the calcium rare earth fluoro-carbonate minerals in the Jinchuan syenogranite are formed during the post-magmatic stage due to the metasomatism of apatite by F, CO2, and REE3+-rich fluids.

    • 图  1   样品中钙稀土氟碳酸盐矿物的特征

      a.金川正长花岗岩偏光显微镜下特征(正交偏光,×5);b、c. 金川正长花岗岩偏光显微镜下特征(单偏光,×20);d. 样品背散射电子图及电子探针分析点位1-12;e. 样品中独居石X射线能谱图;f. 钙稀土氟碳酸盐矿物X射线能谱图;Kf. 碱性长石;Pl. 斜长石(偏光显微镜鉴定);Ab. 钠长石(X射线能谱鉴定);Qtz. 石英;Bi. 黑云母;Chl. 绿泥石;Hem. 赤铁矿;Fl. 萤石;Rt. 金红石; Cal. 方解石;Zrn. 锆石;Mnz. 独居石;REEflc-(Ce) . 钙稀土氟碳酸盐矿物;Apa. 磷灰石

      Figure  1.   Characteristics of calcium rare earth fluoro-carbonate in sample

      图  2   样品中CO2含量实测值与计算值的比较图

      Figure  2.   Comparison between measured values and correction values

      图  3   钙稀土氟碳酸盐矿物的拉曼光谱特征

      Bast. 氟碳铈矿;Par. 氟碳钙铈矿;Syn. 新奇钙铈矿;Sample. 本文研究样品BSE图片中灰白色高钙部分;Bast、Par和Syn图谱来自RRUFF数据库(https://rruff.info/),对应矿物编号分别为R050409,R050308和R060210

      Figure  3.   Raman spectra of calcium rare earth fluoro-carbonates

      表  1   4种常见钙稀土氟碳酸盐矿物的化学特征(据张培善,1998Donnay等,1953修改)

      Table  1   Chemical composition of four common calcium rare earth fluoro-carbonate Minerals

      矿物名称 英文名称 代号 理想化学式 化学成分(%)
      REE2O3 CaO CO2 F
      氟碳铈矿 Bastnaesite B (Ce,La) [CO3]F 74.77 20.17 8.73
      氟碳钙铈矿 Parisite BS (Ce,La)2Ca[CO3]3F2 60.97 10.42 24.58 7.07
      伦琴钙铈矿 Roentgenite-Ce BS2 (Ce,La)3Ca2[CO3]5F3 57.24 13.12 25.77 6.63
      新奇钙铈矿 Synchysite S (Ce,La) Ca[CO3]2F 51.25 17.62 27.67 5.97
      下载: 导出CSV

      表  2   钙稀土氟碳酸盐矿物电子探针分析晶体选择及检出限

      Table  2   Analytical crystal selection and element detection limits for calcium rare earth fluoro-carbonate in EPMA analysis

      分析元素 选择晶体 检出限(10–6 分析元素 选择晶体 检出限(10–6
      F LDE1 344 Ce LiF 819
      C LDE2 1654 Pr LiFH 913
      Mg TAP 96 Nd LiFH 812
      Fe LiF 303 Sm LiFH 871
      Ca PETH 80 Eu LiFH 916
      U PETH 226 Gd LiFH 972
      Th PETH 206 Y TAP 272
      La LiF 923 Zr PETH 233
      下载: 导出CSV

      表  3   金川正长花岗岩中钙稀土氟碳酸盐矿物电子探针分析结果表(%)

      Table  3   EPMA results of calcium rare earth fluoro-carbonates in Jinchuan syenogranite

      化学成分 点1 点2 点3 点4 点5 点6 点7 点8 点9 点10 点11 点12
      实测值 F 5.97 7.83 7.10 7.18 6.29 7.91 7.37 6.85 8.29 5.63 5.61 6.94
      CO2 24.34 25.68 28.83 24.66 23.17 27.26 26.37 25.14 23.55 22.03 22.25 22.18
      MgO 0.06 0.01 0.03 0.02 0.10 0.02 0.02 0.02 0.02
      Gd2O3 0.31 0.22 1.84 1.82 1.66 0.59 0.42 0.64 0.31
      Eu2O3 0.26 0.11
      FeO 3.02 8.23 0.35 1.95 1.48 1.87 1.17 0.62 2.86 0.55 3.03 3.03
      Sm2O3 0.64 0.10 40.88 0.74 0.47 0.59 1.19 0.47 1.11 1.03 0.13 0.92
      Pr2O3 2.04 2.09 3.11 2.19 2.74 2.03 2.23 2.17 2.58 2.57 2.28 2.52
      Ce2O3 26.26 23.80 24.01 20.86 22.98 21.69 21.43 25.14 22.58 24.23 22.91 24.53
      La2O3 15.21 11.75 9.07 15.31 13.10 11.48 10.09 12.87 7.91 11.51 11.97 10.97
      CaO 12.19 8.98 15.62 15.83 15.91 18.59 18.75 18.55 17.53 19.04 16.32 17.17
      UO2 0.04 0.07 0.04 0.08 0.15 0.02 0.10 0.05 0.02 0.09
      ThO2 2.54 4.61 2.23 4.44 3.42 2.19 1.56 1.03 3.41 1.75 2.31 0.60
      Nd2O3 7.22 6.85 12.74 5.98 7.47 6.61 9.62 6.33 10.37 8.23 7.92 8.24
      ZrO2 0.06 0.06 0.06 0.02 0.07
      Y2O3 0.63 0.24 1.03 0.45 0.39 0.55 1.55 0.43 0.81 0.73 0.48 1.12
      Total 97.88 97.52 103.81 98.52 96.52 97.69 98.83 97.16 98.33 95.30 92.99 95.50
      ∑REE2O3 52.29 45.30 52.66 47.35 48.81 42.95 46.70 47.84 46.00 48.61 45.74 48.41
      理论分子式法 CO21 25.90 25.09 26.97 27.10 27.05 27.79 28.34 27.95 28.48 28.65 27.38 28.52
      Total1 99.44 96.93 101.95 100.96 100.40 98.22 100.80 99.97 103.26 101.92 98.12 101.85
      电荷平衡法 CO22 26.45 22.89 26.18 25.90 26.88 24.79 26.38 26.62 25.66 28.96 27.44 27.14
      Total2 99.99 94.72 101.16 99.76 100.24 95.23 98.84 98.64 100.44 102.24 98.18 100.46
      矿物种属判别 Par/Roe Par/Roe Syn Syn Syn Syn Syn Syn Syn Syn Syn Syn
       注:−表示低于检出限; 上角标12分别表示按照理论分子式法(方法1)与电荷平衡法(方法2)计算得到的值。
      下载: 导出CSV
    • 陈其慎, 张艳飞, 邢佳韵, 等. 国内外战略性矿产厘定理论与方法[J]. 地球学报, 2021, 42(2): 137−144.

      CHEN Qishen,ZHANG Yanfei,XING Jiayun,et al. Methods of Strategic Mineral Resources Determination in China and Abroad[J]. Acta Geoscientica Sinica,2021,42(2): 137−144.

      程秀花, 李艳广, 叶美芳, 等. 西北地区地质实验测试技术研究进展及其在地质调查中的应用[J]. 西北地质, 2022, 55(3): 170–190.

      CHENG Xiuhua, LI Yanguang, YE Meifang, et al. Progress in the Research on Geochemical Analytic Technique and Its Application in Geological Survey in Northwest China[J]. Northwestern Geology, 2022, 55(3): 170–190.

      范晨子, 詹秀春, 曾普胜, 等. 白云鄂博稀土氟碳酸盐矿物的 LA-ICP-MS 多元素基体归一定量分析方法研究[J]. 岩矿测试, 2015, 34(6): 609−616.

      FAN Chenzi, ZHAN Xiuchun, ZENG Pusheng, et al. Multi-element Content Analysis of Rare Earth Fluorocarbonates from Bayan Obo Deposit by Laser Ablation- Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis,2015,34(6):609−616.

      龚大兴, 田恩源, 肖斌, 等. 川滇黔相邻区古陆相沉积型稀土的发现及意义[J]. 矿床地质, 2023, 42(5): 1025−1033.

      GONG Daxing, TIAN Enyuan, XIAO Bin, et al. Significance and discovery of sedimentary REE deposits in adjacent areas of Sichuan, Yunnan and Guizhou[J]. Meneral Deposits,2023,42(5):1025−1033.

      黄舜华, 王中刚, 章钟嵋, 等. 氟碳铈矿形成条件的实验研究[J]. 矿物学报, 1986, (6)2: 155−160. doi: 10.3321/j.issn:1000-4734.1986.02.010

      HUANG Shunhua, WANG Zhonggang, ZHANG Zhongmei, et al. Experimental studies of the conditions of formation of Bastnaesite[J]. Acta Mineralogica Sinica,1986,(6)2:155−160. doi: 10.3321/j.issn:1000-4734.1986.02.010

      李献华, 苏犁, 宋彪, 等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 2004, 49(4): 401−402. doi: 10.3321/j.issn:0023-074X.2004.04.018

      LI Xianhua, SU Li, SONG Biao, et al. SHRIMP zircon U-Pb dating and geological significance of the Jinchuan ultramafic rocks[J]. Chinese Science Bulletin,2004,49(4):401−402. doi: 10.3321/j.issn:0023-074X.2004.04.018

      毛景文, 袁顺达, 谢桂青, 等. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 2019, 38(5): 935−969.

      MAO Jingwen, YUAN Shunda, XIE Guiqing, et al. New advances on metallogenic studies and exploration on critical minerals of China in 21st century[J]. Meneral Deposits,2019,38(5):935−969.

      毛景文, 宋世伟, 刘敏, 等. 稀土矿床: 基本特点与全球分布规律[J]. 地质学报, 2022, 96(11): 3675−3697. doi: 10.3969/j.issn.0001-5717.2022.11.001

      MAO Jingwen, SONG Shiwei, LIU Min, et al. REE deposits: basic characteristics and global metallogeny[J]. Acta Geologica Sinica,2022,96(11):3675−3697. doi: 10.3969/j.issn.0001-5717.2022.11.001

      孟大维, 吴秀玲, 杨光明, 等. 氟碳钙铈矿6R2新多型的高分辨电镜研究[J]. 地球科学, 1994, 19(5): 655−661+719−720.

      MENG Dawei,WU Xiuling,YANG Guangming,et al. A study of new polytype 6R2 in parasite by high resolution transmission electron microscopy[J]. Earth Science-Journal of China University of Geosciences,1994,19(5): 655−661+719 −720.

      孟大维, 吴秀玲, 潘兆橹, 等. 钙稀土氟碳酸盐矿物中三种B8S6型新规则混层结构的高分辨电镜研究[J]. 中国稀土学报, 1996, 14(, 1): 59−63. doi: 10.3321/j.issn:1000-4343.1996.01.011

      MENG Dawei, WU Xiuling, PAN Zhaolu, et al. HRTEM study of three new regular mixed-layer structures with type in calcium-rare earth fluorocarbonate minerals[J]. Journal of the Chinese Rare Earth Society,1996,14(,1):59−63. doi: 10.3321/j.issn:1000-4343.1996.01.011

      万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145−155.

      WAN Jianjun, PAN Chunrong, YAN Jie, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis,2021,40(1):145−155.

      王登红, 王瑞江, 孙艳, 等. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J]. 地球学报, 2016, 37(5): 569−580. doi: 10.3975/cagsb.2016.05.06

      WANG Denghong, WANG Ruijiang, SUN Yan, et al. A Review of Achievements in the Three-type Rare Mineral Resources (Rare Resources, Rare Earth and Rarely Scattered Resources) Survey in China[J]. Acta Geoscientica Sinica,2016,37(5):569−580. doi: 10.3975/cagsb.2016.05.06

      王鲜华, 潘兆橹. 牦牛坪稀土矿区氟碳铈矿与氟碳钙铈矿矿物学[J]. 河北地质学院学报, 1996, 19(3−4): 307−313+479−480.

      WANG Xianhua, PAN Zhaolu. The study on mineralogy of Bastnaesite and Paristie in Maoniuping ore deposite[J]. Journal of Hebei College of Geology,1996,19(3−4):307−313+479−480.

      吴秀玲, 杨光明, 潘兆橹, 等. 钙-铈氟碳酸盐矿物系列中新规则混层矿物的晶格象研究[J]. 矿物学报, 1991, 11(3): 193−199+289−290. doi: 10.3321/j.issn:1000-4734.1991.03.001

      WU Xiuling, YANG Guangming, PAN Zhaolu, et al. Lattice image study of new regular mixed-layer minerals in the calcium-cerium Fluoro-carbonate mineral series[J]. Acta Mineralogica Sinica,1991,11(3):193−199+289−290. doi: 10.3321/j.issn:1000-4734.1991.03.001

      吴秀玲, 杨光明, 潘兆橹. 钙-铈氟碳酸盐矿物中BmSn型新多型的发现及其微结构研究[J]. 电子显微学报, 1992, (3): 216−221.

      WU Xiuling, YANG Guangming, PAN Zhaolu. Discovery of new polytypes of the BmSn in the calcium-cerium fluoro carbonate minerals and their microstructural study[J]. Journal of Chinese Electron Microscopy Society,1992,(3):216−221.

      吴秀玲, 杨光明, 潘兆橹. 氟碳钙铈矿及B2S规则混层矿物型体间共晶格取向连生的透射电镜研究[J]. 矿物学报, 1993, 13(3): 214−219+295−296. doi: 10.3321/j.issn:1000-4734.1993.03.001

      WU Xiuling, YANG Guangming, PAN Zhaolu. A TEM study of the syntaxies formed from the polytypes of parasite (BS) and regular mixed-layer mineral B2S[J]. Acta Mineralogica Sinica,1993,13(3):214−219+295−296. doi: 10.3321/j.issn:1000-4734.1993.03.001

      吴秀玲, 孟大维, 杨光明, 等. 钙稀土氟碳酸盐矿物中体衍交生结构的电子显微镜研究[J]. 中国稀土学报, 1996, 14(, 2): 170−174. doi: 10.3321/j.issn:1000-4343.1996.02.016

      WU Xiuling, MENG Dawei, YANG Guangming, et al. Study of transmission electron microscopy of the syntactic intergrowth structure in the calcium rare earth fluorocarbonate minerals[J]. Journal of the Chinese Rare Earth Society,1996,14(,2):170−174. doi: 10.3321/j.issn:1000-4343.1996.02.016

      解港, 周丽, 张为, 等. 氟碳铈矿-(La)的水热合成实验[J]. 矿物学报, 2018, 38(5): 469−473.

      XIE Gang, ZHOU Li, ZHANG Wei, et al. Experimental study on the hydrothermal synthesis of Bastnaesite-(La)[J]. Acta Mineralogica Sinica,2018,38(5):469−473.

      修迪, 徐翠, 何丽, 等. 氟碳铈矿、氟碳钙铈矿在岩矿鉴定及电子探针上的对比分析[J]. 中国锰业, 2017, 35(6): 63−65.

      XIU Di, XU Cui, HE Li, et al. A Comparative Analysis of Bastnaesite and Parisite in Rock Ore Appraisal and Electronic Probe[J]. China’s Manganese Industry,2017,35(6):63−65.

      修群业, 陆松年, 于海峰, 等. 龙首山岩群主体划归古元古代的同位素年龄证据[J]. 前寒武纪研究进展, 2002, 25(2): 93−96.

      XIU Qunye, LU Songnian, YU Haifeng, et al. The Isotopic age Evidence for Main Longshoushan Group Contributing to Palaeoproterozoic[J]. Progress in Precambrian Research,2002,25(2):93−96.

      杨光明, 吴秀玲, 潘兆橹. 氟碳钙铈矿中6R和3R多型微双晶结构的透射电镜研究[J]. 地球科学, 1992, 17(4): 447−454.

      YANG Guangming, WU Xiuling, PAN Zhaolu. A study of the microtwin structures of coexisting 6R and 3R polytypes in pariste using transmission electron microscopy[J]. Earth Science-Journal of China University of Geosciences,1992,17(4):447−454.

      杨光明, 吴秀玲, 潘兆橹. 氟碳钙铈矿的42R、48R和16H新多型[J]. 矿物学报, 1993, 13(4): 331−334. doi: 10.3321/j.issn:1000-4734.1993.04.007

      YANG Guangming, WU Xiuling, PAN Zhaolu. A TEM study of new polytypes 42R, 48R and 16H existing in Parisite[J]. Acta Mineralogica Sinica,1993,13(4):331−334. doi: 10.3321/j.issn:1000-4734.1993.04.007

      杨学明, 张培善, 陶克捷, 等. 白云鄂博稀土氟碳酸盐矿物的共面网定向附生结构[J]. 科学通报, 1998, 43(2): 209−212. doi: 10.3321/j.issn:0023-074X.1998.02.024

      YANG Xueming, ZHANG Peishan, TAO Kejie, et al. Study of epitaxial intergrowth structure in the calcium rare earth fluorocarbonate minerals from Bayan Obo Deposit[J]. Chinese Science Bulletin,1998,43(2):209−212. doi: 10.3321/j.issn:0023-074X.1998.02.024

      杨主明, Smith M, Henderson P, 等. 牦牛坪钙稀土氟碳酸盐多体矿物的成分特征及其成因意义[J]. 中国稀土学报, 2002, 20(, 1): 61−67. doi: 10.3321/j.issn:1000-4343.2002.01.014

      YANG Zhuming, Smith M, Henderson P, et al. Composition of Ca-REE fluorocarbonate minerals in Maoniuping and implications to their genesis[J]. Journal of the Chinese Rare Earth Society,2002,20(,1):61−67. doi: 10.3321/j.issn:1000-4343.2002.01.014

      张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261−274. doi: 10.18654/1000-0569/2019.01.21

      ZHANG Di, CHEN Yi, MAO Qian, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica,2019,35(1):261−274. doi: 10.18654/1000-0569/2019.01.21

      张培善, 陶克捷, 杨主明, 等. 中国稀土矿物学[M]. 北京: 科学出版社, 1998.

      ZHANG Peishan,TAO Kejie,YANG Zhuming,et al. Mineralogy of Rare Earth Elements in China[M]. Beijing: Science Press, 1998.

      张文兰, 胡欢, 刘鹏, 等. 重稀土-钒-铝硅酸盐矿物电子探针定量分析[J]. 岩矿测试, 2022, 41(5): 754−763.

      ZHANG Wenlan, HU Huan, LIU Peng, et al. Electron probe quantitative analysis of HREE-V-aluminosilicate minerals[J]. Rock and Mineral Analysis,2022,41(5):754−763.

      张晓旭, 苏尚国, 刘美玉, 等. 甘肃金川早古生代正长花岗岩锆石SHRIMP U-Pb年代学、岩石学、地球化学特征及其构造意义[J]. 地学前缘, 2021, 28(4): 283−298.

      ZHANG Xiaoxu, SU Shangguo, LIU Meiyu. Characteristics and tectonic significance of the early Paleozoic syenite granite from Jinchuan, Gansu Province[J]. Earth Science Frontiers,2021,28(4):283−298.

      Batapola N M, Dushyantha N P, Premasiri H M R, et al. A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka[J]. Journal of Asian Earth Sciences,2020,200:104475. doi: 10.1016/j.jseaes.2020.104475

      Beland C M J, Williams-Jones A E. The genesis of the Ashram REE deposit, Quebec: Insights from bulk-rock geochemistry, apatite-monazite-bastnäsite replacement reactions and mineral chemistry[J]. Chemical Geology,2021,578:120298. doi: 10.1016/j.chemgeo.2021.120298

      Donnay G, Donnay J D H. The crystallography of bastnaesite, parasite, roentgenite, and synchysite[J]. American Mineralogist, 1953, 38: 932-963.

      Gysi A P, Williams-Jones A E. The thermodynamic properties of bastnäsite-(Ce) and parisite-(Ce)[J]. Chemical Geology,2015,392:87−101. doi: 10.1016/j.chemgeo.2014.11.001

      Landuyt J V, Amelinck S. Multiple beam direct lattice imaging of new mixed- layer compounds of the bastnaesite-syn chysite series[J]. Am. Mineral.,1975,60:351−358.

      Migdisov A, Williams-Jones A E, Brugger J, et al. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations[J]. Chemical Geology,2016,439:13−42. doi: 10.1016/j.chemgeo.2016.06.005

      Pyle J M, Spear F S, Wark D A. Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls[J]. Reviews in Mineralogy & Geochemistry,2002,48:337−362.

      She H D, Fan H R, Yang K F, et al. Complex, multi-stage mineralization processes in the giant Bayan Obo REE-Nb-Fe deposit, China[J]. Ore Geology Reviews,2021,139:104461. doi: 10.1016/j.oregeorev.2021.104461

      Williams-Jones A E, Wood S A. A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals[J]. Geochimica et Cosmochimica Acta,1992,56(2):725−738. doi: 10.1016/0016-7037(92)90093-X

      Zeng R Y, Lai J Q, Mao X C, et al. Geochemistry, zircon U–Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication[J]. Journal of Asian Earth Sciences,2016,121:20−33.

      Zhang X, Yang S Y, Zhao H, et al. Effect of beam current and diameter on electron probe microanalysis of carbonate minerals[J]. Journal of Earth Science,2019,30(4):834−842. doi: 10.1007/s12583-017-0939-x

      Zheng X, Liu Y, Zhang L. The role of sulfate-, alkali-, and halogen-rich fluids in mobilization and mineralization of rare earth elements: Insights from bulk fluid compositions in the Mianning–Dechang carbonatite-related REE belt, southwestern China[J]. Lithos, 2021, 386–387: 106008.

    图(3)  /  表(3)
    计量
    • 文章访问数:  166
    • HTML全文浏览量:  10
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-28
    • 修回日期:  2024-01-23
    • 录用日期:  2024-01-31
    • 网络出版日期:  2024-02-27
    • 刊出日期:  2024-10-19

    目录

      /

      返回文章
      返回