ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

白云鄂博矿区矿石中磁铁矿及萤石的X射线粉晶衍射半定量分析方法及矿物三维空间分布模型

孙宁岳, 闫国英, 李国武, 王昭静, 申俊峰, 徐渴鑫, 孟文祥, 李凤坤

孙宁岳,闫国英,李国武,等. 白云鄂博矿区矿石中磁铁矿及萤石的X射线粉晶衍射半定量分析方法及矿物三维空间分布模型[J]. 西北地质,2024,57(4):113−120. doi: 10.12401/j.nwg.2024021
引用本文: 孙宁岳,闫国英,李国武,等. 白云鄂博矿区矿石中磁铁矿及萤石的X射线粉晶衍射半定量分析方法及矿物三维空间分布模型[J]. 西北地质,2024,57(4):113−120. doi: 10.12401/j.nwg.2024021
SUN Ningyue,YAN Guoying,LI Guowu,et al. Semi-quantitative Analysis of Magnetite and Fluorite by X-ray Powder Crystal Diffraction and Three-dimensional Distribution Model of Minerals in Bayan Obo Mining Area[J]. Northwestern Geology,2024,57(4):113−120. doi: 10.12401/j.nwg.2024021
Citation: SUN Ningyue,YAN Guoying,LI Guowu,et al. Semi-quantitative Analysis of Magnetite and Fluorite by X-ray Powder Crystal Diffraction and Three-dimensional Distribution Model of Minerals in Bayan Obo Mining Area[J]. Northwestern Geology,2024,57(4):113−120. doi: 10.12401/j.nwg.2024021

白云鄂博矿区矿石中磁铁矿及萤石的X射线粉晶衍射半定量分析方法及矿物三维空间分布模型

基金项目: 包头钢铁(集团)有限责任公司矿山研究院(有限责任公司)2021年A类重点项目“白云鄂博稀土−铌−铁资源矿物标型学研究(BGKY-ZH-2021-Z-017)”资助。
详细信息
    作者简介:

    孙宁岳(1998−),男,博士研究生,研究方向矿物晶体结构与晶体化学。E−mail:sunningyue1998@163.com

    通讯作者:

    李国武(1964−),男,教授,博士,从事矿物晶体结构与晶体化学研究。E−mail:liguowu@cugb.edu.cn

  • 中图分类号: P575.5

Semi-quantitative Analysis of Magnetite and Fluorite by X-ray Powder Crystal Diffraction and Three-dimensional Distribution Model of Minerals in Bayan Obo Mining Area

  • 摘要:

    白云鄂博超大型铁-稀土-铌矿床,伴生大量萤石等资源。现阶段,矿山资源评价采用的是多元素定量分析方法,该方法存在不能客观的表征出可用资源的矿物组成和赋存状态的缺陷。为了较为准确地确定元素赋存形式及磁铁矿、萤石矿物含量,本研究选用粉晶X射线衍射K值法定量分析法,通过以白云鄂博白云石为参比物质分别调配1∶1比例产自白云鄂博的磁铁矿、萤石与白云石单矿物样品,获得以白云石为参比的磁铁矿参比强度KFe3O41 = 0.61、萤石参比强度KCaF21 = 2.51,同时,精选了白云鄂博其他常见共生矿物的K值,以实现对白云鄂博不同矿石类型中矿物含量的半定量分析,通过测试已知标样验证了改进优化K值的正确性和适用性。利用大量实际岩心矿石样品矿物定量分析数据,通过克里金插值法获得白云鄂博主矿磁铁矿和萤石矿物的空间分布三维模型,初步呈现了资源矿物的空间分布特征,推测在矿区深部仍存在巨大的找矿潜力。X射线粉晶衍射定量分析技术直接对可回收资源的矿物半定量分析研究,为矿山精准分采和资源综合利用探索了新的解决思路,也为选矿流程的优化提供的重要的技术参考。

    Abstract:

    Bayan obo super large Fe-RE-Nb deposit, associated with a large amount of fluorite and other resources. At present, the multi-element quantitative analysis method is used in the evaluation of mine resources, which can not objectively characterize the mineral composition and occurrence state of available resources. In order to determine the occurrence form of elements and the content of magnetite and fluorite minerals more accurately, this study uses the powder crystal X-ray diffraction K-value method for quantitative analysis, and uses dolomite as the reference material to prepare 1∶1 proportion of single mineral samples of magnetite, fluorite and dolomite produced in Bayan Obo, the reference intensity of magnetite with dolomite as the reference is KFe3O4 = 0.61, and the reference intensity of fluorite is KCaF2 = 2.51. At the same time, the K value of other common co-minerals in Bayan Obo is selected. In order to realize the semi-quantitative analysis of the mineral content in different ore types of Bayan Obo, the correctness and applicability of the improved optimization K are verified by testing the known standard samples. Based on the quantitative analysis data of a large number of actual core ore samples, a three-dimensional model of spatial distribution of magnetite and fluorite minerals in Bayan Obo main mine was obtained by Kriegin interpolation method, and the spatial distribution characteristics of resource minerals were preliminarily presented. It is speculated that there is still a huge prospecting potential in the deep part of the mine area. X-ray powder diffraction quantitative analysis technology can directly study the semi-quantitative analysis of minerals in recoverable resources, which explores a new solution for precise mining and comprehensive utilization of resources, and also provides an important technical reference for the optimization of mineral processing process.

  • 近年来随着国内页岩油勘探的不断突破,以页岩油为代表的非常规勘探理论也取得飞速发展(邹才能等,2015孙焕泉等,2019朱如凯等,2019黎茂稳等,2020金之钧等,2021a2021b杨智等,2021),与页岩油紧密相关的细粒沉积岩已成为页岩油勘探不可或缺的一部分,细粒沉积岩的发育环境及岩相组合类型研究日渐深入(吴靖等,2017张顺等,2017Li et al.,2020孔祥鑫,2020刘惠民等,2020姜在兴等,2021赵贤正等,2021)。东濮凹陷作为渤海湾盆地南缘的一个断陷咸化湖盆,细粒沉积岩和盐岩普遍发育。盐间细粒沉积岩具有分布稳定,有机质含量高,油气显示良好的特点,具备页岩油勘探潜力(孙业峰,2014张晶等,2015李红磊等,2020彭君等,2021)。近十年来,东濮凹陷针对泥岩裂缝型、夹层型和基质型页岩油进行了勘探研究,先后完钻了9口页岩油专探井,获得一定产能,证实了盐区页岩油的资源潜力,也初步明确了东濮凹陷细粒沉积岩岩相与含油性关系及对页岩油勘探开发的影响(王金萍等,2018Ping et al.,2020Hu et al.,2021)。现有勘探实践认为东濮凹陷页岩油细粒沉积组合发育特征相较于国内已突破的页岩油岩相组合类型有所不同,具有岩层厚度薄、岩性变化快、含油性非均质性强的特征。受前期地质认识和实际取心资料影响,关于东濮凹陷细粒沉积物特点和形成机制尚未进行详细研究,严重制约了东濮页岩油勘探进程。因此,本文通过精细岩心观察、薄片分析、扫描电镜、全岩X衍射等分析手段对东濮凹陷濮卫次洼细粒沉积物发育类型进行了详细研究,结合区域构造演化和古气候、古物源特征,明确细粒沉积发育的控制因素,建立了有利岩相发育模式,支撑东濮凹陷页岩油风险勘探。

    东濮凹陷位于鲁、豫两省交界处,是渤海湾盆地南端的次一级构造单元,面积约5300 km2,呈NNE向展布,是一个以新生界地层为主的断陷型盐湖凹陷。盆地具有南宽北窄、东断西超、东西分带、南北分块、隆洼相间的构造格局(图1)。地层由古近系沙河街组(Es)、东营组(Ed)和新近系馆陶组(Ng)、明化镇组(Nm)以及第四系平原组(Qp)组成。沙河街组(Es)为主要油气勘探层系,自下而上分为沙四段(Es4)、沙三段(Es3)、沙二段(Es2)和沙一段(Es1)。

    图  1  东濮凹陷区域位置及构造地层格架图(据彭君等,2021修改)
    Figure  1.  The regional position and tectonic stratigraphic framework of Dongpu Sag

    东濮凹陷古近系盆地沉积充填厚度可达40006000 m,岩性以粉砂岩、砂岩和泥岩夹膏-盐岩为主,具有“满盆含砂、普遍偏细、砂泥岩薄互层、膏盐岩发育”的特点。受构造活动影响,盆地经历了从单一洼陷到多隆多洼的演化过程,纵向发育两个二级陆相层序,具有“脉冲式断陷、快进慢退、持续充填”沉积演化特点(图2)。盆地整体具有西高东低、西缓东陡的古地貌特征,具有“远源汇聚、高隆闭流”的“源-汇”体系(中原油田内部资料)。古近系沉积物分别来自东西两侧不同物源体系,西侧主要表现为远源长轴物源体系特征,母岩类型主要包括上古生界-中下三叠统的碎屑岩,古生界碳酸盐岩以及太古-元古界变质花岗岩基底;东侧为近源短轴、小而多的沟山体系,母岩主要为上古生界碳酸盐岩和中下三叠统的碎屑岩(中原油田内部资料)。在沙四上-沙三段为湖侵体系域晚期-高位体系域早期,多为半深湖-深湖沉积,广泛发育优质烃源岩(马小祥等,2019刘秀岩等,2020舒徐洁等,2022)。

    图  2  东濮凹陷古近系沉积演化及盐度变化图(据中原油田内部资料修改)
    Figure  2.  Sedimentary evolution and salinity variation of Paleogene in Dongpu Sag

    位于东濮凹陷北部的濮卫次洼是较为富集生烃洼陷,是濮城断层下降盘的一个半地堑式洼陷,整体东低西高,向南往文留构造抬升,向北过渡到陈营构造,勘探面积约120 km2。受东、西及北部物源的供给,濮卫次洼北翼砂岩较发育,南翼砂岩相对不发育,为细粒沉积岩主要发育区域。

    细粒沉积作为页岩油气的物质基础和储集载体,近年来已成为国内外沉积学研究的热点领域,自20世纪30年代由Krumbein提出概念以来备受关注。(Krumbein,1932Potter et al.,1980Camp et al.,2016操应长等,2023)受限于超微观实验分析技术,对粒度小、成分复杂的细粒沉积研究还相对滞后,尤其在细粒沉积分类命名、沉积演化等方面尚未形成统一方案和认识(Tucker,2001Macquaker et al.,2003姜在兴等,2013周立宏等,2016陈世悦等,2016张顺等,2017)。目前,国内在页岩油勘探过程针对细粒沉积岩多采用矿物成分加有机质丰度和沉积构造等分类方案,并根据不同盆地背景,形成了“逐盆逐建,逐次逐建”的细粒沉积岩划分方案。(姜在兴等,20132021张少敏等,2018黄小青等,2020白楠等,2021朱如凯等,2022赵贤正等,2023操应长等,2023)本次研究为加强与同类型盆地的对比性,在薄片分析、全岩X衍射分析及有机碳分析基础上,采用三要素三端元细粒岩分类方案进行岩相分类。

    在东濮细粒沉积岩研究中,通过对W410、WG4、V456、V457HF、P161等5口页岩油兼探取心井,共计386 m的岩心进行厘米级精细描述,按照取样规范分别对222块纹层状泥页岩样品、153块层状样品和165块块状样品进行了薄片分析、扫描电镜、全岩X衍射、有机碳分析,发现研究区细粒沉积岩整体表现为灰色、深灰色,具有块状、层状(层厚>1 mm)、纹层状(层厚<1 mm)沉积构造(图3),岩石组分为粉砂-细粉砂级石英和长石、碳酸盐、黏土矿物、有机碳以及黄铁矿,其中碳酸盐含量均值为37.5%(1%~85%),黏土矿物为33%(3.4%~64%),石英长石等陆源碎屑为22%(3.3%~64%)。脆性矿物含量高,均值为46.5%(13%~86%),主要为方解石纹层和白云石微晶颗粒。黏土矿物中主要为伊利石,约占74.7%(68%~82.5%)(图4)。有机碳含量非均质性强,0.5~3.58%不等,均值约1.1%,根据实测情况结合东濮地质特征,将TOC介于0.5~1%归位低有机质,1~1.5%为中有机质,大于1.5%为富有机质,参与分类命名。

    图  3  东濮凹陷典型细粒沉积岩宏观与微观特征
    A.W410井3550.74 m,块状构造;b.W410井3546.70 m,层状构造;c.V457HF井3676.47 m,纹层状构造;d. W410井3550.74 m,灰色含粉砂泥岩,微裂缝发育,10×5(单偏光)。e.V457HF井3701.50 m 深灰色层状碳酸盐质黏土岩,层状(>1 mm)方解石与泥岩互层,10×5(单偏光);f.V457HF井3675.00 m 深灰色纹层状黏土质灰岩,纹层状(<1 mm方解石与黏土层)10×5(单偏光);h.W410井3588.55 m,深灰色纹层状白云质泥岩,微裂缝发淡黄色荧光,TOC=2.8%,10×5(荧光);i.V457HF井3797.57 m,纹层状方解石与黏土层互层,484×(扫描电镜下);j. P161井3778.21 m,深灰色层状含粉砂泥岩中发育高岭石晶间孔,5533×(扫描电镜)
    Figure  3.  Macroscopic and microscopic characteristics of typical fine sedimentary rocks in Dongpu Sag
    图  4  东濮凹陷V457HF井细粒沉积单井综合柱状图
    Figure  4.  Comprehensive histogram of V457HF fine-grained sedimentary single well in Dongpu Sag

    依据濮卫洼陷5口井540块细粒沉积岩样品分析结果,分别以岩石组分、沉积构造和有机质三个因素为基础,按长英质矿物、碳酸盐矿物、黏土矿物含量为端元矿物进行岩相分类析,共划分出4个亚类,12种岩相类型,主要为深灰-灰黑色纹层/层状中有机质碳酸盐岩、富有机质碳酸盐质混合岩、黏土质混合岩,深灰-灰黑色纹层/层状富有机质黏土岩等(图5)。其中,纹层状富有机质含碳酸质黏土岩-纹层状富有机质黏土质碳酸盐岩,具有有机碳和脆性矿物含量双高、储集空间发育的特点,为最有利的页岩油勘探岩相。该类型细粒岩整体颜色较深,页理发育,TOC含量绝大多数大于1%(图6)。多发育碳酸盐纹层中晶间孔隙、黏土矿物间微孔、有机质孔等微孔隙和微裂缝(图3H, J),孔喉以宏孔-介孔为主,孔隙具有顺层发育的特征,储集性好。层状黏土质混合岩具有一定的有机质丰度,并且发育少量的层间缝,含油性中等,部分层段具有一定的页岩油勘探潜力;层状黏土岩岩石致密,有机质丰度低,微裂缝、溶蚀孔和有机孔不发育,含油性差。

    图  5  东濮凹陷沙三-沙四段细粒成分及类型频率图
    Figure  5.  Distribution of fine-grained rock frequency in Es3 – Es4 of Dongpu Sag
    图  6  部2井盐韵律特征
    Figure  6.  Characteristics of salt rhythm in well Bu 2

    根据岩心特征和厘米级纹层解剖,细粒沉积岩在纵向上表现出由长英质岩-长英质黏土岩-块状黏土岩-层状黏土岩-纹层状碳酸质混合岩-纹层状碳酸盐岩-含膏泥岩-膏盐岩的规律性变化(图6)。结合测井、录井数据,细粒沉积在横向上按盐湖沉积规律呈现有序分布。向湖心方向,随水深的加大,长英质细粒混合沉积岩及长英岩类减少,黏土质细粒混合沉积岩与黏土岩类增加,灰云质细粒混合沉积岩与碳酸盐岩增加。从物源区到湖中心盐岩发育区,受陆源碎屑沉积分异作用细粒沉积岩在湖区内呈环带状分布(图7)。

    图  7  东濮凹陷沙三下亚段细粒沉积岩相图
    Figure  7.  The fine-grained sedimentary lithofacies map of the lower third member of Shahejie Formation in Dongpu Sag

    针对东濮细粒沉积特征,本次研究依据非常规油气地质学理论结合国内油田在页岩油勘探领域的新认识(吴靖等,2017张建国,2017张文伟,2017刘可禹等,2019刘惠民等,2020滕建彬,2020彭军等,2022王鑫锐等,2023于乐丹等,2024),从盆地系统演化角度,结合古气候、古地貌、古物源等因素分析细粒沉积岩的形成机理,认为东濮凹陷细粒沉积受构造、物源、气候综合影响显著,是三者综合作用下的结果,具有典型构造-古气候-沉积耦合控制下事件性沉积特征。

    区域构造演化方面,米兰科维奇旋回分析表明东濮凹陷沙三段、沙四段的底界年龄分别为 44.21 Ma和51.00 Ma(刘秀岩等,2020),而在50 Ma的沙四段为太平洋板块俯冲转向,进一步加固了东濮“西缓东陡”的古地貌格局,同时研究表明东部陆相盆地在50~42 Ma时期处于古近纪古始新统PETM极热事件后的古气候恢复和生态系统重建的过程,广泛发育湖相咸化烃源岩(石巨业等,2019)。根据钻井取心资料显示,在沙四上与沙三下地层分界线见到含砾砂岩层分布,反映湖盆由沙四期兰聊断裂活动形成单洼到沙三期多条断裂强烈活动形成多洼的构造格局和古地貌特征,断层破折带发育浊积砂体,上升盘发育滩坝砂,近湖盆中心发育稳定细粒沉积。

    古物源和沉积体系方面,东濮凹陷古近系具有“远源汇聚、高隆闭流”的源-汇体系特征(中原油田内部报告),主要发育六大物源区,最远物源区可到达太行山西南麓,包括五种主要母岩类型:中生界碎屑岩和火山岩、古生界碳酸盐岩和碎屑岩、太古-元古界变质岩基底(靳亚勤等,2019)。其中三叠系钙质粉砂岩和上古生界碳酸盐岩的风化提供了黏土、碳酸盐及粉砂作为细粒沉积的物质基础,是造成东濮凹陷“粒度偏细、矿化度偏高、碳酸盐发育”的重要因素。近年来勘探实践及研究表明细粒沉积岩的形成与沉积相带有着密切关联(王勇等,2015金忠慧,2017吴靖等,2017刘惠民等,20202023何文军等,2023赵贤正等,2023),不同相带细粒岩类型不同。三角洲前缘区发育长英质黏土岩、长英质岩,层理构造以块状为主,浅湖相区发育黏土岩、黏土质混合岩,层理构造以层状为主,半深湖相区发育碳酸盐岩、黏土质碳酸盐岩,层理构造以纹层状为主;浊积区主要为块状黏土岩(表1)。

    表  1  东濮凹陷细粒岩相与沉积相分布关系
    Table  1.  Relationship between fine-grained lithofacies and sedimentary facies distribution in Dongpu Sag
    沉积亚相 颜色 沉积构造 岩相数量
    (个)
    主要岩相
    三角洲前缘 深灰、灰色、暗紫色 块状 8 深灰色长英质黏土岩、深灰色块状黏土质长英质岩、深灰色块状长英质岩
    浅湖 灰色、深灰色、灰黑色、浅灰色 层状、纹层状 31 深灰-灰黑色层状黏土岩、深灰-灰黑色层状黏土质混合岩、深灰-灰黑色纹层状碳酸盐岩、深灰-灰黑色层状
    长英质黏土岩
    半深湖 灰色、深灰色、灰黑色、深棕色 纹层状、层状 45 深灰-灰黑色纹层状碳酸盐岩、深灰-灰黑色纹层状黏土质碳酸盐、深灰-灰黑色纹层状黏土质混合岩、深灰-灰黑色纹层状黏土岩、深灰-灰黑色纹层状碳酸盐质黏土岩
    浊积区 浅灰色、灰色、棕灰色、深灰色 层状、块状 77 深灰-灰黑色块状黏土岩、深灰-灰黑色层状黏土岩、深灰-灰黑色块状黏土质混合岩、浅灰-灰色块状长英质黏土岩
    下载: 导出CSV 
    | 显示表格

    古气候及古水深方面,综合岩心、微量元素、有机质和矿物含量分析,细粒沉积岩纵向岩相组合受短周期古气候及其伴随的物源强弱和湖水深度变化控制(金忠慧,2017马义权,2017吴靖等,2017张文伟,2017杨万芹等,2018)。依据P161井岩心揭示深灰色纹层状碳酸盐质页岩与浅灰色含膏泥岩频繁交互,反映浅水环境的极细粒滩坝砂与深水浊积砂纵向叠置(图8)。在岩心组合纵向上主要表现为一套砂-泥-碳酸质岩、碳酸盐岩-膏(质)岩-盐岩等蒸发浓缩的沉积旋回。沉积构造上纹层状、层状、块状构造频繁交互,代表静水条件的纹层状沉积构造与反映快速沉积的块状构造呈互层发育,纹层状碳酸质泥页岩与层状细粒混合岩纵向叠置,反映了湖水频繁震荡过程。利用泥岩微量元素分析古气候条件及古水深变化,通过对P161井连续岩性微量元素分析发现反映古气候干湿条件的Sr/Cu指数和古水深Fe/Mn指数,呈现规律性变化。Fe/Mn指示浅水环境与Sr/Cu反映干旱气候相对应,发育浅湖滩坝砂岩和块状泥岩,有机碳含量低黏土矿物含量高。潮湿环境对应的深水期多发育纹层状泥岩、纹层状泥质碳酸盐岩,具有高有机质高碳酸盐含量特征。此外,通过孢粉、全岩矿物和有机碳综合分析中指出在短周期内古气候波动与有机质富集有明显的相关性,古气候的频繁波动对应了有机碳含量也纵向呈现较大非均质性。(马小祥等,2019舒徐洁等,2022

    图  8  东濮凹陷细粒沉积组合深水-浅水沉积相序剖面(据P161井)
    Figure  8.  Deepwater-shallow water sedimentary facies sequence section of fine-grained sedimentary assemblage in Dongpu sag(Based on P161)

    综合分析认为东濮凹陷沙四上-沙三段的细粒沉积岩是构造-古气候-沉积耦合控制下的产物,细粒沉积普遍发育在湖盆高位域至湖水蒸发浓缩成盐的低位域阶段。在旋回沉积初期受控盆断层兰聊正断层活动影响盆地内局部洼陷可容空间增大,上升盘隔档形成封闭湖盆,在潮湿环境下东西两侧母岩区的石炭二叠系—三叠系的钙质砂岩和碳酸盐岩作为沉积物源的大量注入,直至达到最大湖泛面的高位域,湖盆整体以碎屑沉积为主,洼陷中心发育块状泥岩-泥质粉砂岩-灰质泥岩岩相,湖水整体盐度相对偏低属于微咸水环境,湖相微生物开始繁盛,有机质逐渐聚集。随着短周期内气候趋于干旱,物源减弱,湖水注入量减少,蒸发浓缩作用增强,湖水矿化度升高,水体变浅,趋于微咸化-咸化阶段,化学沉积发育,环境季节性变化形成碳酸质-膏质纹层。洼陷内发育纹层状灰(云)质泥岩-纹层状泥灰(云)-混合岩岩相,该时期受季节性洪水影响显著,伴有浊积砂体等洪水重力流沉积。微生物周期性勃发,有机质大量富集为细粒沉积页岩油发育的优势期。在末期随着气候逐渐干旱,湖盆萎缩,物源不发育,湖水矿化度增加,湖水整体为咸化盐湖,发育膏盐-盐岩沉积。(图9

    图  9  东濮凹陷盐湖细粒沉积模式图
    Figure  9.  Fine grain sedimentary pattern map of salt lake in Dongpu Sag

    (1)东濮凹陷北部濮卫次洼在沙四上—沙三段广泛发育细粒沉积岩,纵向上表现为深灰色纹层状碳酸盐质页岩与浅灰色含膏泥岩频繁交互,块状、层状、纹层状沉积构造叠置发育。碎屑组分复杂以粉砂-细粉砂级石英和长石、碳酸盐类、黏土矿物为主。按三要素三端元细粒岩分类方案,共划分出12类细粒岩相,深灰-灰黑色纹层/层状碳酸盐岩、碳酸盐质混合岩为页岩油勘探的有利岩相。

    (2)细粒沉积岩岩石组构、沉积组合和微量元素特征揭示,东濮凹陷细粒沉积受构造、物源、气候综合影响显著,是三者综合作用下的结果,具有典型构造-气候-沉积耦合控制下事件性沉积特征。构造活动控制盆地可容空间,古气候干旱潮湿变化造成湖盆水体频繁波动,控制细粒沉积岩岩相组合,物源区碳酸质母岩影响湖水矿化度,为藻类生物勃发提供物质基础,控制有机质富集。

  • 图  1   配制样品中矿物百分含量与K值法计算结果的线性相关分析(K值来源晶体学数据库)

    Figure  1.   Linear correlation analysis between the percentage of minerals in the prepared samples and the results calculated by the K value method (K-values sourced from the crystallography database)

    图  2   配制样品中矿物百分含量与K值法计算结果线性相关分析(K值来源本次研究实测)

    Figure  2.   Linear correlation analysis between the percentage of minerals in the prepared samples and the results calculated by the K value method (K-values derived from measurements in this study)

    图  3   采样钻孔位置在白云鄂博主矿区分布图 (据徐志豪等,2023修改)

    Figure  3.   Distribution map of sampling locations in the main pit of Bayan Obo

    图  4   钻孔8-01化学分析全铁含量与K值法半定量分析矿物含量协同图

    Figure  4.   Synergistic diagram of full iron content analysis and semi-quantitative analysis of mineral content by K-value method in drill hole 8-01

    图  5   K值法分析与化学元素全铁分析线性相关分析

    Figure  5.   Linear correlation analysis between K-value method analysis and total iron analysis of chemical elements

    图  6   白云鄂博主矿萤石及磁铁矿分布模型(坐标轴字母代表方位S:南 E:东)

    Figure  6.   Distribution map of fluorite and magnetite ore deposits in the main pit of Bayan Obo

    表  1   代表矿石类型样品中典型矿物种类

    Table  1   Typical mineral species represented in samples of different ore types

    勘探
    线号
    钻孔号 样品原
    始编号
    标高(m) 主要矿物种类(%)* 矿石类型
    3副 3F-6 45 1339 磁铁矿(9.98 51.81)、霓石(61.13 26.93)、萤石(6.59 6.85)、白云石(12.63 8.16)、方铅矿(9.98 6.25 霓石型磁铁矿矿石
    4 4-4 50 1364 磁铁矿(17.66 57.80)、萤石(34.81 22.83)、白云石(9.83 4.00)、
    重晶石(37.66 15.35
    萤石型磁铁矿矿石
    8 8-6 106 1210 磁铁矿(3.80 22.86)、萤石(11.33 13.65)、白云石(81.06 60.66)、重晶石(3.79 2.84 白云石型磁铁矿矿石
    9 9-5 30 1397 磁铁矿(18.89 62.08)、萤石(19.02 12.52)、白云石(15.26 6.24)、重晶石(46.84 19.16)、霓石、氟碳铈矿、独居石 萤石型磁铁矿矿石
    8 8-7 23 1416 萤石(36.04 30.33)、磁铁矿(7.29 35.4)、赤铁矿(19.46 11.77)、
    白云石(16.79 10.15)、重晶石(13.04 7.89)、石英(7.38 4.46
    萤石型磁(赤)铁矿矿石
    8 8-01 237 912 磁铁矿(7.28 38.08)、白云石(77.47 50.46)、萤石(3.8 3.98)、
    重晶石(11.84 7.48
    白云石型磁铁矿矿石
    8 8-01 141 1157 磁铁矿(1.79 11.53)、云母(24.8 19.9)、萤石(11.42 18.8)、
    白云石(5.78 4.64)、长石(56.24 45.13
    云母型磁铁矿矿石
    8 8-01 212 977 磁铁矿(21.65 54.73)、钠闪石(28.45 13.21)、萤石(21.78 19.01)、云母(24.38 11.32)、白云石(3.71 1.72 萤石石型磁铁矿矿石
    8 8-6 55 1348 磁铁矿(44.16 70.63)、钠闪石(15.18 4.46)、白云石(4.4 1.29)、
    长石(5.51 1.62)、萤石(9.44 15.76)、云母(21.22 6.23
    萤石石型磁铁矿矿石
    8副 8F-12 110 1218 磁铁矿(56.19 72.98)、萤石(22.3 21.88)、白云石(8.43 2.01)、
    云母(4.70 1.12)、钠闪石(8.37 2.00
    萤石型磁铁矿矿石
    9副 9F-12 120 1193 磁铁矿(11.27 47.92)、钠闪石(42.82 24.84)、萤石(1.72 1.61)、
    云母(15.34 8.9)、白云石(4.04 2.34)、重晶石(24.81 14.39
    钠闪石型磁铁矿矿石
    13 WK13-01 10 1521 磁铁矿(16.47 43.27)、钠闪石(8.09 3.90)、萤石(33.09 32.39)、
    白云石(25.33 12.22)、黄铁矿(13.78 6.65)、云母(3.24 1.56
    萤石石型磁铁矿矿石
      注:*未加粗的数值代表使用相关文献中的萤石与磁铁矿K值进行矿物含量半定量计算,而加粗显示的数值则基于本研究所获得的K值测定。鉴于目前尚未获取适宜于稀土矿物的K值,这些矿物未被纳入本研究的定量分析范畴。因此,含有稀土矿物的样品所得到的矿物半定量分析结果,实为除稀土矿物外其他组分的归一化结果。
    下载: 导出CSV

    表  2   适用于白云鄂博矿区常见矿物的K值参数

    Table  2   Selection parameters of different minerals’ K-values in Bayan Obo district

    矿物种类 hkl 2θ (°) D(nm) K 来源
    白云石 104 30.95 0.2886 2.64 SY/T 5163-2010
    萤石 111 28.28 0.3150 2.51 本次实测
    磁铁矿 113 35.44 0.2530 0.61 本次实测
    石英 100 20.86 0.4255 0.91 SY/T 5163-2010
    方解石 104 29.42 0.3034 2.86 SY/T 5163-2010
    铁白云石 104 30.84 0.2894 2.60 SY/T 5163-2010
    重晶石 211 31.56 0.2833 0.87 SY/T 5163-2010
    黄铁矿 200 33.00 0.2712 2.06 SY/T 5163-2010
    方铅矿 200 30.09 0.2968 4.95 PDF 65-0241
    赤铁矿 104 33.09 0.7000 2.40 PDF 33-0664
    霓(辉)石 −221 31.02 0.2985 0.80 PDF 41-1370
    闪石(族) 110 0.82-0.85 1.36 PDF 89-7282
    云母(族) 001 0.98-1.00 3.4 PDF 42-1437
    长石(族) 0.32-0.33 1.22 俞旭等,1984
      注:SY/T5163-2010来源中华人民共和国行业标准;PDF卡片来源为粉晶衍射数据库(ICDD);2θ (°) 角度对应Cu靶数据。
    下载: 导出CSV
  • 迟广成, 肖刚, 汪寅夫, 等. 铁矿石矿物组分的X射线粉晶衍射半定量分析[J]. 冶金分析, 2015, 35(1): 38−44.

    CHI Guangcheng, XIAO Gang, WANG Yinfu, et al. Semi-quantitative analysis of the mineral components of iron ores by X-ray powder diffraction[J]. Metallurgical Analysis,2015,35(1):38−44.

    付伟, 彭召, 曾祥伟, 等. 基于XRD-Rietveld全谱拟合技术定量分析花岗岩风化壳中矿物组成[J]. 光谱学与光谱分析, 2018, 38(7): 2290−2295.

    FU Wei, PENG Zhao, ZENG Xiangwei, et al. Quantitative Analysis of Mineral Composition in Granite Regolith Based on XRD-Rietveld Full-Spectrum Fitting Method[J]. Spectroscopy and Spectral Analysis,2018,38(7):2290−2295.

    贾建业. 黄铁矿的X射线衍射谱及其找矿意义[J]. 西北地质, 1996(3): 38−45.

    JIA Jianye. X-ray diffraction spectrum of pyrite and its prospecting significance[J]. Northwestern Geology,1996(3):38−45.

    焦景慧, 陈天明. X射线法粉煤灰形成莫来石影响因素的研究[J]. 粉煤灰综合利用, 1996(3): 6−11.

    JIAO Jinghui, CHEN Tianming. Research on the Transformation of Fly Ash into Mullite with X-Ray Diffractometry[J]. Fly Ash Comprehensive Utilization,1996(3):6−11.

    柯昌辉, 李以科, 李立兴, 等. 白云鄂博矿区赋矿“白云岩”地质特征与成因再认识[J]. 中南大学学报(自然科学版), 2021, 52(9): 3047−3063. doi: 10.11817/j.issn.1672-7207.2021.09.007

    KE Changhui, LI Yike, LI Lixing, et al. Petrogenesis of ore-bearing “dolostone” in Bayan Obo deposit, Inner Mongolia, China: insights from geological features[J]. Journal of Central South University (Science and Technology),2021,52(9):3047−3063. doi: 10.11817/j.issn.1672-7207.2021.09.007

    李丹煜, 杨莉, 王金龙, 等. 白云鄂博萤石分布特征及放射性钍元素的影响[J]. 包钢科技, 2020, 46(3): 6−9. doi: 10.3969/j.issn.1009-5438.2020.03.003

    LI Danyu, YANG Li, WANG Jinlong, et al. Distribution Characteristics of Fluorite and Effects of Radioactive Element Thorium in Bayan Obo Deposit[J]. Science and Technology of Baotou Steel,2020,46(3):6−9. doi: 10.3969/j.issn.1009-5438.2020.03.003

    李强, 杨占峰. 白云鄂博主矿各矿石类型稀土配分特征研究[J]. 稀土, 2021, 42(5): 36−42.

    LI Qiang, YANG Zhanfeng. Study on REE Distribution Characteristics of Different Ore Types in Bayan Obo Main Orebody[J]. Chinese Rare Earths,2021,42(5):36−42.

    刘玉龙, 杨刚, 陈江峰, 等. 白云鄂博超大型稀土-铌-铁矿床黄铁矿Re-Os定年[J]. 科学通报, 2005, 50(2): 172−175. doi: 10.3321/j.issn:0023-074X.2005.02.012

    LIU Yulong, YANG Gang, CHEN Jiangfeng, et al. Re-Os Dating of pyrite from Baiyunebo Super Large REE-Nb-Fe Deposit[J]. Chinese Science Bulletin,2005,50(2):172−175. doi: 10.3321/j.issn:0023-074X.2005.02.012

    潘小菲, 张天福, 李岩, 等. 德兴斑岩铜(钼金)矿床蚀变岩石的X粉晶衍射分析及地质意义[J]. 矿床地质, 2012, 31(S1): 335−336.

    PAN Xiaofei, ZHANG Tianfu, LI Yan, el al. X-ray powder diffraction analysis of altered rocks and its geological significance of Tongchang Cu(-Mo-Au) porphyric deposit, Jiangxi Province[J]. Mineral Deposits,2012,31(S1):335−336.

    秦玉芳, 李娜, 王其伟, 等. 白云鄂博选铁尾矿稀土的工艺矿物学研究[J]. 中国稀土学报, 2021, 39(5): 796−804.

    QIN Yufang, LI Na, WANG Qiwei, et al. Technological Mineralogy of Rare Earth in Bayan Obo Iron Tailings[J]. Journal of the Chinese Society of Rare Earths,2021,39(5):796−804.

    王凯怡, 张继恩, 方爱民, 等. 白云鄂博矿床成因——矿体内霓长岩化成矿作用与赋矿白云岩的联系[J]. 岩石学报, 2018, 34(3): 785−798.

    WANG Kaiyi, ZHANG Ji'en, FANG Aimin, et al. Genesis of the Bayan Obo deposit, Inner Mongolia: The f enitized mineralization in the ore bodies and its relation to the ore-bearing dolomite[J]. Acta Petrologica Sinica,2018,34(3):785−798.

    王维维, 李二斗, 金海龙, 等. 白云鄂博萤石型稀土-铁矿石工艺矿物学研究[J]. 有色金属(选矿部分), 2020(6): 14−18. doi: 10.3969/j.issn.1671-9492.2020.06.003

    WANG Weiwei, LI Erdou, JIN Hailong, et al. Study on the Technological Mineralogy of Fluorite Type REE-Fe Ores from Bayan Obo Mine[J]. Nonferrous metals (beneficiation part),2020(6):14−18. doi: 10.3969/j.issn.1671-9492.2020.06.003

    徐志豪, 闫国英, 杨宗锋, 等. 白云鄂博矿床磁铁矿成分标型与深部富铁矿体预测[J]. 地学前缘, 2023, 30(2): 426−439.

    XU Zhihao, YAN Guoying, YANG Zongfeng, et al. Typomorphic characteristics of magnetite and prediction of deep iron-rich orebody in the Bayan Obo ore deposit[J]. Earth Science Frontiers,2023,30(2):426−439.

    薛雍, 江向峰, 钟玉锋. 标准曲线法X射线粉晶衍射直接分析滑石中微量石棉[J]. 岩矿测试, 2010, 29(3): 322−324. doi: 10.3969/j.issn.0254-5357.2010.03.028

    XUE Yong, JIANG Xiangfeng, ZHONG Yufeng. Quantitative Determination of Trace Asbestos inTalcum by X-ray Powder Diffraction with External Standardization[J]. Rock and Mineral Analysis,2010,29(3):322−324. doi: 10.3969/j.issn.0254-5357.2010.03.028

    杨波, 杨莉, 孟文祥, 等. 利用探针片进行X射线粉晶衍射分析在白云鄂博矿床中的应用[J]. 有色金属(选矿部分), 2021(6): 34−42.

    YANG Bo, YANG Li, MENG Wenxiang, et al. Application of X-ray Powder Diffraction Analysis in Bayan Obo Deposit with Microprobe Slice[J]. Nonferrous Metals (Beneficiation Part),2021(6):34−42.

    杨波, 于俊芳, 杨莉, 等. 白云鄂博主矿和东矿不同类型矿石中萤石矿物学特征[J]. 稀土, 2022, 43(1): 90−97.

    YANG Bo, YU Junfang, YANG Li, et al. Mineralogical Characteristics of Fluorite in Different Kinds of Ores of Main and East Orebodies of Bayan Obo Deposit[J]. Chinese Rare Earths,2022,43(1):90−97.

    俞旭, 江超华. 现代海洋沉积矿物及其X射线衍射研究[M].北京: 科学出版社, 1984.

    YU Xu, JANG Chaohua. Modern Marine sedimentary minerals and their X-ray diffraction studies[M]. Beijing:Science Press, 1984.

    于俊芳, 沈茂森, 郭爱芳. 白云鄂博矿萤石浮选分析[J]. 现代矿业, 2018, 593(9): 245−246.

    YU Junfang, SHEN Maosen, GUO Aifang. Flotation Analysis of Fluorite in Baiyunebo Mine[J]. Modern Mining,2018,593(9):245−246.

    于俊芳, 沈茂森, 杨波, 等. 白云鄂博东矿白云石型矿石特征分析[J]. 包钢科技, 2022, 48(3): 10−13.

    YU Junfang, SHEN Maosen, YANG Bo, et al. Analysis on Characteristics of Dolomite Type Orein East Mine of Bayan Obo[J]. Science and Technology of Baotou Steel,2022,48(3):10−13.

    袁珂, 廖立兵, 万红波, 等. 膨润土中方石英和α-石英的定量相分析——X射线衍射外标法和K值法的对比[J]. 硅酸盐学报, 2011, 39(2): 377−382.

    YUAN Ke, LIAO Libing, WAN Hongbo, et al. Quantitative Analysis of Cristobalite and α-Quartz in Bentonite by X-Ray Powder Diffraction-Comparison Between External Standard and K-Value Method[J]. Journal of the Chinese Ceramic Society,2011,39(2):377−382.

    Liu Yulong, Ling Mingxing, Williams I S, et al. The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite and overprinted Paleozoic dolomitization[J]. Ore Geology Reviews,2018,92:73−83. doi: 10.1016/j.oregeorev.2017.11.011

    Yang Kuifeng, Fan Hongrui, Pirajno Franco, et al. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite[J]. Geology,2019,47(12):1198−1202. doi: 10.1130/G46674.1

  • 期刊类型引用(1)

    1. 王乃昂,李小强,叶豪,赵力强,赵晓阳,鲁荣珠,王宇晨. 甘肃积石山M_S6.2级地震同震高速泥流研究. 地理科学. 2024(11): 2015-2028 . 百度学术

    其他类型引用(0)

图(6)  /  表(2)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  15
  • PDF下载量:  71
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-09-17
  • 修回日期:  2024-01-15
  • 录用日期:  2024-01-31
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-08-19

目录

/

返回文章
返回