ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

膏盐层在矽卡岩型铁矿成矿过程中的作用:以邯邢地区矽卡岩型铁矿床为例

庞旭静, 左文喆, 曹冲, 王俊鹏, 贺海飞, 王岩

庞旭静,左文喆,曹冲,等. 膏盐层在矽卡岩型铁矿成矿过程中的作用:以邯邢地区矽卡岩型铁矿床为例[J]. 西北地质,2024,57(5):272−282. doi: 10.12401/j.nwg.2024022
引用本文: 庞旭静,左文喆,曹冲,等. 膏盐层在矽卡岩型铁矿成矿过程中的作用:以邯邢地区矽卡岩型铁矿床为例[J]. 西北地质,2024,57(5):272−282. doi: 10.12401/j.nwg.2024022
PANG Xujing,ZUO Wenzhe,CAO Chong,et al. The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area[J]. Northwestern Geology,2024,57(5):272−282. doi: 10.12401/j.nwg.2024022
Citation: PANG Xujing,ZUO Wenzhe,CAO Chong,et al. The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area[J]. Northwestern Geology,2024,57(5):272−282. doi: 10.12401/j.nwg.2024022

膏盐层在矽卡岩型铁矿成矿过程中的作用:以邯邢地区矽卡岩型铁矿床为例

基金项目: 国家自然科学基金项目“高氟与低氟型钼矿床Mo金属富集机制对比:以东科翁腊德和苏云河矿床为例”(42002098),河北省自然科学基金面上项目“新疆阿尔泰可可托海伟晶岩型矿床稀有金属富集机制研究”(D2023209016)联合资助。
详细信息
    作者简介:

    庞旭静(1997−),女,硕士研究生,水文地质与环境地质专业。E−mail:pangxvjing52@163.com

    通讯作者:

    左文喆(1969−),女,博士,教授,主要从事矿山水害防治、水岩作用过程及机理的研究。E−mail:zuowenzhej@sina.com.cn

  • 中图分类号: P578.7; P618.31

The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area

  • 摘要:

    矽卡岩型铁矿床是中国富铁矿床的重要类型,其储量占全部富铁矿的60%左右。膏盐层在矽卡岩型铁矿成矿过程中的作用一直是广大学者所关注的重点。研究表明,邯邢地区矽卡岩型铁矿层中硫酸盐、硫化物的δ34S值分别为24‰~29‰、11‰~20‰,具有海相沉积岩的S同位素组成特征,沉积膏盐层物质参与矽卡岩型铁矿的成矿过程。以邯邢地区矽卡岩型铁矿床为例,系统地分析了矿床中硫化物、硬石膏等含硫矿物的δ34S的主要组成,阐述了膏盐层在矽卡岩型铁矿成矿过程中的作用。①膏盐层中的Na+、Cl等物质作为矿化剂加入气水热液,富碱的气水热液令接触区附近的闪长岩体出现钠长石化现象,析出Fe,并以铁氯酸钠络合物和铁卤化物的形式随热液运移。②膏盐层中的硫酸盐在高温条件下具有高氧化活性,与还原性的富铁热液发生氧化还原反应,提高热液氧逸度,热液中的Fe2+被氧化成Fe3+,从而产生Fe3O4,磁铁矿在围岩层间富集、沉淀,形成富铁矿床。③膏盐层物质溶解后在碳酸盐岩层间形成各种溶(熔)蚀空隙,为岩浆侵入和矿体就位提供有利的成矿空间,是矽卡岩磁铁矿矿床形成的重要地质条件之一。膏盐层在矽卡岩型铁矿成矿过程中具有提供矿化剂、氧化剂和储矿空间的作用。

    Abstract:

    The Skarn-type iron deposit is an important type of iron-rich deposits in China with reserves accounting for about 60% of all iron-rich ores. In recent, the role of gypsum salt layer in the mineralization process of Skarn iron deposits has been the focus of attention of scholars. The results show that the δ34S values of sulfate and sulfide in the Skarn-type iron deposits in the Hanxing area range from 24‰ to 29‰ and from 11‰ to 20‰, respectively, and have the characteristics of sulfur isotope composition of marine sedimentary rocks. These data imply that sedimentary gypsum-salt layer material is involved in the mineralization of skarn-type iron deposits. Taking the skarn iron deposit in the Hanxing area in this study, the compositions of δ34S of the sulfides, gypsums, and other sulfur-containing minerals in this area were systematically analyzed, and the role of the gypsum salt layer in the mineralization process was clarified. ① Na+, Cl and other substances, as mineralizer, in the gypsum salt layer are added to the gas-water hydrothermal fluid. The alkali-rich gas-water hydrothermal fluid causes the albitization of the diorite near the contact area, which precipitates Fe and migrates iorn in the form of sodium chlorate complex and iron halide. ② the sulfate in the gypsum salt layer has high oxidation activity under high temperature conditions, and it would cause a redox reaction with the reducing iron-rich hydrothermal fluid to increase the oxygen fugacity. The Fe2+ in the hydrothermal fluid, therefore, is oxidized to Fe3+, resulting in the formation of magmatite (i.e., Fe3O4). Hence, the magnetite is enriched and precipitated among the surrounding rock layers to form an iron-rich deposit. ③ various dissolution erosion voids are formed in the carbonate rock layers after the dissolution of the gypsum salt layer material, which provides a favorable mineralization space and is one of the important geological conditions for the formation of skarn magnetite deposits. In conlusion, gypsum salt layer has important significance in providing mineralizer, oxidant and ore-contained space in the process of skarn iron mineralization.

  • 位于波罗的–西伯利亚和塔里木–华北板块之间的中亚造山带是全球最显著的巨型增生造山带(Xiao et al.,20082015高俊等,2009Şengör,2022He et al.,2018Hong et al.,2023王文宝等,2024吴妍蓉等,2024),经历了Rodinia超大陆汇聚(牛文超等,2019袁禹,2019Wang et al.,2021)、裂解(Zhao et al.,2018李沅柏等,2021卜涛等,2022)、古生代洋–陆转换和增生造山(Santos et al.,2022)等多阶段复杂的构造过程,不仅保留了古亚洲洋演化过程中的洋壳残片(董云鹏等,2005李智佩等,2020),还发育洋–陆演化过程中丰富的岩浆活动和变形–变质作用记录(张立飞等,2005姜洪颖等,2013He et al.,2014贺振宇等,2015李炜等,2016Saktura et al.,2017姜洪颖等,2022),成为揭示古生代洋–陆格局和增生造山过程研究的重要场所,长期以来受到广泛关注(李锦轶等,2006Xiao et al.,20082010高俊等,2009徐学义等,2014He et al.,2018Niu et al.,2021Wang et al.,2022Santos et al.,2022Li et al.,2023)。

    北山造山带位于中亚造山带中段南缘(图1a),古生代以发育多岛弧结构为典型特征(Kang et al.,2020计文化等,2020),是中亚造山带构造演化的缩影,成为研究古亚洲洋构造格局和构造演化过程的绝佳场所(Huang et al.,2022Santos et al.,2022)。目前,依据区内前寒武纪基底岩系(姜洪颖等,2013贺振宇等,2015Huang et al.,2022)、蛇绿岩(李智佩等,2020王国强等,2021)及与古亚洲洋演化相关的岩浆作用(姜洪颖等,2013李炜等,2016He et al.,2018)等方面的证据,可将北山造山带划分为多个次级构造单元,自南向北包括:石板山构造带、双鹰山地体、中天山–马鬃山地块、明水旱山地块等(图1b)(Xiao et al.,2010Yuan et al.,2015Zong et al.,2017He et al.,2018许伟,2019Kang et al.,2020Huang et al.,2022)。这些研究为北山造山带各构造单元属性、古生代洋–陆构造过程的深入认识提供一系列重要证据。例如,通过对北山造山带北部大量前寒武地质体的厘定、蛇绿岩及岩浆作用的梳理,基本证实中天山–马鬃构造带具有地块或微陆块属性(Huang et al.,2022)。近年来,在造山带南缘的变质作用和蛇绿岩等方面的研究(Liu et al.,2011Saktura et al.,2017Kang et al.,2020陈言飞等,2022杨高学等,2024)为北山造山带南缘早古生代构造格局和演化过程提供了新的约束。例如,古堡泉榴辉岩(Saktura et al.,2017)466~465 Ma峰期变质年龄(Saktura et al.,2017陈言飞等,2022),被认为是早古生代末期敦煌地块与北侧马鬃山–旱山地块南缘活动陆缘发生俯冲作用的记录(Saktura et al.,2017)。然而,越来越多的研究表明北山造山带南缘经历了多阶段洋–陆演化过程,如北山南缘二叠纪蛇绿岩(Mao et al.,2012)和同期大量的岩浆作用记录(赵泽辉等,2006Li et al.,2013Zheng et al.,2014Zhang et al.,2015许伟,2019Hong et al.,2023),表明北山造山带南缘的增生作用过程可能持续至二叠纪。这些保存在造山带南缘的早—中二叠世岩浆岩成为研究区域构造格局和造山带属性的重要内容。已有的岩浆作用研究集中在高钾钙碱性花岗岩,而火山岩分布局限且仅见于特定层位(赵泽辉等,2006Xia et al.,2008)。基于已有的研究成果,部分学者认为这些岩浆作用形成于洋壳俯冲作用背景(Mao et al.,2012Hong et al.,2023),另一些学者则认为与地幔柱(Xia et al.,2008Qin et al.,2011Su et al.,2011)或后碰撞伸展作用相关(Zhang et al.,2011),为裂谷环境的产物。这些分歧不仅制约了对北山造山带南缘晚古生代构造格局的认识(姜洪颖等,2013Niu et al.,2018Zhang et al.,2022Li et al.,2023),而且也限制了对中亚造山带古生代动力学机制的深入理解。

    图  1  北山造山带大地构造位置(a) (Şengör et al., 1993) 及区域构造单元划分(b) (据He et al., 2018; Huang et al.,2022修改)
    Ⅰ. 石板山单元;Ⅱ. 双鹰山单元;Ⅲ. 马鬃山单元;Ⅳ. 旱山单元;F1. 柳园蛇绿混杂岩带;F2. 红柳河–洗肠井蛇绿混杂岩带;F3. 石板井–小黄山蛇绿混杂岩带;F4. 红石山蛇绿混杂岩带;1. 新生界;2. 中生界;3. 古生界;4. 花岗岩;5. 蛇绿岩;6. 北山前寒武系;7. 敦煌地块前寒武系;8. 天山前寒武系;9. 阿拉善前寒武系;10. 榴辉岩;11. 断层
    Figure  1.  (a) Tectonic sketch map of the Central Asian Orogenic Belt and (b) simplified outline map of the Beishan Orogenic belt

    本次研究在北山造山带南缘石板山构造带原划定的“敦煌岩群”中解体出一套二叠纪变质火山–碎屑岩系。野外调查表明,研究区“敦煌岩群”为一套具有强变形、低级变质特征的中–低级变质岩系,不同岩性组分主要受控于近EW向断裂–褶皱构造。锆石U-Pb年代学揭示该套变火山–碎屑岩系主体形成于二叠纪,是探讨北山造山带南缘二叠纪构造环境的重要研究载体。在详细野外地质调查的基础上,笔者系统开展了火山–碎屑岩系不同组分的锆石U-Pb年代学及变火山岩组分的元素地球化学分析,并结合区带上已有的研究成果,为北山造山带南缘构造环境提供可能的约束。

    北山造山带以北部的北天山–贺根山–黑山缝合带和南部的南天山–西拉木伦缝合带为界,分隔北部的图瓦蒙古地块、北山地块(与中天山地块相连)、敦煌地块,并以造山带内发育的红石山、芨芨台子–小黄山、红柳河–洗肠井、辉铜山–账房山蛇绿构造混杂岩带为界(何世平等,2002王洪亮等,2007贺振宇等,2015),进一步划分为雀儿山构造带(弧或者活动大陆边缘)、明水–旱山地块(晚古生代岛弧或裂陷海盆)、(中天山–)马鬃山地块(早古生代岩浆岛弧)、双鹰山构造带、石板山构造带(图1b)。大量的年代学研究结果表明,明水–旱山地块、双鹰山构造带、石板山构造带广泛发育变质沉积岩系,并发育930~870 Ma侵入岩(姜洪颖等,2013Yuan et al.,2015贺振宇等,2015袁禹,2019)。

    大量的年代学研究证实,双鹰山构造带广泛发育前寒武系,分布在双鹰山及南缘的古堡泉地区,自下而上可划分为古洞井群、平头山群和大豁落山群(牛亚卓,2019),获得1550 Ma、12291158 Ma的年代学信息(Song et al.,2013Ao et al.,2015He et al.,2018)。区域上,这些前寒武纪地质体被440~420 Ma弧岩浆岩侵入,并叠加465 Ma的榴辉岩相变质事件(Liu et al.,2011陈言飞等,2022)。其次,在构造带南缘还发育281 Ma的石榴角闪岩相变质作用,认为是地壳减薄事件的记录(Kang et al.,2020)。

    蛇绿岩主要分布在辉铜山(446 Ma)(余吉远等,2012)、柳园(286 Ma)(Mao et al.,2012)和账房山(363 Ma)(余吉远等,2012)等地,由橄榄岩、辉长岩、块状–枕状玄武岩等组成。目前,基于对古亚洲构造格局的不同理解,对该构造带的构造属性还存在不同认识:一部分学者认为该带代表了长期演化的古亚洲洋主洋盆(Xiao et al.,2010Mao et al.,2012),另一部分学者认为该带于早古生代闭合,并于石炭纪—二叠纪再次发育为裂谷盆地(左国朝等,1990Tian et al.,2020),呈两阶段构造演化特征。此外,还存在多期弧–弧后盆地等观点(Santos et al.,2022Hong et al.,2023)。

    研究认为,前寒武系广泛分布在石板山构造带,即“敦煌岩群”或“敦煌杂岩”(Zhang et al., 2022),主要岩性为片麻岩、斜长角闪岩、石英片岩、绿泥石英片岩及大理岩,活动继承锆石年龄为1.4 Ga(贺振宇等,2015),并发育933~879 Ma的混合岩化作用,指示其具有陆块基底性质(Zong et al.,2013贺振宇等,2014Yuan et al.,2015He et al.,2018)。构造带内下古生界不发育;上古生界包括泥盆系—石炭系碎屑-碳酸盐岩、二叠系火山–碎屑岩等。其中,中—下泥盆统主要为一套砂岩–粉砂岩–千枚岩组合,夹大理岩和凝灰岩;下石炭统为石英、粉砂岩、结晶灰岩(大理岩)组合,产珊瑚、腕足、䗴类等海相化石;中—下二叠统由砾岩、砂岩、粉砂岩、流纹岩、玄武岩、凝灰岩等组成,产腕足、珊瑚化石(牛亚卓,2019)。最近,构造带西段柳园一带识别出早—中二叠世弧–弧后盆地系统(Hong et al.,2023),表明这一时期古亚洲洋仍未闭合(Wang et al.,2022Hong et al.,2023)。

    研究区位于甘肃省桥湾镇北约35 km潘家井子一带,大地构造位置处于北山造山带南缘柳园断裂和疏勒河断裂之间,属于石板山构造带(He et al., 2018)(图1b)。已有的1∶5万西涧泉幅将区内出露的一套绿片岩相–低角闪岩相的变质火山–碎屑岩系划归至古元古界敦煌岩群(甘肃省地质矿产局酒泉地质矿产调查队,1993),并进一步划分为4个岩组:自下而上主要为中酸性火山岩建造、碎屑岩–碳酸盐岩建造、中基性火山岩建造、碎屑岩建造;不同岩组之间以断层接触,呈NEE向带状展布。尽管如此,依据浅变质砂岩中孢粉化石组合(图2a),将局部划归至二叠纪双堡塘组。野外调查表明,研究区西北部出露二叠纪方山口组火山碎屑岩,包括晶屑凝灰岩、英安岩、角砾凝灰岩等,并被后期花岗闪长岩、辉长岩脉侵入;南部被侏罗系和第四系不整合覆盖(图2)。

    图  2  北山造山带南缘潘家井子一带地质图
    1.新近系—第四系;2.二叠纪方山口组晶屑凝灰岩、角砾凝灰岩;3.花岗闪长岩;4.辉长–闪长岩脉;5.变质砾岩;6.二云石英片岩;7.黑云斜长变粒岩;8.灰白色二长浅粒岩;9.灰白色细粒变粒岩;10.斜长角闪岩;11.断层;12.岩相界线;13.低角度构造面理(<30°);14.中角度构造面理(31~60°);15.高角度构造面理(>60°);16.构造线走向及倾向;17.矿物拉伸线理;18.褶皱枢纽;19.变质砾石拉伸线理;20.孢粉化石位置(甘肃省地质矿产局酒泉地质矿产调查队,1993);21.本次研究采样位置
    Figure  2.  Detailed geologic map of the Panjiajingzi area in the south margin of Beishan Orogeny

    调查结果表明,区内原划的“敦煌岩群”为一套强变形、中–低级变质的火山–碎屑岩系。岩性主要包括:灰白–灰黑色黑云斜长变粒岩、云母石英片岩、浅灰–灰白色浅粒岩、斜长角闪岩、变质砾岩等,少量条带状黑云斜片麻岩和条带状大理岩,与岩体(脉)接触部位常发育石榴子石/十字石黑云母片麻岩,指示为热接触变质作用的产物。

    灰白色变粒岩为细粒变晶结构、块状–片状构造,变斑晶主要为石英、长石,少量暗色矿物为黑云母(图3a图3b);斜长角闪岩多呈灰黑–墨绿色条带状产出,片状构造、鳞片状变晶结构,主要由角闪石、斜长石组成。云母石英片岩为片状构造,细粒变晶结构,露头上暗色矿物分布不均(图3c),石英颗粒发育明显的缝合线结构、矿物呈明显的分带性和定向特征(图3d)。灰白色浅粒岩暗色矿物较少,呈块状构造,变晶–隐晶质结构(图3e),镜下显示局部保留斑状结构,斑晶主要为石英,基质主要为长英质和少量黑云母(图3f),指示其原岩为一套酸性火山–碎屑岩组合。

    图  3  潘家井子一带灰白色变粒岩(a、b)、云母石英片岩(c、d)和灰白色浅粒岩(e、f)的野外露头及显微特征
    Figure  3.  (a, b) Photographs showing the outcrops and mineral assemblages of the gray laptynite, (c, d) mica quartz schist, and (e, f) white-gray leptite

    宏观上,该套变质火山–碎屑岩不同岩性单元呈条带状近EW向展布,主要受控于褶皱–断裂构造(图2b),不同岩性间多呈构造面理接触,可识别出3期构造变形:D1期为枢纽向东/西倾伏、近水平的中常–紧闭褶皱(图4a),在弱变形域保留原岩的成分层(图4b),而在两翼发育陡倾的矿物拉伸线理,指示近SN向挤压作用形成的褶皱构造;D2期变形,在剪切带附近发育褶皱枢纽陡倾的不对称倾竖褶皱、变质砾石长轴呈EW向近水平定向排列(图4c图4d)与强变形带中的矿物拉伸线理产状一致,指示近EW向右行走滑构造;D3期为NE向断裂及与之平行的节理较为发育,截切近EW向的带状地质体和早期片理,指示晚期左行走滑运动。区内岩石展布总体受控于D1期褶皱构造(图2b),在东西两端出露变质砾岩,成分层的产状表明其为西端向西倾、东端向东倾伏的“穹状”背形特征(图2),并受地形影响呈不规则出露。

    图  4  潘家井子一带变质火山–碎屑岩变形特征
    a. 岩石成分层(S0)中常褶皱转折端,枢纽近水平;b. 岩石成分层(S0)近水平;c. S1发育不对称褶皱指示右行剪切变形;d. 变质砾岩中砾石定向排列,指示右行走滑构造
    Figure  4.  The deformation characteristics of the mata-volcaniclastic rocks in Panjiajingzi area

    针对区内岩石地层时代及构造属性问题,系统采集了灰白色变粒岩(P1-7)、云母石英片岩(P1-21)、灰白色浅粒岩(P1-96)和变质砾岩中的花岗质砾石(D1052)进行锆石U-Pb年代学分析。并采集变质程度低、变形弱的灰白色浅粒岩(D0170-1h,-3h和-5h)和斜长角闪岩(D1133-2h,-3h和-4h)进行全岩主微量分析,以期为该套变质岩石的原岩成分及大地构造环境提供可能的约束。相关样品的采集位置见图2

    锆石U-Pb同位素分析和全岩主微量分析均在自然资源部岩浆作用成矿与找矿重点实验室完成。锆石U-Pb定年使用GeoLas Pro激光剥蚀系统和Agilent 7700X等离子质谱仪测试,激光斑束为32 μm。用于计算207Pb/206Pb、206Pb/238U、207Pb/235U值的标样为91500。详细实验步骤及方法参考Liu等(2007)李艳广等(20152023)。全岩主、微量分别采用X荧光光谱和等离子光谱质谱法测定完成,其中主量元素的分析误差优于2%,过渡元素的测试精度优于10%,其余微量元素测试精度优于5%。锆石U-Pb年代学分析结果见表1表4;斜长角闪岩和流纹岩样品的主、微量元素组成见表5

    表  1  灰白色变粒岩锆石U-Pb年龄数据表
    Table  1.  Zircon U-Pb age of grayish-white granulite
    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-7,01 0.05511 0.00349 0.34026 0.02114 0.04480 0.00108 0.01566 0.00058 416 136 297 16 283 7 314 11 2179 3674 0.59
    P1-7,02 0.05338 0.00355 0.33860 0.02208 0.04602 0.00112 0.01413 0.00065 345 143 296 17 290 7 284 13 1621 4160 0.39
    P1-7,03 0.05229 0.00409 0.33106 0.02540 0.04593 0.00120 0.01179 0.00066 298 169 290 19 290 7 237 13 1999 4023 0.50
    P1-7,04 0.05177 0.00436 0.33908 0.02800 0.04752 0.00126 0.01534 0.00071 275 182 297 21 299 8 308 14 2218 3536 0.63
    P1-7,05 0.05072 0.00371 0.32011 0.02303 0.04578 0.00113 0.01640 0.00062 228 161 282 18 289 7 329 12 2543 3869 0.66
    P1-7,06 0.05118 0.00320 0.32132 0.01972 0.04554 0.00108 0.01698 0.00058 249 138 283 15 287 7 340 11 2779 3980 0.70
    P1-7,08 0.05140 0.00296 0.31814 0.01803 0.04490 0.00104 0.01401 0.00049 259 127 281 14 283 6 281 10 2769 4442 0.62
    P1-7,09 0.05153 0.00331 0.31617 0.01993 0.04451 0.00107 0.01520 0.00064 265 141 279 15 281 7 305 13 1476 3523 0.42
    P1-7,10 0.05258 0.00297 0.32363 0.01797 0.04465 0.00103 0.01491 0.00053 311 123 285 14 282 6 299 10 2240 4164 0.54
    P1-7,11 0.05011 0.00411 0.31494 0.02537 0.04559 0.00117 0.01483 0.00064 200 180 278 20 287 7 298 13 1279 2201 0.58
    P1-7,12 0.05159 0.00189 0.32440 0.01174 0.04561 0.00096 0.01504 0.00038 267 82 285 9 288 6 302 7 12006 12518 0.96
    P1-7,13 0.05142 0.00231 0.32398 0.01433 0.04570 0.00100 0.01518 0.00047 260 100 285 11 288 6 305 9 3722 7290 0.51
    P1-7,14 0.05159 0.00239 0.32600 0.01483 0.04584 0.00101 0.01598 0.00051 267 103 287 11 289 6 320 10 2926 6472 0.45
    P1-7,15 0.05087 0.00261 0.31563 0.01594 0.04501 0.00101 0.01451 0.00050 235 114 279 12 284 6 291 10 2906 5935 0.49
    P1-7,16 0.05032 0.00403 0.31594 0.02485 0.04554 0.00118 0.01393 0.00084 210 176 279 19 287 7 280 17 740 2463 0.30
    P1-7,17 0.05153 0.00253 0.32393 0.01561 0.04560 0.00102 0.01537 0.00047 265 109 285 12 287 6 308 9 4122 5959 0.69
    P1-7,18 0.04747 0.00744 0.30427 0.04686 0.04650 0.00168 0.01513 0.00131 72 336 270 36 293 10 304 26 268 629 0.43
    P1-7,19 0.05224 0.00336 0.32335 0.02037 0.04489 0.00108 0.01418 0.00050 296 140 285 16 283 7 285 10 3717 4518 0.82
    P1-7,20 0.05202 0.00338 0.32851 0.02093 0.04581 0.00110 0.01536 0.00060 286 142 288 16 289 7 308 12 2284 4142 0.55
    P1-7,21 0.05650 0.00577 0.35412 0.03537 0.04546 0.00137 0.01717 0.00104 471 212 308 27 287 8 344 21 659 1447 0.46
    P1-7,22 0.05155 0.00350 0.31198 0.02077 0.04389 0.00107 0.01473 0.00051 266 149 276 16 277 7 296 10 3213 3576 0.90
    P1-7,24 0.05755 0.00303 0.36486 0.01884 0.04598 0.00105 0.01793 0.00056 512 112 316 14 290 6 359 11 3553 5181 0.69
    P1-7,25 0.05427 0.00275 0.33646 0.01674 0.04496 0.00101 0.01714 0.00051 382 110 295 13 284 6 344 10 4855 6345 0.77
    P1-7,26 0.05034 0.00392 0.31461 0.02403 0.04532 0.00117 0.01586 0.00078 211 171 278 19 286 7 318 16 1373 2780 0.49
    P1-7,27 0.05343 0.00232 0.33426 0.01426 0.04537 0.00098 0.01623 0.00045 347 95 293 11 286 6 325 9 7294 8820 0.83
    P1-7,28 0.05012 0.00265 0.31793 0.01654 0.04600 0.00104 0.01663 0.00050 201 119 280 13 290 6 333 10 5452 6678 0.82
    P1-7,29 0.05283 0.00318 0.33541 0.01977 0.04604 0.00108 0.01669 0.00063 322 131 294 15 290 7 335 13 2661 5312 0.50
    P1-7,30 0.05180 0.00248 0.31805 0.01497 0.04453 0.00098 0.01578 0.00049 276 106 280 12 281 6 316 10 4687 8088 0.58
    P1-7,32 0.05851 0.00463 0.37709 0.02918 0.04673 0.00124 0.01523 0.00078 549 164 325 22 294 8 306 16 1146 2326 0.49
    P1-7,33 0.05406 0.00986 0.34064 0.06106 0.04569 0.00184 0.01507 0.00117 373 366 298 46 288 11 302 23 493 518 0.95
    P1-7,34 0.05322 0.00213 0.32288 0.01269 0.04399 0.00094 0.01585 0.00042 338 88 284 10 278 6 318 8 11053 12373 0.89
    P1-7,36 0.05147 0.00235 0.31350 0.01408 0.04416 0.00096 0.01492 0.00045 262 102 277 11 279 6 299 9 5778 8519 0.68
    P1-7,37 0.05078 0.00227 0.31596 0.01388 0.04511 0.00098 0.01866 0.00058 231 100 279 11 284 6 374 12 3494 8375 0.42
    P1-7,38 0.05194 0.00244 0.32075 0.01480 0.04477 0.00098 0.01452 0.00041 283 104 283 11 282 6 291 8 7864 7327 1.07
    P1-7,39 0.05203 0.00250 0.32083 0.01511 0.04470 0.00098 0.01578 0.00043 287 106 283 12 282 6 317 9 8145 6810 1.20
    P1-7,40 0.05169 0.00236 0.31645 0.01415 0.04438 0.00096 0.01482 0.00043 272 101 279 11 280 6 297 9 7014 9028 0.78
    P1-7,41 0.06391 0.00294 0.40709 0.01829 0.04618 0.00102 0.01844 0.00061 739 94 347 13 291 6 369 12 3459 7079 0.49
    P1-7,42 0.05210 0.00332 0.32088 0.02003 0.04465 0.00106 0.01562 0.00059 290 139 283 15 282 7 313 12 2509 4130 0.61
    P1-7,43 0.05660 0.00293 0.35966 0.01822 0.04606 0.00104 0.01522 0.00042 475 111 312 14 290 6 305 8 9165 5464 1.68
    P1-7,44 0.05156 0.00307 0.32164 0.01874 0.04522 0.00105 0.01805 0.00065 266 131 283 14 285 6 362 13 2241 4229 0.53
    P1-7,45 0.05355 0.00305 0.33214 0.01853 0.04495 0.00104 0.01631 0.00064 352 123 291 14 284 6 327 13 2311 5079 0.45
    P1-7,46 0.05391 0.00272 0.34290 0.01692 0.04610 0.00103 0.01674 0.00053 367 109 299 13 291 6 336 11 3909 5859 0.67
    P1-7,47 0.05171 0.00253 0.32288 0.01550 0.04525 0.00100 0.01601 0.00044 273 108 284 12 285 6 321 9 8784 6577 1.34
    P1-7,48 0.04928 0.00322 0.30789 0.01973 0.04528 0.00107 0.01600 0.00058 161 146 273 15 286 7 321 11 2651 3793 0.70
    P1-7,49 0.05077 0.00292 0.31240 0.01759 0.04459 0.00102 0.01522 0.00051 230 127 276 14 281 6 305 10 3595 4836 0.74
    P1-7,50 0.05290 0.00617 0.32823 0.03749 0.04497 0.00142 0.01564 0.00087 324 245 288 29 284 9 314 17 997 1325 0.75
    P1-7,51 0.05239 0.00522 0.31956 0.03115 0.04420 0.00128 0.01332 0.00051 302 212 282 24 279 8 268 10 2811 1552 1.81
    P1-7,52 0.05100 0.00337 0.31367 0.02027 0.04456 0.00107 0.01391 0.00065 241 145 277 16 281 7 279 13 1376 3467 0.40
    P1-7,53 0.05037 0.00328 0.31083 0.01984 0.04471 0.00106 0.01538 0.00056 212 144 275 15 282 7 308 11 3160 4148 0.76
    P1-7,54 0.05274 0.00302 0.32534 0.01821 0.04469 0.00103 0.01612 0.00063 318 125 286 14 282 6 323 13 2122 4849 0.44
    P1-7,56 0.05199 0.00289 0.31811 0.01730 0.04433 0.00101 0.01541 0.00051 285 122 280 13 280 6 309 10 3693 4946 0.75
    P1-7,57 0.05023 0.00296 0.31358 0.01811 0.04523 0.00104 0.01504 0.00054 205 131 277 14 285 6 302 11 2923 4358 0.67
    P1-7,58 0.05337 0.00230 0.32096 0.01353 0.04357 0.00093 0.01602 0.00044 345 94 283 10 275 6 321 9 8734 8736 1.00
    P1-7,59 0.05649 0.00280 0.35957 0.01739 0.04611 0.00102 0.01666 0.00049 471 107 312 13 291 6 334 10 6026 5992 1.01
    P1-7,60 0.05168 0.00199 0.33001 0.01243 0.04626 0.00097 0.01706 0.00046 271 86 290 9 292 6 342 9 10769 13004 0.83
    下载: 导出CSV 
    | 显示表格
    表  2  云母石英片岩锆石U-Pb年龄数据表
    Table  2.  Zircon U-Pb ages of mica quartz schist
    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-21,03 0.05796 0.00528 0.35597 0.03183 0.04453 0.00127 0.01159 0.00055 528 188 309 24 281 8 233 11 1557 1861 0.84
    P1-21,04 0.05133 0.00357 0.31829 0.02185 0.04496 0.00113 0.01184 0.00049 256 153 281 17 284 7 238 10 1528 2726 0.56
    P1-21,05 0.05728 0.00476 0.36535 0.02979 0.04625 0.00127 0.01325 0.00060 502 174 316 22 291 8 266 12 1352 1925 0.70
    P1-21,06 0.05218 0.00505 0.32843 0.03130 0.04564 0.00128 0.01351 0.00064 293 207 288 24 288 8 271 13 1152 1699 0.68
    P1-21,08 0.05353 0.00377 0.33787 0.02344 0.04577 0.00115 0.01295 0.00051 351 151 296 18 289 7 260 10 2592 3689 0.70
    P1-21,10 0.04943 0.00356 0.32441 0.02306 0.04760 0.00119 0.01422 0.00052 168 160 285 18 300 7 285 10 2313 3170 0.73
    P1-21,11 0.05866 0.00399 0.38201 0.02557 0.04723 0.00119 0.01464 0.00058 554 142 329 19 298 7 294 12 1923 3238 0.59
    P1-21,12 0.05444 0.00487 0.35054 0.03082 0.04670 0.00130 0.01336 0.00071 389 189 305 23 294 8 268 14 1054 1879 0.56
    P1-21,14 0.05380 0.00360 0.33035 0.02179 0.04454 0.00110 0.01300 0.00051 362 144 290 17 281 7 261 10 2487 4269 0.58
    P1-21,15 0.04916 0.00461 0.31076 0.02869 0.04585 0.00127 0.01460 0.00071 156 206 275 22 289 8 293 14 1152 2075 0.56
    P1-21,16 0.05221 0.00433 0.32084 0.02616 0.04457 0.00120 0.01252 0.00060 295 178 283 20 281 7 252 12 1493 2671 0.56
    P1-21,17 0.05258 0.00308 0.33040 0.01911 0.04558 0.00108 0.01284 0.00044 311 128 290 15 287 7 258 9 3524 4948 0.71
    P1-21,18 0.05405 0.00379 0.34550 0.02389 0.04636 0.00116 0.01341 0.00052 373 151 301 18 292 7 269 10 2168 3352 0.65
    P1-21,20 0.05095 0.00790 0.31830 0.04851 0.04531 0.00168 0.01480 0.00115 239 323 281 37 286 10 297 23 443 860 0.52
    P1-21,21 0.05447 0.00259 0.34030 0.01604 0.04532 0.00102 0.01432 0.00042 391 103 297 12 286 6 288 8 5966 9491 0.63
    P1-21,22 0.05632 0.00441 0.36122 0.02778 0.04653 0.00124 0.01442 0.00065 464 166 313 21 293 8 289 13 1701 2957 0.58
    P1-21,23 0.05082 0.00380 0.31441 0.02313 0.04488 0.00115 0.01462 0.00055 232 164 278 18 283 7 293 11 2390 3204 0.75
    P1-21,24 0.05572 0.00742 0.33900 0.04425 0.04413 0.00154 0.01492 0.00092 441 272 296 34 278 10 299 18 820 1146 0.72
    P1-21,25 0.05178 0.00434 0.31713 0.02611 0.04443 0.00119 0.01348 0.00063 276 181 280 20 280 7 271 12 1845 3185 0.58
    P1-21,26 0.05270 0.00461 0.33574 0.02883 0.04621 0.00127 0.01379 0.00065 316 187 294 22 291 8 277 13 1758 2461 0.71
    P1-21,27 0.05849 0.00627 0.36278 0.03814 0.04500 0.00139 0.01242 0.00073 548 219 314 28 284 9 249 15 1193 1822 0.66
    P1-21,28 0.05641 0.00412 0.35908 0.02577 0.04618 0.00118 0.01399 0.00055 468 155 312 19 291 7 281 11 2209 3089 0.72
    P1-21,29 0.05564 0.00493 0.35002 0.03044 0.04564 0.00128 0.01158 0.00061 438 186 305 23 288 8 233 12 1315 1958 0.67
    P1-21,30 0.05242 0.00409 0.32669 0.02505 0.04521 0.00117 0.01494 0.00065 304 168 287 19 285 7 300 13 1999 3687 0.54
    P1-21,32 0.05399 0.00547 0.33688 0.03348 0.04527 0.00133 0.01579 0.00080 370 213 295 25 285 8 317 16 1404 2115 0.66
    P1-21,33 0.05917 0.00481 0.36627 0.02925 0.04491 0.00120 0.01358 0.00059 573 168 317 22 283 7 273 12 1937 2852 0.68
    P1-21,35 0.04629 0.00540 0.28849 0.03306 0.04521 0.00139 0.01106 0.00101 13 259 257 26 285 9 222 20 785 2075 0.38
    P1-21,36 0.05480 0.00480 0.33728 0.02903 0.04465 0.00122 0.01319 0.00062 404 185 295 22 282 8 265 12 1904 2903 0.66
    P1-21,37 0.05584 0.00609 0.34812 0.03725 0.04523 0.00138 0.01562 0.00082 446 226 303 28 285 9 313 16 1304 1982 0.66
    P1-21,38 0.04965 0.00428 0.31379 0.02662 0.04585 0.00122 0.01543 0.00072 179 189 277 21 289 8 310 14 1594 3065 0.52
    P1-21,39 0.05838 0.00577 0.37144 0.03598 0.04616 0.00136 0.01563 0.00083 544 203 321 27 291 8 314 16 1225 2068 0.59
    P1-21,40 0.05393 0.00462 0.32533 0.02739 0.04377 0.00118 0.01258 0.00073 368 183 286 21 276 7 253 15 1523 3435 0.44
    P1-21,41 0.05782 0.00806 0.34567 0.04726 0.04338 0.00154 0.01368 0.00105 523 280 302 36 274 10 275 21 709 1376 0.52
    P1-21,42 0.04754 0.00431 0.29931 0.02676 0.04568 0.00121 0.01409 0.00062 76 203 266 21 288 7 283 12 2124 3157 0.67
    P1-21,43 0.04968 0.00368 0.30637 0.02232 0.04474 0.00112 0.01387 0.00058 180 164 271 17 282 7 279 11 2855 4907 0.58
    P1-21,44 0.05680 0.00465 0.34817 0.02794 0.04447 0.00119 0.01341 0.00072 483 172 303 21 281 7 269 14 1812 3654 0.50
    P1-21,45 0.05066 0.00366 0.31626 0.02246 0.04529 0.00113 0.01501 0.00057 226 159 279 17 286 7 301 11 2822 4149 0.68
    P1-21,46 0.05052 0.00708 0.32152 0.04427 0.04618 0.00160 0.01111 0.00086 219 295 283 34 291 10 223 17 714 1171 0.61
    P1-21,47 0.05305 0.00471 0.33459 0.02914 0.04576 0.00125 0.01828 0.00089 331 189 293 22 288 8 366 18 1773 3605 0.49
    P1-21,48 0.05584 0.00521 0.33884 0.03096 0.04402 0.00126 0.01518 0.00072 446 195 296 23 278 8 305 14 2494 3618 0.69
    P1-21,50 0.05615 0.00799 0.34317 0.04773 0.04434 0.00167 0.01802 0.00137 458 288 300 36 280 10 361 27 591 1019 0.58
    P1-21,51 0.05960 0.00507 0.37392 0.03113 0.04552 0.00126 0.01502 0.00073 589 175 323 23 287 8 301 15 2012 3184 0.63
    P1-21,52 0.05150 0.00537 0.32448 0.03320 0.04571 0.00135 0.01495 0.00086 263 223 285 25 288 8 300 17 1310 2541 0.52
    P1-21,53 0.05517 0.00516 0.34904 0.03204 0.04591 0.00130 0.01598 0.00088 419 197 304 24 289 8 320 17 1486 2926 0.51
    P1-21,54 0.04759 0.00576 0.30852 0.03680 0.04704 0.00142 0.01487 0.00091 78 266 273 29 296 9 298 18 1023 1994 0.51
    P1-21,55 0.05538 0.00491 0.34013 0.02953 0.04456 0.00124 0.01476 0.00071 427 187 297 22 281 8 296 14 2092 3366 0.62
    P1-21,56 0.05136 0.00441 0.31346 0.02641 0.04428 0.00119 0.01489 0.00067 257 186 277 20 279 7 299 13 2133 3402 0.63
    P1-21,57 0.05305 0.00711 0.31852 0.04189 0.04356 0.00146 0.01123 0.00088 331 278 281 32 275 9 226 18 713 1390 0.51
    P1-21,58 0.05453 0.00438 0.33748 0.02660 0.04490 0.00118 0.01573 0.00066 393 171 295 20 283 7 315 13 2448 3664 0.67
    P1-21,59 0.05082 0.00429 0.31373 0.02598 0.04479 0.00119 0.01401 0.00069 233 184 277 20 283 7 281 14 1468 2832 0.52
    下载: 导出CSV 
    | 显示表格
    表  3  变火山碎屑岩锆石U-Pb年龄数据表
    Table  3.  Zircon U-Pb ages of metamorphic pyroclastic rocks
    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-96,01 0.05337 0.00394 0.33172 0.02395 0.04510 0.00109 0.01489 0.00065 344 158 291 18 284 7 299 13 1148 2581 0.45
    P1-96,02 0.05366 0.00338 0.33203 0.02043 0.04489 0.00103 0.01421 0.00044 357 136 291 16 283 6 285 9 3445 3912 0.88
    P1-96,03 0.05590 0.00354 0.34542 0.02136 0.04483 0.00103 0.01358 0.00047 448 135 301 16 283 6 273 9 2521 3520 0.72
    P1-96,04 0.05522 0.00357 0.33331 0.02103 0.04378 0.00102 0.01399 0.00049 421 138 292 16 276 6 281 10 2692 4024 0.67
    P1-96,05 0.04977 0.00775 0.30398 0.04668 0.04431 0.00146 0.01680 0.00108 184 327 270 36 280 9 337 22 529 969 0.55
    P1-96,06 0.05161 0.00744 0.31333 0.04446 0.04403 0.00142 0.01413 0.00113 268 301 277 34 278 9 284 22 537 1095 0.49
    P1-96,07 0.05873 0.00652 0.34093 0.03699 0.04210 0.00130 0.01215 0.00075 557 225 298 28 266 8 244 15 1716 2674 0.64
    P1-96,08 0.05626 0.00531 0.36568 0.03377 0.04714 0.00130 0.01387 0.00075 462 197 316 25 297 8 278 15 921 1670 0.55
    P1-96,09 0.05190 0.00281 0.32026 0.01698 0.04475 0.00098 0.01355 0.00044 281 119 282 13 282 6 272 9 3807 6637 0.57
    P1-96,10 0.05306 0.00297 0.32456 0.01776 0.04436 0.00098 0.01504 0.00050 331 122 285 14 280 6 302 10 3315 6312 0.53
    P1-96,11 0.05317 0.00375 0.32998 0.02279 0.04499 0.00108 0.01376 0.00057 336 152 290 17 284 7 276 11 2027 3554 0.57
    P1-96,12 0.05554 0.00658 0.34206 0.03971 0.04464 0.00139 0.01510 0.00089 434 245 299 30 282 9 303 18 993 1641 0.61
    P1-96,13 0.05302 0.00433 0.32419 0.02596 0.04432 0.00113 0.01222 0.00063 330 175 285 20 280 7 246 13 1389 2777 0.50
    P1-96,14 0.05249 0.00678 0.32643 0.04136 0.04508 0.00145 0.01585 0.00098 307 270 287 32 284 9 318 20 823 1403 0.59
    P1-96,16 0.05325 0.00601 0.33107 0.03664 0.04506 0.00133 0.01399 0.00080 340 237 290 28 284 8 281 16 810 1344 0.60
    P1-96,17 0.06160 0.00478 0.39526 0.02993 0.04651 0.00121 0.01508 0.00068 660 158 338 22 293 7 303 14 1584 2662 0.60
    P1-96,18 0.05318 0.00539 0.33636 0.03344 0.04583 0.00129 0.01499 0.00073 337 215 294 25 289 8 301 14 1830 2648 0.69
    P1-96,19 0.05352 0.00464 0.34021 0.02889 0.04606 0.00121 0.01545 0.00077 351 184 297 22 290 7 310 15 1593 3268 0.49
    P1-96,20 0.05377 0.00561 0.33424 0.03423 0.04504 0.00128 0.01440 0.00087 361 220 293 26 284 8 289 17 934 1886 0.50
    P1-96,21 0.04994 0.00427 0.33454 0.02809 0.04854 0.00125 0.01567 0.00074 192 187 293 21 306 8 314 15 1670 3208 0.52
    P1-96,22 0.05682 0.00550 0.38403 0.03638 0.04897 0.00140 0.01729 0.00090 484 201 330 27 308 9 347 18 1612 2640 0.61
    P1-96,23 0.05393 0.00506 0.35124 0.03227 0.04718 0.00132 0.01353 0.00082 368 199 306 24 297 8 272 16 1302 2637 0.49
    P1-96,24 0.04822 0.00941 0.30333 0.05841 0.04558 0.00176 0.01320 0.00138 110 405 269 46 287 11 265 28 407 822 0.50
    P1-96,25 0.05891 0.00964 0.39218 0.06283 0.04823 0.00191 0.01676 0.00140 564 321 336 46 304 12 336 28 514 944 0.54
    P1-96,27 0.05541 0.00518 0.36152 0.03315 0.04727 0.00130 0.01591 0.00081 429 196 313 25 298 8 319 16 1403 2546 0.55
    P1-96,28 0.05359 0.00854 0.35795 0.05619 0.04839 0.00169 0.01281 0.00125 354 325 311 42 305 10 257 25 489 1060 0.46
    P1-96,29 0.05286 0.00533 0.33930 0.03355 0.04650 0.00135 0.01328 0.00074 323 214 297 25 293 8 267 15 1588 2512 0.63
    P1-96,32 0.05478 0.00383 0.36200 0.02480 0.04787 0.00118 0.01607 0.00065 403 149 314 18 302 7 322 13 2809 4956 0.57
    P1-96,33 0.05327 0.00410 0.33202 0.02509 0.04516 0.00115 0.01452 0.00063 340 165 291 19 285 7 291 13 2260 3891 0.58
    P1-96,34 0.05384 0.00589 0.35687 0.03820 0.04802 0.00148 0.01953 0.00102 364 230 310 29 302 9 391 20 1243 1770 0.70
    P1-96,35 0.05060 0.00455 0.33832 0.02985 0.04844 0.00130 0.01821 0.00089 223 195 296 23 305 8 365 18 1800 3753 0.48
    P1-96,36 0.04932 0.00347 0.32204 0.02226 0.04731 0.00115 0.01537 0.00066 163 157 284 17 298 7 308 13 2070 4462 0.46
    P1-96,37 0.05489 0.00510 0.33466 0.03047 0.04418 0.00123 0.01936 0.00137 408 195 293 23 279 8 388 27 569 2832 0.20
    P1-96,38 0.04834 0.00643 0.34238 0.04471 0.05132 0.00172 0.02015 0.00156 116 287 299 34 323 11 403 31 1106 2689 0.41
    P1-96,39 0.04930 0.00622 0.31766 0.03928 0.04668 0.00153 0.01593 0.00113 162 271 280 30 294 9 320 22 1047 2244 0.47
    P1-96,40 0.05158 0.00408 0.34371 0.02665 0.04828 0.00125 0.01559 0.00069 267 172 300 20 304 8 313 14 2640 4314 0.61
    P1-96,41 0.05258 0.00425 0.35925 0.02851 0.04951 0.00130 0.01732 0.00069 311 174 312 21 312 8 347 14 3472 4412 0.79
    P1-96,42 0.05136 0.00396 0.35579 0.02694 0.05020 0.00129 0.01749 0.00072 257 168 309 20 316 8 351 14 3324 5181 0.64
    P1-96,43 0.05375 0.00470 0.34399 0.02948 0.04638 0.00128 0.01924 0.00095 360 186 300 22 292 8 385 19 2359 4959 0.48
    P1-96,44 0.04839 0.00550 0.33030 0.03691 0.04947 0.00147 0.01888 0.00110 118 248 290 28 311 9 378 22 1048 2229 0.47
    P1-96,45 0.05636 0.00926 0.36933 0.05942 0.04749 0.00192 0.01856 0.00172 466 328 319 44 299 12 372 34 399 938 0.43
    P1-96,47 0.05382 0.00422 0.34731 0.02671 0.04677 0.00122 0.01732 0.00082 363 167 303 20 295 8 347 16 1958 3913 0.50
    P1-96,49 0.04563 0.01092 0.31376 0.07401 0.04984 0.00235 0.01497 0.00194 0 473 277 57 314 14 300 39 352 891 0.39
    P1-96,50 0.05166 0.00410 0.34090 0.02653 0.04783 0.00125 0.01692 0.00074 270 172 298 20 301 8 339 15 2426 4129 0.59
    P1-96,51 0.05396 0.00588 0.37005 0.03952 0.04972 0.00153 0.02095 0.00126 369 229 320 29 313 9 419 25 1275 2750 0.46
    P1-96,52 0.05155 0.00428 0.35221 0.02868 0.04954 0.00133 0.01874 0.00079 266 180 306 22 312 8 375 16 3232 4829 0.67
    P1-96,53 0.05155 0.00581 0.34043 0.03763 0.04789 0.00150 0.01645 0.00094 266 239 298 29 302 9 330 19 1591 2508 0.63
    P1-96,54 0.04857 0.00805 0.33107 0.05393 0.04943 0.00192 0.01467 0.00153 127 349 290 41 311 12 294 31 660 1201 0.55
    P1-96,55 0.05281 0.00500 0.35815 0.03324 0.04919 0.00140 0.01856 0.00113 321 202 311 25 310 9 372 22 1750 4106 0.43
    P1-96,56 0.05375 0.00630 0.36397 0.04183 0.04912 0.00158 0.02083 0.00117 360 245 315 31 309 10 417 23 1294 2199 0.59
    P1-96,57 0.05379 0.00427 0.37677 0.02936 0.05081 0.00135 0.01700 0.00081 362 169 325 22 320 8 341 16 2950 5209 0.57
    P1-96,58 0.04874 0.00392 0.34924 0.02763 0.05198 0.00136 0.01809 0.00075 135 179 304 21 327 8 362 15 3513 5178 0.68
    P1-96,59 0.05532 0.00733 0.38234 0.04962 0.05014 0.00176 0.01896 0.00139 425 271 329 36 315 11 380 28 778 1594 0.49
    P1-96,60 0.05047 0.00480 0.33543 0.03137 0.04822 0.00136 0.01832 0.00102 217 206 294 24 304 8 367 20 1401 3019 0.46
    下载: 导出CSV 
    | 显示表格
    表  4  花岗质砾石的锆石U-Pb年龄数据表
    Table  4.  Zircon U-Pb ages of granitic gravel
    测试点 同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    D1052,1 0.05400 0.00234 0.32143 0.01357 0.04317 0.00090 0.01372 0.00040 371 94 283 10 272 6 275 8 4395 7940 0.55
    D1052,2 0.05811 0.00188 0.36685 0.01153 0.04579 0.00092 0.01671 0.00044 533 70 317 9 289 6 335 9 7166 21172 0.34
    D1052,3 0.05255 0.00235 0.31522 0.01374 0.04350 0.00091 0.01512 0.00049 310 99 278 11 275 6 303 10 3009 8739 0.34
    D1052,4 0.05424 0.00270 0.35151 0.01709 0.04701 0.00101 0.01602 0.00061 381 108 306 13 296 6 321 12 1893 6174 0.31
    D1052,6 0.05354 0.00252 0.32674 0.01501 0.04427 0.00094 0.01457 0.00049 352 103 287 11 279 6 292 10 3046 7791 0.39
    D1052,8 0.05594 0.00262 0.39012 0.01778 0.05058 0.00108 0.01815 0.00070 450 101 335 13 318 7 364 14 3913 17397 0.22
    D1052,9 0.05826 0.00273 0.37486 0.01712 0.04667 0.00100 0.02199 0.00073 539 100 323 13 294 6 440 15 3137 10819 0.29
    D1052,12 0.05107 0.00410 0.33786 0.02657 0.04799 0.00121 0.02222 0.00114 244 175 296 20 302 7 444 22 17334 63444 0.27
    D1052,13 0.05175 0.00361 0.36019 0.02459 0.05049 0.00120 0.02067 0.00099 274 152 312 18 318 7 413 20 2711 9584 0.28
    D1052,14 0.05282 0.00422 0.36614 0.02860 0.05028 0.00127 0.01914 0.00097 321 171 317 21 316 8 383 19 2660 7097 0.37
    D1052,16 0.05242 0.00549 0.41347 0.04236 0.05721 0.00168 0.02926 0.00198 304 222 351 30 359 10 583 39 1582 5886 0.27
    D1052,17 0.05767 0.00382 0.42986 0.02777 0.05407 0.00129 0.02924 0.00131 517 139 363 20 339 8 583 26 3030 11556 0.26
    D1052,18 0.05012 0.00626 0.34159 0.04175 0.04944 0.00160 0.02093 0.00166 201 266 298 32 311 10 419 33 1363 4545 0.30
    D1052,19 0.05087 0.00457 0.36628 0.03222 0.05223 0.00139 0.02466 0.00114 235 195 317 24 328 9 492 22 2541 5598 0.45
    D1052,20 0.04934 0.00516 0.33584 0.03442 0.04937 0.00141 0.01886 0.00127 164 228 294 26 311 9 378 25 1540 5063 0.30
    D1052,21 0.05467 0.00297 0.39698 0.02106 0.05267 0.00117 0.02549 0.00104 399 117 340 15 331 7 509 20 3824 18291 0.21
    D1052,23 0.05243 0.00341 0.37018 0.02354 0.05121 0.00119 0.01930 0.00089 304 142 320 17 322 7 386 18 2942 11049 0.27
    D1052,24 0.05313 0.00366 0.36805 0.02479 0.05025 0.00120 0.02019 0.00072 335 149 318 18 316 7 404 14 5753 9298 0.62
    D1052,25 0.06034 0.00314 0.47962 0.02429 0.05766 0.00128 0.02885 0.00104 616 109 398 17 361 8 575 20 6708 23529 0.29
    D1052,27 0.05743 0.00376 0.39242 0.02509 0.04957 0.00118 0.01910 0.00088 508 138 336 18 312 7 382 17 3441 10876 0.32
    D1052,28 0.05575 0.00428 0.38286 0.02872 0.04982 0.00125 0.02112 0.00099 442 163 329 21 313 8 422 20 24908 68272 0.36
    D1052,29 0.05540 0.00319 0.36743 0.02062 0.04811 0.00109 0.01886 0.00074 428 124 318 15 303 7 378 15 3263 9877 0.33
    D1052,30 0.05856 0.00345 0.41718 0.02393 0.05167 0.00118 0.02495 0.00100 551 124 354 17 325 7 498 20 2882 10137 0.28
    下载: 导出CSV 
    | 显示表格
    表  5  斜长角闪岩和浅粒岩主量元素(%)与微量元素(10–6
    Table  5.  Main (%) and trace (10–6) elements in plagioclase amphibolite and leptite
    送样号D1133-2-2hD1133-2-3hD1133-2-4hD0170-1-1HD0170-1-3HD0170-1-5H
    SiO249.2249.2149.2775.4180.8878.86
    TiO22.312.332.380.140.170.14
    Al2O316.6616.6716.8811.229.339.33
    Fe2O34.734.225.132.491.392.18
    FeO6.356.826.320.500.500.45
    MnO0.170.170.160.070.050.07
    MgO5.325.215.220.070.090.06
    CaO8.338.757.915.372.895.02
    Na2O4.094.154.691.232.301.74
    K2O0.670.370.232.811.801.23
    P2O50.350.360.350.020.020.02
    LOI0.890.800.630.500.410.73
    Total99.0999.0699.1799.8399.82899.82
    Li30.328.826.02.674.024.18
    Sc25.527.828.93.333.982.54
    V2552732707.784.809.10
    Cr10199.694.11.431.561.1
    Co39.241.740.80.5500.4500.500
    Ni76.978.471.82.104.522.16
    Cu12984.577.63.062.323.00
    Zn11711311822.330.415.8
    Ga21.921.522.133.920.925.0
    Rb25.810.36.2512374.852.4
    Sr341314398256141206
    Y38.238.841.358.055.047.2
    Zr266264283316318286
    Nb6.746.286.7313.113.611.6
    Cs2.271.940.671.120.8100.620
    Ba79.795.427.6624439384
    La16.716.817.643.741.638.0
    Ce44.343.845.994.493.381.2
    Pr6.256.416.7812.111.410.4
    Nd28.830.131.347.947.041.8
    Sm7.367.887.9310.810.79.22
    Eu2.212.332.371.631.661.44
    Gd8.118.378.8510.911.19.70
    Tb1.261.351.381.921.891.63
    Dy8.027.918.4111.110.89.67
    Ho1.541.641.712.262.272.02
    Er4.584.754.906.747.095.98
    Tm0.7900.8000.8101.221.181.06
    Yb4.334.534.676.556.575.92
    Lu0.7300.7500.7701.121.130.980
    Hf6.546.607.109.619.618.78
    Ta0.5000.4600.4801.091.050.960
    Pb9.298.1313.328.318.518.0
    Th3.933.483.7216.615.714.4
    U1.261.231.393.783.763.34
    下载: 导出CSV 
    | 显示表格

    来自灰白色变粒岩(P1-7)的锆石呈无色透明的粒状–板条状自形晶,粒径为80~120 μm,发育明显的震荡环带结构(图5a)。55个测点的锆石Th/U值为0.30~1.81,206Pb/238U年龄集中于275~299 Ma,其加权平均年龄为(285±2)Ma(表1图6a)。

    图  5  北山造山带南缘潘家井子一带灰白色变粒岩(a)、云母石英片岩(b)、变火山碎屑岩(c)和花岗质砾石(d)的锆石阴极发光照片
    Figure  5.  Cathodoluminescence (CL) images of representative zircon grains from (a) gray laptynite, (b) mica quartz schist, (c) white-gray leptite, and (d) gravel samples from meta-conglomerate
    图  6  北山造山带南缘潘家井子一带灰白色变粒岩(a)、云母石英片岩(b)、变火山碎屑岩(c)和花岗质砾石(d)的锆石U-Pb年龄谐和图和加权平均年龄(或频率分布图)
    Figure  6.  Zircon U-Pb concordia diagrams and weighted mean ages (or probability density plot) for (a) gray laptynite, (b) mica quartz schist, (c) white-gray leptite, and (d) gravel samples from meta-conglomerate

    挑选自云母石英片岩(P1-21)的锆石呈浅黄色柱状自形晶,粒径为100~200 μm,长宽比2∶1~1∶1,发育弱震荡环带(图5b),锆石Th/U值为0.38~0.84。50个锆石测点的206Pb/238U年龄集中于274~300 Ma,其加权平均年龄为(286±2)Ma(表2图6b)。

    来自灰白色浅粒岩(P1-96)的锆石呈浅紫色长柱状自形晶,粒径为120~250 μm,长宽比3∶1~2∶1,锆石内部震荡环带不发育,边部发育密集的震荡环带,总体呈面状影纹特征(图5c),锆石Th/U值0.20~0.88。54个锆石测点的206Pb/238U年龄集中于266~327 Ma(表3图6c),其加权平均年龄为(294±4)Ma。

    来自花岗质砾石的锆石呈无色透明自形–半自形晶,粒径为80~120 μm,长宽比2∶1~1∶1,锆石CL影像较暗,发育震荡环带,个别锆石具有核幔结构(图5d)。23个测点Th/U值为0.21~0.62,其谐和年龄分布于272~359 Ma,峰值年龄为(318±7)Ma(表4图6d)。其中,最年轻锆石年龄为(272±6)Ma,可限定该砾岩的最大沉积年龄。

    斜长角闪岩具有相对较低的烧失量(0.63%~0.89%)。3件样品具有稳定的SiO2含量(50.00%~50.12%),具有高TiO2(2.35%~2.42%)、Na2O(4.14%~4.76%)、Al2O3(16.97%~17.13%)含量和Na2O/K2O(6.1~20.4),以及较低的MgO(5.30%~5.42%)、P2O5(0.36%~0.37%)和Mg#(46.2~47.4)。考虑到其变质作用对其成分的影响,采用Nb/Y-Zr/Ti图解(图7a)进行分类,显示其具有安山岩/玄武岩组分特征,在SiO2-FeOT/MgO图解上进一步显示其具有拉斑系列岩石特征(图7b)。斜长角闪岩样品具有相对较低的稀土元素总量(ΣREE=135×10–6~143×10–6),呈轻稀土元素(如Rb、Ba、Th等)富集、重稀土平坦,总体呈略微右倾(图8a)的配分模式((La/Yb)cn = 2.51~2.61),并显示微弱的Eu负异常(δEu = 0.86~0.87)。在微量元素原始地幔标准化蛛网图上,所有样品显示大离子亲石元素富集、高场强元素分异不明显,和明显的Nb-Ta亏损的特征(图8b),表现出与Cascades弧玄武岩相似的地球化学特征(Schmidt et al.,2017)。

    图  7  北山造山带南缘潘家井子一带斜长角闪岩和白色变粒岩岩石分类图解
    a. Nb/Y-Zr/TiO2图(Winchester et al., 1977);b. SiO2-FeOT/MgO图(Miyashiro, 1974);柳园杂岩中玄武岩数据来自Santos等(2022)
    Figure  7.  Classification diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny
    图  8  北山造山带南缘潘家井子一带斜长角闪岩和白色变粒岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)
    原始地幔数值来自Sun等(1989);Cascades弧玄武岩数据来自Schmidt等(2017)
    Figure  8.  (a) Chondrite-normalized REE patterns and (b) primitive mantle normalized trace element spider diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

    灰白色浅粒岩的烧失量较低(0.41%~0.73%)。SiO2含量较高(75.92%~81.35%),而TiO2(0.14%~0.17%)、Na2O(1.24%~2.31%)、MgO(0.06%~0.09%)含量则相对较低。在Nb/Y-Zr/Ti图解上,3件样品落入流纹岩区域(图7a)。浅粒岩样品稀土元素具有明显的轻稀土富集、重稀土平坦的右倾配分模式,(La/Yb)cn =(4.28~4.51),具有明显的Eu负异常(δEu = 0.45~0.46)(图8a)。微量元素显示大离子亲石元素富集和明显的Nb-Ta、Ti、P亏损的特征(图8b)。

    已有的研究表明位于辉铜山-账房山蛇绿构造混杂岩带和疏勒河断裂之间的石板山构造带发育大量的前寒武纪物质组分,如变质岩石中1.4 Ga的继承锆石年代学信息(贺振宇等,2015)以及新元古代侵入岩浆作用(Zong et al.,2013),证实其具有陆块基底性质。然而,越来越多的研究资料显示,北山造山带原划的“北山岩群”(南部称为“敦煌岩群”)(1∶25万马鬃山幅和红宝石幅)(甘肃省地质调查院,20012005)包括了大量的新元古代、甚至是古生代的变质火山–碎屑岩,由此导致了对北山造山带前寒武纪构造认识的分歧和争论(张海迪等,2021Zhang et al.,2022),这些分歧也直接制约了对北山造山带南缘构造属性及构造过程的深刻认识。

    本次研究获得灰白色变粒岩、云母石英片岩和灰白色浅粒岩锆石自形程度较高,呈自形–半自形晶,发育明显的震荡环带,且具有较高的Th/U值(> 0.2),指示其为岩浆成因的锆石(Wu et al.,2004)。其次,获得3件样品相对集中的碎屑锆石年代学数据(327~266 Ma),其加权平均年龄为(285±2)Ma~(294±4 )Ma,并未发现古老的年代学信息,表明其原岩为物源相对单一的火山–碎屑岩或火山岩。潘家井子变火山–碎屑岩不同组分主要受控于褶皱–断裂构造,说明其形成于不同岩性组分(如英安岩、晶屑凝灰岩、粉砂岩、砾岩等)经历变形–变质而形成带状展布的地质体(图2)。分析结果揭示,灰白色浅粒岩原岩具有流纹岩地球化学特征,与野外地质特征(图3e图3f)和年代学结果相一致,进一步表明该套变质岩系原岩可能为同期岩浆作用的产物。此外,本次获得了变质砾岩中花岗质砾石的锆石U-Pb年龄分布于559~272 Ma,最小年龄为(272±6)Ma,表明该套砾岩沉积时代不早于中二叠世。

    区内的岩石地层单元划分是基于野外地质调查成果,但限于当时的测试条件,主要依据岩石组成及变质–变形特征将该套地层划分为古元古代敦煌岩群(甘肃省地质矿产局酒泉地质矿产调查队,1993)。然而,越来越多的研究在这些“古老的地层”中解体出大量的古生代变质岩(Wang et al.,2021Li et al.,2023)。其次,在北山造山带南缘独山–干泉–梧桐沟–双堡塘等地发育以中–酸性火山岩为主、夹少量玄武岩–安山岩为特征的火山岩组合(如双堡塘组玄武岩夹层),形成时代集中于294~268 Ma(许伟,2019),与本次获得的年代学信息一致。值得注意的是,甘肃省地质矿产局酒泉地质矿产调查队(1993)根据弱变形粉砂岩中的孢粉化石将“敦煌岩群”局部地层厘定为二叠纪双堡塘组。

    综上所述,石板山构造带潘家井子一带近EW向展布的变质火山–碎屑岩系,岩浆作用时代主要为早二叠世,而砾岩中砾石限定沉积时代不早于中二叠世。因此该套变质岩系应该从原划定的前寒武纪敦煌岩群中予以解体。

    全岩地球化学分析结果显示,斜长角闪岩及变英安岩(灰白色浅粒岩)的烧失量均较低,分别为0.63%~0.89%和0.41%~0.73%,表明岩石相对较弱的后期蚀变。一般而言,Zr岩石中最稳定的元素,并常用来评估岩浆演化过程中元素的稳定性(Polat et al.,2003)。斜长角闪岩具有稳定的Zr含量(264×10–6~283×10–6),高场强元素(如Hf、Th、Yb、Y等)与Zr含量正相关,表明其在岩浆演化过程中保持相对稳定。

    斜长角闪岩样品具有低SiO2、P2O5,富MgO(Mg# = 46.2~47.4)、高TiO2和Na2O的特征,指示其为安山岩/玄武岩组分特征(图7a),为幔源岩浆作用的产物。微量元素蛛网图显示,斜长角闪岩具有微弱的Ti正异常、弱的P负异常(图8b),表明其发生了相对微弱的地壳混染。斜长角闪岩样品具有相对较高的Th/Yb值,Nb/Yb-Th/Yb判别图解(Smithies et al.,2018)显示其主要受俯冲作用富集的趋势(图9a),而受古老地壳混染的影响相对较小。相较原始岩浆,斜长角闪岩相对较低的Mg#暗示其经历的一定程度的结晶分异,其Cr、Ni含量与MgO含量呈明显正相关性,指示其经历了一定程度的橄榄石和辉石的结晶分异;而CaO、FeOT、Al2O3等与MgO含量无明显相关性,且无明显的Eu负异常(图8a),表明斜长角闪岩的原岩岩浆未经历斜长石的结晶分异作用。

    图  9  北山造山带南缘潘家井子一带斜长角闪岩的构造环境判别图
    a. Nb/Yb-Th/Yb图解(Smithies et al., 2018);b. Ta/Hf-Th/Hf构造环境判别图(汪云亮等,2001);c. Zr-Th-Nb图解;d. Nb-Zr-Y图解(Meschede, 1986);柳园杂岩中玄武岩数据来自Santos等(2022)
    Figure  9.  Discrimination diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

    灰白色浅粒岩具有明显的Eu负异常、P和Ti亏损(图8),表明相较斜长角闪岩原岩,灰白色浅粒岩(英安岩)经历了明显的斜长石分异和地壳混染。因此,笔者主要利用斜长角闪岩的地球化学特征来探讨其原岩形成的构造环境。

    斜长角闪岩具有轻稀土富集、重稀土平坦、高场强元素分异不明显的特征,此外其具有明显高TiO2、亏损Nb-Ta等(图8)特征,指示其具有类似于陆缘弧玄武岩的地球化学特征。在Nb/Yb-Th/Yb判别图解上(Smithies et al.,2018),斜长角闪岩样品显示其可能受到俯冲作用的富集和微弱的古老地壳物质的混染(图9a);而在Ta/Hf-Th/Hf环境判别图解上,样品显示大洋岛弧和陆缘火山弧玄武岩特征(图9b)。在Zr-Th-Nb和Nb-Zr-Y判别图解中,均显示出具有弧玄武岩的特征(图9c图9d)。研究认为,拉斑质和钙碱性弧玄武岩形成于相对较高的压力和温度条件(1.0~2.5 Gpa,12201350 ℃),而潘家井子斜长角闪岩具有高Na2O、TiO2、Th、Zr的特征,也指示其可能形成于俯冲板片熔体的加入(Schmidt et al.,2017)。区域上,在珊瑚井、后红泉地区291~289 Ma玄武岩地球化学研究结果(许伟,2019),表明其可能经历了陆缘沉积岩、大陆地壳物质的改造。此外,柳园地区干泉、白墩子一带识别的弧岩浆岩(297~293 Ma、290~282 Ma)(Hong et al.,2023)研究结果指示沿着石板山构造带北缘发育早—中二叠世弧岩浆岩带,可能为柳园洋的洋壳向南俯冲至石板山地块之下诱发的弧岩浆作用(Xiao et al.,2010Mao et al.,2012),并可能持续到三叠纪最终闭合(Xiao et al.,2015Wang et al.,2022)。

    目前,部分学者认为北山造山带南部发育的石炭世—中二叠世火山岩可能与地幔柱相关(Xia et al.,2008Qin et al.,2011Su et al.,2011)。然而,区内以拉斑玄武岩为主且相对较低TiO2含量与地幔成因的高TiO2(约2.87%)(Sun et al.,1989)洋岛玄武岩(OIB)存在一定差异。其次,已有的研究认为与地幔柱相关的火山喷发具有时限短的特征(张招崇等,2007),这与北山南缘长期持续活动的火山作用不一致,由此难以推断北山南部同期火山作用与地幔柱相关。此外,大量的研究表明北山南部中—晚泥盆世发育磨拉石沉积,认为柳园洋盆早—中二叠世处于裂谷盆地–后碰撞伸展阶段(左国朝等,1990徐学义等,2014许伟等,2018Niu et al.,2021张海迪等,2021俞胜等,2022)。特别是,近年来在北山造山带南缘柳园一带新厘定出二叠纪多期弧岩浆作用(Hong et al.,2023)及三叠纪增生杂岩带(Wang et al.,2022),指示沿该带在二叠纪仍处于与俯冲作用相关的构造背景。潘家井子一带变基性火山岩地球化学支持其形成岩浆弧构造环境,但区内发育大量同期中–酸性火山岩(294~285 Ma),也指示其可能构成双峰式火山岩(许伟,2019),与区内已报道的A型花岗岩(许伟等,2018),表明其总体位于与俯冲相关的局部伸展背景。

    (1)精细的野外调查显示桥湾北变火山碎屑岩具有强变形、弱变质的特征,发育两期明显的构造变形:早期EW走向的中常褶皱–断裂构造,晚期叠加近EW向走滑剪切变形。

    (2)火山岩年代学结果表明其形成于294~285 Ma,为早—中二叠世岩浆作用的产物;砾岩中的花岗质砾石的锆石U-Pb年龄为272 Ma,表明其沉积时代晚于中二叠世。这些结果表明石板山地块潘家井子一带“敦煌岩群”应厘定为二叠纪(变)火山–碎屑岩。

    (3)结合火山岩地球化学特征及区域地质资料,表明北山造山带南缘石板山构造带于早—中二叠世处于与俯冲作用相关的局部伸展构造环境。

    致谢:在论文修改过程中,匿名评审人细致评阅全文,并提出了具体修改意见和建议,在此谨致谢忱。

  • 图  1   邯邢地区矽卡岩型铁矿地质简图(据章百明,1996郑建民,2007修)

    1.石炭系—二叠系含煤碎屑岩;2. 中奥陶统碳酸盐岩;3. 寒武系—上奥陶统碳酸盐岩;4. 中生代闪长岩-二长岩类;5. 中生代正长岩;6. 铁矿;7. 断裂带

    Figure  1.   Geological map of skarn type iron ore in Hanxing area

    图  2   邯邢地区矽卡岩型铁矿成矿流体演化示意图(据文广,2017修)

    1. 早奥陶世碳酸盐岩石;2.寒武纪碳酸盐岩;3.膏盐层;4.岩浆;5.蚀变闪长岩;6.中奥陶世碳酸盐岩石;7.石炭纪—二叠纪页岩;8.磁铁矿;9.外部液体与蒸发液平衡

    Figure  2.   Schematic diagram of ore-forming fluid evolution of skarn type iron ore in Hanxing area

    图  3   中关矿区4~5线地层剖面图

    1.第四系砾石层;2.石炭系页岩;3.铁矿;4.断层;5.矽卡岩带;6.中奥陶灰岩;7.膏溶角砾岩;8.钻孔

    Figure  3.   Stratigraphic profile of Line 4~5 in Zhongguan mining area

    表  1   邯邢式矽卡岩型铁矿的硫同位素组成表

    Table  1   Sulfur isotope composition of Hanxing type skarn type iron ore

    矿床 硫化物δ34SV-CDT/‰ 硫酸盐δ34SV-CDT/‰ 数据来源
    变化范围 平均 变化范围 平均
    蒸发沉积石膏
    (中奥陶统地层)
    21.3~31.6 27.9(30) 蔡本俊等,1987
    沉积变质石膏
    (中奥陶统地层)
    27.2~27.6 27.4
    热液形成石膏
    (中奥陶统地层)
    21.3~25.5 23.4
    符山铁矿 11~14 13(6) 21.3~31.6 27.9(35) 赵瑞,1986
    蔡本俊等,1987
    章百明等,1996
    矿山村铁矿 14~18 16(17)
    玉石洼铁矿 11~18 16(9)
    马庄铁矿 15~19 16(6)
    钢铁沟铁矿 12~18 16(3)
    三王村铁矿 15~18 16(15)
    北河铁矿 11.6~14.2 13.3(3)
    西石门铁矿 14~18.6 16.2(13) 24~29.1 26.3(4) 文广,2017
    北洺河铁矿 12.2~16.5 14.06(5) 24~29.1 26.3(5) 章百明等,1996
    王艳娟,2011
    符山铁矿 6.3~8.6 7.5(5) 息朝庄等,2022
    王艳娟,2012
    矿山村和武安岩体 6.4~18.8 12.2 徐文炘等,1987
    煤层中黄铁矿 −26~3.3 −14(4)
      注:括号内数字为样品个数。
    下载: 导出CSV

    表  2   常压下盐类矿物的物理化学性质表

    Table  2   Physical and chemical properties of salt minerals under atmospheric pressure

    矿物 钾石盐 石盐 硫酸钾 方解石 白云石 石膏 钾长石 斜长石 角闪石 辉石 橄榄石
    分子式 KCl NaCl K2SO4 CaCO3 CaMg(CO32 CaSO4 K(AlSi3O8 (Ca, Na)AlSi3O8 (Ca, Mg, Fe)
    Si3O22(OH)2
    (Ca, Mg, Fe)2
    (Si, Al)2O6
    (Ca, Mg,
    Fe)2SiO4
    分解温度(℃) 560~580 850~920 810~950 11001190
    熔融温度(℃) 776 801 10301070 12901340 2800 13001450 10751200 11201550 11001200 12001400 1205~1 890
    晶格能(千卡) 156 179 358 647 1385 622 24003000 25003800 3800 4100 42004800
      注:数据来自草广金,1978
    下载: 导出CSV

    表  3   过渡性金属成矿元素的络合物和卤化物形式

    Table  3   Complexes and halide forms of transitional metal-forming elements

    金属元素 络合物 卤化物 金属元素/形式 络合物 卤化物
    Fe R(Fe3+Cl4)、R2(Fe2+Cl4 FeCl2、FeF2 W R2(WF8)、WOCl4 WCl6、WF6
    Cu R2(CuCl4 CuCl、CuF Mo R2(MoCl6 MoCl4、MoF4
    Pb R2(PbCl4 PbCl2、PbF2 Sn R2(SnCl6 SnCl4、SnF4
    Zn R2(ZnCl4 ZnCl2、ZnF2 Au R(AuCl2)、R(AuCl4 AuCl3、AuF3
      注:R为K+、Na+等碱金属离子。
    下载: 导出CSV

    表  4   邯邢地区部分铁矿岩石钠化前后的化学元素占比变化表

    Table  4   Changes in proportion of chemical elements before and after sodification of some iron ore rocks in Hanxing area

    矿区 带入元素(%) 带出元素(%) 数据来源
    SiO2 Al2O3 Na2O K2O CaO MgO Fe2O3+FeO
    中关铁矿 原岩 51.15 13.56 2.47 4.98 7.97 9.56 5.14 贾木欣等,2006
    钠化岩石 57.94 16.19 7.19 1.61 5.71 2.82 3.83
    白涧铁矿 原岩 59.16 15.58 4.54 2.55 4.78 3.38 5.68 赵书梅等,2011
    钠化岩石 58.83 15.8 7.08 1.08 5.83 2.9 4.08
    西石门铁矿 原岩 59.01 16.63 8.2 0.28 6.65 2.05 4.2 魏宏飞,2011
    钠化岩石 73.23 12.78 8.69 0.13 2.61 0.01 0.41
    下载: 导出CSV
  • 蔡本俊, 李席珍, 魏寿彭, 等. 邯邢地区中奥陶统蒸发岩特征及其对内生铁(硫)矿床的控制[J]. 中国地质科学院地质力学研究所所刊, 1987, (2): 1−84.

    CAI Benjun, LI Xizhen, WEI Shoupeng, et al. Features of the middle ordovician evaporites and its control over the endogenic iron (sulfur) deposits in Han-Xing district, HeBei[J]. Journal of Geomechanics,1987,(2):1−84.

    成嘉伟, 刘新星, 张娟, 等. 河北邯邢地区白涧铁矿蚀变矿物红外光谱分析及找矿研究[J]. 地球科学, 2023, 48(4): 1551−1567.

    CHENG Jiawei, LIU Xinxing, ZHANG Juan, et al. Infrared spectral analysis and prospecting of alteration minerals of Baijian skarn type iron deposit in Han-Xing area[J]. Earth Science,2023,48(4):1551−1567.

    陈洪新. 鄂东南程潮铁矿区矿化与三叠系蒸发岩的关系[J]. 中国地质科学院地质力学研究所所刊, 1993, 163−176.

    CHEN Hongxin. Relationship of the triassic evaporite beds with the mineralization of iron ores in Chengchao, southeastern Hubei Province[J]. Journal of Geomechanics, 1993, 163−176.

    草广金. 我国内生铁铜矿床与膏盐的关系[J]. 地质与勘探, 1978, (3): 24−30.

    CAO Guangjin. Relationship between pig iron copper deposit and paste salt in China[J]. Geology and Exploration,1978,(3):24−30.

    陈艳, 张招崇. 矽卡岩型铁矿的铁质来源与迁移富集机理探讨[J]. 岩矿测试, 2012, 31(5): 889−897.

    CHEN Yan, ZHANG Zhaochong. Study on source, transport and the enrichment mechanism of iron in iron skarn deposits[J]. Rock and Mineral Analysis,2012,31(5):889−897.

    贾木欣, 于方, 冯钟燕. 邯邢式铁矿成因机理探讨[J]. 矿冶, 2006, (2): 80−84. doi: 10.3969/j.issn.1005-7854.2006.02.021

    JIA Muxin, YU Fang, FENG Zhongyan. Study on the mechanism of the HanXing iron ore formation[J]. Mining and Metallurgy,2006,(2):80−84. doi: 10.3969/j.issn.1005-7854.2006.02.021

    蒋俊毅, 苏尚国, 崔晓亮, 等. 早白垩世华北克拉通东部岩石圈减薄过程和机制: 来自河北西石门杂岩体的证据[J]. 岩石学报, 2020, 36(2): 356−390. doi: 10.18654/1000-0569/2020.02.03

    JIANG Junyi, SU Shangguo, CUI Xiaoliang, et al. Process and mechanism of lithosphere thinning in the eastern North China Craton during the Early Cretaceous: evidence from the Xishimen Complex in Hebei Province[J]. Acta Petrologica Sinica,2020,36(2):356−390. doi: 10.18654/1000-0569/2020.02.03

    霍延安, 苏尚国, 杨誉博, 等. 中生代华北克拉通岩石圈减薄的证据——以河北武安固镇杂岩体为例[J]. 岩石学报, 2019, 35(4): 989−1014. doi: 10.18654/1000-0569/2019.04.02

    HUO Yanan, SU Shangguo, YANG Yubo, et al. Evidence of lithosphere thinning in the Mesozoic North China Craton: a case study of the Guzhen Complex in Wuan, Hebei Province[J]. Acta Petrologica Sinica,2019,35(4):989−1014. doi: 10.18654/1000-0569/2019.04.02

    孔源. 河北省沙河市綦村铁矿田邯邢式铁矿成矿地质特征及找矿方向[D]. 石家庄: 石家庄经济学院, 2014.

    KONG Yuan. The metallogenic geological characteristics and prospecting direction research of Qicun Han-Xing type iron ore of Shahe City in Hebei Province[D]. Shijiazhuang: Shijiazhuang University of Economics, 2014.

    梁贤, 张聚全, 卢静, 等. 邯邢地区中生代侵入岩中磷灰石的成因矿物学研究[J]. 地质与勘探, 2020, 56(5): 969−984. doi: 10.12134/j.dzykt.2020.05.007

    LIANG Xian, ZHANG Juquan, LU Jing, et al. Genetic mineralogy of apatite in mesozoic intrusive rocks in Handan-Xingtai region, Hebei Provinc[J]. Geology and Exploration,2020,56(5):969−984. doi: 10.12134/j.dzykt.2020.05.007

    李延河, 谢桂青, 段超, 等. 膏盐层在矽卡岩型铁矿成矿中的作用[J]. 地质学报, 2013, 87(9): 1324−1334.

    LI Yanhe, XIE Guiqing, DUAN Chao, et al. Effect of sulfate evaporate salt layer over the formation of skarn-type iron ores[J]. Acta geologica Sinica,2013,87(9):1324−1334.

    李延河, 段超, 韩丹, 等. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J]. 岩石学报, 2010, 26(5): 1355−1368.

    LI Yanhe, DUAN Chao, HAN Dan, et al. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the middle-lower yangtze river area[J]. Acta Petrologica Sinica,2010,26(5):1355−1368.

    李延河, 段超, 韩丹, 等. 矿浆型铁矿的氧同位素判别标志: 以宁芜玢岩铁矿为例[J]. 岩石学报, 2017, 33(11): 3411−3421.

    LI Yanhe, DUAN Chao, HAN Dan, et al. Oxygen isotopic discriminant marker of magmatic iron deposits: Ningwu porphyrite iron ore as an example[J]. Acta Petrologica Sinica,2017,33(11):3411−3421.

    李雷, 秦永军, 张凯. 矽卡岩型铁矿的成矿地质特征及成因综述[J]. 中国金属通报, 2018(11): 252−253.

    LI Lei, QIN Yongjun, ZHAG Kai. Skarn type iron ore ore-forming geological characteristics and genesis of review[J]. China Metal Bulletin,2018(11):252−253.

    马健飞, 胡永亮, 李仁杰. 矽卡岩型铁矿的成矿地质特征及成因综述[J]. 西部资源, 2016(4): 21−23.

    MA Jianfei, HU Yongliang, LI Renjie. Skarn type iron ore ore-forming geological characteristics and genesis of review[J]. Western Resources,2016(4):21−23.

    毛景文, 周涛发, 谢桂青, 等. 长江中下游地区成矿作用研究新进展和存在问题的思考[J]. 矿床地质, 2020, 39(4): 547−558.

    MAO Jingwen, ZHOU Taofa, XIE Guiqing, et al. Metallogeny in middle-lower yangtze river ore belt: advances and problems remained[J]. Mineral Deposits,2020,39(4):547−558.

    沈保丰, 陆松年, 于恩泽, 等. 某区磁铁矿床中钠质交代作用的特征及其找矿意义[J]. 地质科学, 1977, 12(3): 263−274.

    SHEN Baofeng, LU Songnian, YU Enze, et al. The characteristics of sodium metasomatism in magnetite deposits of a certain region and its prospecting significance[J]. Chinese Journal of Geology(Scientia Geologica Sinica),1977,12(3):263−274.

    孙天琦. 邯邢地区白涧矽卡岩型铁矿成因矿物学研究[D]. 石家庄: 河北地质大学, 2018.

    SUN Tianqi. Genetic mineralogy study on Baijian skarn iron deposit in Hanxing area[D]. Shijiazhuang: Hebei Geology University, 2018.

    文广. 邯邢地区矽卡岩富铁矿床形成机理及关键控制因素[D]. 北京: 中国地质大学, 2017.

    WEN Guang. The mechanisms and key factors in forming high-grade iron skarn deposits in Handan-Xingtai district, North China Craton[D]. Beijing: China University of Geosciences, 2017.

    魏宏飞. 邯郸西石门矽卡岩型铁矿地质特征及矿床成因[D]. 石家庄: 石家庄经济学院, 2011.

    WEI Hongfei. Geological characteristics and genesis of Xishimen skarn iron deposit in Handan[D]. Shijiazhuang: Shijiazhuang University of Economics, 2011.

    王艳娟. 河北邯郸符山铁矿矿床学特征及其对华北克拉通演化的记录[D]. 北京: 中国地质大学(北京), 2012.

    WANG Yanjuan. The characteristics of Fushan iron deposit, Handan, Hebei Provience, China, and its implication to the North China craton evolution[D]. Beijing: China University of Geosciences (Beijing), 2012.

    王艳娟, 胡援越, 申俊峰, 等. 太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪[J]. 现代地质, 2011, 25(5): 846−852.

    WANG Yanjuan, HU Yuanyue, SHEN Junfeng, et al. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in Beiming river iron deposits, Southern Taihang Mountains[J]. Geoscience,2011,25(5):846−852.

    息朝庄, 杜高峰, 戴塔根, 等. 冀南符山铁矿床成因研究: 来自流体包裹体和H、O、S同位素证据[J]. 矿物岩石地球化学通报, 2022, 41(4): 837−848.

    XI Chaozhuang, DU Gaofeng, DAI Tagen, et al. Genesis of the Fushan iron deposit in the southern Hebei: Evidences from studies of fluid inclusions and H, O, S isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2022,41(4):837−848.

    徐文炘, 陈民扬. 武安、涉县地区接触交代型铁矿硫同位素研究[J]. 矿产与地质, 1987(01): 83−91.

    XU Wenxin,CHEN Minyang. Study on sulfur isotope of contact metasomatic iron ore in Wu’an and Shexian areas[J]. Mineral Resources and Geology,1987(01):83−91.

    赵一鸣. 中国主要富铁矿床类型及地质特征[J]. 矿床地质, 2013, 32(4): 686−705. doi: 10.3969/j.issn.0258-7106.2013.04.004

    ZHAO Yiming. Main genetic types and geological characteristics of iron rich ore deposits in China[J]. Mineral Deposits,2013,32(4):686−705. doi: 10.3969/j.issn.0258-7106.2013.04.004

    章百明, 马国玺, 毕伏科, 等. 河北主要成矿区带与岩浆作用有关的矿床成矿系列及成矿模式[J]. 华北地质矿产杂志, 1996, (3): 19−21+27−28.

    ZHANG Baiming, MA Guoxi, BI Fuke, et al. Magmatism associated metallogenic series and metallogenic model of the main metallogenic zones in Hebei[J]. North China Journal of Geology and Mineral Resources,1996,(3):19−21+27−28.

    张海东, 刘建朝, 刘淑文, 等. 太行山南段平顺地区矽卡岩铁矿地质特征及成矿模式探讨[J]. 矿物岩石, 2009, 29(3): 53−59.

    ZHANG Haidong, LIU Jianchao, LIU Shuwen, et al. Geological characteristics and metallogenic model of skarn iron deposits in Pingshun area, sourthern Taihang mountains[J]. Mineralogy and Petrology,2009,29(3):53−59.

    郑建民, 毛景文, 陈懋弘, 等. 冀南邯郸—邢台地区矽卡岩铁矿的地质特征及成矿模式[J]. 地质通报, 2007, 26(2): 150−154. doi: 10.3969/j.issn.1671-2552.2007.02.005

    ZHENG Jianmin, MAO Jingwen, CHEN Maohong, et al. Geological characteristics and metallogenic model of skarn iron deposits in the Handan-Xingtai area, southern Hebei, China[J]. Geological Bulletin of China,2007,26(2):150−154. doi: 10.3969/j.issn.1671-2552.2007.02.005

    周涛发, 范裕, 袁峰, 等. 安徽庐枞盆地泥河铁矿床与膏盐层的成因联系及矿床成矿模式[J]. 地质学报, 2014, 88(04): 562−573.

    ZHOU Taofa,FAN Jan,YUAN Feng,et al. The genetic relationship between the Nihe iron deposit and the gypsum salt layer and the metallogenic model of the deposit in the Luzong Basin,Anhui Province[J]. Acta Geologica Sinica,2014,88(04):562−573.

    朱乔乔, 谢桂青, 王建, 等. 含膏盐地层与矽卡岩型铁矿的关系: 以湖北金山店铁矿为例[J]. 地质学报, 2013, 87(9): 1419−1429.

    ZHU Qiaoqiao, XIE Guiqing, WANG Jian, et al. The relationship between the evaporate and skarn-type iron deposit: a case study of the Jinshandian iron skarn deposit in Hubei[J]. Acta Geologica Sinica,2013,87(9):1419−1429.

    朱乔乔, 李伟, 张志远, 等. 多元稳定同位素组合示踪含膏盐地层参与湖北金山店矽卡岩型铁矿成矿作用[J]. 地质学报, 2016, 90(2): 361−375. doi: 10.3969/j.issn.0001-5717.2016.02.012

    ZHU Qiaoqiao, LI Wei, ZHANG Zhiyuan, et al. Tracing incursion of the evaporites into Jinshandian skarn Fe deposit, Hubei Province, by combination of multiple stable isotopes[J]. Acta Geologica Sinica,2016,90(2):361−375. doi: 10.3969/j.issn.0001-5717.2016.02.012

    朱乔乔. 湖北金山店矽卡岩型铁矿成矿作用[D]. 北京: 中国地质科学院, 2016.

    ZHU Qiaoqiao. Mineralization of skarn type iron ore in Jinshandian, Hubei Province[D]. Beijing: Chinese Academy of Geological Sciences, 2016.

    赵瑞. 冀鲁皖若干内生矿床的硫同位素研究[J]. 岩石学报, 1986, 2(1): 26−32.

    ZHAO Rui. Sulfur isotopes study of some endogenic ore deposits in Hebei. Shandong and Anhui provinces[J]. Acta Petrologica Sinica,1986,2(1):26−32.

    赵书梅, 王金河, 孔令海. 钠长石化与接触交代(矽卡岩)型铁矿成矿关系的探讨——邯邢式铁矿为例[J]. 矿产与地质, 2011, 25(6): 491−494.

    ZHAO Shumei, WANG Jinhe, KONG Linghai. Albitization and mineralization mechanism of contact metasomatic iron ore (skarns)-Taking Han-Xing type iron ore as an example[J]. Mineral Resources and Geology,2011,25(6):491−494.

    Barton M D, Johnson D A. Evaporitic-source model for ingeous-related fe oxide-(REE-CU-AU-U) mineralization[J]. Geology, 1996, 24(3).

    Chen H Y. External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan[J]. Ore Geology Reviews,2013,51:74−78. doi: 10.1016/j.oregeorev.2012.12.002

    Cao Y T, LIU Chenglin, CHEN Yongzhi, et al. Characteristics of copper mineralization in the Kuqa Foreland basin, and origin, enrichment and distribution of copper[J]. Acta Geologica Sinica,2010,84(12):1791−1804.

    Deng X, Li J, Wen G. U-Pb Geochronology of hydrothermal zircons from the early cretaceous Iron Skarn deposits in the Handan-Xingtai district, North China Craton[J]. Econmoic Geology. 2015, 110(8): 2159-2180.

    Einaudi M T, Hedenquist J W, Inan E E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments[J]. Society of Economic Geologists, 2003.

    Eugster H P, Chou I. A model for the deposition of cornwall-type magnetite deposits[J]. Economic Geology,1979,74(4):763−774.

    Hryciuk M, Bedard J H, Minarik W. Evaporite assimilation window triggers sulfide immiscibility. Goldschmidt 2012 Conference Abstracts, 1864.

    Liang H, Sun W, Su W. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration[J]. Economic Geology,2009,104(4):587−596.

    Li W, Audetat A, Zhang J. The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: Evidence from LA-ICP-MS analysis of fluid inclusions[J]. Ore Geology Reviews,2015,67:264−278.

    Lehmann J, Arndt N, Windley B, et al. Field Relationships and Geochemical Constraints on the Emplacement of the Jinchuan Intrusion and its Ni-Cu-PGE Sulfide Deposit, Gansu, China[J]. Economic Geology,2007,102(1):75−94. doi: 10.2113/gsecongeo.102.1.75

    Li Wei, Xie Guiqing, Mao Jingwen, et al. Mineralogy fluid inclusion and stable isotope studies of the Chengchao deposit Hubei province eastern China: Implications for the formation of high-grade Fe skarn deposits[J]. Economic Geology,2019,114:325−352. doi: 10.5382/econgeo.2019.4633

    Meinert L D, Dipple G M, Nicolescu S. World skarn deposits[J]. Economic Geology 100th Anniversary Volume, 2005: 299−336.

    Nabelek P I, Bedard J H, Hryciuk M, et al. Short-duration contact metamorphism of calcareous sedimentary rocks by Neoproterozoic Franklin gabbro sills and dykes on Victoria Island, Canada[J]. Metamorphic Geology,2013,31(2):205−220.

    Ohomoto H, Rye R O. Isotopes of sulfur and carbon[J]. Geochemistry of Hydrothermal Ore Deposits,1979,10:509−576.

    Pokrovski, Gleb S, Dubrovinsky. The S3Ion Is Stable in Geological Fluids at Elevated Temperatures and Pressures[J]. Science, 2011.

    Xie G Q, Mao J W, Zhu Q Q, et al. Geochemical constraints on Cu–Fe and Fe skarn deposits in the Edong district, Middle–Lower Yangtze River metallogenic belt, China[J]. Ore Geology Reviews,2015,64:425−444.

    Webster J. The exsolution of magmatic hydrosaline chloride liquids[J]. Chemical Geology,2004,210(1−4):33−48.

    Wen G, Bi S J, Li J W. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton[J]. Mineralium Deposita,2017,52(4):1−20.

    Yi Sun, Long Xiao, Dan Zhu, et al. Geochemical geochronological and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Qicun intrusive complex from the Handan–Xingtai district: Implications for the mechanism of lithospheric thinning of the North China Craton[J]. Ore Geology Reviews,2014,57:363−374. doi: 10.1016/j.oregeorev.2013.09.007

    Zhou T F, Fan Yu, Yuan Feng, et al. The metallogenic model of Nihe iron deposit in Lu-Zong basin and genetic relationship between Gypsum-Salt layer and deposit[J]. Acta Geologica Sinica,2014,88(4):562−573.

    Zhao B M, Liu Yongbin, Lin Xiaoxing, et al. Geological and geophysical characteristics and prospecting direction of iron orein Xingtai-Handan[J]. Progress in Geophysics,2014,29(6):2838−2842.

图(3)  /  表(4)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  10
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-10
  • 修回日期:  2023-11-06
  • 录用日期:  2024-02-27
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-10-19

目录

/

返回文章
返回