ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索
    王波,郭强,王春伟,等. 基于低场核磁共振的致密储层孔隙结构特征及流体可动性研究:以敦煌盆地五墩凹陷侏罗系为例[J]. 西北地质,2024,57(5):156−165. doi: 10.12401/j.nwg.2024041
    引用本文: 王波,郭强,王春伟,等. 基于低场核磁共振的致密储层孔隙结构特征及流体可动性研究:以敦煌盆地五墩凹陷侏罗系为例[J]. 西北地质,2024,57(5):156−165. doi: 10.12401/j.nwg.2024041
    WANG Bo,GUO Qiang,WANG Chunwei,et al. Pore Structure Characteristics and Fluid Mobility of Tight Reservoir Based on Nuclear Magnetic Resonance: A Case Study of Jurassic in Wudun Sag, Dunhuang Basin[J]. Northwestern Geology,2024,57(5):156−165. doi: 10.12401/j.nwg.2024041
    Citation: WANG Bo,GUO Qiang,WANG Chunwei,et al. Pore Structure Characteristics and Fluid Mobility of Tight Reservoir Based on Nuclear Magnetic Resonance: A Case Study of Jurassic in Wudun Sag, Dunhuang Basin[J]. Northwestern Geology,2024,57(5):156−165. doi: 10.12401/j.nwg.2024041

    基于低场核磁共振的致密储层孔隙结构特征及流体可动性研究:以敦煌盆地五墩凹陷侏罗系为例

    Pore Structure Characteristics and Fluid Mobility of Tight Reservoir Based on Nuclear Magnetic Resonance: A Case Study of Jurassic in Wudun Sag, Dunhuang Basin

    • 摘要: 致密储层孔喉细小,流体可动性评价难度大,影响着致密油藏储层物性表征及开发潜力分析。本研究针对敦煌盆地五墩凹陷侏罗系致密储层岩心,采用低场核磁共振技术,结合XRD全岩矿物分析、铸体薄片与扫描电镜照片,系统梳理了核磁共振T2谱与孔喉半径的对应关系,实现了致密储层孔径定量表征,阐明了储层孔喉分布特征,并明确了不同孔隙结构的流体可动性。结果表明:五墩凹陷核磁共振T2谱多为双峰型,左峰优势型占65%,双峰均势型占35%,粒间孔半径为6×10−3~600×10−3 μm,溶蚀孔半径为0.6~4 μm,微裂缝半径大于4 μm;各井孔喉半径分布差异大:XC1井以粒间孔优势型为主,溶蚀孔比例变化大,D1井均为粒间孔优势型,孔喉半径分布曲线形态变化较小,D2井发育粒间孔优势型及双孔均势型,粒间孔、溶蚀孔比例变化大,DX3井为双孔均势型,整体信号强度小;通过对饱和水、束缚水及残余油状态的岩心进行核磁测试,反映出溶蚀孔对流体可动性的贡献大。五墩凹陷后期的勘探方向为寻求孔隙结构发育程度及溶蚀孔比例“双高”的井区。研究成果对于该区致密油藏的勘探与开发具有重要的指导意义。

       

      Abstract: The pore throat of tight reservoir is small, and the fluid mobility evaluation is difficult, which affects the characterization of tight reservoir physical properties and development potential analysis. In this study, low-field nuclear magnetic resonance technology was applied to the Jurassic tight reservoir core in the Wudun Sag of Dunhuang Basin, combining with XRD whole-rock mineral analysis, cast thin section and scanning electron microscope photos to systematically clarify the corresponding relationship between NMR T2 spectrum and pore throat radius, thus realizing the quantitative characterization of tight reservoir pore diameter and illustrating the distribution characteristics of pore throat. The fluid mobility of different pore structures is also defined. The results show that the NMR T2 spectra of Wudun sag are mainly bimodal, with the left peak dominant type accounting for 65% and the bimodal equilibrium type accounting for 35%. The radius of intergranular pore is 6×10−3~600×10−3 μm, the radius of dissolution pore is 0.6~4 μm, and the radius of microfracture is greater than 4μm. The distribution of pore throat radius varies greatly among all Wells: XC1 is dominated by intergranular pore dominance with large change in the proportion of dissolved pore; D1 is dominated by intergranular pore dominance with small change in the distribution curve of pore throat radius; D2 is characterized by intergranular pore dominance and double pore equilibrium with large change in the proportion of intergranular pore and dissolution pore; DX3 is characterized by double pore equilibrium with small overall signal intensity; Through the nuclear magnetic test of saturated water, bound water and residual oil state of the core, it shows that the contribution of the dissolution hole to the fluid mobility is great. The exploration direction of the late Wudun sag is to seek for the well area with the development degree of pore structure and the proportion of dissolution holes "double high". The above results and understanding have important guiding significance for the exploration and development of tight oil reservoirs in this area.

       

    /

    返回文章
    返回