Geochemical Characteristics and Tectonic Significance of Late Triassic Lamprophyre in the Beishan Region, Gansu Province
-
摘要:
甘肃北山地区位于中亚造山带南缘,是研究中亚造山带构造演化的关键区域。煌斑岩多为岩石圈地幔在伸展背景下低程度部分熔融形成的碱性岩石,确定其形成时代和岩石成因可为区域构造演化提供新的依据。笔者对北山地区柳园南煌斑岩进行了系统的岩石学、地球化学和锆石U-Pb年代学及Hf同位素研究。柳园南煌斑岩的锆石U-Pb年龄为(228.2±1.1) Ma(晚三叠世)。煌斑岩中富含金云母和角闪石等富挥发性组分的矿物。岩石地球化学分析表明:柳园南煌斑岩属于超钾质煌斑岩,母岩浆为碱性岩浆系列;全岩微量元素具有明显的Nb-Ta和Zr-Hf负异常,锆石εHf(t)值为0.5~4.9,平均值为+2.8,具俯冲洋壳板片流体交代特征。柳园南煌斑岩中橄榄石Mn/Fe与Ca/Fe值对比表明,柳园南煌斑岩源区为富金云母的方辉橄榄岩地幔;微量元素模拟计算表明,地幔源区具有富集的特征。因此,柳园煌斑岩岩浆源区为被俯冲板片流体交代的岩石圈地幔。结合前人对中亚造山带南缘构造演化的研究,北山南部地区在晚三叠世时已进入陆内伸展阶段,减压作用促使被俯冲流体交代的岩石圈地幔发生低程度部分熔融,形成柳园煌斑岩脉。
Abstract:The Beishan region is located at the southern margin of the Central Asian Orogenic Belt (CAOB) and is a key area for studying the tectonic evolution of the CAOB. Lamprophyres are the product of low-degree partial melting of the subcontinental lithospheric mantle in the extensional background. Their formation age and petrogenesis can play a significant role in ascertaining the regional tectonic evolution. In this paper, systematic petrological, geochemical and zircon U-Pb chronology and Hf isotope studies were carried out on the lamprophyre in the Liuyuan area in southern Beishan region. The zircon U-Pb age of the Liuyuannan lamprophyre is (228.2±1.1) Ma (Late Triassic). The lamprophyre is rich in volatile component minerals such as phlogopite and hornblende. The Liuyuannan lamprophyre belongs to ultrapotassic lamprophyre, and its parent magma is an alkaline magma series. The Liuyuannan lamprophyre are characterized by pronounced negative Nb-Ta and Zr-Hf anomalies, positive zircon εHf (t) values ranging from 0.5 to 4.9, with an average value of +2.8. These data indicate that the mantle source was metasomatized by the subducted melts/fluids. The Mn/Fe and Ca/Fe ratios of olivine crystals in the Liuyuannan lamprophyre indicate that the mantle source is phlogopite-rich harzburgite mantle; trace element simulations indicate that the mantle source of Liuyuannan lamprophyre is an enriched peridotite-type mantle. Therefor, the source of the Liuyuan lamprophyre should be the lithospheric mantle metasomatized by subducting slab fluids. Combined with previous studies on the tectonic evolution of the southern of the CAOB, we believe that the Beishan region has entered intracontinental extensional environment in the Late Triassic. Decompression promoted low-degree partial melting of the lithospheric mantle metasomatized by subduction fluids, resulting in the formation of the Liuyuan lamprophyre.
-
-
图 1 中亚造山带构造单元简图(a) (据Jahn et al., 2004修改), 北山造山带构造简图(b) (据Xiao et al., 2010修改)和柳园地区地质简图(c) (据甘肃省地质矿产局,1966修改)
图c中年龄数据引自刘畅(2006)、李舢等(2011)、Li等(2017)、孙海瑞等(2020)
Figure 1. (a) Sketch of tectonic units of the Central Asian Orogenic Belt, (b) Beishan Orogenic Belt, and (c) geological map of the Liuyuan area
图 4 柳园南煌斑岩的橄榄石晶体Fo-Ni(a)和Fo-Ca(b)相关图
煌斑岩、Hawaii和MORB数据引自Sobolev等(2007)、Foley等(2013)和Prelević等(2013)
Figure 4. (a)Fo-Ni and (b)Fo-Ca diagrams of olivine crystals from Liuyuannan lamprophyre
图 5 柳园南煌斑岩SiO2-(K2O+Na2O)(a)与K/(K+Na)-K/Al(b)相关图
I.钠质煌斑岩;I’.弱钾质煌斑岩;II.钾质煌斑岩;III.超钾质煌斑岩;IV.过钾质煌斑岩;V.钾镁煌斑;岩底图据Irvine等(1971)、路凤香等(1991);柳园西、Chuya煌斑岩数据分别引自刘畅等(2006)和Vasyukova(2011)
Figure 5. (a)(Na2O+K2O)- SiO2 and (b) K/(K+Na) - K/Al diagrams of the Liuyuannan lamprophyre
图 6 柳园南煌斑岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准化数据引自 Boynton(1984);原始地幔标准化数据引自Sun等(1989);洋岛玄武岩、岛弧玄武岩数据引自Li 等(2015);柳园西、Chuya煌斑岩数据分别引自刘畅等(2006)和Vasyukova等(2011)
Figure 6. (a) Chondrite-normalized REEs pattern and (b) Primitive Mantle-normalized trace elements Spider diagram of Liuyuannan lamprophyre
图 7 柳园南煌斑岩Nb/Yb-Th/Yb(a)与Th/Nb-εHf(t)(b)相关图
图a底图据 Pearce(2008);上地壳和亏损地幔各元素组分引自Rudnick等(2003)和Sun等(1989);图b中俯冲板块衍生流体组分和大洋循环沉积物组分引自Veroot等(1999)、Kessel等(2005)和Chauvel等(2008)
Figure 7. (a)Nb/Yb-Th/Yb and (b)Th/Nb-εHf(t) covariance diagrams of Liuyuannan lamprophyre
图 8 柳园南煌斑岩中橄榄石100×(Ca/Fe)-100×(Mn/Fe)相关图(a)与全岩La/Sm-La相关图(b)
图a各区域数据引自Förster等(2018);图b微量元素元素分配系数引自McKenzie等(1991)、McKenzie等(1995);DMM、PM和N-MORB引自Sun等(1989)
Figure 8. (a) 100×(Ca/Fe)-100×(Mn/Fe) Covariance diagram of the olivine crystals from Liuyuannan lamprophyre and (b) whole-rock La/Sm-La Covariance Diagram
表 1 柳园南煌斑岩LA-ICP-MS锆石U-Pb同位素分析结果
Table 1 Analysis results of LA-ICP-MS zircon U-Pb isotope from Liuyuannan lamprophyre
测试点 Pb(10−6) Th(10−6) U(10−6) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ HBY-1 13.6 183 111 1.64 0.0530 0.0031 0.2375 0.0136 0.0367 0.0006 232.4 3.5 239.3 12.1 HBY-2 22.2 256 329 0.78 0.0508 0.0024 0.2517 0.0120 0.0359 0.0005 227.1 3.4 228.0 9.7 HBY-3 14.3 189 116 1.63 0.0534 0.0035 0.2720 0.0159 0.0374 0.0008 236.6 4.7 244.3 12.7 HBY-4 24.0 304 277 1.09 0.0505 0.0038 0.2432 0.0180 0.0350 0.0005 222.0 3.3 221.0 14.7 HBY-5 38.3 471 428 1.10 0.0510 0.0020 0.2535 0.0096 0.0364 0.0007 231.1 4.5 229.4 7.7 HBY-6 20.2 244 224 1.09 0.0504 0.0028 0.2543 0.0142 0.0364 0.0005 230.4 3.2 230.1 11.5 HBY-7 29.7 377 380 0.99 0.0496 0.0030 0.2375 0.0136 0.0349 0.0007 221.3 4.6 216.4 11.2 HBY-8 41.1 505 541 0.93 0.0504 0.0020 0.2514 0.0107 0.0361 0.0006 228.6 3.8 227.7 8.7 HBY-9 21.3 274 217 1.26 0.0508 0.0030 0.2463 0.0115 0.0352 0.0006 223.2 3.9 233.5 9.4 HBY-10 14.7 171 173 0.99 0.0508 0.0031 0.2582 0.0141 0.0376 0.0008 238.4 5.2 233.3 11.4 HBY-11 13.1 164 175 0.94 0.0508 0.0022 0.2517 0.0158 0.0358 0.0005 226.7 3.2 227.9 12.8 表 2 柳园南煌斑岩橄榄石及单斜辉石成分表
Table 2 Composition of olivine and clinopyroxene from Liuyuannan lamprophyre
分析编号 矿物
名称SiO2(%) Al2O3(%) MgO(%) CaO(%) Cr2O3(%) FeO(%) MnO(%) NiO(%) Total(%) Fo牌号 HBY-2d-1.2 橄榄石 39.82 0.02 46.03 0.17 0.02 12.88 0.27 0.21 99.47 86.5 HBY-2d-2.1 橄榄石 40.77 0.04 48.86 0.18 0.02 10.05 0.19 0.29 100.44 89.7 HBY-2d-2.4 橄榄石 41.14 0.04 48.83 0.18 0.11 10.19 0.14 0.33 100.99 89.6 HBY-2d-3.1 橄榄石 41.12 0.05 50.27 0.17 0.05 9.07 0.19 0.35 101.37 90.9 HBY-2d-5.2 橄榄石 40.37 0.03 48.43 0.17 0.16 11.16 0.22 0.26 100.89 88.7 HBY-2d-6.1 橄榄石 41.76 0.00 50.86 0.12 0.10 8.41 0.17 0.53 101.96 91.6 HBY-2d-8.1 橄榄石 41.06 0.07 50.41 0.15 0.06 8.45 0.02 0.47 100.71 91.5 HBY-2d-9.1 橄榄石 40.45 0.02 48.24 0.16 0.08 9.84 0.10 0.20 99.21 89.8 HBY-2d-9.2 橄榄石 41.79 0.04 48.70 0.17 0.05 10.24 0.18 0.30 101.53 89.5 HBY-2d-10.1 橄榄石 40.76 0.06 49.10 0.16 0.12 9.56 0.12 0.33 100.24 90.2 HBY-2d-11.1 橄榄石 42.31 0.09 49.70 0.22 0.03 7.81 0.11 0.42 100.83 92.0 HBY-2d-12.1 橄榄石 41.24 0.03 49.80 0.17 0.14 8.71 0.09 0.43 100.73 91.1 HBY-2d-13.1 橄榄石 41.65 0.03 51.04 0.14 0.20 8.03 0.11 0.36 101.65 92.0 HBY-2d-14.1 橄榄石 41.61 0.05 51.17 0.13 0.12 8.23 0.08 0.46 101.91 91.8 HBY-2d-15.1 橄榄石 41.59 0.07 50.65 0.18 0.04 7.90 0.08 0.43 100.94 92.0 HBY-2d-16.1 橄榄石 41.36 0.01 50.56 0.13 0.00 7.64 0.09 0.57 100.41 92.3 分析编号 矿物
名称SiO2(%) Al2O3(%) MgO(%) CaO(%) Cr2O3(%) FeO(%) MnO(%) TiO2(%) Total(%) Wo牌号 En牌号 Fs牌号 HBY-2d-4.2 单斜
辉石51.16 3.23 15.40 24.09 0.93 4.40 0.10 0.55 100.28 49.20 43.78 7.01 HBY-2d-5.3 单斜
辉石52.37 2.90 15.91 24.27 1.04 4.43 0.13 0.52 101.97 48.67 44.40 6.93 HBY-2d-7.1 单斜
辉石50.82 3.03 15.67 24.03 0.74 4.27 0.14 0.56 99.84 48.87 44.35 6.77 HBY-2d-7.3 单斜
辉石52.60 2.07 15.81 23.15 0.54 4.16 0.17 0.43 99.40 47.83 45.45 6.71 注:Total(%)为主量元素总含量。 表 3 柳园南煌斑岩主量元素(%)及微量元素(10−6)分析结果
Table 3 Analysis results of major and trace elements of Liuyuannan lamprophyre
样品编号 HBY-1a HBY-2b HBY-2c HBY-2d HBY-1c HBY-2a 岩性 煌斑岩 煌斑岩 煌斑岩 煌斑岩 煌斑岩 煌斑岩 SiO2 43.1 43.1 42.4 42.9 TiO2 0.53 0.64 0.52 0.53 Al2O3 5.51 5.89 5.14 5.16 Fe2O3 10.4 10.1 10.6 10.5 MnO 0.15 0.15 0.16 0.16 MgO 24.35 23.94 25.63 25.55 CaO 8.86 9.29 8.53 9.05 Na2O 0.42 0.55 0.57 0.61 K2O 1.78 2.42 1.90 1.91 P2O5 0.23 0.22 0.23 0.21 烧失量 4.00 3.29 3.66 3.17 Total 99.4 99.6 99.4 99.8 Mg#值 0.67 0.67 0.67 0.68 m/f值 2.00 2.03 2.07 2.08 里特曼指数 2.39 5.38 4.99 4.92 Li 22.2 25.2 19.9 13.1 24.9 14.2 Sc 39.9 42.1 10.6 15.1 30.3 29.7 Rb 86.1 108.5 80.8 85.4 91.2 87.1 Sr 810 1170 1210 1099 409 569 Y 12.3 11.8 11.4 11.0 11.3 10.2 Zr 72.4 67.3 65.9 64.0 67.6 60.9 Hf 1.98 1.68 1.53 1.61 1.96 1.80 Nb 4.06 3.94 3.80 3.72 4.08 3.68 Ta 0.27 0.23 0.23 0.21 0.29 0.25 La 34.1 32.6 33.0 32.0 35.6 32.0 Ce 76.6 72.2 73.0 72.4 74.5 68.3 Pr 9.77 9.14 9.30 9.12 9.34 8.82 Nd 39.2 36.5 37.0 37.0 37.2 34.8 Sm 6.25 6.10 5.96 5.88 6.29 6.06 Eu 2.08 2.17 1.93 1.90 1.78 1.69 Gd 5.62 5.30 5.45 5.18 5.42 5.13 Tb 0.55 0.50 0.51 0.50 0.58 0.55 Dy 2.56 2.32 2.28 2.32 2.29 2.15 Ho 0.44 0.41 0.40 0.40 0.45 0.42 Er 1.26 1.08 1.06 1.08 1.15 1.08 Tm 0.14 0.14 0.13 0.13 0.15 0.14 Yb 1.05 0.93 0.86 0.86 0.99 0.90 Lu 0.15 0.13 0.13 0.11 0.14 0.13 Pb 73.7 56.7 96.0 53.5 70.4 54.0 Th 4.74 4.10 3.41 3.35 4.41 3.68 U 1.38 1.26 1.34 1.20 1.39 1.19 Eu异常 1.07 1.17 1.03 1.05 0.93 0.93 LREE 180 170 171 169 176 162 HREE 168 159 160 158 165 152 REE 11.8 10.8 10.8 10.6 11.2 10.5 LREE/HREE值 14.3 14.7 14.8 14.9 14.7 14.5 (La/Yb)N 23.4 25.3 27.4 26.6 25.9 25.5 注:Total为主量元素总含量;LREE为轻稀土元素总含量;HREE为重稀土元素总含量;REE为稀土元素总含量。 表 4 柳园南煌斑岩中锆石Hf 同位素分析结果
Table 4 Zircon Hf isotopic data of Zircon crystals from Liuyuannan lamprophyre
点号 样品编号 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ 年龄
(Ma)(176Hf/177Hf)i εHf(0) εHf(t) TDM
(Ma)fLu/Hf 1 HBY-1 0.030890 0.000175 0.000772 0.000003 0.282660 0.000022 228 0.282657 −3.96 0.93 834 −0.98 2 HBY-2 0.037702 0.000322 0.000953 0.000007 0.282707 0.000020 228 0.282702 −2.32 2.54 773 −0.97 3 HBY-3 0.056320 0.000131 0.001362 0.000004 0.282718 0.000019 228 0.282713 −1.90 2.90 764 −0.96 4 HBY-4 0.060112 0.000074 0.001400 0.000001 0.282710 0.000023 228 0.282704 −2.18 2.61 776 −0.96 5 HBY-5 0.056959 0.000328 0.001366 0.000007 0.282784 0.000018 228 0.282778 0.41 5.21 671 −0.96 6 HBY-6 0.050719 0.000570 0.001433 0.000012 0.282711 0.000021 228 0.282704 −2.17 2.62 777 −0.96 7 HBY-7 0.039301 0.000143 0.000993 0.000003 0.282762 0.000020 228 0.282757 −0.37 4.48 696 −0.97 8 HBY-8 0.077620 0.000778 0.001884 0.000012 0.282652 0.000018 228 0.282644 −4.23 0.49 870 −0.94 9 HBY-9 0.049260 0.000207 0.001325 0.000005 0.282687 0.000018 228 0.282682 −3.00 1.81 808 −0.96 10 HBY-10 0.125049 0.000434 0.002978 0.000010 0.282677 0.000022 228 0.282665 −3.35 1.21 860 −0.91 11 HBY-11 0.051215 0.000306 0.001212 0.000006 0.282774 0.000023 228 0.282768 0.06 4.88 683 −0.96 12 HBY-12 0.044043 0.000164 0.001235 0.000006 0.282696 0.000020 228 0.282691 −2.69 2.13 794 −0.96 13 HBY-13 0.028124 0.000061 0.000732 0.000002 0.282748 0.000018 228 0.282745 −0.85 4.05 710 −0.98 -
初航, 张晋瑞, 魏春景, 等 . 内蒙古温都尔庙群变质基性火山岩构造环境及年代新解[J]. 科学通报,2013 ,58 (28−29 ):2958 −2965 .CHU Hang, ZHANG Jingrui, WEI Chunjing, et al . A New Interpretation of the Tectonic Setting and Age of Meta-Basic Volcanics in the Ondor Sum Group, Inner Mongolia[J]. China Sciences Bulletin,2013 ,58 (28−29 ):2958 −2965 .邓晋福, 莫宣学, 罗照华, 等 . 火成岩构造组合与壳-幔成矿系统[J]. 地学前缘,1999 ,6 (2 ):66 −77 .DENG Jinfu, MO Xuanxue, LUO Zhaohua, et al . Igneous Petrotectonic Assemblage and Crust-Mantle Metallogenic System[J]. Earth Science Frontiers,1999 ,6 (2 ):66 −77 .甘肃省地质矿产局. 北山红柳园幅1∶20万比例尺地质图[R].甘肃省地质矿产局, 1966. 高俊, 龙灵利, 钱青, 等 . 南天山: 晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报,2006 ,22 (5 ):1049 −1061 .GAO Jun, LONG Liling, QIAN Qing, et al . South TianShan: A Late Paleocoic or a Triessic[J]. Acta Petrologic Sinica,2006 ,22 (5 ):1049 −1061 .高文彬, 钱壮志, 徐刚, 等 . 甘肃北山地区古堡泉辉绿岩脉地球化学特征及其地质意义[J]. 地球科学与环境学报,2020 ,42 (5 ):622 −636 .GAO Wenbin, QIAN Zhuangzhi, XU Gang, et al . Geochemical Characteristics of Guobaoquan Dolerite Dykes in Beishan Area of Gansu, China and Theeir Geological Significance[J]. Journal of Earth Sciences and Environment,2020 ,42 (5 ):622 −636 .高文彬. 甘肃柳园地区西南山岩体地质特征及岩石地球化学研究[D]. 西安:长安大学, 2021. GAO Wenbing. Study on Geological Characteristics and Petrogeochemistry of the Xinanshan Mafic-Ultramafic Intrusion in the Liuyuan Area, Gansu Province[D]. Xi’an: Chang’an University, 2021.
高峰, 菅坤坤, 李宁, 等 . 北山造山带东段芨芨泉岩体地球化学特征、锆石U-Pb年代学及其构造意义[J]. 西北地质,2018 ,51 (3 ):26 −37 .GAO Feng, JIAN Kunkun, LI Ning, et al . U-zircon U-Pb Dating and Geochemistry of Jijiquan Pluton in the Eastern Section of Beishan Orogenic Belt and their Tectononic Implications[J]. Northwestern Geology,2018 ,51 (3 ):26 −37 .过磊, 王国强, 郭琳, 等 . 北山造山带南部芦草沟地区早三叠世酸性脉岩成因[J]. 矿物岩石地球化学通报,2018 ,37 (3 ):502 −512 .GUO Lei, WANG Guoqiang, GUO Lin, et al . Petrogensis of Early Triassic Felsic Dikes in the Lucaogou Area of Southern Beishan Orogenic Belt[J]. Bulletin of Mineralogy Petrology and Geochemistry,2018 ,37 (3 ):502 −512 .侯可军, 李延河, 邹天人, 等 . LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报,2007 ,23 (10 ):2595 −2604 .HOU Kejun, LI Yanhe, ZOU Tianren, et al . Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and its Geological Applications[J]. Acta Petrologica Sinice,2007 ,23 (10 ):2595 −2604 .江思宏, 聂凤军 . 北山地区花岗岩类的40Ar-39Ar同位素年代学研究[J]. 岩石学报,2006 ,22 (11 ):2719 −2732 .JIANG Sihong, NIE Fengjun . 40Ar-39Ar Geochronology of the Granitoids in Beishan Mountmain[J]. Acta Petrologica Sinica,2006 ,22 (11 ):2719 −2732 .牛腾, 倪志耀, 孟宝航, 等 . 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2Ga B. P. 伸展-裂解事件的地质记录[J]. 成都理工大学学报(自然科学版),2023 ,50 (4 ):486 −503 .NIU Teng, NI Zhiyao, MENG Baohang, et al . The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2Ga B. P. in the central segment of northern margin of North China Craton[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023 ,50 (4 ):486 −503 .刘畅, 赵泽辉, 郭召杰, 等 . 甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论[J]. 岩石学报,2006 ,22 (5 ):1294 −1306 .LIU Chang, ZHAO Zehui, GUO Zhaojie, et al . Chronology and Geochemistry of Lamprophyre Dykes from Beishan Area, Gansu Province and Implications for the Crust-Mantle Interaction[J]. Acta Petrologyica Sinica,2006 ,22 (5 ):1294 −1306 .刘雪亚, 王荃. 中国西部北山造山带的大地构造及其演化[A]. 中国地质科学院地质研究所文集[C]. 地质出版社, 1995, 12: 42-53. 路凤香, 舒小辛, 赵崇贺 . 有关煌斑岩分类的建议[J]. 地质科技情报,1991 (S1 ):55 −62 .LU Fengxiang, SHU Xiaoxin, ZHAO Chonghe . A Suggestion on Classification of Lamprophyres[J]. Geological Science and Technology Information,1991 (S1 ):55 −62 .栾燕, 何克, 谭细娟, 等 . LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报,2019 ,38 (7 ):1206 −1218 .LUAN Yan, HE Ke, TAN Xijuan, et al . Insitu U-Pb Dating and Trace Element Determination of Standard Zircons by LA-ICP-MS[J]. Geological Bulletin of China,2019 ,38 (7 ):1206 −1218 .李舢, 王涛, 童英, 等 . 北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义[J]. 岩石学报,2011 ,27 (10 ):3055 −3070 .LI Shan, WANG Tao, TONG Ying, et al . Zircon U-Pb Age, Origin and Tectonic Significances of Huitongshan Devonian K-Feldspar Granites from Beishan Orogen, NW China[J]. Acta Petrologica Sinica,2011 ,27 (10 ):3055 −3070 .孙海瑞, 吕志成, 于晓飞, 等 . 甘肃柳园地区晚三叠世辉绿岩脉年代学和地球化学研究及其对北山造山带早中生代构造演化的指示[J]. 岩石学报,2020 ,36 (6 ):1755 −1768 . doi: 10.18654/1000-0569/2020.06.07SUN Hairui, LÜ Zhicheng, YU Xiaofei, et al . Early Mesozoic Tectonic Evolution of Beishan Orogenic Belt: Constraints from Chronology and Geochemistry of the Late Triassic Diabase Dyke in Liuyuan Area, Gansu Province[J]. Acta Petrologica Sinica,2020 ,36 (6 ):1755 −1768 . doi: 10.18654/1000-0569/2020.06.07孙海瑞, 吕志成, 于晓飞, 等 . 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征: 对北山造山带晚古生代构造背景的指示[J]. 吉林大学学报,2020 ,50 (5 ):1433 −1449 .SUN Hairui, LÜ Zhicheng, YU Xiaofei, et al . Late Paleoozoic Tectonic Evolution of Beishan Orogenic Belt: Chronology and Geochemistry Constraints of Early Permian Syenogranitic Porphyry Dyke in Liuyuan Area, Gansu Province[J]. Journal of Jilin University,2020 ,50 (5 ):1433 −1449 .孙万龙, 韩奎, 鲁麟, 等 . 南秦岭镇安西部晚三叠世煌斑岩脉地球化学特征及其对构造环境的指示[J]. 地质通报,2022 ,41 (11 ):1982 −1995 .SUN Wanlong, HAN Kui, LU Ling, et al . Geochemical Characteristics of Late Triassic Lamprophyres from the Western Zhen’an, South Qinling and its Indicative Significance for Tectonic Environment[J]. Geological Bulletin of China,2022 ,41 (11 ):1982 −1995 .王国强, 李向民, 徐学义, 等 . 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报,2021 ,40 (1 ):71 −81 .WANG Guoqiang, LI Xiangmin, XU Xueyi, et al . Research Status and Progress of Paleozoic Ophiolites in Beishan Orogenic[J]. Geological Bulletin of China,2021 ,40 (1 ):71 −81 .王文宝, 李卫星, 雷聪聪, 等 . 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质,2024 ,57 (3 ):29 −43 .WANG Wenbao, LI Weixing, LEI Congcong, et al . Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology,2024 ,57 (3 ):29 −43 .王梓桐, 王根厚, 张维杰, 等 . 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版),2022 ,49 (5 ):586 −600 .WANG Zitong, WANG Genhou, ZHANG Weijie, et al . LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022 ,49 (5 ):586 −600 .吴福元, 李献华, 郑永飞, 等 . Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报,2007 ,23 (2 ):185 −220 .WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al . Lu-Hf Isotopic Systematics and Their Applications in Petrology[J]. Acta Petrologica Sinica,2007 ,23 (2 ):185 −220 .吴妍蓉, 周海, 赵国春, 等 . 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质,2024 ,57 (3 ):11 −28 .WU Yanrong, ZHOU Hai, ZHAO Guochun, et al . Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology,2024 ,57 (3 ):11 −28 .肖文交, 宋东方, Windley B F, 等 . 中亚增生造山过程与成矿作用研究进展[J]. 地球科学,2019 ,49 (10 ):1512 −1545 .XIAO Wenjiao, SONG Dongfang, Windley B F, et al . Research Progresses of the Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences,2019 ,49 (10 ):1512 −1545 .许伟, 徐学义, 牛亚卓, 等 . 北山南部二叠纪海相玄武岩地球化学特征及其构造意义[J]. 地质学报,2019 ,93 (8 ):1928 −1953 .XU Wei, XU Xueyi, NIU Yazhuo, et al . Geochronology and Petrogenesis of the Permian Marine Basalt in the Southern Beishan Region and Their Tectonic Implications[J]. Acta Geologica Sinica,2019 ,93 (8 ):1928 −1953 .杨高学 . 俯冲起始的机制、地质记录及其研究意义[J]. 地球科学与环境学报,2023 ,45 (2 ):194 −207 .YANG Gaoxue . Mechanism, Geological Record and Significance of Subduction Initiation[J]. Journal of Earth Sciences and Environment,2023 ,45 (2 ):194 −207 .余吉远, 李向民, 王国强, 等 . 甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义[J]. 地质通报,2012 ,31 (12 ):2038 −2045 .YU Jiyuan, LI Xiangming, WANG Guoqiang, et al . Zircon U-Pb Ages of Huitongshan and Zhangfangshan Ophiolite in Beishan of Gansu-Inner Mongolia Border Area and Their Significance[J]. Geological Bulletin of China,2012 ,31 (12 ):2038 −2045 .俞胜, 赵斌斌, 贾轩, 等 . 北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质,2022 ,55 (4 ):267 −279 .YU Sheng, ZHAO Binbin, JIA Xuan, et al .Geochemistry, Geochronology Characteristics and Tectonic Significance of Yitiaoshan Diorite in the Southern Margin of Bishan Orogenic Belt[J]. Northwestern Geology,2022 ,55 (4 ):267 −279 .张文, 吴泰然, 贺元凯, 等 . 甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA-ICP-MS定年及其构造意义[J]. 岩石矿物学杂志,2010 ,29 (6 ):719 −731 .ZHANG Wen, WU Tairan, HE Yuankai, et al . LA-ICP-MS Zircon U-Pb Ages of Xijianquanzi Alkali-Rich Potassium-High Granites in Beishan Gansu Province and Their Tectonic Significance[J]. Acta Petrologica et Mineralogica,2010 ,29 (6 ):719 −731 .左国朝, 张淑玲, 何国琦, 等 . 北山地区早古生代板块构造特征[J]. 地质科学,1990 (4 ):305 −314 .ZUO Guochao, ZHANG Shuling, HE Guoqi, et al . Early Paleozoic Plate Tectonics in Beishan Area[J]. Science Geological Sinica,1990 (4 ):305 −314 .Albarede F, Scherer E E, Blichert-Toft J, et al . γ-Ray Irradiation in the early Solar System and the Conundrum of the 176Lu Decay Constant[J]. Geochim Cosmochim Acta,2006 ,70 (5 ):1261 −1270 . doi: 10.1016/j.gca.2005.09.027Ammannati E, Jacob D E, Avanzinelli R, et al . Low Ni Olivine in Silica-undersaturated Ultrapotassic Igneous Rocks as Evidence for Carbonate Metasomatism in the Mantle[J]. Earth Planet Science Letters,2016 ,444 :64 −74 . doi: 10.1016/j.jpgl.2016.03.039Bouvier A, Vervoort J D, Patchett P J , et al. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial planets[J]. Earth and Planetary Science Letters,2008 ,273 (1−2 ):48 −57 .Bowen N L. The Evolution of the Igneous Rocks, Princeton, University Press[M]. Princeton, New Jersey, 1928.
Boynton W V . Rare Earth Element Geochemistry[J]. Developments in Geochemistry,1984 ,2 :63 −114 .Brown G C, Mussett A E. The Inaccessible Earth: An Integrated View to Its Structure and Composition. Chapman Hall[J]. London, 1993, 118-144.
Chauvel C, Lewin E, Carpentier M, et al . Role of Recycled Oceanic Basalt and Sediment in Generating the Hf-Nd Mantle-Array Nature[J]. Geosci,2008 ,1 (1 ):64 −67 .Duggen S, Hoernle K, Vanden B P, et al . Post–Collisional Transition from Subduction–to Intraplate–type Magmatism in the Westernmost Mediterranean: Evidence for Continental–edge Delamination of Subcontinental Lithosphere[J]. Journal of Petrology,2005 ,46 (6 ):1155 −1201 . doi: 10.1093/petrology/egi013Elliott T, Plank T, Zindler A, et al . Element Transport from Slab to Volcanic Front at the Mariana Arc[J]. Journal of Geophysical Research:Solid Earth,1997 ,102 (45 ):14991 −15019 .Feng L M, Lin S F, Li L M, et al . Constraints on the Tectonic Evolution of the Southern Central Asian Orogenic Belt from Early Permian–Middle Triassic Granitoids from the Central Dunhuang Orogenic Belt, NW China[J]. Journal of Asian Earth Sciences,2020 ,194 :104 −284 .Feng W Y, Zhang J H . Triassic magmatism and Tectonic Setting of the Eastern Tianshan, NW China: Constraints from the Weiya Intrusive Complex[J]. Lithos,2021 ,394 :106 −171 .Frey F A, Green D H, Roy S D, et al . Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data[J]. Petrol,1978 ,19 (3 ):463 −513 . doi: 10.1093/petrology/19.3.463Foley S F, Prelevic D, Rehfeldt T, et al . Minor and Trace Elements in Olivines as Probes into Early Igneous And Mantle Melting Processes[J]. Earth Planet Science Letters,2013 ,363 :181 −191 . doi: 10.1016/j.jpgl.2012.11.025Foley S F . Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas[J]. Lithos,1992 ,28 (3−6 ):435 −453 .Förster M W, Prelević D, Schmück H R, et al . Melting Phlogopite-rich MARID: Lamproites and the Role of Alkalis in Olivineliquid Ni-Partitioning[J]. Chemical Geology,2018 ,476 :429 −440 . doi: 10.1016/j.chemgeo.2017.11.039Gao J, Long L L, Qian Q, et al . The Collision Between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen[J]. Tectonophysics,2011 ,499 (1−4 ):118 −131 .Guo F, Fan W, Wang Y, et al . Origin of Early Cretaceous Calc-alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes Beneath Continental Collisional Belt[J]. Lithos,2004 ,78 (3 ):291 −305 . doi: 10.1016/j.lithos.2004.05.001Hou Q, Yang X Y, Tang J, et al. Geochemistry and Geochronology of Early Cretaceous Lamprophyres of the Sulu Orogenic Belt: Implications for Lithospheric Evolution of Eastern China. 2022.
Hoskin P W, Schaltegger U . The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry,2003 ,53 (1 ):27 −62 . doi: 10.2113/0530027Irvine T N , Baragar WRA . A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Earth Science,1971 ,8 (5 ):523 −548 .Kessel R, Schmidt M W, Ulmer P, et al . Race Element Signature of Subduction-zone Fluids, Melts and Supercritical Liquidsat 120–180 km Depth[J]. Nature,2005 ,437 (7059 ):724 −727 . doi: 10.1038/nature03971Jahn B M, Windley B, Natal’in B, et al . Phanerozoic ContinentalGrowth in Central Asia[J]. Journal of Asian Earth Sciences,2004 ,23 (5 ):599 −603 .Kinny P, Maas R . Lu-Hf and Sm-Nd Isotope Systems in Zircon[J]. Reviews in Mineralogy and Geochemistry,2003 ,53 (1 ):327 −341 . doi: 10.2113/0530327Kou C H, Liu Y, Huang H, et al . The Neoproterozoic Arc-type and OIB-type Mafic-ultramafic Rocks in the Western Jiangnan Orogen: Implications for Tectonic Settings[J]. Lithos,2018 ,312 :38 −56 .Li S, Chung S L, Wilde S A, et al . Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens[J]. Geophys Research Solid Earth,2017 ,122 (3 ):2291 −2309 . doi: 10.1002/2017JB014006Li S, Wang T, Wilde S A, et al . Geochronology, Petrogenesis and Tectonic Implications of Triassic Granitoids from Beishan. NW China[J]. Lithos,2012 ,134 :123 −145 .Li X F, Zhang C L, Li L, et al . Formation Age, Geochemical Characteristics of the Mingshujing Pluton in Beishan Area of Gansu Province and its Geological Significance[J]. Acta Petrol Sinica,2015 ,31 :2521 −2538 .Liu Q, Zhao G C, Han Y G, et al. Detrital Zircon Provenance Constraints on the Final Closure of the Middle Segment of the Paleo-asian Ocean[J]. Gondwana Research. 2019, 69: 73-88.
Liu Y S, Hu Z C, Gao S, et al . Insitu, Analysis of Major and Trace Elements of An Hydrous Minerals by LA-ICP-MS Without Applying An Internal Standard[J]. Chemical Geology,2008 ,257 (1 ):34 −43 .Ludwig K R. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel[M]. California: Berkeley Geochronology Center Special Publication, 2003, 4: 1−70.
Ma X, Shu L, Meert J G, et al . The Paleozoic Evolution of Central Tianshan: Geochemical and Geochronological Evidence[J]. Gondwana Research,2014 ,25 (2 ):797 −819 . doi: 10.1016/j.gr.2013.05.015Mao Q G, AO S J, Brain F, et al . Middle–Late Triassic Southward-Younging Granitoids: Tectonic Transition from Subduction to Collision in the Eastern Tianshan-Beishan Orogen, NW China[J]. Geological Society of America Bulletin,2021 ,134 (9−10 ):2206 −2224 .Mao Y J, Schoneveld L, Stephen J, et al . Coupled Li-P Zoning and Trace Elements of Olivine from Magmatic Ni-Cu Deposits: Implications for Postcumulus Re-equilibration in Olivine[J]. Journal of Petrology,2022 ,63 (3 ):1 −22 .McCulloch M T and Gamble J A . Geochemical and Geodynamical Constraints on Subduction Zone Magmatism[J]. Earth Planet. Sinica Lett,1991 ,102 (3−4 ):358 −374 .McKenzie D, O'Nions R K, Partial Melt Distribution from Inversion of Rare Earth Element Concentrations[J]. Journal of Petrology, 1991, 32(5): 1021-091.
McKenzie D P , O’Nions R K . The Source Regions of Ocean Island Basalts[J]. Journal of Petrology,1995 ,36 (1 ):133 −159 . doi: 10.1093/petrology/36.1.133McKenzie D . Some Remarks on the Movement of Small Melt Fractions in the Mantle[J]. Earth Planet Science. Lett,1989 ,95 (1−2 ):53 −72 .Mole D R, Barnes S J, Le Vaillant M, et al . Timing, Geochemistry and Tectonic Setting of Intrusion-Hosted Ni-Cu Sulfide Deposits of the Halls Creek Orogen, Western Australia[J]. Lithos,2018 ,314 :425 −446 .Pearce J A . Gochemical Fngerprinting of Oanic Bsalts with Aplications to Ohiolite Cassification and the Sarch for Archean Oeanic Cust[J]. Lithos,2008 ,100 (1−4 ):14 −48 .Prelević D, Jacob D E, Foley S F . Recycling Plus: A New Recipe for the Formation of Alpine-Himalayan Orogenic Mantle Lithosphere[J]. Earth and Planetary Science Letters,2013 ,362 :187 −197 . doi: 10.1016/j.jpgl.2012.11.035Rock N M S . The Nature and Origin of Lamprophyres: An Overview[J]. Geological Society, London, Special Publications,1987 ,30 (1 ):191 −226 . doi: 10.1144/GSL.SP.1987.030.01.09Rock N M S, Bowes D R, Wright A E, et al. Lamporphyres[M]. Blackie: Glasgow, 1991: 1-285.
Rudnick R L, Gao S . Composition of the Continental Crust[J]. Journal of Geoscience and Environment Protection,2003 ,3 :1 −64 .Scarrow J H, Molina J F, Bea F, et al. Lamprophyre Dikes as Tectonic Markers of Late Orogenic Transtension Timing and Kinematics: A Case Study from the Central Iberian Zone[J]. Tectonics, 2011, 30(4).
Schnetzler C C, John A, Philpotts P, et al . Coefficients of Rare-earth Elements Between Igneous Matrix Material and Rock-Forming Mineral Phenocrysts—II[J]. Geochimica et Cosmochimica Acta,1970 ,34 (3 ):331 −340 . doi: 10.1016/0016-7037(70)90110-9Shi Y R, Liu D Y, Miao L C, et al . Devonian A-type Granitic Magmatism on the Northern Margin of the North China Craton; SHRIMP U-Pb Zircon Dating and Hf-isotpes of the Hongshan Granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research,2010 ,17 (4 ):632 −641 . doi: 10.1016/j.gr.2009.11.011Slama J, Kosler J, Condon D J, et al . Plesovice zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis[J]. Chemical Geology,2008 ,249 (1−2 ):1 −35 .Sobolev A V, Hofmann A W, Kuzmin D V, et al . The Amount of Recycled Crust in Sources of Mantle-derived Melts[J]. science,2007 ,316 (5823 ):412 −417 . doi: 10.1126/science.1138113Song S G, Wang M M, Xu X, et al . Ophiolites in the Xing’an-inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary or Ogenicevents[J]. Tectonics,2015 ,34 (10 ):2221 −2248 . doi: 10.1002/2015TC003948Straub S M, Stuart F M, Zellmer G F, et al . Formation of Hybrid Arc Andesites Beneath Thick Continental Crust[J]. Earth and Planetary Science,2011 ,303 (3−4 ):337 −347 .Sun S S, Mcdonough W F . Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Mantle Composition and Process. In: Saunders A D, Norry M J. (Eds), Magmatism in Ocean Basins[J]. Geological Society, London, Special Publications,1989 ,42 (1 ):313 −345 . doi: 10.1144/GSL.SP.1989.042.01.19Vaughan A P M, J H, Scarrow, et al . K-rich Mantle Metasomatism Control of Localization and Initiation of Lithospheric Strike-slip Faulting[J]. Terra Nova,2003 ,15 (3 ):163 −169 . doi: 10.1046/j.1365-3121.2003.00485.xVasyukova, A E, Izokh A S, Borisenko, et al . Early Mesozoic Lamprophyres in Gorny Altai: Petrology and Age Boundaries[J]. Russian Geology and Geophysics,2011 ,52 (12 ):1574 −1591 . doi: 10.1016/j.rgg.2011.11.010Veroot J D, Patchett P J, Albarede F . Relationships Between Lu-Hf and Sr-Nd Isotopic Systems in the Global Sedimentary System. Earth Planet[J]. Sinica Letters,1999 ,168 (1−2 ):79 −99 .Wang X, Wang Z C, Cheng H, et al . Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction[J]. Lithos,2020 ,368 :105 −593 .Wiedenbeck M, Allé P, Corfu F, et al . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses[J]. Geostandards Newsletter,1995 ,19 (1 ):1 −23 . doi: 10.1111/j.1751-908X.1995.tb00147.xWoodhead J, Hergt J, Shelley M, et al . Zircon Hf-isotope Analysis with An Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomita Age Estimation[J]. Chemical Geology,2004 ,09 (1−2 ):121 −135 .Wu D D, Li S, Chew David, et al . Permian-Triassic Magmatic Evolution of Granitoids from the Southeastern Central Asian Orogenic Belt: Implications for Accretion Leading to Collision[J]. Science China Earth Sciences,2021 ,64 (5 ):788 −806 . doi: 10.1007/s11430-020-9714-5Windley B F, Alexeiev D, Xiao W, et al . Tectonic Models for Accretion of the Central Asian Orogenic Belt[J]. Geol Soc,2007 ,164 :31 −47 .Xiao W J, Mao Q G, Windley B F, et al . Paleozoicmultiple Accretionary and Collisional Processes of the Beishanorogenic Collage[J]. American Journal of Science,2010 ,310 (10 ):1553 −1594 . doi: 10.2475/10.2010.12Xiao W J, Windley B F, Huang B C, et al . End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia[J]. Earth Sciences,2009 ,98 :1189 −1217 .Xiao W J, Windley BF, Han C, et al . Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia[J]. Earth-Science Reviews,2018 ,186 :94 −128 . doi: 10.1016/j.earscirev.2017.09.020Xu B J, Charvet Y, Chen P . et al. Middle Paleozoic Convergent Orogenic Belts Inwestern Inner Mongolia(China): Frame Work, Kinematics, Geochronology and Implications for Tectonice Volution of the Central Asian Orogenic Belt[J]. Gondwana Research,2013 ,23 (4 ):1342 −1364 .Xu G, Duan J, Gao W B, et al. Geochronological and Geochemical Constraints on the Petrogenesis of Permian Dolerite Dyke Swarms in the Beishan Orogenic Belt, NW China[J]. Front Earth Science, 2021, 9: 657−716.
Xue S, Qin K, Li C, et al . Permian Bimodal Magmatism in the Southern Margin of the Central Asian Orogenic Belt, Beishan, Xinjiang, NW China. Petrogenesis and Implication for Post-Subduction Crustal Growth[J]. Lithos,2018 ,314 :617 −629 .Zhang D Y, Zhang Z C, Encarnación J, et al . Petrogenesis of the Kekesai Composite Intrusion, Western Tianshan, NW China: Implications for Tectonic Evolution During Late Paleozoic Time[J]. Lithos,2012 ,146 :65 −79 .Zhang F, Wang Y, Liu J, et al . Zircon U-Pb and Molybdenite Re-Os Geochronology, Hf Isotope Analyses, and Whole-rock Geochemistry of the Donggebi Mo Tianshan, Northwest China, and Their Geological Significance[J]. Internationa Geology Review,2015 ,57 (4 ):446 −462 . doi: 10.1080/00206814.2015.1013067Zhang H F . Peridotite-Melt Interaction: A Key Point for the Destruction of Cratonic Lithospheric Mantle[J]. Chinese Science Bulletin,2009 ,54 (19 ):3417 −3437 . doi: 10.1007/s11434-009-0307-zZhang X H, Zhang H F, Tang Y J, et al . Geochemistry of Rocks from Central Inner Mongolia, North China: Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt[J]. Chemical Geology,2008 ,249 (3−4 ):262 −281 .Zhang Z Z, Gu L X, Wu C Z, et al . Zircon SHRIMP dating for the Weiya Pluton, Tian Shan: its Geological Implications[J]. Acta Geologica Sinica (English Edition),2005 ,79 (4 ):481 −490 . doi: 10.1111/j.1755-6724.2005.tb00914.xZhou J B, Wilde S A, Zhao G C, et al . New SHRIMP U-Pb Zircon Ages from the Heilongjiang High-Pressure Belt: Constraints on the Mesozoic Evolution of NE China[J]. American Journal of Science,2008 ,310 (9 ):1024 −1053 .Zindler A, Hart S R. Annual Review of Earth and Planetary Sciences[J]. Chemical Geodynamics, 1986, 14: 493−571.
Zuo G C, Zhang S L, He G Q, et al . Plate Tectonic Characteristics During the Early Paleozoic in Beishan Near the Sino-Mongolian Border Region, China[J]. Tectonophysics,1991 ,188 (3−4 ):385 −392 .Zuo G C, Zhang S L, He G Q, et al . Early Paleozoic Plate Tectonics in Beishan Area[J]. Scientia Geologica Sinica,1990 ,25 (4 ):305 −314 .