ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

基于极限抗剪强度改进的压实填方边坡稳定性评价方法研究

王振华, 邓辉, 张永军

王振华,邓辉,张永军. 基于极限抗剪强度改进的压实填方边坡稳定性评价方法研究[J]. 西北地质,2024,57(4):262−270. doi: 10.12401/j.nwg.2024046
引用本文: 王振华,邓辉,张永军. 基于极限抗剪强度改进的压实填方边坡稳定性评价方法研究[J]. 西北地质,2024,57(4):262−270. doi: 10.12401/j.nwg.2024046
WANG Zhenhua,DENG Hui,ZHANG Yongjun. Stability Evaluation Method and Protection Countermeasure of Compacted Fill Slope Based on Improvement of Ultimate Shear Strength[J]. Northwestern Geology,2024,57(4):262−270. doi: 10.12401/j.nwg.2024046
Citation: WANG Zhenhua,DENG Hui,ZHANG Yongjun. Stability Evaluation Method and Protection Countermeasure of Compacted Fill Slope Based on Improvement of Ultimate Shear Strength[J]. Northwestern Geology,2024,57(4):262−270. doi: 10.12401/j.nwg.2024046

基于极限抗剪强度改进的压实填方边坡稳定性评价方法研究

基金项目: 2020年度中央财政自然灾害防治体系建设项目“兰州市黄土斜坡变形破坏机理及风险管控措施研究”(甘资财发〔2020〕16号)资助成果
详细信息
    作者简介:

    王振华(1984−),男,高级工程师,长期从事工程地质、地质灾害防治研究。E−mail:956711249@qq.com

  • 中图分类号: P55;TU4

Stability Evaluation Method and Protection Countermeasure of Compacted Fill Slope Based on Improvement of Ultimate Shear Strength

  • 摘要:

    压实度是影响填方边坡稳定性的重要因素,为了分析不同压实度下填方边坡的稳定性,设计了不同压实度下填方边坡工况,分析并建立了压实土体本构关系模型,基于有限元强度折减理论,分析了变形破坏趋势,确定极限抗剪强度。采用Bishop方法计算土条两侧的作用力,在不考虑土体侧向变形的情况下,计算得出边坡稳定性系数和填土外加应力作用下导致的沉降变形值,根据计算结果提出了填方边坡稳定性防护对策。结果表明:所提出的分析方法能够准确分析出填方边坡变形情况,有效降低了稳定性分析误差,并且将其应用于实际填方边坡稳定性分析中,具有实际应用意义。

    Abstract:

    Compaction degree is an important factor affecting the stability of the fill slope. In order to analyze the stability of the fill slope under different compaction degree, the working conditions of the fill slope under different compaction degree were designed, and the constitutive relationship model of the compacted soil was analyzed and established. Based on the finite element strength reduction theory, the deformation and failure trend were analyzed and the ultimate shear strength was determined. Using the Bishop method to calculate the forces on both sides of the soil strip, without considering the lateral deformation of the soil, the stability coefficient of the slope and the settlement deformation value caused by the external stress of the fill soil were calculated. Based on the calculation results, stability protection measures for the fill slope were proposed. The results show that the proposed analysis method can accurately analyze the deformation of fill slopes, effectively reduce stability analysis errors, and apply it to the stability analysis of actual fill slopes, which has practical application significance.

  • 研究区南临祁连造山带,北接中亚造山带,其所处构造环境的特殊性对区域构造演化及板块运动有着重大意义。该地区岩浆演化期次及构造背景研究较为薄弱且存在较大争议,前人通过对合黎山地区五坝和张家窑岩体锆石U-Pb年代学及同位素地球化学特征研究,其年龄介于432~397 Ma,为中志留世—早泥盆世,认为阿拉善地块西南缘早古生代很可能受控于祁连造山带的构造演化,处于后碰撞拉伸环境(王增振等,2020);通过对龙首山西山头窑地区三期岩体锆石U-Pb年代学研究,其年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世,处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022);而强利刚等(2019)认为龙首山地壳在晚古生代处于拉伸的稳定阶段。对合黎山地区岩浆岩形成时代及构造环境研究存在重要意义。龙首山成矿带区内侵入岩发育广泛,主要为酸性、中酸性岩石,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主(张甲民等,2017),前人对龙首山成矿带的研究工作主要以东段为主,且主要集中在早古生代(牛宇奔等,2018刘文恒等,2019王增振等,2020)。而不同构造环境下的侵入岩具有不同的地球化学特征及同位素特征,能有效反映其岩浆源区及构造演化等重要信息。笔者在前人工作基础上对该区花岗闪长岩开展了锆石U-Pb年代学、岩石地球化学及Lu-Hf同位素特征的研究,确定该岩体形成时代并探讨这些黑云母花岗闪长岩的成因问题及龙首山成矿带西南缘构造环境特征。

    合黎山地处阿拉善地块龙首山成矿带西南缘,大地构造位置属于华北板块西南边缘(图1a)(谭文娟等,2012),北以龙首山北缘断裂与潮水中新生代断陷相邻(汤中立等,1999),南以南缘断裂与走廊过渡带分开。区内成矿条件有利(焦建刚等,2007)。龙首山成矿带是中国西北重要的铀成矿带(王承花,2010),同时中国著名的金川镍矿也位于该成矿带内(强利刚等,2019张照伟等,2023)。

    图  1  阿拉善地块大地构造简图(a)及罗城地区地质简图(b)
    Figure  1.  (a) Geostructural map of Alxa Block and (b) geological map of Luocheng Area

    区内地质构造复杂,次级构造发育,逆冲构造及伸展构造叠加,总体构造为NWW向(甘肃省地质局,1974),出露地层包括前震旦系龙首山群的角闪岩相–绿片岩相变质岩等中级区域变质岩系,其与上覆地层均为不整合接触;震旦系下统及中上统的云母石英片岩、变粒岩及变质砂岩、大理岩等为主的浅变质岩,其下统与中—上统之间多为断层接触;侏罗系青土井群的砂岩、砂砾岩等为主的陆源碎屑岩夹煤层,其与上覆地层及下伏地层均为不整合接触;白垩系以砂砾岩、泥岩等为主的碎屑岩;第三系以砾岩、含砾砂岩为主的沉积岩及第四系松散堆积物(图1b)。

    测区内岩浆岩发育广泛,主要为酸性、中酸性岩石为主,侵入活动主要是在加里东中期及华力西期,以华力西期侵入岩最为发育,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主,其中以花岗闪长岩出露最为广泛,其次为英云闪长岩。罗城岩体主要为花岗闪长岩发育,其中可见花岗岩、闪长岩呈脉状发育。区内五坝和张家窑岩体锆石U-Pb年代学年龄介于432~397 Ma,为中志留世—早泥盆世(王增振等,2020);西山头窑地区岩体锆石U-Pb年代学年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世。

    罗城岩体主要位于甘肃省高台县罗城镇北侧,其岩性主要为黑云母花岗闪长岩,野外岩体出露较为完整,笔者选取了合黎山地区高台县罗城幅的黑云母花岗闪长岩进行锆石U-Pb定年分析,共采集样品5件,其中岩石年龄同位素样品1件,并在岩石年龄同位素样品采集处配套采集岩石地球化学样品4件。样品采集地理坐标:E 99°43′39″,N 39°46′30″和E 99°41′43″,N 39°48′20″。为确保锆石数据准确性,样品均为未风化蚀变的新鲜岩石。

    岩石新鲜面为灰白色,具半自形粒状结构,块状构造(图2a)。主要矿物及含量:斜长石(45%),石英(20%),碱性长石(15%),普通角闪石(15%),黑云母(5%)。斜长石粒径约0.30~1.30 mm,呈半形粒状、板状,具聚片双晶,表面浑浊,微裂隙发育,次生绢云母化,均匀分布。碱性长石粒径约0.20~1.10,呈半自形板状,具卡式双晶,少量分布。石英粒径约0.10~2.00 mm,呈他形粒状,波状消光,沿长石粒间分布。普通角闪石粒径约0.20~1.60 mm,呈他形柱状,黄褐色,截面呈菱面体状,具角闪石式解理,绿泥石化,沿长英质粒间定向分布。黑云母粒径约0.15~2.25 mm,呈鳞片状、片状,褐黄色-红褐色,沿长英质粒间定向分布。副矿物有磷灰石、绿帘石(图2b、图2c、图2d)。

    图  2  黑云母花岗闪长岩手标本及镜下照片
    a.黑云母花岗闪长岩手标本; (b,d).正交偏光镜下特征; c.单偏光镜下特征;Qtz.石英; Bt.黑云母; P1.斜长石; Kfs.钾长石; Hbl.角闪石
    Figure  2.  Biotite granodiorite hand specimen and microscopic photograph

    样品的锆石挑选、制靶、CL照相由西安瑞石地质科技有限公司完成,采用标准重矿物分离技术分选出重矿物,随后在双目镜下挑选出锆石颗粒,将不同特征的锆石颗粒粘在双面胶上,并用无色透明的环氧树脂固定,待其固化之后将表面抛光至锆石内部暴露。然后拍摄阴极发光图像、透射光图像和反射光图像,选取分析点位。

    锆石U-Pb定年和Hf同位素组成分析在中国地质调查局西安地质调查中心岩浆作用成矿与找矿重点实验室完成。锆石U-Pb定年在LA-ICP-MS仪器上用标准测定程序进行,样品采用激光剥蚀等离子体质谱仪原位分析锆石微区的铀铅比值(206Pb/238U、207Pb/235U和207Pb/206Pb)(李艳广等,2015)并通过Glitter计算程序计算锆石的年龄及标准偏差;应用Isoplot(Ludwig, 2003)计算程序对锆石样品的206Pb/238U年龄和207Pb/235U年龄在谐和图上进行投图,并计算谐和年龄测点的加权平均值。

    锆石Hf同位素组成运用Neptune型多接收电感耦合等离子体质谱仪和GeolasPro型激光剥蚀系统联用的方法完成(袁洪林等,2007),所选测试位置均与锆石U-Pb测点位置相近,测试束斑直径为32 μm,采用国际标准锆石91500进行监控和样品外部校正。

    主量元素和微量元素分析测试在中国地质调查局西安矿产资源调查中心完成,主量元素采用X荧光光谱仪进行分析,稀土和微量元素采用等离子质谱仪进行分析,测试结果见表1

    表  1  罗城黑云母花岗闪长岩主量元素(%)、微量元素(10−6)、稀土元素(10−6)分析结果表
    Table  1.  Analysis results of major elements (%), trace elements (10−6) and rare earth elements (10−6) in Luocheng biotite granodiorite
    样品编号LCYT03LCYT04LCYT05LCYT06
    SiO2 59.84 58.75 58.52 59.09
    Al2O3 16.91 17.25 17.28 17.28
    Fe2O3 7.13 7.82 7.55 7.61
    CaO 6.33 6.70 6.93 6.68
    MgO 3.13 3.38 3.53 3.34
    K2O 1.87 1.49 1.49 1.54
    Na2O 2.52 2.60 2.55 2.60
    P2O5 0.13 0.15 0.15 0.15
    TiO2 0.68 0.74 0.77 0.75
    MnO 0.13 0.14 0.14 0.14
    LOI 1.03 0.74 0.85 0.60
    总和 99.70 99.76 99.75 99.79
    K2O+Na2O 4.40 4.09 4.04 4.15
    K2O/Na2O 0.74 0.57 0.59 0.59
    δ 1.15 1.06 1.05 1.07
    A/NK 2.74 2.93 2.98 2.9
    A/CNK 0.97 0.97 0.96 0.97
    Rb 61.1 49.2 40.6 46.9
    Th 3.37 4.58 5.70 8.46
    U 0.79 0.72 0.74 0.75
    Nb 4.48 4.76 4.64 4.64
    Sr 376 429 413 403
    Zr 84.3 112 88.6 118
    Hf 2.34 2.79 2.23 2.97
    F 454 320 663 360
    Sn <1.80 <1.80 <1.80 <1.80
    Cr 12.9 17.6 14.1 14.1
    Li 16.8 18.3 17.3 17.4
    Be 0.76 0.87 0.86 0.79
    V 166 186 180 174
    Co 15.3 16.2 15.6 15.3
    Ni 8.36 10.9 11.2 10.4
    Ga 16.6 17.7 16.3 16.4
    Cs 2.52 2.92 2.69 3.15
    Ta 0.33 0.35 0.34 0.35
    W 2.30 1.91 1.81 1.80
    Bi 0.073 0.070 <0.050 0.057
    La 12.0 14.3 12.5 12.5
    Ce 27.1 28.9 25.5 25.7
    Pr 3.60 3.59 3.32 3.21
    Nd 16.4 15.3 14.6 14.1
    Sm 3.91 3.37 3.28 3.14
    Eu 1.05 1.07 1.05 1.03
    Gd 4.14 3.54 3.49 3.41
    Tb 0.66 0.55 0.54 0.52
    Dy 4.04 3.28 3.24 3.15
    Ho 0.83 0.68 0.67 0.65
    Er 2.54 2.03 2.02 1.95
    Tm 0.36 0.29 0.29 0.28
    Yb 2.33 1.88 1.87 1.84
    Lu 0.36 0.30 0.30 0.29
    Y 21.3 17.2 16.9 16.4
    ΣREE 79.32 79.08 72.67 71.77
    LREE 64.06 66.53 60.25 59.68
    HREE 15.26 12.55 12.42 12.09
    LREE/HREE 4.20 5.30 4.85 4.94
    (La/Yb)N 3.69 5.46 4.79 4.87
    δEu 0.80 0.95 0.95 0.96
    δCe 1.01 0.99 0.97 0.99
    下载: 导出CSV 
    | 显示表格

    样品的锆石颗粒的CL图像(图3)显示所选的锆石为透明的自形晶体,为无色透明或浅黄色,大部分锆石结晶较好,短柱状晶形,阴极发光电子图像特征均显示出典型的岩浆结晶韵律环带结构。

    图  3  锆石样品测点CL照片
    Figure  3.  CL photograph of the zircon sample

    本次所选锆石样品25颗,均为有效样品,黑云母花岗闪长岩锆石U-Pb分析测试结果见表2,锆石Th含量为34.81×10−6~129.66×10−6,U含量为52.88×10−6~147.36×10−6,Th/U值为0.55~0.97,均大于0.4,说明锆石为岩浆成因(吴元保等,2004)。锆石微量元素测试结果见表3,其显示出重稀土富集,相对亏损轻稀土元素的特征,显示典型的岩浆锆石成因特征(Hoskin,2000)。锆石谐和图反映出锆石U-Pb年龄数据分布比较集中且谐和程度较好(图4a),所有数据协和度均符合要求,证明数据均有效。通过数据分析得到206Pb/238U加权平均年龄为(289±3)Ma,(MSWD=0.57),代表岩浆结晶年龄(图4b)。

    表  2  罗城花岗闪长岩(LCYT01)锆石LA-ICP-MS测年结果
    Table  2.  Zircon LA-ICP-MS dating results of Luocheng granodiorite (LCYT01)
    测点号含量(10−6Th/U同位素比值同位素年龄
    PbThU207Pb/206Pb±1δ207Pb/235U±1δ206Pb/238U±1δ208Pb/232Th±1δ207Pb/206Pb±1δ207Pb/235U±1δ206Pb/238U±1δ208Pb/232Th±1δ
    LCYT00115.9679.2881.670.970.051530.004230.320790.025510.045110.001020.014520.00048264.4177.81282.519.61284.56.28291.39.56
    LCYT00214.2547.2872.220.650.052020.00460.329390.028270.045890.001080.012690.00063286.1189.7289.121.59289.26.6825512.64
    LCYT00312.0434.8163.550.550.05240.006970.324630.042270.04490.001340.013750.00088302.7277.82285.532.4283.28.26276.117.48
    LCYT00419.9293.9998.060.960.049230.004980.317720.031380.046780.001140.014320.00059158.7220.85280.124.18294.77.05287.511.7
    LCYT00511.3741.9157.970.720.05170.007620.333650.048170.046780.001520.016110.00095272.2306.78292.436.67294.79.3932318.95
    LCYT00616.7980.9285.360.950.050210.004380.312610.026510.045130.001030.013450.00049204.9190.68276.220.51284.66.352709.73
    LCYT00727.09129.66147.360.880.054120.003560.3420.02160.045820.000960.013840.00042375.8141.54298.716.34288.85.93277.88.4
    LCYT00812.5145.5565.960.690.050290.00430.320150.02660.046160.001060.015350.00062208.3187.1628220.46290.96.51307.812.31
    LCYT00913.6945.6872.340.630.051530.004440.330810.027630.046560.001090.015190.00068264.4186.14290.221.08293.36.73304.713.59
    LCYT01012.6846.0266.650.690.051150.004720.330380.02970.046850.001110.014570.00063247.4199.46289.922.67295.16.83292.512.53
    LCYT01113.0949.9268.970.720.047920.005630.309370.035630.046820.001220.014730.0008794.2257.92273.727.632957.49295.617.3
    LCYT01212.5347.865.530.730.05210.004820.336830.030330.046890.001120.016060.00063289.7198294.823.04295.46.8732212.57
    LCYT01318.3192.7198.110.940.051780.00390.329560.023990.046180.0010.013620.00044275.6163.56289.218.322916.19273.38.78
    LCYT0141993.38105.350.890.053290.003980.32730.023580.044570.000990.014330.00046340.9160.32287.518.04281.16.09287.69.21
    LCYT01515.1651.5380.720.640.049480.004120.305210.024720.044760.000980.014240.00055170.8183.56270.519.23282.36.06285.711.06
    LCYT01614.0155.4376.330.730.05030.005370.308480.032080.044510.001180.012860.00065209229.9627324.9280.77.27258.212.91
    LCYT01711.345.8860.720.760.052390.004990.332310.030790.046040.001150.012880.0006302.4203.45291.323.47290.17.1258.611.9
    LCYT01816.3873.4288.240.830.053210.00370.32920.022010.04490.000960.014090.00044337.7149.5228916.81283.25.92282.78.81
    LCYT01915.8176.5880.920.950.051660.003780.328130.023170.04610.000990.014660.00044270.4159.18288.117.72290.66.07294.28.75
    LCYT02013.253.4268.410.780.050230.004230.315340.025820.045570.001030.01510.00054205.7184.61278.319.93287.36.36302.910.68
    LCYT02110.7736.8552.880.700.050950.00440.322250.027020.045920.001050.013670.00064238.6187.4283.620.75289.46.46274.312.67
    LCYT02213.9547.6168.780.690.052830.003880.343720.024360.047240.001020.013890.00055321.3157.9430018.41297.66.25278.810.94
    LCYT02323.03103.73117.270.880.052350.003130.336940.019260.046730.000940.014210.00041300.6130.55294.914.63294.45.77285.28.1
    LCYT02416.8156.8885.690.660.053870.003470.341950.021130.046090.000950.013370.00048365.6138.52298.615.99290.55.83268.49.65
    LCYT02514.867.0576.380.880.052030.003840.330110.023590.046080.000990.014190.00047286.8160.34289.718290.46.11284.89.33
    下载: 导出CSV 
    | 显示表格
    表  3  罗城花岗闪长岩锆石分析点位微量元素(10−6)测试结果
    Table  3.  Test results of trace elements (10−6) at zircon analysis points of Luocheng granodiorite
    测点号NbLaCePrNdSmEuGdTbDyHoErTmYbLuTa
    LCYT0011.100.068.230.050.230.491.2827.740.78107.2740.27181.1235.88339.1766.630.28
    LCYT0020.490.046.690.032.073.330.4011.138.8267.1426.56126.0227.32290.7857.980.24
    LCYT0030.610.006.260.020.492.640.297.434.6545.1617.3587.1319.02192.3638.240.27
    LCYT0040.630.069.250.080.440.691.1525.903.00112.8844.64196.4439.56377.0971.610.26
    LCYT0050.550.006.420.031.794.980.368.459.9940.5119.2787.5319.76189.5237.300.23
    LCYT0060.520.019.030.050.631.340.9124.923.67102.5838.80175.9835.30323.6465.730.28
    LCYT0070.460.0217.040.111.552.650.8524.046.96113.4945.17206.5843.34418.8482.250.41
    LCYT0081.370.007.310.031.493.080.4610.508.6950.8520.8697.3221.63218.5042.570.30
    LCYT0090.530.047.760.020.671.580.247.994.0643.0818.5685.8119.58193.5236.740.31
    LCYT0100.650.007.390.030.401.280.2411.383.4352.6720.9798.2122.28213.9442.280.26
    LCYT0110.670.017.650.050.442.140.4311.654.0854.2422.14101.0221.59221.8241.650.21
    LCYT0120.580.247.210.070.731.880.489.624.4351.7020.95100.7022.19222.3343.830.39
    LCYT0133.010.019.210.081.562.820.9524.933.94113.5645.37198.1541.36399.3271.970.38
    LCYT0140.660.019.650.071.793.631.1528.879.60117.6544.48198.8541.00392.0576.110.34
    LCYT0150.580.008.440.022.164.680.3310.509.8352.8820.95100.9822.47230.3244.420.31
    LCYT0160.740.007.730.040.491.290.4012.464.0861.4326.20120.9726.57261.9652.640.38
    LCYT0170.730.006.930.020.872.130.4312.065.0454.0723.41106.0523.33232.8844.250.33
    LCYT0180.840.018.090.060.571.820.8320.894.5892.5836.57172.3935.31347.5267.400.29
    LCYT0190.610.008.040.061.533.320.9726.287.25103.3341.09175.9336.48349.5666.290.23
    LCYT0200.470.007.310.021.725.060.3914.228.7863.2324.83115.4925.21238.9145.300.22
    LCYT0210.570.015.700.020.691.870.5310.945.1553.1621.38104.6222.91221.5645.690.30
    LCYT0220.530.046.600.030.271.730.4612.333.8967.2425.79122.8627.12273.0052.930.28
    LCYT0230.700.049.560.090.571.921.1827.415.00122.9649.00227.3746.39456.0789.130.38
    LCYT0241.140.048.630.021.854.190.289.3010.4948.6820.0695.2320.74214.1041.880.34
    LCYT0251.120.027.630.071.412.911.0422.234.0193.4736.23160.6534.00327.8865.050.25
    下载: 导出CSV 
    | 显示表格
    图  4  锆石样品U-Pb谐和图
    Figure  4.  U-Pb Concord diagram of zircon samples

    在LA-ICP-MS锆石U-Pb测年的基础上,对黑云母花岗闪长岩样品25颗锆石测点进行了锆石微区Hf同位素测定。测点的数据分析结果(表4)。176Yb/177Hf值介于0.0122223510.042050552176Lu/177Hf值介于0.000424710.001378472,均小于0.002,说明锆石在形成后具有很少的放射成因Hf的积累。因此,锆石 176Hf/177Hf值可能代表该锆石形成时的176Hf/177Hf值(吴福元等,2007),176Hf/177Hf值介于0.2827260480.282787588εHf(t)值均为正值,介于+4.37~+6.88,平均为+5.6,通过锆石Hf同位素εHf(t)-U-Pb年龄t(Ma)图解(图5a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或新生地壳,Hf同位素一阶段模式年龄T(DM1)分布范围为615.4~703.0 Ma,平均值为660.5 Ma,地壳模式年龄T(DMC)分布范围为808.6~952.5 Ma,平均值为882.8 Ma,地壳模式年龄T(DMC)较集中(图5b)。

    表  4  黑云母花岗闪长岩锆石Hf同位素分析结果
    Table  4.  Zircon Hf isotope analysis results of biotite granodiorite
    分析点t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σHfiεHf (0εHf (t±1σT(DM1T(DMC±1σfLu/Hf
    LCYT01-01284.50.0185586530.0006254970.2827722620.00001941500.2827690.0799942726.141620.679525634.4846.80.06673-0.9583
    LCYT01-02289.20.0213508130.000729880.2827422290.00001733430.282738-0.9821200125.160500.606701676.8910.50.065471-0.95134
    LCYT01-03283.20.0185419030.00063320.2827615260.00001621770.282758-0.2996866935.732140.56762649.0871.00.062774-0.95779
    LCYT01-04294.70.0220882280.0007384730.2827875880.00001740890.2827840.6219991686.882540.609311615.4808.60.063449-0.95077
    LCYT01-05294.70.0164732050.0006104080.2827343750.00001781010.282731-1.2598643495.024450.623354685.4922.90.066228-0.95931
    LCYT01-06284.60.030878080.001030040.2827487010.00001693800.282743-0.7532266325.233860.59283673.2902.50.065308-0.93133
    LCYT01-07288.80.0197257310.0006696610.2827592090.00001664090.282756-0.3816205935.764270.582432652.8873.10.063558-0.95536
    LCYT01-08290.90.0257500310.0008673350.2827429880.00001806780.282738-0.9552588135.197570.632374678.1909.30.066791-0.94218
    LCYT01-09293.30.0218180770.000740690.2827526590.00001701880.282749-0.613269935.615880.595659662.8885.40.06456-0.95062
    LCYT01-10295.10.0318103150.0010723330.2827600720.00001852730.282754-0.351094865.852240.648455658.3872.00.067113-0.92851
    LCYT01-112950.0323206950.001060830.2827700290.00001875880.2827640.0010278596.204710.656558644.5850.30.066935-0.92928
    LCYT01-12295.40.0257539410.000840720.2827446190.00001950560.28274-0.8975709255.357100.682698675.5902.80.068675-0.94395
    LCYT01-132910.0420505520.0013784720.2827446020.00001883510.282737-0.8981748115.158400.659227684.9911.50.069048-0.9081
    LCYT01-14281.10.0259173880.0008951120.2827772580.00001732290.2827730.2566710656.194730.606302631.9840.90.064172-0.94033
    LCYT01-15282.30.0122223510.000424710.2827306610.00001858930.282728-1.3911864274.659460.650625687.1936.40.06705-0.97169
    LCYT01-16280.70.0260717950.000893780.2827260480.00001877770.282721-1.55432734.374300.65722701.7952.50.068661-0.94041
    LCYT01-17290.10.0263774940.0008923340.2827533610.00001776710.282749-0.5884351115.542650.621848664.4887.50.065933-0.94051
    LCYT01-18283.20.0249169180.0008804570.2827789380.00002032120.2827740.3160932876.301970.711244629.4835.90.068288-0.9413
    LCYT01-19290.60.0182103230.0006337710.2827818010.00001753640.2827780.4173397936.609510.613775621.6822.40.063668-0.95775
    LCYT01-20287.30.018020850.0006154230.2827727750.00001705720.2827690.0981199366.222220.597003633.5843.90.06338-0.95897
    LCYT01-21289.40.0203842770.0007181130.2827423720.00001847100.282738-0.97704095.172150.646485676.4909.90.067032-0.95213
    LCYT01-22297.60.025947460.0008813540.2827600120.00001615870.282755-0.3532357355.941050.565556655.2868.50.063322-0.94124
    LCYT01-23294.40.0294271320.0010148530.2827266720.00002064820.282721-1.5322865044.666560.722688703.0944.40.071574-0.93234
    LCYT01-24290.50.0185395080.0006411150.2827699110.00001629770.282766-0.0031621896.185170.570421637.8848.50.062508-0.95726
    LCYT01-25290.40.0218810360.0007494570.2827411580.00001557880.282737-1.0199706465.144730.545259678.6912.30.063102-0.95004
    下载: 导出CSV 
    | 显示表格
    图  5  罗城黑云母花岗闪长岩锆石εHft)-t(Ma)图解(a)(据李良等,2018)和地壳模式年龄T(DMC)统计直方图(b)
    Figure  5.  (a)Zircon εHf(t)-t (Ma) diagram (According to LI Liang et al., 2018) and (b) crustal model age T (DMC) statistical histogram (b) of Luocheng biotite granodiorite

    合黎山地区罗城黑云母花岗闪长岩的主量元素分析结果见表1,其SiO2含量介于58.52%~59.84%,Al2O3含量介于16.91%~17.28%。全碱含量Na2O+K2O介于4.04%~4.40%,相对富碱,Na2O含量介于2.52%~2.60%,K2O含量介于1.49%~1.87%,富钠贫钾。里特曼指数δ介于1.05~1.15。根据CIPW标准矿物计算(Le Maitre,1979),石英(Qtz)含量介于18.97%~20.69%,碱性长石(A)含量介于11.6%~14.66%,斜长石(Pl)含量介于47.86%~50.76%,在Q-A-P图解中(图6a),处在花岗闪长岩区域中。SiO2-(Na2O+K2O-CaO)图解(图6b)反应岩石属于钙性系列。SiO2-K2O图解(图6c)反映岩石主体属于钙碱性系列。铝饱和指数A/CNK比较集中,介于0.96~0.97,A/NK介于2.74~2.98,在A/CNK-A/NK图解中(图6d),处在准铝质范围内。

    图  6  罗城黑云母花岗闪长岩Q-A-P图解(a)(据Streckeisen, 1976)、SiO2-(Na2O+K2O-CaO)图解(b)(据Peccerillo et al., 1976)、SiO2-K2O图解(c)(据Peccerillo et al., 1976)及A/NK-A/CNK图解(d)(据Maniar et al.,1989
    Figure  6.  (a) Q-A-P diagram of Luocheng biotite granodiorite, (b) SiO2- (Na2O+K2O-CaO) diagram, (c) SiO2-K2O diagram and (d) A/NK-A/CNK diagrams

    合黎山地区罗城黑云母花岗闪长岩的稀土元素分析结果见表1,其稀土元素总量ΣREE在71.77×10−6~79.32×10−6之间,平均为75.71×10−6。LREE/HREE值在4.20~5.30之间,平均为4.82,相对富集轻稀土,亏损重稀土。(La/Yb)N在3.69~5.46之间,平均为4.70,稀土元素球粒陨石标准化配分曲线图(图4a)中显示稀土元素为右倾型配分模式。δEu值在0.80~0.96之间,平均值为0.91,Eu具轻度负异常,说明在岩浆演化过程中有少量的斜长石分离结晶作用。

    合黎山地区罗城黑云母花岗闪长岩的微量元素分析结果见表1,在微量元素原始地幔标准化蛛网图(图7b)上可见,岩石均相对富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素。

    图  7  罗城黑云母花岗闪长岩的稀土元素球粒陨石标准化配分曲线图(a)(据Taylor et al., 1985)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989
    Figure  7.  (a) Normalized distribution curve of rare earth element chondrites and (b) Primitive mantle-normalized trace element diagrams of Luocheng biotite granodiorite

    合黎山地区罗城岩体锆石自形程度好,具有典型的岩浆结晶韵律环带结构(图5),且Th/U值均大于0.4,为典型的岩浆锆石(王新雨等,2023李平等,2024),其锆石数据谐和度较高,206Pb/238U加权平均年龄为(289±3) Ma ,可代表岩浆结晶年龄,因此,合黎山地区罗城岩体形成于早二叠世。

    合黎山地区罗城花岗闪长岩Ga含量为16.3×10−6~17.7×10−6,Al2O3含量为16.91%~17.28%,10000Ga/Al值为1.78~1.93,平均为1.84,小于A型花岗岩下限2.6(Whalen et al., 1987),在Zr-10000Ga/Al、Ce-10000Ga/Al、Y-10000Ga/Al图解(图8b、 图8c、图8d)中,罗城岩体均投影在I&S花岗岩区域,在K2O-Na2O图解(图8a)中,罗城岩体均处于I型花岗岩区域。根据岩石主量元素特征可知,罗城花岗闪长岩具有钙碱性、准铝质特征,其A/CNK比较集中,介于0.96~0.97,均小于1.1,与I型花岗岩一致(Chappell et al., 1992李宏卫等,2021),且P2O5含量与SiO2含量存在负线性关系,与I型花岗岩演化趋势一致(Wolf et al., 1994)。综合判断分析,罗城花岗闪长岩属于结晶分异I型花岗岩。

    图  8  罗城黑云母花岗闪长岩K2O-Na2O图解(a)及Zr、Ce、Y-10000Ga图解(b、c、d)(据Whalen et al.,1987
    Figure  8.  (a) K2O-Na2O and (b, c, d) Zr, Ce, Y-10000 Ga diagram of Luocheng biotite granodiorite

    I型花岗岩主要来源于板块边缘陆壳下部,可能与地壳岩石的部分熔融(徐克勤等,1982)、交代岩石圈地幔部分熔融(Jiang et al., 2006)等有关,罗城黑云母花岗闪长岩属于钙碱性系列,富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,指示岩体具有大陆地壳物质的参与,岩石Nb/Ta=13.25~13.65,平均值为13.52,接近大陆地壳Nb/Ta值(=10~14)。在判断源岩的C/MF-A/MF图解(图9a)中,显示岩体源岩可能为基性岩的部分熔融,岩石δEu值具轻度负异常,在0.80~0.96之间,平均值为0.91,说明在岩浆演化过程中有少量的斜长石分离结晶作用,在δEu-(La/Yb)N图解中(图9b),样品投点均落在了壳源与壳幔混合源花岗岩区域,La/Ta值为35.71~40.86,大于起源于岩石圈地幔或受其混染岩浆La/Ta值的下限25,指示其为幔源或者壳幔混合源(Lassiter et al., 1997)。

    图  9  罗城黑云母花岗闪长岩C/MF-A/MF图解(a)(据Alther et al., 2000)及δEu-(La/Yb)N图解(b)(据王钊飞等,2019
    Figure  9.  (a) C/MF-A/MF diagram and (b) δEu-(La/Yb)N diagram of Luocheng biotite granodiorite

    罗城黑云母花岗闪长岩锆石Hf二阶段模式年龄T(DMC)分布范围为808.6~952.5 Ma,εHf(t)值介于+4.37~+6.88,通过锆石εHf(t)-U-Pb年龄t(Ma)图解(图7a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或具有新生地壳演化趋势(李金超等,2021)。

    在野外工作中,在黑云母花岗闪长岩中发现暗色微细粒包体发育(图10),包体形态可见椭圆状、圆状、透镜状以及不规则状,大小差异较大,包体常具淬冷边,证明岩浆发生混合作用(王德滋等,2008张建军等,2012);Mg#值可以指示壳源岩浆作用是否有幔源物质的参与,在地幔组分参与时,才能导致熔体的Mg#值大于40(Rapp et al., 1995),岩石MgO含量介于3.13%~3.53%,Mg#值介于0.64~0.66,明显高于40,表明岩体源岩明显具幔源岩浆加入。

    图  10  罗城黑云母花岗闪长岩中暗色包体的形态
    a. 椭圆状包体; b. 圆状包体; c. 透镜状包体; d. 不规则状包体
    Figure  10.  Field photos showing morphology of Luocheng biotite granodiorite

    基于上述讨论,罗城花岗闪长岩为壳源岩浆与幔源岩浆发生混合作用的产物,这种作用是由于地壳深部存在强烈的地幔岩浆底侵作用,导致新生地壳部分熔融并混入底侵的幔源物质。幔源的高温基性岩浆底侵,为其提供了少量物质来源,使岩石地球化学特征上既表现出壳源特征,也表现出幔源物质的信息。

    罗城黑云母花岗闪长岩富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,具有典型的岛弧岩浆岩特征(王秉璋等,2021),其形成与大洋板片俯冲消减作用有关。通过对黑云母花岗闪长岩构造背景判别,在Rb-(Y+Nb)(图11a)、Nb-Y(图11b)及Hf-Rb/30-3Ta(图11c)图解中,样品均落在火山弧花岗岩区域;在R1-R2图11d)图解中,样品落在地幔分异花岗岩与碰撞前花岗岩交界区域。

    图  11  花岗闪长岩构造背景判别Rb-(Y+Nb)(a)、Nb-Y(b)(据Pearce et al., 1984)、Hf-Rb/30-3Ta(c)(据Harris et al., 1986)图解及R1-R2(d)(据Batchelor et al., 1985)图解
    ① 地幔分异花岗岩;② 破坏性活动板块边缘 (板块碰撞前) 花岗岩;③ 板块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山区花岗岩;⑥ 同碰撞花岗岩;⑦造山期花岗岩
    Figure  11.  Identification of granodiorite structural background (a) Rb-(Y+Nb), (b) Nb-Y, (c) Hf-Rb/30-3Ta and (d) R1-R2 diagram

    罗城岩体位于龙首山造山带的西南缘大陆边缘活动带和祁连裂谷的发育构成了龙首山成矿带特定的构造环境(王承花,2010)。龙首山地区地壳演化自早古生代至中新生代经历了活动-稳定-再活动-再稳定-又活动的发展阶段,其在晚古生代处于稳定的拉张环境(强利刚等,2019),早古生代祁连造山带经历了北祁连洋向南俯冲,俯冲受阻,转为向北俯冲,引起北祁连岛弧与阿拉善陆块的碰撞,从而形成了一系列火山弧I型花岗岩(夏林圻等,2003刘文恒等,2019王增振等,2020)。罗城二叠纪黑云母花岗闪长岩指示其形成环境为岩浆弧,且R1-R2判别图解指示其形成环境为碰撞前消减花岗岩环境,说明在晚古生代该区还存在一期俯冲碰撞活动,与前人对龙首山晚石炭世—早二叠世西山头窑地区岩体处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022)相吻合,同时与前人认为的北山地区二叠纪时期仍发生的俯冲–增生造山过程延续可至三叠纪(宋东方等,2018)存在相关性,而并非处于拉张稳定发展期(强利刚等,2019)。

    (1)通过对罗城黑云母花岗闪长岩LA-ICP-MS锆石U-Pb测年得出,岩石锆石结晶年龄为(289±3) Ma ,属于早二叠世,指示了区域上华力西期的强烈构造岩浆事件。

    (2)通过罗城黑云母花岗闪长岩岩相学、岩石地球化学及Hf同位素特征,岩体富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Ba、Nb、Ta、P等高场强元素,属于准铝质钙碱性I型花岗岩,是由新生地壳部分熔融并混入底侵幔源物质的产物,指示了地壳深部强烈的地幔岩浆底侵作用。

    (3)罗城黑云母花岗闪长岩地球化学特征指示其形成于碰撞前的消减花岗岩环境,结合龙首山地区构造演化历史,表明该区在晚古生代还存在一期俯冲碰撞,而并非一直处于拉张稳定发展期。

  • 图  1   建设场地填方边坡工程地质平面图

    Figure  1.   Geological plan of construction site filling slope engineering

    图  2   场地填方边坡工程地质剖面图

    Figure  2.   Engineering geological profile of site fill slope section

    图  3   不同压实度下最大竖向沉降值对比

    Figure  3.   Comparison of maximum vertical settlement values under different compaction degrees

    图  4   不同压实度下填方边坡水平最大负位移值对比

    Figure  4.   Comparison of maximum horizontal negative displacement of fill slope under different compaction degrees

    图  5   不同压实度下填方边坡水平最大正位移对比

    Figure  5.   Comparison of maximum horizontal positive displacement of fill slope under different compaction degrees

    图  6   压实度80%黄土填方边坡

    Figure  6.   Loess fill slope with 80% compaction

    图  7   压实度90%黄土填方边坡

    Figure  7.   Loess fill slope with a compaction degree of 90%

    图  8   压实度95%黄土填方边坡

    Figure  8.   Loess fill slope with a compaction degree of 95%

    表  1   土层折减系数取值表

    Table  1   Values of soil layer reduction coefficient

    土层液化指数液化土层深度(m)折减系数
    ≤0.6≤100
    10~201/3
    0.6~0.8≤101/3
    10~202/3
    0.8~1.0≤102/3
    10~201.0
    下载: 导出CSV

    表  2   兰州市某建设场地填方边坡参数

    Table  2   Filling slope parameters of a construction site in Lanzhou

    序号指标参数
    1饱和渗透系数(m/h)0.108
    2饱和含水率(%)5.21
    3残余含水率(%)0.084
    4土体粘结强度标准值(kPa)45
    5暴雨入渗后内聚力(kPa)26
    6暴雨入渗后内摩擦角(°)25.3
    7暴雨入渗后容重(KN/m317.6
    8天然容重(KN/m313.5
    9土体底面倾角(°)45
    10地下水反流线平均倾角(°)32
    11填土高度(m)0~120
    12条块滑动面的长度(m)315
    下载: 导出CSV
  • 陈东. 某高速公路下填方边坡稳定性分析及支护方案研究[J]. 公路工程, 2020, 45(1): 114−116.

    CHEN Dong. Study on Stability Analysis and Support Scheme of Lower Slope of a Highway[J]. Highway Engineering,2020,45(1):114−116.

    代雪, 张家明. 某场地边坡稳定分析方法的比较研究[J]. 中国安全生产科学技术, 2021, 17(11): 119−124.

    DAI Xue, ZHANG Jiaming. Comparative study on slope stability analysis methods at a site[J]. China Safety Science and Technology,2021,17(11):119−124.

    高彦斌, 罗文康, 骆佳樑, 等. 两种固结状态下软土的三轴不排水剪切模量非线性及对比[J]. 岩土工程学报, 2021, 43(S2): 64−67.

    GAO Yanbin, LUO Wenkang, LUO Jialiang, et al. Nonlinearity and comparison of triaxial undrained shear modulus of soft soil under two consolidation states[J]. Chinese Journal of Geotechnical Engineering,2021,43(S2):64−67.

    韩文喜, 张日华, 王昊. 降雨和地震对高填方边坡稳定性的影响研究[J]. 水力发电, 2019, 45(12): 31−36.

    HAN Wenxi, ZHANG Rihua, WANG Hao. Study on the Influences of Rainfall and Earthquake on the Stability of High Fill Slope[J]. Water Power,2019,45(12):31−36.

    贺林林, 钱进, 赵陈雨, 等. 巫山神女峰机场高填方边坡稳定性分析方法研究[J]. 合肥工业大学学报(自然科学版), 2023, 46(5): 646−651+703.

    HE Linlin, QIAN Jin, ZHAO Chenyu, et al. Study on stability analysis method of high fill slope of Wushan Shennufeng Airport[J]. Journal of Hefei University of Technology (Natural Science Edition),2023,46(5):646−651+703.

    贾俊, 张茂省, 冯立, 等. 流态破坏型黄土滑坡滑带土临界特征[J]. 西北地质, 2019, 52(2): 136−147.

    JIA Jun, ZHANG Maosheng, FENG Li, et al. Critical characteristics of soil in sliding zone of fluid destructive loess landslide[J]. Northwestern Geology,2019,52(2):136−147.

    蒋辽, 喻兴, 刘林洁, 等. 基于蒙特卡罗模拟的填方边坡可靠度分析[J]. 地下空间与工程学报, 2017, 13(S2): 693−697.

    JIANG Liao, YU Xing, LIU Linjie, et al. Reliability analysis of fill slope based on Monte Carlo simulation[J]. Chinese Journal of Underground Space and Engineering,2017,13(S2):693−697.

    李海涛, 任光明, 范荣全, 等. 川北某变电站堆积体边坡稳定性及加固措施分析[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 454−464.

    LI Haitao, REN Guangming, FAN Rongjin, et al. Analysis on stability and reinforcement measures of accumulation body slope in a substation in north Sichuan[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(4): 454−464.

    刘畅, 张平松, 杨为民, 等. 税湾地震黄土滑坡的岩土动力特性及其稳定性评价[J]. 西北地质, 2020, 53(4): 176−185.

    LIU Chang, ZHANG Pingsong, YANG Weimin, et al. Geotechnical dynamic characteristics and stability evaluation of loess landslide in Shiwan earthquake[J]. Northwestern Geology,2020,53(4):176−185.

    吕江, 赵晖, 杨杓, 等. 山区水下填方路堤边坡的稳定性分析[J]. 深圳大学学报: 理工版, 2021, 38(2): 151−156.

    LV Jiang, ZHAO Hui, YANG Shao, et al. Slope stability of underwater fill embankment in mountainous area[J]. Journal of Shenzhen University (Science & Engineering),2021,38(2):151−156.

    任东兴, 薛鹏, 叶飞, 等. 降雨入渗条件下黏性土基坑浅层边坡稳定性分析[J]. 成都理工大学学报(自然科学版), 2022, 49(2): 204−212.

    REN Dongxing, XUE Peng, YE fei, et al. Shallow slope stability analysis of cohesive soil foundation pit under rainfall infiltration[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(2):204−212.

    唐亚明. 基于可靠度的黄土斜坡稳定性分析[J]. 地质通报, 2008, 27(8): 1217−1222.

    TANG Yaming. Loess slope stability analysis based on reliability[J]. Geological Bulletin of China,2008,27(8):1217−1222.

    王斌, 熊宗瑜. 黄土高填方路堤沉降观测及有限元分析[J]. 港工技术与管理, 2020(5): 17−22.

    WANG Bin, XIONG Zongyu. Settlement Observation and Finite Element Analysis of Loess High Fill Embankment[J]. Technology & Management Of Port & Harbor Engineering,2020(5):17−22.

    薛强, 张茂省, 毕俊擘, 等. 开挖型黄土边坡剥落侵蚀作用及变形破坏研究[J]. 西北地质, 2019, 52(2): 158−166.

    XUE Qiang, ZHANG Maoxing, BI Junbo, et al. Exfoliation Erosion and Deformation Failure of Excavated Loess Slope[J]. Northwestern Geology,2019,52(2):158−166.

    向文贤, 黎应书, 许万忠, 等. 降雨入渗条件下预应力锚索加固填方边坡稳定性分析[J]. 中国煤炭地质, 2022, 34(1): 69−74. doi: 10.3969/j.issn.1674-1803.2022.01.12

    XIANG Wenxian, LI Yingshu, XU Wanzhong, et al. Prestressed Cable Anchor Reinforced Slope Stability Analysis under Rainfall Penetration Condition[J]. Coal Geology of China,2022,34(1):69−74. doi: 10.3969/j.issn.1674-1803.2022.01.12

    杨智勇, 李典庆, 曹子君, 等. 考虑土质边坡多失效模式的区域概率风险分析方法[J]. 工程力学, 2019, 36(5): 216−225.

    YANG Zhiyong, LI Dianqing, CAO Zijun, et al. Region probability method for soil slope risk assessment involving multiple failure modes[J]. Engineering Mechanics,2019,36(5):216−225.

    叶帅华, 张玉巧, 房光文. 黄土高填方边坡的稳定性影响因素及其变形规律[J]. 兰州理工大学学报, 2021, 47(3): 120−126.

    YE Shuaihua, ZHANG Yuqiao, FANG Guangwen. Influencing factors and deformation law of stability of loess high fill slope[J]. Journal of Lanzhou University of Technology,2021,47(3):120−126.

    叶志程, 杨溢, 左晓欢, 等. 基于Midas-GTS/NX的不同工况下某填方边坡稳定性分析及加固措施[J]. 化工矿物与加工, 2021, 50(5): 16−19.

    YE Zhicheng, YANG Yi, ZUO Xiaohuan, et al. Stability analysis of a slope with reinforcement based on Midas-GTS/NX under different working conditions[J]. Industrial Minerals & Processing,2021,50(5):16−19.

    赵洪, 谢友均, 龙广成, 等. 冲击荷载作用下含黏结界面混凝土破坏特征与应力应变分析[J]. 上海交通大学学报, 2022, 59(9): 1208−1217.

    ZHAO Hong, XIE Youjun, LONG Guangcheng, et al. Mechanical Characteristics and Stress and Strain Analysis of Concrete with Bonding Interface Under Impact Load[J]. Journal of Shanghai Jiaotong University,2022,59(9):1208−1217.

    赵建祥, 毕鹏飞, 惠亚强. 降雨作用下高填方边坡失稳机制研究[J]. 水利水电技术(中英文), 2021, 52(S2): 421−429.

    ZHAO Jianxiang, BI Pengfei, HUI Yaqiang. Study on instability mechanism of high fill slope under rainfall[J]. Water Resources and Hydropower Technology (Chinese and English),2021,52(S2):421−429.

    张文生, 罗强, 蒋良潍, 等. 小样本岩土参数下考虑矩估计偏差的土质边坡可靠度分析[J]. 岩土力学, 2019, 40(1): 315−324.

    ZHANG Wensheng, LUO Qiang, JIANG Liangwei, et al. Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical param[J]. Rock and Soil Mechanics,2019,40(1):315−324.

    周中, 李繁, 鲁四平. 轻质土换填路堤地基侧向变形非线性算法研究[J]. 铁道工程学报, 2022, 39(11): 12−18. doi: 10.3969/j.issn.1006-2106.2022.11.003

    ZHOU Zhong, LI Fan, LU Siping. Research on nonlinear Algorithm of lateral deformation of lightweight soil replacement embankment[J]. Journal of Railway Engineering,2022,39(11):12−18. doi: 10.3969/j.issn.1006-2106.2022.11.003

    周亚东, 李龙辉, 陈思源. 饱和土一维大变形非线性热固结模型[J]. 岩石力学与工程学报, 2023, 42(9): 2306−2314.

    ZHOU Yadong, LI Longhui, CHEN Siyuan. One-dimensional nonlinear thermal consolidation model of saturated soil with large deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2306−2314.

    Li Kaiqi, Yin Zhenyu, Zhang Ning, et al. A PINN-based modelling approach for hydromechanical behaviour of unsaturated expansive soils[J]. Computers and Geotechnics, 2024, 169: 106174.

    Mohammad Hashem Bathayian Seyed, Maleki Mohammad. Kinematic hardening based coupled elastoplastic–viscoplastic model for describing time-dependent behavior of soils subjected to non-monotonic loadings[J]. Computers and Geotechnics, 2023, 161: 105602.

    Parvaneh Seyed Milad, Foster Craig D, Chi Shengwei. A hardening/softening viscoplastic model for large deformation of soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46(10): 1895–1918.

    Xiao Yang, Liu Shuang, Shi Jinquan, et al. Temperature-Dependent SWCC Model for Unsaturated Soil[J]. International Journal of Geomechanics, 2024, 24(5): 04024071 .

    Peng Yu, Yin Zhenyu, Gao Fuping. Micromechanical analysis of pipeline-soil interaction in unsaturated granular soil undergoing lateral ground movement[J]. Computers and Geotechnics, 2024, 169: 106181.

图(8)  /  表(2)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  9
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-06
  • 修回日期:  2024-04-10
  • 录用日期:  2024-05-07
  • 网络出版日期:  2024-05-21
  • 刊出日期:  2024-08-19

目录

/

返回文章
返回