Analysis of Land Use Change and Habitat Quality Evolution Based on InVEST and PLUS Models: Example from Hanzhong Basin
-
摘要:
汉中盆地是中国南水北调工程中的重要源头区,分析区内土地利用及生境质量,能提高对该地区演变规律的认识,进一步保护下游研究区的自然资源和生态环境安全。笔者基于2000~2020年20年内共3期土地利用数据,建立了研究区多类型土地利用数据库和生境质量评估体系,从土地利用转移矩阵、景观格局指数、生境质量等多个方面对研究区内的土地利用的时空变化进行研究,并利用PLUS模型进行土地利用扩张和预测分析。结果表明:2000~2020年,土地利用类型变化较大,变化转移主要发生在水田和农村居民点用地、城镇用地之间;蔓延度指数逐年减少,景观破碎化程度较高;生境质量结果呈逐年下降趋势,高值面积减少并向南部扩展,低值面积增多并以城镇为中心向外辐射扩散,高等级的生态质量景观由水域和林草为主,主要沿汉江流域分布。
Abstract:Hanzhong Basin is an important source area in China's South-to-North Water Diversion Project. Analyzing land use and habitat quality within the region can enhance our understanding of its evolutionary patterns and further protect the natural resources and ecological environment security of the downstream working areas. This paper establishes a multi-type land use database and a habitat quality assessment system for the working area based on three periods of land use data from 2000 to 2020. It studies the spatiotemporal changes of land use in the research area from multiple aspects including land use transition matrix, landscape pattern indices, and habitat quality, and uses the PLUS model for land use expansion and prediction analysis. The results show that from 2000 to 2020, there were significant changes in land use types, mainly transfers between paddy fields, rural residential land, and urban land. The sprawl index decreased year by year, indicating a high degree of landscape fragmentation. Habitat quality results showed a downward trend year by year, with the area of high values decreasing and expanding southward, and the area of low values increasing, radiating outward from urban centers. High-grade ecological quality landscapes, dominated by water bodies and forests and grasslands, are mainly distributed along the Han river basin.
-
Keywords:
- InVEST model /
- PLUS model /
- land use /
- transfer matrix /
- landscape pattern /
- simulated prediction
-
以苏里格气田为代表的鄂尔多斯盆地致密砂岩气的开发目前正处于快速发展阶段。目前,中国已有多位学者对研究区致密砂岩储层进行了深入的研究(白慧等,2015,2020;董会等,2016;田清华等,2022)。苏里格气田位于鄂尔多斯盆地伊陕斜坡的西北部,苏59井区位于苏里格气田的西部。而河道砂体是常规油气勘探开发的主要研究对象。对于这类砂岩储层的评价通常以单一岩性为主,岩相组合分析较少。岩相组合指的是沉积序列的垂向构成,包括岩石的岩性、成分、结构、构造、亚相(微相)等,例如,可以按照粒度特征分为向上变粗、向上变细和复合3种类型 (邱隆伟等,2012;胡一然,2015;张荣,2016;孟德伟等,2016;张洪洁,2020)。岩相组合分析能够反映一段沉积期内的沉积水动力条件、沉积原始物质组成,甚至后期成岩改造的程度(雷开强,2003;陈俊亮等,2004;陈克勇,2006;白涛,2008;张延庆,2008;张广权等,2011;李晓慧,2020)。不同的岩相组合具有特殊的测井曲线形态,分布在特定的沉积微相中,具有“易识别、可预测”的典型特征。然而,前人已经开展过单一岩相类型及其储层物性特征等方面研究(覃伟,2011;叶爽清,2015;印森林等,2016;张荣,2016;魏修平等,2019;林建力等,2019;Zhang et al.,2020),但岩相组合对储层物性的影响尚不明确。
鄂尔多斯盆地苏里格气田上古生界石盒子组和山西组具有良好的开发前景。苏里格气田石盒子组和山西组沉积在海陆过渡沉积环境,广泛发育三角洲分流河道和水下分流河道砂体,以中–粗粒的岩屑砂岩以及岩屑石英砂岩为主。笔者拟通过岩心观察分析、薄片鉴定、图像分析对苏里格气田石盒子组和山西组开展岩石学特征研究,划分岩相类型和岩相组合,并从岩性、粒度、压实强度、溶蚀程度等特征进行分析,明确岩相组合对砂岩储层物性的控制作用。
1. 地质背景
苏里格气田是中国陆上发现的最大的天然气田,位于长庆靖边气田西北侧的苏里格庙地区(图1a)。区域构造属于鄂尔多斯盆地陕北斜坡北部中带(图1),行政区属内蒙古自治区鄂尔多斯市的乌审旗和鄂托克旗所辖,勘探范围西起内蒙古鄂托克前旗、北抵鄂托克后旗的敖包加汗,勘探面积约
20000 km(汪正江等,2002;王光强,2010)。苏里格气田上古生界自下而上发育石炭系本溪组、二叠系山西组、下石盒子组、上石盒子组和石千峰组,总厚度700 m左右。中二叠世下石盒子组初期伴随区域构造活动继续加剧,北部物源区持续抬升,丰富的物源碎屑导致河流沉积体系快速向南推移,致使冲积平原向南增大,湖泊相区缩小。该期岩相古地理面貌特征与山西期有一定的继承性,也发生了较大的变化,以多河道的辫状河与曲流河交替发育为主要特征,多心滩、边滩沉积,河道相互叠置,砂体厚度较山西组有较大增加。在山西组,早期的时候,发生强烈的构造活动,北部物源区迅速上升(汪正江等,2002;陈昭佑等,2010;谭晨曦,2010),使研究区在该时期形成大面积的砂体发育区。受古气候影响,山西组沉积期沼泽普遍发育,发育多套煤层。早二叠世山西期沉积在海陆过渡的三角洲环境,山西组下部发育三角洲前缘相,上部发育三角洲平原相(袁芳政,2008;陈洪德,2011;张广权,2011)。石盒子组和山西组三角洲平原相发育分流河道、分流间湾、天然堤、决口扇、泛滥洼地和泥炭沼泽微相;三角洲前缘发育水下分流河道、水下分流间湾和河口坝微相(王少鹏,2006;郑婷,2015)。依据沉积旋回,研究区石盒子组由上而下分为盒8-3至盒8-4两个小层,盒8段上段以暗紫红色、紫红色泥岩、粉砂岩、泥岩为主,夹薄~中厚层状棕红色、浅棕红色细砂岩、中砂岩;中段以暗紫色、暗紫红色、深灰色、灰绿色泥岩为主夹浅灰色细砂岩;下段为中厚~厚层状浅灰色、灰白色细砂岩、中砂岩、含砾粗砂岩为主、薄层深灰色泥岩、粉砂质泥岩;底部为厚层状灰白色小砾岩;而山西组由下而上分为山1和山2段,并可进一步细分为S1-1至S2-2五个小层(图1)。山1段岩性为砾质砂岩、含砾粗砂岩、粗砂岩、中砂岩、细砂岩、泥岩和煤层,且煤层在山1段最为发育;山2段岩性与山1段基本一致,但煤层厚度较薄(罗东明等,2008;万旸璐,2016)。
2. 岩相类型
通过苏里格气田西部的SU59-4-13、SU59-13-51B的岩心观察和薄片分析,石盒子组盒8和山西组12主要发育石英砂岩和岩屑石英砂岩,含少量岩屑砂岩。通过镜下对100余个薄片鉴定结果进行统计,储集层碎屑主要成分为石英,碎屑颗粒中石英含量为69%~88%,石英颗粒平均含量为80.3%;储集层碎屑次要为变质岩岩屑,变质砂岩含量较少,长石含量极低,胶结物以硅质胶结和铁方解石胶结为主,杂基以云母和高岭石为主,少见绿泥石(图2、图3)。
图 3 苏59井区山西组岩石中主要岩屑类型a. 变质岩岩屑 变质石英岩SU59-4-13井2660.33 m S2-1;b. 沉积岩岩屑 粉砂岩 SU59-4-13井2600.76 m S1-2;c. 沉积岩岩屑 鲕粒灰岩SU59-4-13井2660.33 m S2-1;d. 沉积岩岩屑 泥板岩 SU59-4-13井2597.27 m S1-2; e. 变质岩岩屑 SU59-13-51B井2621.82 m S1-1;f .变质岩岩屑SU59-13-51B井2551.12 m S2-2Figure 3. Main rock chip types in the rocks of Shanxi Formation in Su59 well area苏里格气田西区储集层物性总体表现为低孔隙度、低渗透率的特征。根据岩心物性资料统计,孔隙 度范围 4%~12%,平均为 7.24%;渗透率范围0.01×10−3~10×10−3 μm2 ,平均为 0.52×10−3 μm2 ;孔隙度与渗透 率之间具有明显的正相关关系,表明渗透率的变化主 要受控于孔隙度的发育程度(张春英等,1995)。其中渗透率大于0.5×10−3 μm2的砂岩可视为良好的储层,渗透率小于0.5×10−3 μm2的砂岩物性较差(赵靖舟,2012;王少飞,2013)。
石盒子组和山西组三角洲平原分流河道以及辫状河心滩微相砂岩的粒度普遍较粗,根据取心段岩心描述与统计的结果,中粒以上的砂岩占总砂岩厚度90%以上,平均厚度在2~5 m之间。根据粒度分析结果,山西组砂岩的粒度中值Φ为−1.08~3.98,平均为0.64,粒度较粗;标准偏差为0.28~1.05,分选好至中等;偏度普遍大于0,具有明显的正偏态。砂岩结构普遍具有颗粒支撑特征,局部含泥中砂岩具有杂基支撑结构。颗粒支撑砂岩的碎屑颗粒之间普遍呈线接触,仅部分样品可见点接触特征,指示了较强的压实作用。
研究区三角洲平原分流河道和心滩微相砂岩的沉积构造特征明显,主要发育粒序层理、纹层层理、槽状交错层理、板状交错层理、和平行层理。根据研究区沉积构造和岩石粒度差异,可将盒8段主要划分为5类岩相(图4、表1)。
表 1 鄂尔多斯气田研究区主要岩相类型Table 1. Main lithological types in the Ordos gas field study area粒度分级 沉积构造 岩相类型 (含砾)粗砂岩 板状交错层理 板状交错层理粗砂岩 中砂岩 块状层理 块状层理中砂岩 平行层理 平行层理中砂岩 小型交错层理 小型交错层理中砂岩 细-中砂岩 平行层理 平行层理细-中砂岩 细砂岩 平行层理 平行层理细砂岩 粉砂岩 小型交错层理 小型交错层理细砂岩 3. 岩相组合
层理类型和粒度是沉积水动力条件的直接反映(刘忠群,2008;李成等,2015),岩相类型能够反映一段时期内的水动力条件,而岩相组合能够反映河道沉积期内的水动力条件的变化特征。本研究根据纵向上岩石粒度变化,将岩相组合分为向上变细的正韵律组合和向上变粗的反韵律组合以及先变细再变粗的复合韵律组合(图5)。复合韵律组合为由多个正/反韵律相互叠置构成,表现为上部与下部粗-中砂岩与煤层互层,中部夹杂含泥中砂岩的复合韵律特征;复合韵律组合指示了河道水动力条件较强但不稳定,组合中部发育的含泥中砂岩具有密度流的特点。正韵律组合具有下粗上细的结构,下部发育中-粗砂岩,中部发育中砂岩、上部发育粉-细砂岩,具有河道沉积充填的典型特征;反韵律组合砂体垂向粒度变化表现为下细上粗的渐变,上部发育粗-中砂岩,下部发育粉-细砂岩,具有河口坝沉积充填的特征。
根据对研究区对两口井取心井的分析,石盒子组砂体垂向上主要以正韵律、反韵律和符合韵律为主而山西组砂体垂向上主要以正韵律和复合韵律为主,粒度向上逐渐变细的正韵律最常见。通过对取心段的统计,3类岩相组合所发育的岩相类型存在较大差异(图6)。岩相组合和岩相组合II的岩相类型中粒度整体较粗,粗砂岩/中-粗砂岩所占比例较高,且以块状层理为主。岩相组合III的岩相类型的粒度偏细。
4. 讨论
4.1 不同岩相和岩相组合储层的孔渗特征
苏59井区山西组为海相–陆相沉积体系。在砂体垂向相主要以正韵律和复合韵律为主,从整体来看表现为粒度向上变细的正韵律。且正韵律往往在砂体下部分布于高孔渗的物性值,向上逐步过渡减小;复合韵律在单砂体内部渗透率变化规律并不显著,垂向表现出高低渗透率交替出现。
通过对取心井76个柱塞样品孔渗数据分析,相比石盒子组山西组含砾粗砂岩、粗砂岩、中-粗砂岩的物性相对较好,孔隙度普遍大于4%,渗透率大于0.5×10−3 μm2。含泥中砂岩和中砂岩物性较差,排除微裂缝的样品,渗透率普遍低于0.5×10−3 μm2。山西组主要岩相类型的孔渗差异明显。据前人研究,苏里格气田低渗透致密砂岩储层可分为 4 种类型:①渗透率大于 1×10−3 µm2的砂岩储层。②渗透率介于 0.5×10−3 µm2~ 1×10−3 µm2的砂岩储层。③ 渗透率在0.1×10−3 µm2~0.5×10−3 µm2之间的砂岩储层。④渗透率小于 0.1×10−3 µm2砂岩储层。其中渗透率大于 0.5×10−3 µm2的砂岩储层可视为良好储层,渗透率小于0.5×10−3µm2的砂岩储层物性较差,在勘探开发过程中通常只将前两种砂岩储层作为开发对象(赵靖舟,2012;王少飞,2013)。
通过对平均孔隙度和平均渗透率的统计,物性最好的岩相为粒序层理含砾中砂岩、块状含砾粗砂岩、板状交错层理粗砂岩和块状粗砂岩,平均孔隙度大于8%,平均渗透率大于1×10−3 μm2(图7、图8)。根据对不同岩相组合中这4类相对高孔渗岩相发育程度的统计,在复合韵律组合I和正韵律组合II中相对高孔渗岩相更加发育,且组合II中最发育(图9)。由此可见,岩相组合之间存在物性差异主要与所发育的岩相类型有关。
4.2 不同岩相组合和杂基含量
研究区山西组砂岩段岩石组合Ⅰ杂基含量较低且黏土以伊利石为主,石英含量高,胶结物含量较少;Ⅱ类岩石组合杂基含量较高,压实程度相对较高,高岭石含量较高,石英含量较低,溶蚀程度较强;Ⅲ类岩石组合,杂基含量高,压实程度高,高岭石含量低,溶蚀程度低(图10)。
4.3 不同岩相组合砂岩的岩石成分差异
由于不同岩相组合形成的沉积水动力条件不同,会导致岩石组成的不同,对储层物性产生明显影响。通过XRD全岩分析表明,研究区砂岩的碎屑颗粒都以石英为主,其次为岩屑,几乎未见长石。岩屑组分包括沉积岩岩屑、变质岩岩屑、火山岩岩屑、云母以及少量燧石,且以沉积岩岩屑为主。通过对研究区体薄片进行统计分析可知,在岩相组合Ⅰ和II中石英含量高于组合III,但岩屑含量低于组合III,而在岩石组合Ⅲ中石英含量相对较低而岩屑含量较高,特别是沉积岩岩屑分布较多(图11)。不同类型的岩屑的抗压实能力差异较大,沉积岩岩屑中碳酸盐岩岩屑抗压实能力最强,其次为粉砂岩岩屑,泥岩岩屑最易于压实。
通过对杂基含量与物性关系的分析,表明研究区山西组颗粒支撑的砂岩中杂基的含量与孔隙度和渗透率均存在明显的正相关性(图12)。通过对不同岩相组合中所发育砂岩的杂基含量的统计对比,发现组合III中的杂基含量明显高于组合I和组合II,是造成岩相组合III物性相对较差的主要原因。
4.4 不同岩相组合的溶蚀程度差异
根据对研究区山西组成岩作用类型的分析,溶蚀作用的结果导致了砂岩中次生孔隙的形成。压实作用和溶蚀作用对储层的发育具有明显影响。压实作用的强度与颗粒粒径、塑性颗粒含量、埋藏深度等因素有关。压实相对较弱的砂岩能够保留较多连通性好的原生孔隙,形成相对高渗的储层。反之,在胶结作用较弱的砂岩中,原生孔较发育指示所经历的压实作用相对较弱。通过统计3类岩相组合的原生孔发育程度,岩相组合I和岩相组合II中的原生孔所占比例明显高于组合III(图13、图14),表明在较高的石英含量和相对较少的沉积岩岩屑的岩石组成背景下岩相组合I和II砂岩所经历的岩石作用程度相对于组合III低。
研究区山西组颗粒支撑结构的砂岩中溶蚀作用普遍发育,但发育程度差异较大,局部甚至可见强烈溶蚀形成的矿物铸模孔。通过对研究区砂岩铸体薄片和扫描电镜观察,山西组砂岩溶孔大部分为岩屑溶蚀后形成,部分为长石溶蚀后形成,并在溶孔中残留较多蠕虫状自生高岭石(图15)。溶蚀作用的程度与压实程度密切相关,在压实相对较弱的砂岩中后期有机酸易于流动循环,促使溶蚀作用的进行。不同岩相组合的次生溶蚀孔隙的发育程度存在明显差异。岩相组合I和组合II溶蚀孔较为发育,并且在岩相组合II砂岩中发育一定铸模孔(图4~图9)。这种溶蚀差异是由岩相组合的原始物质组成而产生的,由岩相组合I和组合II的较高的石英含量和较低的沉积岩岩屑含量导致在压实过程中仍然能够保留一定数量的原生孔,从而使溶蚀作用较强。
5. 结论
(1)苏里格气田盒8段岩屑石英砂岩和岩屑砂岩为主;山西组主要以石英砂岩和岩屑石英砂岩为主,分选程度中等至好,颗粒间以线接触为主。根据岩石粒度和沉积构造,研究区主要岩相类型可划分为5种。根据岩性的韵律变化特征,可将岩相组合划分为3种类型,分别为复合韵律组合、正韵律组合和反韵律组合,其中反韵律组合砂岩粒度偏细。
(2)研究区不同岩相的物性差异明显,相对高孔渗岩相为粒序层理砾质砂岩、块状含砾粗砂岩、板状交错层理粗砂岩和块状粗砂岩,平均孔隙度大于8%,平均渗透率大于1×10−3 μm2。复合韵律和正韵律岩相组合中相对高孔渗岩相所占比例较高,是两类有利的岩相组合。
(3)原始物质组成导致了不同岩相组合的物性差异。复合韵律和正韵律岩相组合相对于反韵律组合的石英含量较高,沉积岩岩屑含量较低,杂基含量较低,导致在压实过程中保留了一定原生孔,并且形成较多的溶蚀孔隙,使其孔隙度和渗透率相对较高。
-
表 1 驱动因子信息表
Table 1 Driver information table
类型 数据 数据来源 社会经济数据 人口 https://www.resdc.cn/Default.aspx GDP 到一级道路距离 Openstreetmap(https://github.com/openstreetmap) 到二级道路距离 到三级道路距离 到铁路距离 到政府距离 气候与环境数据 土壤类型 HWSDv1.2(https://www.fao.org/soils-portal/en/) 年平均温度 WorldClim v2.0(https://www.fao.org/soils-portal/en/) 年平均降水量 高程 NASA SRTM1 v3.0 坡度 到水域距离 (https://github.com/openstreetmap) 表 2 威胁因子信息表
Table 2 Threat factor information table
威胁因子 最大影响距离(km) 权重 衰减类型 耕地 1 0.2 线性衰退 水域 1 0.2 线性衰退 建设类用地 5 0.5 指数衰退 农村居民点 6 0.7 指数衰退 城镇用地 10 1 指数衰退 表 3 威胁因子敏感度
Table 3 Threat factor sensitivity
土地利用类型 生境适宜度 威胁因子 耕地 水域 建设类用地 农村居民点 城镇用地 耕地 0.3 0.6 0.5 0.6 0.7 0.5 林地 0.9 0.5 0.8 0.7 0.3 0.8 草地 0.8 0.8 0.8 0.4 0.7 0.4 水域 0.7 0.7 0.2 0.1 0.3 0.3 城乡工矿居民 0 0 0 0.2 0 0 未利用土地 0.3 0.2 0.2 0.1 0.2 0.3 表 4 汉中盆地景观类型水平
Table 4 Landscape type level of Hanzhong basin
类型 2000年 2010年 2020年 PLAND LPI TE ED PLAND LPI TE ED PLAND LPI TE ED 水田 71.28 39.4 5320878.1 31.79 68.07 32.80 5576238.6 33.31 66.03 24.3 5963113.8 35.63 旱地 5.05 1.36 610927.42 3.65 5.18 1.39 646091.46 3.86 5.16 1.35 675959.51 4.04 有林地 0.14 0.02 48228.74 0.29 0.13 0.02 45581.76 0.27 0.13 0.02 45701.71 0.27 灌木林 0.05 0.03 12057.19 0.07 0.05 0.02 13194.72 0.08 0.04 0.02 11995.20 0.07 疏林地 0.76 0.03 271406.66 1.62 0.76 0.03 276039.54 1.65 0.76 0.03 275679.68 1.65 其他林地 0.89 0.04 289552.42 1.73 1.02 0.06 312325.02 1.87 1.01 0.06 317812.82 1.90 高覆盖度草地 0.06 0.03 19345.49 0.12 0.07 0.03 22790.88 0.14 0.08 0.03 26629.34 0.16 中覆盖度草地 9.12 0.17 3140447.0 18.76 8.53 0.17 3031306.9 18.1 8.89 0.17 3139263.7 18.76 低覆盖度草地 0.00 0.00 1439.66 0.01 0.00 0.00 1379.45 0.01 0.00 0.00 1319.47 0.01 河渠 1.22 0.99 333072.27 1.99 0.86 0.14 243802.44 1.46 1.27 1.01 294332.22 1.76 湖泊 0.69 0.08 254730.55 1.52 0.65 0.03 244462.18 1.46 0.65 0.03 243622.51 1.46 水库坑塘 0.27 0.05 68773.95 0.41 0.59 0.25 156447.40 0.93 0.61 0.26 159386.22 0.95 滩地 3.04 0.61 535225.09 3.20 3.18 0.71 549859.97 3.29 2.78 0.64 509915.95 3.05 城镇用地 0.78 0.30 55217.11 0.33 1.90 0.75 126849.24 0.76 2.29 0.76 167183.10 1.00 农村居民点 6.51 0.06 1590768.7 9.50 8.69 0.28 1959835.7 11.71 8.73 0.20 1945261.5 11.62 其他建设用地 0.10 0.06 14756.56 0.09 0.28 0.09 51969.20 0.31 1.51 0.10 520801.60 3.11 沼泽 0.03 0.02 5398.74 0.03 0.02 0.02 5457.82 0.03 0.02 0.02 5457.82 0.03 裸土地 − − − − 0.01 0.00 2938.82 0.02 0.04 0.01 18112.75 0.11 表 5 汉中盆地景观水平
Table 5 Landscape type level of Hanzhong basin
年份(a) CA LPI TE ED CONTAG SHDI SHEI 2000 167379.642 39.486 6286112.898 37.556 75.089 1.143 0.403 2010 167379.866 32.804 6683185.656 39.928 73.938 1.247 0.432 2020 167379.866 24.304 7210674.576 43.080 72.106 1.330 0.460 -
陈颐, 林毅伟, 林丽丽, 等. 基于Markov和LoGIStic模型的莆田市土地利用变化及林地转出空间模拟[J]. 中国农业大学学报, 2017, 22(2): 87−97. doi: 10.11841/j.issn.1007-4333.2017.02.011 CHEN Yi, LIN Yiwei, LIN Lili, et al. Spatial simulation of land use change and forest land transfer in Putian City based on Markov and LoGIS models[J]. Journal of China Agricultural University,2017,22(2):87−97. doi: 10.11841/j.issn.1007-4333.2017.02.011
曹雪, 罗平, 李满春, 等. 基于扩展CA模型的土地利用变化时空模 拟研究——以深圳市为例[J]. 资源科学, 2011, 33(1): 127−133. CAO Xue, LUO Ping, LI Manchun, et al. Study on spatiotemporal simulation of land use change based on extended CA model: A case study of Shenzhen City[J]. Resource Science,2011,33(1):127−133.
陈竹安, 刘子强, 张立亭, 等. 南昌市LUCC多情景模拟 和生境质量时空演变与预测[J]. 农业机械学报, 2023, 54(5): 170−180. CHEN Zhu’an, LIU Ziqiang, ZHANG Liting, et al. Multi scenario simulation and spatiotemporal evolution and prediction of habitat quality in Nanchang LUCC[J]. Journal of Agricultural Machinery,2023,54(5):170−180.
代克志. 基于3S技术的花溪河流域景观格局变化及影响研究[D]. 贵州: 贵州师范大学, 2015. DAI Kezhi. Research on Landscape Pattern Changes and Impact in the Huaxi River Basin Based on 3S Technology [D]. Guizhou: Guizhou Normal University, 2015.
冯雨林, 杨佳佳, 吴梦红. 基于景观转移矩阵的黑龙江双河自然护区土地覆被转移研究[J]. 地质与资源, 2016, 25(5): 1−5. FENG Yulin, YANG Jiajia, WU Menghong. Research on land cover transfer in the Shuanghe Nature Reserve of Heilongjiang Province based on landscape transfer matrix[J]. Geology and Resources,2016,25(5):1−5.
范树平, 程从坤, 刘友兆, 等. 中国土地利用/土地覆盖研究综述与展望[J]. 地域研究与开发, 2017, 36(2): 94−101. doi: 10.3969/j.issn.1003-2363.2017.02.018 FAN Shuping, CHENG Congkun, LIU Youzhao, et al. A Review and Prospects of Land Use/Land Cover Research in China[J]. Regional Research and Development,2017,36(2):94−101. doi: 10.3969/j.issn.1003-2363.2017.02.018
高文龙, 张景华, 刘洪, 等. 基于转移矩阵的大凉山区土地利用变化研究[J/OL]. 西北地质, 2023: 1−13. doi: 10.12401/j.nwg.2023167. GAO Wenlong,ZHANG Jinghua,LIU Hong,et al. Research on Land Use Change in Daliangshan District Based on Transfer Matrix [J/OL]. Northwest Geology,2023: 1−13. Doi: 10.12401/j.nwg.2023167.
黄钰清, 李骁尧. 1995-2020年黄河流域土地利用变化及驱动力分析[J]. 西北林学院学报, 2020, 37(6): 113−121. HUANG Yuqing, LI Xiaoyao. Analysis of Land Use Changes and Driving Forces in the Yellow River Basin from 1995 to 2020[J]. Journal of Northwest Forestry University,2020,37(6):113−121.
韩朝辉, 王郅睿, 田辉, 等. 汉中盆地地下水水化学特征及其成因研究[J]. 西北地质, 2023, 56(4): 263−273. HAN Chaohui, WANG Zhirui, TIAN Hui, et al. Hydrochemical Characteristics and Genesis of Groundwater in the Hanzhong Basin[J]. Northwestern Geology,2023,56(4):263−273.
黄金亭, 曹艳萍, 秦奋. 基于土地利用/覆盖变化模拟的黄河流域生态环境质量分析[J]. 河南大学学报: 自然科学版, 2020, 50(2): 127−138. HUANG Jinting, CAO Yanping, QIN Fen. Analysis of Ecological Environment Quality in the Yellow River Basin Based on Land Use/Cover Change Simulation[J]. Journal of Henan University: Natural Science Edition,2020,50(2):127−138.
胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2011, 45(4): 1125−1136. HU Feng, ZHAGN Yan, GUO Yu, et al. Spatial and temporal changes and prediction of land use and habitat quality in the Wei River Basin based on PLUS and InVEST models[J]. Arid Region Geography,2011,45(4):1125−1136.
吕桂军. 长时间序列LandsatTM影像应用于地理国情监测中的 技术方法探讨[D]. 焦作: 河南理工大学, 2014. LV Guijun. Exploration of Technical Methods for Applying Long Time Series LandsatTM Images to Geographical and National Monitoring [D]. Jiaozuo: Henan University of Technology, 2014.
梁甜, 黄茜, 杨霏. 基于InVEST-PLUS模型的三峡库区(重庆段)生境质量演变及预测[J]. 长江流域资源与环境, 2023, 32(10): 2184−2195. LIANG Tian, HUANG Qian, YANG Fei. Habitat quality evolution and prediction in the Three Gorges Reservoir Area (Chongqing section) based on the InVEST-PLUS model[J]. Yangtze River Basin Resources and Environment,2023,32(10):2184−2195.
刘纪远, 宁佳, 匡文慧, 等. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2020, 73(5): 789−802. LIU Jiyuan, NING Jia, KUANG Wenhui, et al. The spatiotemporal pattern and new characteristics of land use change in China from 2010 to 2015[J]. Journal of Geography,2020,73(5):789−802.
李灿, 曾和平. 基于面积转移矩阵的龙川江流域土地利用变化研究[J]. 人民长江, 2018, 49(17): 06−13. LI Can, ZENG Heping. Research on Land Use Change in the Longchuan River Basin Based on Area Transfer Matrix[J]. Yangtze River,2018,49(17):06−13.
陶蕴之, 张甜, 梁琦珍, 等. 基于转移矩阵的环渤海土地利用研究[J]. 绿色科技, 2016, 37(2): 4−7. doi: 10.3969/j.issn.1674-9944.2016.02.002 TAO Yunzhi, ZHANG Tian, LIANG Qizhen, et al. Research on Land Use of Bohai Rim Based on Transfer Matrix[J]. Green Science and Technology,2016,37(2):4−7. doi: 10.3969/j.issn.1674-9944.2016.02.002
卫建军, 李新平, 杨勤科. 基于遥感的土地利用与退耕还林时空变化研究—以延河流域下游地区为例[J]. 水土保持通报, 2007(2): 87−90. doi: 10.3969/j.issn.1000-288X.2007.02.020 WEI Jianjun, LI Xinping, YANG Qinke. Research on spatiotemporal changes of land use and returning farmland to forests based on remote sensing: A case study of the lower reaches of the Yanhe River Basin[J]. Soil and Water Conservation Bulletin,2007(2):87−90. doi: 10.3969/j.issn.1000-288X.2007.02.020
王颖维, 张亚峰, 钱信禹, 等. 南水北调中线工程丹江源地区生态地质格局动态演变[J]. 西北地质, 2023, 56(3): 129−140. WANG Yingwei, ZHANG Yafeng, QIAN Xinyu, et al. Dynamic Evolution of Eco−geological Pattern: Taking Danjiangyuan Area of Central Line Project of South−to−North Water Diversion[J]. Northwestern Geology,2023,56(3):129−140.
杨朔, 苏昊, 赵国平. 基于PLUS模型的城市生态系统服务价值多情景模拟: 以汉中市为例[J]. 干旱区资源与环境, 2022, 36(10): 86−95. YANG Shuo, SU Hao, ZHAO Guoping. Multi scenario simulation of urban ecosystem service value based on PLUS model: A case study of Hanzhong City[J]. Resources and Environment in Arid Areas,2022,36(10):86−95.
阳柏苏. 景区土地利用格局及生态系统服务功能研究[D]. 长沙: 中南林业科技大学, 2005. YANG Baisu. Research on Land Use Patterns and Ecosystem Services in Scenic Spots [D]. Changsha: Central South University of Forestry and Technology, 2005.
岳东霞, 杜军, 刘俊艳, 等. 基于RS和转移矩阵的泾河流域生态承载力时空动态评[J]. 生态学报, 2011, 31(9): 2550−2558. YUE Dongxia, DU Jun, LIU Junyan, et al. Spatial and temporal dynamic evaluation of ecological carrying capacity in the Jinghe River Basin based on RS and transfer matrix[J]. Journal of Ecology,2011,31(9):2550−2558.
张冉, 王义民, 畅建霞, 等. 基于水资源分区的黄河流域土地利用变化对人类活动的响应[J]. 自然资源学报, 2019, 34(2): 274−287. doi: 10.31497/zrzyxb.20190205 ZHANG Ran, WANG Yimin, CHANG Jianxia, et al. Response of land use change in the Yellow River Basin to human activities based on water resource zoning[J]. Journal of Natural Resources,2019,34(2):274−287. doi: 10.31497/zrzyxb.20190205
张立新, 段文凯. 经济转型背景下城市土地城镇化格局 及影响因素—以长江经济带城市为例[J]. 国农业大学学报, 2021, 26(9): 206−215. ZHANG Lixin, DUAN Wenkai. Urban Land Urbanization Pattern and Influencing Factors under the Background of Economic Transformation: A Case Study of Cities in the Yangtze River Economic Belt[J]. Journal of China Agricultural University,2021,26(9):206−215.
张恒义, 刘卫东, 王世忠, 等. “省公顷”生态足迹模型中均衡因子及产量因子的计算: 以浙江省为例[J]. 自然资源学报, 2009, 24(1): 82−92. doi: 10.3321/j.issn:1000-3037.2009.01.010 ZHANG Hengyi, LIU Weidong, WANG Shizhong, et al. Calculation of Equilibrium Factors and Yield Factors in the Ecological Footprint Model of "Provincial Hectares": Taking Zhejiang Province as an Example[J]. Journal of Natural Resources,2009,24(1):82−92. doi: 10.3321/j.issn:1000-3037.2009.01.010
Faichia C, Tong Z, Zhang J, et al. Using RS Data-Based CA–Markov Model for Dynamic Simulation of Historical and Future LUCC in Vientiane, Laos[J]. Sustainability,2020,12(20):8410−8419. doi: 10.3390/su12208410
Lambin EF, Turbner B, Geist HJ, et al. The cauyses of land-use and land-over change: moviong beyong the myths[J]. Global enviroment change,2001,11(4):261−269. doi: 10.1016/S0959-3780(01)00007-3
Newbold T, Hudson L N, Phillips HR, et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropo genic pressures[J]. Proceedings Biological Sciences,2014,281(1792):1−10.
Verburg P H, De konnig G, Kok K, et al. A spatial explicit allocation procedure for modeling the pattern of land use change based upon actual land use[J]. Ecoligical modelling,1999,116(1):45−61. doi: 10.1016/S0304-3800(98)00156-2
-
期刊类型引用(3)
1. 顾天江,杜凯,毛旭锋,金鑫,于红妍,唐文家,吴艺,刘泽碧. 基于EL-InVEST模型的玛多地震对高寒湿地面积及生境质量影响研究. 生态环境学报. 2025(02): 209-221 . 百度学术
2. 郭佳晖,刘晓煌,李洪宇,邢莉圆,杨朝磊,雒新萍,王然,王超,赵宏慧. 2000—2030年云贵高原碳储量和生境质量时空格局演变. 地质通报. 2024(09): 1485-1497 . 百度学术
3. 杨小雄,杨玥. 珠江—西江经济带土地利用变化及其生态环境效应分析. 南宁师范大学学报(自然科学版). 2024(04): 68-75 . 百度学术
其他类型引用(0)