Genesis of the Daxigou Fluorite Deposit, Harqin Banner, Inner Mongolia, China: Constraints from Rare Earth Elements, Fluid Inclusions and H-O Isotopes
-
摘要:
萤石是战略性矿产,对于维护国家资源安全和经济稳定发展具有重要作用。内蒙古喀喇沁旗位于华北板块北缘,是萤石矿的重要产区,笔者对喀喇沁旗大西沟萤石矿床进行了稀土元素、流体包裹体和H-O同位素分析,探究其成矿流体性质及矿床成因。大西沟早阶段萤石稀土元素含量高于晚阶段萤石,早、晚阶段萤石具有相近的Y/Ho值,指示其同源性,在Tb/Ca-Tb/La图解中,样品全部落入热液矿床范围内,指示矿床为热液成因。早、晚阶段萤石均具有Eu的负异常和Ce的弱负异常,说明其形成于还原环境。萤石中流体包裹体类型以富液相的气液两相包裹体为主,均一温度集中于160~190 ℃,盐度集中于0.18%~2.57 %NaCleqv,密度集中于0.88~0.94 g/cm3,综合区域萤石矿床的H-O同位素数据,单一型萤石矿床的H-O同位素组成具有明显的纬度效应,指示成矿流体以大气降水为主。大西沟萤石矿床为中低温热液脉型矿床,根据矿脉穿插关系,推断大西沟萤石矿床形成于燕山晚期(<120 Ma),晚侏罗世和早白垩世两期韧性构造变形形成的大量断层和裂隙为成矿流体运移和聚集提供通道,水岩作用是萤石的主要沉淀机制。
Abstract:Fluorite is a strategic mineral that plays an important role in maintaining national resource security and stable economic development. The Harqin Banner in Inner Mongolia is located at the northern margin of the North China Craton, which is an important production area for fluorite ore. In this study, rare earth element (REE), fluid inclusion and H-O isotope analyses of the Daxigou fluorite deposit of the Harqin Banner were carried out to investigate the nature of its ore-forming fluids and the genesis of the deposit. The rare earth element content of the early-stage fluorite in Daxigou is higher than the late-stage fluorite, and the Y/Ho ratios of the early and late-stage fluorspar are similar, indicating that the mineralizing fluids are homologous. In the Tb/La-Tb/Ca diagram, all the samples fall within the range of hydrothermal deposits, indicating that the deposits are hydrothermal in origin. The early- and late-stage fluorites exhibit negative Eu anomalies and weak negative Ce anomalies, indicative of their formation in a reducing environment. The fluid inclusions trapped in fluorite are dominated by liquid-rich gas‒liquid two-phase inclusions, with the homogeneous temperatures concentrated at 160~190 ℃, the salinities ranging from 0.18% to 2.57%NaCleqv, the densities concentrated at 0.88~0.94 g/cm3. The H-O isotope data from regional fluorite deposits indicated that the H-O isotope compositions of the independent fluorites show a significant latitudinal effect, which suggests the ore-forming fluids were dominated by meteoric precipitation. The fluorspar deposit in Daxigou is a medium-low temperature hydrothermal vein type deposit. According to the crosscutting relationships, it is inferred that the Daxigou fluorite deposit formed during the late Yanshan period (<120 Ma) , a large number of faults and fissures formed by ductile tectonic deformation during the two phases of the Late Jurassic and the Early Cretaceous provided a channel for the transport and aggregation of ore-forming fluids, and the fluid-rock interactions were the main reason for fluorite precipitation.
-
研究区南临祁连造山带,北接中亚造山带,其所处构造环境的特殊性对区域构造演化及板块运动有着重大意义。该地区岩浆演化期次及构造背景研究较为薄弱且存在较大争议,前人通过对合黎山地区五坝和张家窑岩体锆石U-Pb年代学及同位素地球化学特征研究,其年龄介于432~397 Ma,为中志留世—早泥盆世,认为阿拉善地块西南缘早古生代很可能受控于祁连造山带的构造演化,处于后碰撞拉伸环境(王增振等,2020);通过对龙首山西山头窑地区三期岩体锆石U-Pb年代学研究,其年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世,处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022);而强利刚等(2019)认为龙首山地壳在晚古生代处于拉伸的稳定阶段。对合黎山地区岩浆岩形成时代及构造环境研究存在重要意义。龙首山成矿带区内侵入岩发育广泛,主要为酸性、中酸性岩石,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主(张甲民等,2017),前人对龙首山成矿带的研究工作主要以东段为主,且主要集中在早古生代(牛宇奔等,2018;刘文恒等,2019;王增振等,2020)。而不同构造环境下的侵入岩具有不同的地球化学特征及同位素特征,能有效反映其岩浆源区及构造演化等重要信息。笔者在前人工作基础上对该区花岗闪长岩开展了锆石U-Pb年代学、岩石地球化学及Lu-Hf同位素特征的研究,确定该岩体形成时代并探讨这些黑云母花岗闪长岩的成因问题及龙首山成矿带西南缘构造环境特征。
1. 区域地质概况
合黎山地处阿拉善地块龙首山成矿带西南缘,大地构造位置属于华北板块西南边缘(图1a)(谭文娟等,2012),北以龙首山北缘断裂与潮水中新生代断陷相邻(汤中立等,1999),南以南缘断裂与走廊过渡带分开。区内成矿条件有利(焦建刚等,2007)。龙首山成矿带是中国西北重要的铀成矿带(王承花,2010),同时中国著名的金川镍矿也位于该成矿带内(强利刚等,2019;张照伟等,2023)。
区内地质构造复杂,次级构造发育,逆冲构造及伸展构造叠加,总体构造为NWW向(甘肃省地质局,1974),出露地层包括前震旦系龙首山群的角闪岩相–绿片岩相变质岩等中级区域变质岩系,其与上覆地层均为不整合接触;震旦系下统及中上统的云母石英片岩、变粒岩及变质砂岩、大理岩等为主的浅变质岩,其下统与中—上统之间多为断层接触;侏罗系青土井群的砂岩、砂砾岩等为主的陆源碎屑岩夹煤层,其与上覆地层及下伏地层均为不整合接触;白垩系以砂砾岩、泥岩等为主的碎屑岩;第三系以砾岩、含砾砂岩为主的沉积岩及第四系松散堆积物(图1b)。
测区内岩浆岩发育广泛,主要为酸性、中酸性岩石为主,侵入活动主要是在加里东中期及华力西期,以华力西期侵入岩最为发育,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主,其中以花岗闪长岩出露最为广泛,其次为英云闪长岩。罗城岩体主要为花岗闪长岩发育,其中可见花岗岩、闪长岩呈脉状发育。区内五坝和张家窑岩体锆石U-Pb年代学年龄介于432~397 Ma,为中志留世—早泥盆世(王增振等,2020);西山头窑地区岩体锆石U-Pb年代学年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世。
2. 样品采集及岩石学特征
罗城岩体主要位于甘肃省高台县罗城镇北侧,其岩性主要为黑云母花岗闪长岩,野外岩体出露较为完整,笔者选取了合黎山地区高台县罗城幅的黑云母花岗闪长岩进行锆石U-Pb定年分析,共采集样品5件,其中岩石年龄同位素样品1件,并在岩石年龄同位素样品采集处配套采集岩石地球化学样品4件。样品采集地理坐标:E 99°43′39″,N 39°46′30″和E 99°41′43″,N 39°48′20″。为确保锆石数据准确性,样品均为未风化蚀变的新鲜岩石。
岩石新鲜面为灰白色,具半自形粒状结构,块状构造(图2a)。主要矿物及含量:斜长石(45%),石英(20%),碱性长石(15%),普通角闪石(15%),黑云母(5%)。斜长石粒径约0.30~1.30 mm,呈半形粒状、板状,具聚片双晶,表面浑浊,微裂隙发育,次生绢云母化,均匀分布。碱性长石粒径约0.20~1.10,呈半自形板状,具卡式双晶,少量分布。石英粒径约0.10~2.00 mm,呈他形粒状,波状消光,沿长石粒间分布。普通角闪石粒径约0.20~1.60 mm,呈他形柱状,黄褐色,截面呈菱面体状,具角闪石式解理,绿泥石化,沿长英质粒间定向分布。黑云母粒径约0.15~2.25 mm,呈鳞片状、片状,褐黄色-红褐色,沿长英质粒间定向分布。副矿物有磷灰石、绿帘石(图2b、图2c、图2d)。
3. 样品分析方法
样品的锆石挑选、制靶、CL照相由西安瑞石地质科技有限公司完成,采用标准重矿物分离技术分选出重矿物,随后在双目镜下挑选出锆石颗粒,将不同特征的锆石颗粒粘在双面胶上,并用无色透明的环氧树脂固定,待其固化之后将表面抛光至锆石内部暴露。然后拍摄阴极发光图像、透射光图像和反射光图像,选取分析点位。
锆石U-Pb定年和Hf同位素组成分析在中国地质调查局西安地质调查中心岩浆作用成矿与找矿重点实验室完成。锆石U-Pb定年在LA-ICP-MS仪器上用标准测定程序进行,样品采用激光剥蚀等离子体质谱仪原位分析锆石微区的铀铅比值(206Pb/238U、207Pb/235U和207Pb/206Pb)(李艳广等,2015)并通过Glitter计算程序计算锆石的年龄及标准偏差;应用Isoplot(Ludwig, 2003)计算程序对锆石样品的206Pb/238U年龄和207Pb/235U年龄在谐和图上进行投图,并计算谐和年龄测点的加权平均值。
锆石Hf同位素组成运用Neptune型多接收电感耦合等离子体质谱仪和GeolasPro型激光剥蚀系统联用的方法完成(袁洪林等,2007),所选测试位置均与锆石U-Pb测点位置相近,测试束斑直径为32 μm,采用国际标准锆石91500进行监控和样品外部校正。
主量元素和微量元素分析测试在中国地质调查局西安矿产资源调查中心完成,主量元素采用X荧光光谱仪进行分析,稀土和微量元素采用等离子质谱仪进行分析,测试结果见表1。
表 1 罗城黑云母花岗闪长岩主量元素(%)、微量元素(10−6)、稀土元素(10−6)分析结果表Table 1. Analysis results of major elements (%), trace elements (10−6) and rare earth elements (10−6) in Luocheng biotite granodiorite样品编号 LCYT03 LCYT04 LCYT05 LCYT06 SiO2 59.84 58.75 58.52 59.09 Al2O3 16.91 17.25 17.28 17.28 Fe2O3 7.13 7.82 7.55 7.61 CaO 6.33 6.70 6.93 6.68 MgO 3.13 3.38 3.53 3.34 K2O 1.87 1.49 1.49 1.54 Na2O 2.52 2.60 2.55 2.60 P2O5 0.13 0.15 0.15 0.15 TiO2 0.68 0.74 0.77 0.75 MnO 0.13 0.14 0.14 0.14 LOI 1.03 0.74 0.85 0.60 总和 99.70 99.76 99.75 99.79 K2O+Na2O 4.40 4.09 4.04 4.15 K2O/Na2O 0.74 0.57 0.59 0.59 δ 1.15 1.06 1.05 1.07 A/NK 2.74 2.93 2.98 2.9 A/CNK 0.97 0.97 0.96 0.97 Rb 61.1 49.2 40.6 46.9 Th 3.37 4.58 5.70 8.46 U 0.79 0.72 0.74 0.75 Nb 4.48 4.76 4.64 4.64 Sr 376 429 413 403 Zr 84.3 112 88.6 118 Hf 2.34 2.79 2.23 2.97 F 454 320 663 360 Sn <1.80 <1.80 <1.80 <1.80 Cr 12.9 17.6 14.1 14.1 Li 16.8 18.3 17.3 17.4 Be 0.76 0.87 0.86 0.79 V 166 186 180 174 Co 15.3 16.2 15.6 15.3 Ni 8.36 10.9 11.2 10.4 Ga 16.6 17.7 16.3 16.4 Cs 2.52 2.92 2.69 3.15 Ta 0.33 0.35 0.34 0.35 W 2.30 1.91 1.81 1.80 Bi 0.073 0.070 <0.050 0.057 La 12.0 14.3 12.5 12.5 Ce 27.1 28.9 25.5 25.7 Pr 3.60 3.59 3.32 3.21 Nd 16.4 15.3 14.6 14.1 Sm 3.91 3.37 3.28 3.14 Eu 1.05 1.07 1.05 1.03 Gd 4.14 3.54 3.49 3.41 Tb 0.66 0.55 0.54 0.52 Dy 4.04 3.28 3.24 3.15 Ho 0.83 0.68 0.67 0.65 Er 2.54 2.03 2.02 1.95 Tm 0.36 0.29 0.29 0.28 Yb 2.33 1.88 1.87 1.84 Lu 0.36 0.30 0.30 0.29 Y 21.3 17.2 16.9 16.4 ΣREE 79.32 79.08 72.67 71.77 LREE 64.06 66.53 60.25 59.68 HREE 15.26 12.55 12.42 12.09 LREE/HREE 4.20 5.30 4.85 4.94 (La/Yb)N 3.69 5.46 4.79 4.87 δEu 0.80 0.95 0.95 0.96 δCe 1.01 0.99 0.97 0.99 4. 分析结果
4.1 锆石U-Pb定年分析
样品的锆石颗粒的CL图像(图3)显示所选的锆石为透明的自形晶体,为无色透明或浅黄色,大部分锆石结晶较好,短柱状晶形,阴极发光电子图像特征均显示出典型的岩浆结晶韵律环带结构。
本次所选锆石样品25颗,均为有效样品,黑云母花岗闪长岩锆石U-Pb分析测试结果见表2,锆石Th含量为34.81×10−6~129.66×10−6,U含量为52.88×10−6~147.36×10−6,Th/U值为0.55~0.97,均大于0.4,说明锆石为岩浆成因(吴元保等,2004)。锆石微量元素测试结果见表3,其显示出重稀土富集,相对亏损轻稀土元素的特征,显示典型的岩浆锆石成因特征(Hoskin,2000)。锆石谐和图反映出锆石U-Pb年龄数据分布比较集中且谐和程度较好(图4a),所有数据协和度均符合要求,证明数据均有效。通过数据分析得到206Pb/238U加权平均年龄为(289±3)Ma,(MSWD=0.57),代表岩浆结晶年龄(图4b)。
表 2 罗城花岗闪长岩(LCYT01)锆石LA-ICP-MS测年结果Table 2. Zircon LA-ICP-MS dating results of Luocheng granodiorite (LCYT01)测点号 含量(10−6) Th/U 同位素比值 同位素年龄 Pb Th U 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 208Pb/232Th ±1δ 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 208Pb/232Th ±1δ LCYT001 15.96 79.28 81.67 0.97 0.05153 0.00423 0.32079 0.02551 0.04511 0.00102 0.01452 0.00048 264.4 177.81 282.5 19.61 284.5 6.28 291.3 9.56 LCYT002 14.25 47.28 72.22 0.65 0.05202 0.0046 0.32939 0.02827 0.04589 0.00108 0.01269 0.00063 286.1 189.7 289.1 21.59 289.2 6.68 255 12.64 LCYT003 12.04 34.81 63.55 0.55 0.0524 0.00697 0.32463 0.04227 0.0449 0.00134 0.01375 0.00088 302.7 277.82 285.5 32.4 283.2 8.26 276.1 17.48 LCYT004 19.92 93.99 98.06 0.96 0.04923 0.00498 0.31772 0.03138 0.04678 0.00114 0.01432 0.00059 158.7 220.85 280.1 24.18 294.7 7.05 287.5 11.7 LCYT005 11.37 41.91 57.97 0.72 0.0517 0.00762 0.33365 0.04817 0.04678 0.00152 0.01611 0.00095 272.2 306.78 292.4 36.67 294.7 9.39 323 18.95 LCYT006 16.79 80.92 85.36 0.95 0.05021 0.00438 0.31261 0.02651 0.04513 0.00103 0.01345 0.00049 204.9 190.68 276.2 20.51 284.6 6.35 270 9.73 LCYT007 27.09 129.66 147.36 0.88 0.05412 0.00356 0.342 0.0216 0.04582 0.00096 0.01384 0.00042 375.8 141.54 298.7 16.34 288.8 5.93 277.8 8.4 LCYT008 12.51 45.55 65.96 0.69 0.05029 0.0043 0.32015 0.0266 0.04616 0.00106 0.01535 0.00062 208.3 187.16 282 20.46 290.9 6.51 307.8 12.31 LCYT009 13.69 45.68 72.34 0.63 0.05153 0.00444 0.33081 0.02763 0.04656 0.00109 0.01519 0.00068 264.4 186.14 290.2 21.08 293.3 6.73 304.7 13.59 LCYT010 12.68 46.02 66.65 0.69 0.05115 0.00472 0.33038 0.0297 0.04685 0.00111 0.01457 0.00063 247.4 199.46 289.9 22.67 295.1 6.83 292.5 12.53 LCYT011 13.09 49.92 68.97 0.72 0.04792 0.00563 0.30937 0.03563 0.04682 0.00122 0.01473 0.00087 94.2 257.92 273.7 27.63 295 7.49 295.6 17.3 LCYT012 12.53 47.8 65.53 0.73 0.0521 0.00482 0.33683 0.03033 0.04689 0.00112 0.01606 0.00063 289.7 198 294.8 23.04 295.4 6.87 322 12.57 LCYT013 18.31 92.71 98.11 0.94 0.05178 0.0039 0.32956 0.02399 0.04618 0.001 0.01362 0.00044 275.6 163.56 289.2 18.32 291 6.19 273.3 8.78 LCYT014 19 93.38 105.35 0.89 0.05329 0.00398 0.3273 0.02358 0.04457 0.00099 0.01433 0.00046 340.9 160.32 287.5 18.04 281.1 6.09 287.6 9.21 LCYT015 15.16 51.53 80.72 0.64 0.04948 0.00412 0.30521 0.02472 0.04476 0.00098 0.01424 0.00055 170.8 183.56 270.5 19.23 282.3 6.06 285.7 11.06 LCYT016 14.01 55.43 76.33 0.73 0.0503 0.00537 0.30848 0.03208 0.04451 0.00118 0.01286 0.00065 209 229.96 273 24.9 280.7 7.27 258.2 12.91 LCYT017 11.3 45.88 60.72 0.76 0.05239 0.00499 0.33231 0.03079 0.04604 0.00115 0.01288 0.0006 302.4 203.45 291.3 23.47 290.1 7.1 258.6 11.9 LCYT018 16.38 73.42 88.24 0.83 0.05321 0.0037 0.3292 0.02201 0.0449 0.00096 0.01409 0.00044 337.7 149.52 289 16.81 283.2 5.92 282.7 8.81 LCYT019 15.81 76.58 80.92 0.95 0.05166 0.00378 0.32813 0.02317 0.0461 0.00099 0.01466 0.00044 270.4 159.18 288.1 17.72 290.6 6.07 294.2 8.75 LCYT020 13.2 53.42 68.41 0.78 0.05023 0.00423 0.31534 0.02582 0.04557 0.00103 0.0151 0.00054 205.7 184.61 278.3 19.93 287.3 6.36 302.9 10.68 LCYT021 10.77 36.85 52.88 0.70 0.05095 0.0044 0.32225 0.02702 0.04592 0.00105 0.01367 0.00064 238.6 187.4 283.6 20.75 289.4 6.46 274.3 12.67 LCYT022 13.95 47.61 68.78 0.69 0.05283 0.00388 0.34372 0.02436 0.04724 0.00102 0.01389 0.00055 321.3 157.94 300 18.41 297.6 6.25 278.8 10.94 LCYT023 23.03 103.73 117.27 0.88 0.05235 0.00313 0.33694 0.01926 0.04673 0.00094 0.01421 0.00041 300.6 130.55 294.9 14.63 294.4 5.77 285.2 8.1 LCYT024 16.81 56.88 85.69 0.66 0.05387 0.00347 0.34195 0.02113 0.04609 0.00095 0.01337 0.00048 365.6 138.52 298.6 15.99 290.5 5.83 268.4 9.65 LCYT025 14.8 67.05 76.38 0.88 0.05203 0.00384 0.33011 0.02359 0.04608 0.00099 0.01419 0.00047 286.8 160.34 289.7 18 290.4 6.11 284.8 9.33 表 3 罗城花岗闪长岩锆石分析点位微量元素(10−6)测试结果Table 3. Test results of trace elements (10−6) at zircon analysis points of Luocheng granodiorite测点号 Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ta LCYT001 1.10 0.06 8.23 0.05 0.23 0.49 1.28 27.74 0.78 107.27 40.27 181.12 35.88 339.17 66.63 0.28 LCYT002 0.49 0.04 6.69 0.03 2.07 3.33 0.40 11.13 8.82 67.14 26.56 126.02 27.32 290.78 57.98 0.24 LCYT003 0.61 0.00 6.26 0.02 0.49 2.64 0.29 7.43 4.65 45.16 17.35 87.13 19.02 192.36 38.24 0.27 LCYT004 0.63 0.06 9.25 0.08 0.44 0.69 1.15 25.90 3.00 112.88 44.64 196.44 39.56 377.09 71.61 0.26 LCYT005 0.55 0.00 6.42 0.03 1.79 4.98 0.36 8.45 9.99 40.51 19.27 87.53 19.76 189.52 37.30 0.23 LCYT006 0.52 0.01 9.03 0.05 0.63 1.34 0.91 24.92 3.67 102.58 38.80 175.98 35.30 323.64 65.73 0.28 LCYT007 0.46 0.02 17.04 0.11 1.55 2.65 0.85 24.04 6.96 113.49 45.17 206.58 43.34 418.84 82.25 0.41 LCYT008 1.37 0.00 7.31 0.03 1.49 3.08 0.46 10.50 8.69 50.85 20.86 97.32 21.63 218.50 42.57 0.30 LCYT009 0.53 0.04 7.76 0.02 0.67 1.58 0.24 7.99 4.06 43.08 18.56 85.81 19.58 193.52 36.74 0.31 LCYT010 0.65 0.00 7.39 0.03 0.40 1.28 0.24 11.38 3.43 52.67 20.97 98.21 22.28 213.94 42.28 0.26 LCYT011 0.67 0.01 7.65 0.05 0.44 2.14 0.43 11.65 4.08 54.24 22.14 101.02 21.59 221.82 41.65 0.21 LCYT012 0.58 0.24 7.21 0.07 0.73 1.88 0.48 9.62 4.43 51.70 20.95 100.70 22.19 222.33 43.83 0.39 LCYT013 3.01 0.01 9.21 0.08 1.56 2.82 0.95 24.93 3.94 113.56 45.37 198.15 41.36 399.32 71.97 0.38 LCYT014 0.66 0.01 9.65 0.07 1.79 3.63 1.15 28.87 9.60 117.65 44.48 198.85 41.00 392.05 76.11 0.34 LCYT015 0.58 0.00 8.44 0.02 2.16 4.68 0.33 10.50 9.83 52.88 20.95 100.98 22.47 230.32 44.42 0.31 LCYT016 0.74 0.00 7.73 0.04 0.49 1.29 0.40 12.46 4.08 61.43 26.20 120.97 26.57 261.96 52.64 0.38 LCYT017 0.73 0.00 6.93 0.02 0.87 2.13 0.43 12.06 5.04 54.07 23.41 106.05 23.33 232.88 44.25 0.33 LCYT018 0.84 0.01 8.09 0.06 0.57 1.82 0.83 20.89 4.58 92.58 36.57 172.39 35.31 347.52 67.40 0.29 LCYT019 0.61 0.00 8.04 0.06 1.53 3.32 0.97 26.28 7.25 103.33 41.09 175.93 36.48 349.56 66.29 0.23 LCYT020 0.47 0.00 7.31 0.02 1.72 5.06 0.39 14.22 8.78 63.23 24.83 115.49 25.21 238.91 45.30 0.22 LCYT021 0.57 0.01 5.70 0.02 0.69 1.87 0.53 10.94 5.15 53.16 21.38 104.62 22.91 221.56 45.69 0.30 LCYT022 0.53 0.04 6.60 0.03 0.27 1.73 0.46 12.33 3.89 67.24 25.79 122.86 27.12 273.00 52.93 0.28 LCYT023 0.70 0.04 9.56 0.09 0.57 1.92 1.18 27.41 5.00 122.96 49.00 227.37 46.39 456.07 89.13 0.38 LCYT024 1.14 0.04 8.63 0.02 1.85 4.19 0.28 9.30 10.49 48.68 20.06 95.23 20.74 214.10 41.88 0.34 LCYT025 1.12 0.02 7.63 0.07 1.41 2.91 1.04 22.23 4.01 93.47 36.23 160.65 34.00 327.88 65.05 0.25 4.2 锆石Hf同位素特征
在LA-ICP-MS锆石U-Pb测年的基础上,对黑云母花岗闪长岩样品25颗锆石测点进行了锆石微区Hf同位素测定。测点的数据分析结果(表4)。176Yb/177Hf值介于
0.012222351 ~0.042050552 ,176Lu/177Hf值介于0.00042471 ~0.001378472 ,均小于0.002,说明锆石在形成后具有很少的放射成因Hf的积累。因此,锆石 176Hf/177Hf值可能代表该锆石形成时的176Hf/177Hf值(吴福元等,2007),176Hf/177Hf值介于0.282726048 ~0.282787588 ,εHf(t)值均为正值,介于+4.37~+6.88,平均为+5.6,通过锆石Hf同位素εHf(t)-U-Pb年龄t(Ma)图解(图5a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或新生地壳,Hf同位素一阶段模式年龄T(DM1)分布范围为615.4~703.0 Ma,平均值为660.5 Ma,地壳模式年龄T(DMC)分布范围为808.6~952.5 Ma,平均值为882.8 Ma,地壳模式年龄T(DMC)较集中(图5b)。表 4 黑云母花岗闪长岩锆石Hf同位素分析结果Table 4. Zircon Hf isotope analysis results of biotite granodiorite分析点 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ Hfi εHf (0) εHf (t) ±1σ T(DM1) T(DMC) ±1σ fLu/Hf LCYT01-01 284.5 0.018558653 0.000625497 0.282772262 0.0000194150 0.282769 0.079994272 6.14162 0.679525 634.4 846.8 0.06673 - 0.9583 LCYT01-02 289.2 0.021350813 0.00072988 0.282742229 0.0000173343 0.282738 - 0.982120012 5.16050 0.606701 676.8 910.5 0.065471 - 0.95134 LCYT01-03 283.2 0.018541903 0.0006332 0.282761526 0.0000162177 0.282758 - 0.299686693 5.73214 0.56762 649.0 871.0 0.062774 - 0.95779 LCYT01-04 294.7 0.022088228 0.000738473 0.282787588 0.0000174089 0.282784 0.621999168 6.88254 0.609311 615.4 808.6 0.063449 - 0.95077 LCYT01-05 294.7 0.016473205 0.000610408 0.282734375 0.0000178101 0.282731 - 1.259864349 5.02445 0.623354 685.4 922.9 0.066228 - 0.95931 LCYT01-06 284.6 0.03087808 0.00103004 0.282748701 0.0000169380 0.282743 - 0.753226632 5.23386 0.59283 673.2 902.5 0.065308 - 0.93133 LCYT01-07 288.8 0.019725731 0.000669661 0.282759209 0.0000166409 0.282756 - 0.381620593 5.76427 0.582432 652.8 873.1 0.063558 - 0.95536 LCYT01-08 290.9 0.025750031 0.000867335 0.282742988 0.0000180678 0.282738 - 0.955258813 5.19757 0.632374 678.1 909.3 0.066791 - 0.94218 LCYT01-09 293.3 0.021818077 0.00074069 0.282752659 0.0000170188 0.282749 - 0.61326993 5.61588 0.595659 662.8 885.4 0.06456 - 0.95062 LCYT01-10 295.1 0.031810315 0.001072333 0.282760072 0.0000185273 0.282754 - 0.35109486 5.85224 0.648455 658.3 872.0 0.067113 - 0.92851 LCYT01-11 295 0.032320695 0.00106083 0.282770029 0.0000187588 0.282764 0.001027859 6.20471 0.656558 644.5 850.3 0.066935 - 0.92928 LCYT01-12 295.4 0.025753941 0.00084072 0.282744619 0.0000195056 0.28274 - 0.897570925 5.35710 0.682698 675.5 902.8 0.068675 - 0.94395 LCYT01-13 291 0.042050552 0.001378472 0.282744602 0.0000188351 0.282737 - 0.898174811 5.15840 0.659227 684.9 911.5 0.069048 - 0.9081 LCYT01-14 281.1 0.025917388 0.000895112 0.282777258 0.0000173229 0.282773 0.256671065 6.19473 0.606302 631.9 840.9 0.064172 - 0.94033 LCYT01-15 282.3 0.012222351 0.00042471 0.282730661 0.0000185893 0.282728 - 1.391186427 4.65946 0.650625 687.1 936.4 0.06705 - 0.97169 LCYT01-16 280.7 0.026071795 0.00089378 0.282726048 0.0000187777 0.282721 - 1.5543273 4.37430 0.65722 701.7 952.5 0.068661 - 0.94041 LCYT01-17 290.1 0.026377494 0.000892334 0.282753361 0.0000177671 0.282749 - 0.588435111 5.54265 0.621848 664.4 887.5 0.065933 - 0.94051 LCYT01-18 283.2 0.024916918 0.000880457 0.282778938 0.0000203212 0.282774 0.316093287 6.30197 0.711244 629.4 835.9 0.068288 - 0.9413 LCYT01-19 290.6 0.018210323 0.000633771 0.282781801 0.0000175364 0.282778 0.417339793 6.60951 0.613775 621.6 822.4 0.063668 - 0.95775 LCYT01-20 287.3 0.01802085 0.000615423 0.282772775 0.0000170572 0.282769 0.098119936 6.22222 0.597003 633.5 843.9 0.06338 - 0.95897 LCYT01-21 289.4 0.020384277 0.000718113 0.282742372 0.0000184710 0.282738 - 0.9770409 5.17215 0.646485 676.4 909.9 0.067032 - 0.95213 LCYT01-22 297.6 0.02594746 0.000881354 0.282760012 0.0000161587 0.282755 - 0.353235735 5.94105 0.565556 655.2 868.5 0.063322 - 0.94124 LCYT01-23 294.4 0.029427132 0.001014853 0.282726672 0.0000206482 0.282721 - 1.532286504 4.66656 0.722688 703.0 944.4 0.071574 - 0.93234 LCYT01-24 290.5 0.018539508 0.000641115 0.282769911 0.0000162977 0.282766 - 0.003162189 6.18517 0.570421 637.8 848.5 0.062508 - 0.95726 LCYT01-25 290.4 0.021881036 0.000749457 0.282741158 0.0000155788 0.282737 - 1.019970646 5.14473 0.545259 678.6 912.3 0.063102 - 0.95004 图 5 罗城黑云母花岗闪长岩锆石εHf(t)-t(Ma)图解(a)(据李良等,2018)和地壳模式年龄T(DMC)统计直方图(b)Figure 5. (a)Zircon εHf(t)-t (Ma) diagram (According to LI Liang et al., 2018) and (b) crustal model age T (DMC) statistical histogram (b) of Luocheng biotite granodiorite4.3 主量元素特征
合黎山地区罗城黑云母花岗闪长岩的主量元素分析结果见表1,其SiO2含量介于58.52%~59.84%,Al2O3含量介于16.91%~17.28%。全碱含量Na2O+K2O介于4.04%~4.40%,相对富碱,Na2O含量介于2.52%~2.60%,K2O含量介于1.49%~1.87%,富钠贫钾。里特曼指数δ介于1.05~1.15。根据CIPW标准矿物计算(Le Maitre,1979),石英(Qtz)含量介于18.97%~20.69%,碱性长石(A)含量介于11.6%~14.66%,斜长石(Pl)含量介于47.86%~50.76%,在Q-A-P图解中(图6a),处在花岗闪长岩区域中。SiO2-(Na2O+K2O-CaO)图解(图6b)反应岩石属于钙性系列。SiO2-K2O图解(图6c)反映岩石主体属于钙碱性系列。铝饱和指数A/CNK比较集中,介于0.96~0.97,A/NK介于2.74~2.98,在A/CNK-A/NK图解中(图6d),处在准铝质范围内。
图 6 罗城黑云母花岗闪长岩Q-A-P图解(a)(据Streckeisen, 1976)、SiO2-(Na2O+K2O-CaO)图解(b)(据Peccerillo et al., 1976)、SiO2-K2O图解(c)(据Peccerillo et al., 1976)及A/NK-A/CNK图解(d)(据Maniar et al.,1989)Figure 6. (a) Q-A-P diagram of Luocheng biotite granodiorite, (b) SiO2- (Na2O+K2O-CaO) diagram, (c) SiO2-K2O diagram and (d) A/NK-A/CNK diagrams4.4 微量元素特征
合黎山地区罗城黑云母花岗闪长岩的稀土元素分析结果见表1,其稀土元素总量ΣREE在71.77×10−6~79.32×10−6之间,平均为75.71×10−6。LREE/HREE值在4.20~5.30之间,平均为4.82,相对富集轻稀土,亏损重稀土。(La/Yb)N在3.69~5.46之间,平均为4.70,稀土元素球粒陨石标准化配分曲线图(图4a)中显示稀土元素为右倾型配分模式。δEu值在0.80~0.96之间,平均值为0.91,Eu具轻度负异常,说明在岩浆演化过程中有少量的斜长石分离结晶作用。
合黎山地区罗城黑云母花岗闪长岩的微量元素分析结果见表1,在微量元素原始地幔标准化蛛网图(图7b)上可见,岩石均相对富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素。
5. 讨论
5.1 岩体成岩时代及岩石成因
合黎山地区罗城岩体锆石自形程度好,具有典型的岩浆结晶韵律环带结构(图5),且Th/U值均大于0.4,为典型的岩浆锆石(王新雨等,2023;李平等,2024),其锆石数据谐和度较高,206Pb/238U加权平均年龄为(289±3) Ma ,可代表岩浆结晶年龄,因此,合黎山地区罗城岩体形成于早二叠世。
合黎山地区罗城花岗闪长岩Ga含量为16.3×10−6~17.7×10−6,Al2O3含量为16.91%~17.28%,10000Ga/Al值为1.78~1.93,平均为1.84,小于A型花岗岩下限2.6(Whalen et al., 1987),在Zr-10000Ga/Al、Ce-10000Ga/Al、Y-10000Ga/Al图解(图8b、 图8c、图8d)中,罗城岩体均投影在I&S花岗岩区域,在K2O-Na2O图解(图8a)中,罗城岩体均处于I型花岗岩区域。根据岩石主量元素特征可知,罗城花岗闪长岩具有钙碱性、准铝质特征,其A/CNK比较集中,介于0.96~0.97,均小于1.1,与I型花岗岩一致(Chappell et al., 1992;李宏卫等,2021),且P2O5含量与SiO2含量存在负线性关系,与I型花岗岩演化趋势一致(Wolf et al., 1994)。综合判断分析,罗城花岗闪长岩属于结晶分异I型花岗岩。
图 8 罗城黑云母花岗闪长岩K2O-Na2O图解(a)及Zr、Ce、Y-10000Ga图解(b、c、d)(据Whalen et al.,1987)Figure 8. (a) K2O-Na2O and (b, c, d) Zr, Ce, Y-10000 Ga diagram of Luocheng biotite granodiorite5.2 岩浆起源及演化特征
I型花岗岩主要来源于板块边缘陆壳下部,可能与地壳岩石的部分熔融(徐克勤等,1982)、交代岩石圈地幔部分熔融(Jiang et al., 2006)等有关,罗城黑云母花岗闪长岩属于钙碱性系列,富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,指示岩体具有大陆地壳物质的参与,岩石Nb/Ta=13.25~13.65,平均值为13.52,接近大陆地壳Nb/Ta值(=10~14)。在判断源岩的C/MF-A/MF图解(图9a)中,显示岩体源岩可能为基性岩的部分熔融,岩石δEu值具轻度负异常,在0.80~0.96之间,平均值为0.91,说明在岩浆演化过程中有少量的斜长石分离结晶作用,在δEu-(La/Yb)N图解中(图9b),样品投点均落在了壳源与壳幔混合源花岗岩区域,La/Ta值为35.71~40.86,大于起源于岩石圈地幔或受其混染岩浆La/Ta值的下限25,指示其为幔源或者壳幔混合源(Lassiter et al., 1997)。
罗城黑云母花岗闪长岩锆石Hf二阶段模式年龄T(DMC)分布范围为808.6~952.5 Ma,εHf(t)值介于+4.37~+6.88,通过锆石εHf(t)-U-Pb年龄t(Ma)图解(图7a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或具有新生地壳演化趋势(李金超等,2021)。
在野外工作中,在黑云母花岗闪长岩中发现暗色微细粒包体发育(图10),包体形态可见椭圆状、圆状、透镜状以及不规则状,大小差异较大,包体常具淬冷边,证明岩浆发生混合作用(王德滋等,2008;张建军等,2012);Mg#值可以指示壳源岩浆作用是否有幔源物质的参与,在地幔组分参与时,才能导致熔体的Mg#值大于40(Rapp et al., 1995),岩石MgO含量介于3.13%~3.53%,Mg#值介于0.64~0.66,明显高于40,表明岩体源岩明显具幔源岩浆加入。
基于上述讨论,罗城花岗闪长岩为壳源岩浆与幔源岩浆发生混合作用的产物,这种作用是由于地壳深部存在强烈的地幔岩浆底侵作用,导致新生地壳部分熔融并混入底侵的幔源物质。幔源的高温基性岩浆底侵,为其提供了少量物质来源,使岩石地球化学特征上既表现出壳源特征,也表现出幔源物质的信息。
5.3 构造背景
罗城黑云母花岗闪长岩富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,具有典型的岛弧岩浆岩特征(王秉璋等,2021),其形成与大洋板片俯冲消减作用有关。通过对黑云母花岗闪长岩构造背景判别,在Rb-(Y+Nb)(图11a)、Nb-Y(图11b)及Hf-Rb/30-3Ta(图11c)图解中,样品均落在火山弧花岗岩区域;在R1-R2(图11d)图解中,样品落在地幔分异花岗岩与碰撞前花岗岩交界区域。
图 11 花岗闪长岩构造背景判别Rb-(Y+Nb)(a)、Nb-Y(b)(据Pearce et al., 1984)、Hf-Rb/30-3Ta(c)(据Harris et al., 1986)图解及R1-R2(d)(据Batchelor et al., 1985)图解① 地幔分异花岗岩;② 破坏性活动板块边缘 (板块碰撞前) 花岗岩;③ 板块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山区花岗岩;⑥ 同碰撞花岗岩;⑦造山期花岗岩Figure 11. Identification of granodiorite structural background (a) Rb-(Y+Nb), (b) Nb-Y, (c) Hf-Rb/30-3Ta and (d) R1-R2 diagram罗城岩体位于龙首山造山带的西南缘大陆边缘活动带和祁连裂谷的发育构成了龙首山成矿带特定的构造环境(王承花,2010)。龙首山地区地壳演化自早古生代至中新生代经历了活动-稳定-再活动-再稳定-又活动的发展阶段,其在晚古生代处于稳定的拉张环境(强利刚等,2019),早古生代祁连造山带经历了北祁连洋向南俯冲,俯冲受阻,转为向北俯冲,引起北祁连岛弧与阿拉善陆块的碰撞,从而形成了一系列火山弧I型花岗岩(夏林圻等,2003;刘文恒等,2019;王增振等,2020)。罗城二叠纪黑云母花岗闪长岩指示其形成环境为岩浆弧,且R1-R2判别图解指示其形成环境为碰撞前消减花岗岩环境,说明在晚古生代该区还存在一期俯冲碰撞活动,与前人对龙首山晚石炭世—早二叠世西山头窑地区岩体处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022)相吻合,同时与前人认为的北山地区二叠纪时期仍发生的俯冲–增生造山过程延续可至三叠纪(宋东方等,2018)存在相关性,而并非处于拉张稳定发展期(强利刚等,2019)。
6. 结论
(1)通过对罗城黑云母花岗闪长岩LA-ICP-MS锆石U-Pb测年得出,岩石锆石结晶年龄为(289±3) Ma ,属于早二叠世,指示了区域上华力西期的强烈构造岩浆事件。
(2)通过罗城黑云母花岗闪长岩岩相学、岩石地球化学及Hf同位素特征,岩体富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Ba、Nb、Ta、P等高场强元素,属于准铝质钙碱性I型花岗岩,是由新生地壳部分熔融并混入底侵幔源物质的产物,指示了地壳深部强烈的地幔岩浆底侵作用。
(3)罗城黑云母花岗闪长岩地球化学特征指示其形成于碰撞前的消减花岗岩环境,结合龙首山地区构造演化历史,表明该区在晚古生代还存在一期俯冲碰撞,而并非一直处于拉张稳定发展期。
-
图 1 华北克拉通北缘和兴蒙造山带大地构造分区(a)(据Pei et al., 2017修)及喀喇沁旗地区地质简图(b)(据张成信等, 2019修)
Figure 1. (a) Tectonic subdivisions of the northern margin of North China Craton and Xing-meng orogenic belt and (b) schematic geological map of the Harqin Banner, Inner Mongolia, China
图 2 大西沟萤石矿床地质简图(a)(据裴秋明, 2018修)及宏观控矿构造特征(b~d)
Figure 2. (a) Schematic geologic map and (b~d) ore-controlling structures of the Daxigou fluorite deposit
图 7 大西沟萤石矿床中萤石的Y/Ho-La/Ho图解(a)和Tb/Ca-Tb/La图解(b)(底图据Möller et al., 1976)
Figure 7. (a) Y/Ho-La/Ho and (b) Tb/Ca-Tb/La diagrams of fluorites in the Daxigou fluorite deposit
图 8 大西沟萤石矿床及代表性单一型和共伴生型萤石矿床成矿流体H-O同位素图解(底图据Taylor, 1974)
Figure 8. Hydrogen and oxygen isotope diagrams of ore-forming fluids in the Daxigou fluorite deposit and representative single and associated fluorite deposits
表 1 大西沟萤石矿床萤石流体包裹体显微测温结果
Table 1 Microthermometric results of fluid inclusions from the Daxigou fluorite deposit
包裹体
类型测试
点数(个)长轴长度(μm) 气相比例(%) 均一温度(℃) 盐度(wt%NaCleqv) 密度(g/cm3) (集中分布) (集中分布) (集中分布) (集中分布) (平均值) 早阶段萤石包裹体 36 3~65 5~85 145~200 0.18~4.34 0.88~0.94 10~25 5~15 160~190 0.18~2.57 0.91 晚阶段萤石包裹体 40 5~40 5~30 153~200 0.18~2.41 0.88~0.93 10~20 5~15 160~190 0.18~0.53 0.90 表 2 大西沟萤石矿床萤石及白垩纪花岗岩稀土元素分析结果(10−6)
Table 2 Rare earth element analysis results of fluorites and Cretaceous granites from the Daxigou fluorite deposit (10−6)
样品编号 早阶段萤石 晚阶段萤石 白垩纪花岗岩 F01 F03 F05 F07 F09 F11 F13 F15 G1 G2 G3 G4 G5 G6 La 6.60 12.60 6.10 11.00 27.60 5.83 1.13 1.17 48.80 42.60 37.10 37.70 33.80 46.40 Ce 15.90 24.20 14.20 23.10 60.20 12.00 2.04 2.27 87.70 78.00 68.70 66.40 61.20 81.80 Pr 2.31 3.27 2.25 3.32 7.99 1.63 0.34 0.33 10.00 8.72 7.15 7.16 7.14 9.41 Nd 11.60 13.90 10.80 15.20 29.10 7.36 1.54 1.65 36.50 31.70 28.20 28.50 26.00 34.60 Sm 4.97 4.12 4.82 5.07 5.49 2.71 0.82 0.85 6.11 6.11 5.08 5.04 4.68 6.44 Eu 0.85 0.78 0.63 1.49 0.62 0.64 0.22 0.22 1.26 0.54 0.50 0.53 0.47 0.55 Gd 7.98 5.56 7.83 7.42 5.29 4.23 1.55 1.64 4.44 4.87 4.28 4.23 3.87 5.33 Tb 1.72 1.15 1.71 1.73 0.91 1.08 0.40 0.41 0.72 0.92 0.81 0.81 0.71 0.98 Dy 9.36 7.06 9.19 12.40 5.09 7.54 2.87 3.01 3.41 4.58 4.56 4.29 3.76 5.44 Ho 1.78 1.38 1.71 2.53 0.84 1.52 0.57 0.61 0.68 0.97 0.96 0.89 0.78 1.16 Er 4.54 3.54 4.32 7.74 2.19 4.78 1.68 1.77 1.77 2.78 2.79 2.61 2.23 3.30 Tm 0.58 0.58 0.55 1.27 0.31 0.84 0.27 0.30 0.31 0.53 0.50 0.49 0.43 0.60 Yb 3.57 3.30 2.79 7.51 1.87 5.40 1.50 1.62 1.89 3.51 3.44 3.38 2.76 3.97 Lu 0.42 0.44 0.38 1.04 0.29 0.73 0.27 0.28 0.25 0.46 0.48 0.47 0.37 0.55 Y 164.00 78.50 177.00 191.00 38.90 97.20 30.10 31.00 19.00 29.20 34.00 26.70 23.50 36.10 ΣREE 72.18 81.87 67.29 100.82 147.79 56.29 15.19 16.12 203.83 186.29 164.56 162.51 148.19 200.54 LREE 42.23 58.87 38.80 59.18 131.00 30.17 6.09 6.49 190.37 167.67 146.73 145.33 133.29 179.20 HREE 29.95 23.00 28.49 41.64 16.79 26.12 9.10 9.63 13.46 18.61 17.83 17.18 14.91 21.33 LREE/HREE 1.41 2.56 1.36 1.42 7.80 1.16 0.67 0.67 14.14 9.01 8.23 8.46 8.94 8.40 (La/Yb)N 1.26 2.59 1.49 1.00 10.03 0.73 0.51 0.49 17.54 8.24 7.33 7.58 8.32 7.94 δEu 0.41 0.50 0.31 0.74 0.35 0.57 0.59 0.56 0.70 0.29 0.32 0.34 0.32 0.28 δCe 0.98 0.89 0.93 0.92 0.97 0.93 0.79 0.87 0.91 0.93 0.96 0.92 0.91 0.90 注:δEu=2×w(Eu)N/[w(Sm)N+w(Gd)N],δCe=2×w(Ce)N/[w(La)N+w(Pr)N]。 表 3 大西沟萤石矿床及中国东部代表性单一型和共伴生型萤石矿床H-O同位素组成表
Table 3 H-O isotope compositions of the Daxigou fluorite deposit and representative independent and combined fluorite deposits in eastern China
矿床
类型矿床
名称样品
编号测试矿物 δD (‰) δ18OH2O (‰) 数据
来源矿床
类型矿床
名称样品
编号测试
矿物δD (‰) δ18OH2O (‰) 数据
来源单
一
型内蒙古喀喇沁旗大西沟萤
石矿DXG-F01 萤石 −94.5 −6.9 本研究 单
一
型内蒙古林西地区水头、
小北沟萤石矿ST-11 萤石 −135.7 −2.4 张寿庭等, 2014 DXG-F03 −101.9 −7.1 ST-12 −128.3 0 DXG-F05 −105.2 −7.2 ST-13 −120.5 −2.8 DXG-F09 −98.6 −8.2 XQ1-2 石英 −136.2 −7.51 Pei et al., 2019 DXG-F11 −100.3 −8.4 XQ2-2 −131.6 −6.31 DXG-F13 −102 −7.5 XQ3-2 −139.4 −7.11 DXG-F15 −95.4 −7.3 XF1-2 萤石 −118 −6 桂东北地区黄关萤
石矿HG-7 萤石 −34.7 −6.9 黄振男等, 2023 XF2-2 −116 −3.6 HG-8 −44 −9.8 XF3-2 −120.6 −5.3 HG-10 −40 −7.9 XF4-2 −115.5 −5.9 HG-14 −50.4 −7.4 XF5-2 −121.6 −4.9 HG-15 −46 −7.3 XF6-2 −119.8 −4.2 HG-16 −41.1 −5.5 XF7-2 −102 −2.6 河南省栾川县杨山萤石矿 F112-CM4 石英 −94 −3.8 张苏坤等, 2022 XF8-2 −120.8 −5 QF17-YM1 −94.5 −2.8 XF9-2 −121.9 −4.5 F12-CM1 萤石 −80 −7.1 共
伴
生
型
柿竹园W-Sn-Mo-Bi-萤
石矿514-1 钾长石 −73.1 2.55 王书凤等, 1988 F16-CM4 −83.1 −5.5 583-33 石英 −70.2 3.6 F112-CM4 −83.6 −8.4 514-4 −52.9 6.5 F14-YM1 −88.6 −8.8 490-131 −56.6 6.6 F16-YM1 −87.3 −6.9 490-128 −70.8 4.8 F14 −86.6 −8.9 490-94-15 −54.4 −6.45 F11-PD1 −76.1 −6.9 490-94-16 −69.7 −7.14 F12-PD1 −82.7 −6.7 490-94-17 −65.3 −7.48 浙江缙云骨洞坑萤
石矿G01 萤石 −57.8 −2 Fang et al., 2020 柿-14 −52 −8.7 G02 −60 −2.5 10cs-8 石英 −83 −8.2 吴胜华, 2016 G03 −64.3 −4.4 12cs-12 −77 5.1 G04 −54.2 −6.8 12cs-45 −65 −4.2 G05 −50.1 −7.6 12hsl-5 −83 2.8 G06 −55.5 −6.4 12cs-20 石榴
子石−97 9.4 内蒙古林西地区马岱沟、七一、五间房萤石矿 MDG-1 萤石 −111.1 −10.8 MDG-2 −114.1 −10.2 宋开瑞, 2019 黄沙坪Pb-Zn-萤石矿 YK1-1 石英 −72.7 6.8 方贵聪等, 2020 QY-1 −115.1 −9.4 YK1-7 −59.9 6.2 QY-2 −119.5 −11.2 YK1-11 −56.2 6.7 WJF-1 −143.9 −13.3 HSP-28-1 −54.8 7.2 WJF-2 −145.3 −13.2 HSP-28-2 −59.9 7 -
曹华文, 张寿庭, 高永璋, 等 . 内蒙古林西萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球化学,2014 ,43 (2 ):131 −140 .CAO Huawen, ZHANG Shouting, GAO Yongzhang, et al . REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications, Inner Mongolia Autonomous Region[J]. Geochimica,2014 ,43 (2 ):131 −140 .曹俊臣 . 热液脉型萤石矿床萤石气液包裹体氢、氧同位素特征[J]. 地质与勘探,1994a ,30 (4 ):28 −29 .CAO Junchen . Hydrogen and oxygen isotope characteristics of fluorite gas-liquid inclusions in hydrothermal vein fluorite deposits[J]. Geology and Prospecting,1994a ,30 (4 ):28 −29 .曹俊臣 . 中国与花岗岩有关的萤石矿床地质特征及成矿作用[J]. 地质与勘探,1994b ,30 (5 ):1 −6+13 .CAO Junchen . Geological characteristics and ore-forming processes of fluorite deposits associated with granite in China[J]. Geology and Prospecting,1994b ,30 (5 ):1 −6+13 .曹俊臣 . 华南低温热液脉状萤石矿床稀土元素地球化学特征[J]. 地球化学,1995 ,24 (3 ):225 −234 . doi: 10.3321/j.issn:0379-1726.1995.03.003CAO Junchen . REE geochemical characteristics of epithermal vein fluorite deposits in south China[J]. Ceochimica,1995 ,24 (3 ):225 −234 . doi: 10.3321/j.issn:0379-1726.1995.03.003陈从喜, 张雅丽, 孙春强, 等 . 战略性矿产概念和矿种目录的国际比较研究[J]. 中南大学学报(社会科学版),2024 ,30 (1 ):87 −98 . doi: 10.11817/j.issn.1672-3104.2024.01.009CHEN Congxi, ZHANG Yali, SUN Chunqiang, et al . International comparative study on the concept and list of strategic minerals[J]. Jouunal of Central South University (Social Sciences),2024 ,30 (1 ):87 −98 . doi: 10.11817/j.issn.1672-3104.2024.01.009陈军元, 刘艳飞, 颜玲亚, 等 . 石墨、萤石等战略非金属矿产发展趋势研究[J]. 地球学报,2021 ,42 (2 ):287 −296 . doi: 10.3975/cagsb.2020.102606CHEN Junyuan, LIU Yanfei, YAN Lingya, et al . Research on development trend of strategic nonmetallic minerals such as graphite and fluorite[J]. Acta Geoscientica Sinica,2021 ,42 (2 ):287 −296 . doi: 10.3975/cagsb.2020.102606赤峰市国土资源局, 内蒙古赤峰地质矿产勘查开发院. 赤峰市矿产志[M]. 北京: 科学出版社, 2018. Chifeng Municipal Bureau of Land and Resources, Chifeng Institute of Geological and Mineral Exploration and Development. Geology of mineral resources of Chifeng [M]. Beijing: Science Press, 2018.
方贵聪, 王登红, 陈毓川, 等 . 南岭萤石矿床成矿规律及成因[J]. 地质学报,2020 ,94 (1 ):161 −178 .FANG Guicong, WANG Denghong, CHEN Yuchuan, et al . Metallogenic regularities and genesis of the fluorite deposits in Nanling region[J]. Acta Geologica Sinica,2020 ,94 (1 ):161 −178 .黄振男, 方贵聪, 李根, 等 . 桂东北黄关萤石矿床稀土元素和氢氧同位素特征[J]. 地质科学,2023 ,58 (3 ):910 −923 . doi: 10.12017/dzkx.2023.050HUANG Zhennan, FANG Guicong, LI Gen, et al . Characteristics of the REE and H-O isotopes in Huangguan fluorite deposit at the Northeast Guangxi, southern China[J]. Chinese Journal of Geology,2023 ,58 (3 ):910 −923 . doi: 10.12017/dzkx.2023.050姜振宁, 张杨, 张诚信 . 内蒙古喀喇沁旗大西沟萤石矿矿床地质特征及找矿方向[J]. 化工矿产地质,2023 ,45 (3 ):217 −222 . doi: 10.3969/j.issn.1006-5296.2023.03.004JIANG Zhenning, ZHANG Yang, ZHANG Chengxin . Geological characteristics and prospecting direction of Daxigou fluorite deposit in Karaqin Banner Area, Inner Mongolia[J]. Geology of Chemical Minerals,2023 ,45 (3 ):217 −222 . doi: 10.3969/j.issn.1006-5296.2023.03.004金松, 王春连, 高立湧, 等 . 闽北羊角尾萤石矿成因: 来自稀土、微量元素地球化学的证据[J]. 地球学报,2022 ,43 (3 ):371 −382 . doi: 10.3975/cagsb.2022.031401JIN Song, WANG Chunlian, GAO Liyong, et al . Evidence from REE and trace element geochemistry for genesis of Yangjiaowei fluorite deposit in northern Fujian[J]. Acta Geoscientica Sinica,2022 ,43 (3 ):371 −382 . doi: 10.3975/cagsb.2022.031401金涛 . 高密度电法在内蒙古喀喇沁旗毛林坝萤石矿找矿中的应用[J]. 地质学刊,2021 ,45 (3 ):311 −315 . doi: 10.3969/j.issn.1674-3636.2021.03.013JIN Tao . Application of high density electrical method in the ore prospecting of Maolinba fluorite deposit, Karaqin Banner, Inner Mongolia[J]. Journal of Geology,2021 ,45 (3 ):311 −315 . doi: 10.3969/j.issn.1674-3636.2021.03.013林少泽, 朱光, 赵田, 等 . 燕山地区喀喇沁变质核杂岩的构造特征与发育机制[J]. 科学通报,2014 ,59 (32 ):3174 −3189 . doi: 10.1360/N972014-00100LIN Shaoze, ZHU Guang, ZHAO Tian, et al . Structural characteristics and formation mechanism of the Kalaqin metamorphic core complex in the Yanshan area, China[J]. China Science Bulletin,2014 ,59 (32 ):3174 −3189 . doi: 10.1360/N972014-00100林少泽, 王飞, 谢成龙, 等 . 华北克拉通北缘喀喇沁变质核杂岩早白垩世构造演化过程与形成模式[J]. 大地构造与成矿学,2019 ,43 (1 ):1 −16 .LIN Shaoze, WANG Fei, XIE Chenglong, et al . Early cretaceous structural evolution and formation model of the Kalaqin metamorphic core complex in the northern margin of the north China craton[J]. Geotectonica et Metallogenia,2019 ,43 (1 ):1 −16 .刘思晗, 王春连, 刘殿鹤, 等 . 白云鄂博西矿区伴生型萤石矿床的稀土元素地球化学特征及其指示意义[J]. 岩石矿物学杂志,2022 ,41 (5 ):903 −915 . doi: 10.3969/j.issn.1000-6524.2022.05.004LIU Sihan, WANG Chunlian, LIU Dianhe, et al . REE geochemical characteristics of associated fluorite deposit in the west mine of Bayan Obo and its indicative significance[J]. Acta Petrologica et Mineralogica,2022 ,41 (5 ):903 −915 . doi: 10.3969/j.issn.1000-6524.2022.05.004刘天航, 高永宝, 刘家军, 等. 内蒙古东七一山萤石矿微量、稀土元素特征及对成矿物质来源的指示[J/OL]. 中国地质, 2024, 1−19. LIU Tianhang, GAO Yongbao, LIU Jiajun, et al. Characteristics of trace and rare earth elements in Dongqiyishan fluorite deposit, Inner Mongolia: Indication of ore-forming material sources[J/OL]. Geology in China, 2024, 1−19.
卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004. LU Huanzhang, FAN Hongrui, NI Pei, et al. Fluid inclusions[M]. Beijing: Science Press, 2004.
马腾霄, 和源, 朱利东, 等 . 川中地区下寒武统沧浪铺组下段碳氧同位素特征及其地质意义[J]. 成都理工大学学报(自然科学版),2023 ,50 (2 ):187 −199 .MA Tengxiao, HE Yuan, ZHU Lidong, et al . Carbon and oxygen isotope characteristics of Lower Cambrian Canglangpu Formation in central Sichuan and their geological significance[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023 ,50 (2 ):187 −199 .牛腾, 倪志耀, 孟宝航, 等 . 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2 Ga B. P. 伸展-裂解事件的地质记录[J]. 成都理工大学学报(自然科学版),2023 ,50 (4 ):486 −503 .NIU Teng, NI Zhiyao, MENG Baohang, et al . The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2 Ga B. P. in the central segment of northern margin of North China Craton[J]. [J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023 ,50 (4 ):486 −503 .裴秋明, 张寿庭, 曹华文, 等 . 内蒙古林西地区小北沟萤石矿床地质特征及找矿潜力分析[J]. 桂林理工大学学报,2016 ,36 (3 ):426 −434 . doi: 10.3969/j.issn.1674-9057.2016.03.003PEI Qiuming, ZHANG Shouting, CAO Huawen, et al . Features and potential analysis of Xiaobeigou fluorite deposit in Linxi, Inner Mongolia[J]. Journal of Guilin University of Technology,2016 ,36 (3 ):426 −434 . doi: 10.3969/j.issn.1674-9057.2016.03.003裴秋明. 大兴安岭南段萤石矿成矿规律及隐伏—半隐伏矿体预测[D]. 北京: 中国地质大学(北京), 2018. PEI Qiuming. A studyon metallogenetic regularity and prognosis of concealed ore body in southern Great Xing’an Range, Northeastern China[D]. Beijing: China University of Geosciences (Beijing), 2018.
石开拓. 华北克拉通北缘赤峰—朝阳成矿带西段脉金矿床成矿作用及成矿预测[D]. 长春: 吉林大学, 2022. SHI Kaituo. Metallogenesis and metallogenic prediction of lode gold deposits in the western Chifeng-Chaoyang gold belt, northern North China Craton[D]. Changchun: Jilin University, 2022.
宋鸿林 . 燕山式板内造山带基本特征与动力学探讨[J]. 地学前缘,1999 ,6 (4 ):309 −316 . doi: 10.3321/j.issn:1005-2321.1999.04.013SONG Honglin . Characteristics of Yanshan type intraplate orogenic belts and a discussion on its dynamics[J]. Earth Science Frontiers,1999 ,6 (4 ):309 −316 . doi: 10.3321/j.issn:1005-2321.1999.04.013宋开瑞. 内蒙古林西地区萤石矿与银多金属矿成矿关系及找矿意义[D]. 北京: 中国地质大学(北京), 2019. SONG Kairui. Metallogenic relationship and prospecting significance between fluorite deposits and lead-zinc-silver polymetallic deposits in the Linxi area, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2019.
苏楠, 朱光 . 辽西地区白垩纪地层序列与年代学框架[J]. 大地构造与成矿学,2022 ,46 (5 ):993 −1021 .SU Nan, ZHU Guang . Stratigraphical sequences and chronological framework of cretaceous in the western Liaoning region[J]. Geotectonica et Metallogenia,2022 ,46 (5 ):993 −1021 .孙月君, 赖波, 刘和军, 等. 内蒙古自治区萤石矿资源潜力评价[M]. 武汉: 中国地质大学出版社, 2018. SUN Yuejun, LAI Bo, LIU Hejun, et al. Evaluation of the fluorite mineral resources potential in Inner Mongolia[M]. Wuhan: China University of Geosciences Press,2018.
王春连, 王九一, 游超, 等 . 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报,2022 ,43 (3 ):267 −278 . doi: 10.3975/cagsb.2022.052701WANG Chunlian, WANG Jiuyi, YOU Chao, et al . A study on strategic non-metallic mineral definition, key applications, and supply and demand situation[J]. Acta Geoscientica Sinica,2022 ,43 (3 ):267 −278 . doi: 10.3975/cagsb.2022.052701王登红 . 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报,2019 ,93 (6 ):1189 −1209 . doi: 10.3969/j.issn.0001-5717.2019.06.003WANG Denghong . Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica,2019 ,93 (6 ):1189 −1209 . doi: 10.3969/j.issn.0001-5717.2019.06.003王海涛. 喀喇沁杂岩基年代学、岩石地球化学及构造演化[D]. 北京: 中国地质大学(北京), 2014. WANG Haitao. Kalaqin complex batholiths geochronology, geochemistry and tectonic evolution[D].Beijing: China University of Geosciences (Beijing), 2014.
王书凤, 张绮玲. 柿竹园矿床地质概论[M]. 北京: 中国地质出版社, 1988. WANG Shufeng, ZHANG Qiling. Geological survey of Shizhuyuan deposit[M]. Beijing: Science Press, 1988.
王猷, 陈绍起. 昭乌达盟矿产志[R]. 呼和浩特: 内蒙古自治区第二区域地质调查队, 1986. 吴胜华. 湖南柿竹园花岗岩体远接触带Pb-Zn-Ag矿脉成矿机理[D]. 北京: 中国地质大学(北京), 2016. WU Shenghua. The metallogenic mechanism of distal contact Pb–Zn–Ag veins in Shizhuyuan ore district, Hunan Province, China[D]. Beijing: China University of Geosciences (Beijing), 2016.
徐阳东, 祁连素, 尹廷龙, 等 . 贵州晴隆冬瓜林萤石矿床微量和稀土元素地球化学特征[J]. 矿物学报,2023 ,43 (6 ):853 −860 .XU Yangdong, QI Liansu, YIN Tinglong, et al . Geochemical characteristics of trace elements and rare earth elements (REE) of the Donggualin fluorite deposit in Qinglong City, Guizhou Province[J]. Acta Mineralogica Sinica,2023 ,43 (6 ):853 −860 .许东青. 内蒙古苏莫查干敖包超大型萤石矿化区形成环境、地质特征及成矿机理研究[D]. 北京: 中国地质科学院, 2009. XU Dongqing. Geological serring, features and origin of the Sumochagan Obo super-large fluorite mineralized district[D]. Beijing: Chinese Academy of Geologecal Sciences, 2009.
张成信, 商朋强, 焦森, 等 . 内蒙古喀喇沁旗地区萤石矿床地质特征及成因探讨[J]. 中国地质调查,2019 ,6 (6 ):79 −87 .ZHANG Chengxin, SHANG Pengqiang, JIAO Shen, et al . Geological characteristics and genesis analysis of fluorite deposits in Harqin Banner area of Inner Mongolia[J]. Geological Survey of China,2019 ,6 (6 ):79 −87 .张青松, 夏明哲, 王春连, 等 . 河南省方城县莫沟萤石矿床地质特征及成因[J]. 物探与化探,2024 ,48 (1 ):15 −23 .ZHANG Qingsong, XIA Mingzhe, WANG Chunlian, et al . Geological characteristics and origin of the Mogou fluorite deposit in Fangcheng County, Henan Province[J]. Geophysical and Geochemical Exploration,2024 ,48 (1 ):15 −23 .张寿庭, 曹华文, 郑硌, 等 . 内蒙古林西水头萤石矿床成矿流体特征及成矿过程[J]. 地学前缘,2014 ,21 (5 ):31 −40 .ZHANG Shouting, CAO Huawen, ZHENG Luo, et al . Characteristics of ore-froming fluids and mineralization processes of the Shuitou fluorite deposit in Linxi, Inner Mongolia autonomous region[J]. Earth Science Frontiers,2014 ,21 (5 ):31 −40 .张苏坤, 王辉, 冯绍平, 等 . 河南省栾川县杨山萤石矿成矿作用: 来自氢氧同位素和元素地球化学的约束[J]. 西北地质,2022 ,55 (2 ):209 −216 .ZHANG Sukun, WANG Hui, FENG Shaoping, et al . Mineralization of Yangshan fluorite deposit in Luanchuan county, Henan Province: constraints from H-O isotopes and element geochemistry[J]. Northwestern Geology,2022 ,55 (2 ):209 −216 .张宇, 李永刚, 李飞, 等 . 内蒙古喀喇沁旗安家营子金矿红化蚀变的特征及其实质[J]. 岩石学报,2014 ,30 (2 ):576 −588 .ZHANG Yu, LI Yonggang, LI Fei, et al . Characteristic and essence of rubefication in wall rock alteration of Anjiayingzi gold deposit in Harqin banner, Inner Mongolia[J]. Acta Petrologica Sinica,2014 ,30 (2 ):576 −588 .赵辛敏, 高永宝, 燕洲泉, 等 . 阿尔金卡尔恰尔超大型萤石矿带成因: 来自年代学、稀土元素和Sr–Nd同位素的约束[J]. 西北地质,2023 ,56 (1 ):31 −47 . doi: 10.12401/j.nwg.2022035ZHAO Xinmin, GAO Yongbao, YAN Zhouquan, et al . Genesis of Kalqiaer super–large fluorite zone in Altyn Tagh area: Chronology, rare earth elements and Sr–Nd isotopes constraints[J]. Northwestern Geology,2023 ,56 (1 ):31 −47 . doi: 10.12401/j.nwg.2022035郑亚东, Davis G. A., 王琮, 等 . 燕山带中生代主要构造事件与板块构造背景问题[J]. 地质学报,2000 ,74 (4 ):289 −302 . doi: 10.3321/j.issn:0001-5717.2000.04.001ZHENG Yadong, DAVIS G A, WANG Cong, et al . Major Mesozoic tectonic events in the Yanshan Belt and the plate tectonic setting[J]. Acta Geologica Sinica,2000 ,74 (4 ):289 −302 . doi: 10.3321/j.issn:0001-5717.2000.04.001周虎, 付于真, 胡潜伟, 等. 琼东南盆地潜山晚三叠世辉绿岩的年代学、地球化学及其构造环境[J/OL]. 成都理工大学学报(自然科学版), 2024, 1−22. ZHOU Hu, FU Yuzhen, HU Qianwei, et al. Geochronology, geochemistry and tectonic setting of Late Triassic diabase in buried hill, Qiongdongnan Basin[J/OL]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 1−22.
朱日祥, 徐义刚, 朱光, 等 . 华北克拉通破坏[J]. 中国科学: 地球科学,2012 ,42 (8 ):1135 −1159 .ZHU Rixiang, XU Yigang, ZHU Guang, et al . Destruction of the North China Craton[J]. Scientia sinica(Terrae),2012 ,42 (8 ):1135 −1159 .Assadzadeh G E, Samson I M, Gagnon J E . The trace element chemistry and cathodoluminescence characteristics of fluorite in the Mount Pleasant Sn-W-Mo deposits: Insights into fluid character and implications for exploration[J]. Journal of Geochemical Exploration,2017 ,172 :1 −19 . doi: 10.1016/j.gexplo.2016.09.010Bau M, Möller P . Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy and Petrology,1992 ,45 :231 −246 . doi: 10.1007/BF01163114Bau M, Dulski P . Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology,1995 ,119 :213 −223 . doi: 10.1007/BF00307282Bodnar R J . Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta,1993 ,57 :683 −684 . doi: 10.1016/0016-7037(93)90378-ACao H W, Pei Q M, Zhang S T, et al . Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China[J]. Journal of Asian Earth Sciences,2017 ,137 :220 −240 . doi: 10.1016/j.jseaes.2017.01.005Clayton R N, O'neil J R, Mayeda T K . Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research,1972 ,77 :3057 −3067 . doi: 10.1029/JB077i017p03057Constantopoulos J . Fluid inclusions and rare earth element geochemistry of fluorite from south-central Idaho[J]. Economic Geology,1988 ,83 :626 −636 . doi: 10.2113/gsecongeo.83.3.626Deloule E . The genesis of fluorspar hydrothermal deposits at Montroc and Le Burc, the Tarn, as deduced from fluid inclusion analysis[J]. Economic Geology,1982 ,77 (8 ):1867 −1874 . doi: 10.2113/gsecongeo.77.8.1867Fang Y, Zou H, Bagas L, et al . Fluorite deposits in the Zhejiang Province, southeast China: The possible role of extension during the late stages in the subduction of the Paleo-Pacific oceanic plate, as indicated by the Gudongkeng fluorite deposit[J]. Ore Geology Reviews,2020 ,117 :103276 . doi: 10.1016/j.oregeorev.2019.103276Jiang B, Wang D H, Pu X L, et al . Genesis of the newly discovered Pb–Zn vein of the Sucha giant fluorite deposit in Inner Mongolia: Constraints from LA-ICP-MS trace element of pyrite and sphalerite[J]. Applied Geochemistry,2023 ,158 :105801 . doi: 10.1016/j.apgeochem.2023.105801Liu D H, Wang C L, Zhang X H, et al . Implications for the contribution of Pacific plate subduction to fluorite mineralization in southeast China: Evidence from Nanzhou large fluorite deposit, Fujian province[J]. Ore Geology Reviews,2023 ,156 :105385 .Liu S W, Santosh M, Wang W, et al . Zircon U-Pb chronology of the Jianping complex: implications for the precambrian crustal evolution history of the northern margin of North China craton[J]. Gondwana Research,2011 ,20 (1 ):48 −63 . doi: 10.1016/j.gr.2011.01.003Mcdonough W F, Sun S S . The composition of the Earth[J]. Chemical Geology,1995 ,120 :223 −253 . doi: 10.1016/0009-2541(94)00140-4Möller P, Parekh P P, Schneider H J . The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis[J]. Mineralium Deposita,1976 ,11 :111 −116 .Pei Q M, Zhang S T, Hayashi K I, et al . Permo–Triassic granitoids of the Xing’an–Mongolia segment of the Central Asian Orogenic Belt, Northeast China: age, composition, and tectonic implications[J]. International Geology Review,2018 ,60 (9 ):1172 −1194 .Pei Q M, Zhang S T, Santosh M, et al . Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China[J]. Ore Geology Reviews,2017 ,83 :174 −190 . doi: 10.1016/j.oregeorev.2016.12.022Pei Q M, Zhang S T, Hayashi K I, et al . Nature and Genesis of the Xiaobeigou Fluorite Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusions and Stable Isotopes[J]. Resource Geology,2019 ,69 :148 −166 . doi: 10.1111/rge.12191Pei Q M, Li C H, Zhang S T, et al . Vein-type fluorite mineralization of the Linxi district in the Great Xing'an Range, Northeast China: Insights from geochronology, mineral geochemistry, fluid inclusion and stable isotope systematics[J]. Ore Geology Reviews,2022 ,142 :104708 . doi: 10.1016/j.oregeorev.2022.104708Richardson C K, Holland H D . Fluorite deposition in hydrothermal systems[J]. Geochimica et Cosmochimica Acta,1979a ,43 (8 ):1327 −1335 . doi: 10.1016/0016-7037(79)90122-4Richardson C K, Holland H D . The solubility of fluorite in hydrothermal solutions, an experimental study[J]. Geochimica et Cosmochimica Acta,1979b ,43 (8 ):1313 −1325 . doi: 10.1016/0016-7037(79)90121-2Taylor H P . The application of the oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology,1974 ,69 :843 −883 . doi: 10.2113/gsecongeo.69.6.843U. S. Geological Survey (USGS). Mineral Commodity Summaries 2023[R]. U. S. Geological Survey, 2023, 1−210. https://pubs.er.usgs.gov/publication/mcs2023.
Veksler I V, Dorfman A M, Kamenetsky M, et al . Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks[J]. Geochimica et Cosmochimica Acta,2005 ,69 :2847 −2860 . doi: 10.1016/j.gca.2004.08.007Wang Y B, Cai J Q, Liu L, et al . A Permian intermediate-sulfidation epithermal Pb-Zn-Ag deposit in the northern margin of North China Craton[J]. Ore Geology Reviews,2023 ,158 :105492 . doi: 10.1016/j.oregeorev.2023.105492Zou H, Pei Q M, Li X Y, et al . Application of field-portable geophysical and geochemical methods for tracing the Mesozoic-Cenozoic vein-type fluorite deposits in shallow overburden areas: A case from the Wuliji’Oboo deposit, Inner Mongolia, NE China[J]. Ore Geology Reviews,2022 ,142 :104685 . doi: 10.1016/j.oregeorev.2021.104685