ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

多源遥感卫星数据在脉状萤石矿床中的找矿预测应用:以内蒙古水头萤石矿床为例

裴秋明, 沈家乐, 王世明, 房大任, 高永璋, 李典, 马少兵

裴秋明,沈家乐,王世明,等. 多源遥感卫星数据在脉状萤石矿床中的找矿预测应用:以内蒙古水头萤石矿床为例[J]. 西北地质,2024,57(4):121−134. doi: 10.12401/j.nwg.2024054
引用本文: 裴秋明,沈家乐,王世明,等. 多源遥感卫星数据在脉状萤石矿床中的找矿预测应用:以内蒙古水头萤石矿床为例[J]. 西北地质,2024,57(4):121−134. doi: 10.12401/j.nwg.2024054
PEI Qiuming,SHEN Jiale,WANG Shiming,et al. Exploring Luorite Veins Using Multi-source Remote Sensing Astellite Data: A Case Study from the Shuitou Fluorite Deposit in Inner Mongolia, China[J]. Northwestern Geology,2024,57(4):121−134. doi: 10.12401/j.nwg.2024054
Citation: PEI Qiuming,SHEN Jiale,WANG Shiming,et al. Exploring Luorite Veins Using Multi-source Remote Sensing Astellite Data: A Case Study from the Shuitou Fluorite Deposit in Inner Mongolia, China[J]. Northwestern Geology,2024,57(4):121−134. doi: 10.12401/j.nwg.2024054

多源遥感卫星数据在脉状萤石矿床中的找矿预测应用:以内蒙古水头萤石矿床为例

基金项目: 国家自然科学基金项目(42302104),四川省自然科学基金面上项目(2022NSFSC0410)和自然资源情报跟踪与研究项目(DD20221794)联合资助。
详细信息
    作者简介:

    裴秋明(1989−),男,博士,硕士生导师,主要从事地质资源与地质工程领域的教学与科研工作。E–mail:pqm@swjtu.edu.cn

    通讯作者:

    房大任(1989−),男,博士,工程师,主要从事自然资源领域的研究工作。E–mail:fdaren@mail.cgs.gov.cn

  • 中图分类号: P627

Exploring Luorite Veins Using Multi-source Remote Sensing Astellite Data: A Case Study from the Shuitou Fluorite Deposit in Inner Mongolia, China

  • 摘要:

    萤石是一种战略性非金属矿产,脉状萤石矿床是全球萤石产量的主要来源,应用遥感技术开展脉状萤石矿床的勘查找矿研究具有重要意义。笔者选择内蒙古中东部水头萤石矿床为研究区,在野外地质调查和前期研究的基础上,综合应用Landsat-8、ASTER、Sentinel-2和WorldView-2多源遥感影像进行成矿预测。首先,基于光谱协同理论将Landsat-8与WorldView-2融合生成协同数据,对研究区地层岩性和控矿构造进行遥感解译;利用Sentinel-2和ASTER影像进行了羟基、铁染和硅化蚀变信息提取。基于已知萤石矿点的遥感解译特征建立研究区萤石矿的遥感解译标志,在此基础上,应用GIS平台对提取特征信息进行加权叠加分析,开展研究区内萤石矿的综合预测。研究结果表明:Landsat-8与WorldView-2数据融合的假彩色合成影像可有效区分研究区萤石矿化点;由于脉状萤石矿体具有明显的垂向分带特征,在研究区地表露头中多发育硅质顶盖,因此硅化蚀变异常与羟基异常组合可作为萤石矿化的重要特征依据。GIS综合预测结果与已知矿点吻合度高,证实了应用多源遥感数据在脉状萤石矿床勘查找矿中的有效性,并预测了三处新的靶区,相关结果可为后续勘查部署提供依据,也可为其他地区的萤石遥感找矿勘查提供参考。

    Abstract:

    Fluorite is a strategic nonmetallic mineral. Vein fluorite deposits represent the primary source of global fluorite production. The application of remote sensing technology to the exploration and mineral searches of vein-type fluorite deposits is of great significance. In this paper, the Shuitou fluorite deposit in the east-central part of Inner Mongolia is selected as the study area. Based on a comprehensive field geological survey and preliminary research, the authors apply a multi-source remote sensing approach using Landsat-8, ASTER, Sentinel-2, and WorldView-2 images to make mineralization predictions. First, spectral synergy theory was employed to fuse Landsat-8 and WorldView-2 data, thereby generating synergistic data for remote sensing interpretation of stratigraphic lithology and ore-controlling tectonic information in the study area. Additionally, hydroxyl, iron-stained, and silicified alteration information was extracted from Sentinel-2 and ASTER images. Based on the remote sensing interpretation features of known fluorite mining sites, a remote sensing interpretation flag of fluorite mining in the study area was established. This was then applied to the GIS platform, which was used to analyze the extracted feature information with weighted superposition and to carry out a comprehensive prediction of fluorite mining in the study area. The results demonstrate that the false-color composite image, which has been fused with data from both Landsat-8 and WorldView-2, is an effective tool for distinguishing fluorite mineralization points. In vein-type fluorite deposits, the ore body exhibits distinct vertical zonation, while in surface outcrops, more siliceous tops develop. The combination of silica and hydroxyl alteration anomalies can be used as the basis for identifying the key characteristics of fluorite mineralization. The results of this comprehensive GIS prediction and the known ore points align well, thereby corroborating the efficacy of the utilization of multisource remote sensing data in vein-type fluorite deposits for the purposes of exploration and the search for minerals, as well as the prediction of three new target areas. The results are suitable for use as a basis for subsequent surveys and as a reference for the remote sensing of fluorite vein systems exploration in other areas.

  • 大兴安岭地区分布着面积十分巨大的岩浆岩带,其中三分之二由火山岩组成,规模如此之大的火山岩分布,其形成原因一直是众多地质学者研究的热点问题。大兴安岭作为兴蒙造山带重要组成部分,在晚古生代经历了古亚洲的闭合,随后在中生代发生了比较典型的隆起事件,在白垩纪该构造隆起达到高潮,众多学者认为该时期大兴安岭处于伸展构造环境下(葛文春等,2001孟恩等,2011Jahn et al., 2001邵济安等,2002林强等,2003Wang et al., 2006Zhang et al., 2008),但对于中-晚侏罗世构造环境研究还没有形成统一认识,主要包括挤压构造背景(赵书跃等,2004刘俊杰等,2006)和造山后伸展构造背景(陈志广等,2006孟恩等,2011程银行等,2013王杰等,2014李鹏川等,2016)等。近年来,随着研究的深入,在大兴安岭地区获得了大量的火山岩年龄数据,但研究大部分围绕大兴安岭北段,而对于中南段研究较少。钓鱼台地区位于内蒙古东部,大兴安岭中段,靠近兴安地块和松嫩地块的结合部位,其构造位置和地质特征均具有代表性。因此,笔者选取内蒙古东部钓鱼台地区的满克头鄂博组火山岩进行岩石学、年代学和地球化学等方面开展相关研究工作,以期厘定该地区火山岩的形成时代、岩浆来源和构造背景,结合前人的研究成果,为大兴安岭中段在中—晚侏罗世的地质演化提供新的证据。

    研究区位于内蒙古自治区乌兰浩特市西北部,南为乌兰浩特市,东为扎赉特旗,西为阿尔山市,研究区区域大地构造属于天山–兴蒙造山带,大兴安岭弧盆系,东乌旗-多宝山岛弧范围内,研究区靠近兴安地块和松嫩地块的结合部位,贺根山-嫩江-黑河板块缝合带位于研究区南部(图1a)。研究区主构造线方向为NE向,古生代与中生代构造线方向总体一致,均为NE向,主要缘于西伯利亚板块东南缘古生代主构造线在本区一改近EW向构造格局所致,因此构造特色显著。断裂构造为研究区主要的构造形迹,其次为褶皱构造。研究区地层出露主要以晚古生界和中生界为主,除了部分地层为碎屑岩沉积外,其余大部分为火山岩沉积,区内岩浆岩较发育,整体呈NE向展布,与区域内主构造线一致,侵入时代主要为白垩纪,以酸性岩类为主。地层单位由老至新划分为古生界石炭系格根敖包组(C2g),中生界侏罗系玛尼吐组(J3mn)、满克头鄂博组(J3m)(图1b)。

    图  1  钓鱼台地区地质简图(a据刘晨等,2017改编)
    1.第四系;2.晚侏罗系玛尼吐组;3.晚侏罗系满克头鄂博组;4.晚石炭系格根敖包组;5.花岗斑岩;6.流纹斑岩;7.正长花岗岩;8.锆石采集点;9.地球化学样品采集点;10.构造
    Figure  1.  Geological sketch of the Diaoyutai area

    本次工作主要对钓鱼台地区满克头鄂博组流纹质凝灰岩进行研究,该组主要分布于工作区西部的门德沟-托欣河一带,总体呈NE向展布,出露面积约为84.07 km2。该组为一套陆相酸性火山岩组合,其角度不整合于格根敖包组及晚三叠世中细粒二长花岗岩之上,与上覆玛尼吐组为整合接触。下部主要岩性为凝灰质含砾砂岩、沉火山角砾凝灰岩及少量复成分砾岩、流纹质火山角砾凝灰岩等,产井上大胎壳叶肢介(Magumbonia-jingshangensis)、蜂窝梁大胎壳叶肢介(Magumbonia-fengwolingensis)。上部主要岩性为流纹质火山角砾凝灰岩、流纹质晶屑凝灰岩、流纹质熔结凝灰岩及流纹岩等。其中锆石年代学样品编号为TW11,地球化学样品为工作区内新鲜的基岩中取得,排除了变质、蚀变等情况的影响,编号为DP7H01~06,同时对岩石样品进行岩石学鉴定。

    流纹质凝灰岩,晶屑玻屑凝灰结构,块状构造,部分具假流纹构造。岩石有晶屑、玻屑、岩屑等组成。晶屑为尖角状或不规则状,有的保留半自形,晶屑成分主要为斜长石、钾长石、石英和少部分的黑云母,钾长石晶屑遭泥化作用,斜长石遭绢云母化作用,有环带构造,多数石英晶屑保留熔蚀港湾状,黑云母晶屑为片状,多数黑云母遭脱铁作用,并有铁质析出,晶屑粒径为0.05~2.00 mm,少部分晶屑可达3.0 mm的角砾级的晶屑,含量约为25%。玻屑部分为粒径小于0.05 mm的火山尘质点,部分玻屑为尖角状、凹面棱角、蠕虫状或不规则状,玻屑集合体呈条纹状,微具有塑性,在刚性的晶屑周围形成绕流,假流纹构造,大部分玻屑遭脱玻化作用,有的略有偏光反应,有的重结晶成细小的长英质,不透明矿物及铁质少量,岩石遭到强烈的绢云母化作用,岩石有裂隙发育,裂隙被铁质充填,含量约为65%。岩屑主要成分为流纹岩、英安岩及安山岩,次棱角状,大小为0.20~2.00 mm,含量约为10%(图2a图2b)。

    图  2  钓鱼台地区火山岩野外(a)及镜下照片(b)
    Figure  2.  (a) Field and (b) microscopic photographs of volcanic rocks in the Diaoyutai area

    河北省廊坊市区域地质调查研究院承担锆石测年工作中单矿物分选工作。首先将每件样品破碎,并粉碎至适当粒径,通过清洗、烘干、筛选等程序,选出不同粒级的锆石晶体,镜下挑选出颗粒较好的锆石晶体进行制靶。锆石CL图像拍摄与LA-ICP-MS U-Pb定年在北京科荟测试技术有限公司完成,采用的激光剥蚀电感耦合等离子质谱仪是德国生产的Jena elite,激光器型号是美国生产的Newwave 193-UC。根据锆石的阴极发光图像、透射光图像选取无包裹体、没有裂隙的合适锆石位置,采用193 mm准分子激光器对锆石表面进行剥蚀,激光剥蚀直径是25 μm,剥蚀频率10 Hz。以He气作为剥蚀物质的载气,将剥蚀物质运送至质谱仪进行测试分析。ICPMS的高频发射器功率是1200 w,冷却气(Ar)流是9 L/min,分析的积分时间共40 s,空白采集时间30 s。样品数据处理以NIST 610和GJ-1作为内部锆石标准,软件使用ICPMSData程序(刘平华等,2010)和Isopolot程序(Ludwing, 2003)进行分析和作图。

    地球化学样品共计6件,进行主量、微量及稀土元素分析,测试由河北省区域地质矿产调查研究所实验室完成。首先对样品进行去风化壳工作,获得新鲜样品后进行粉碎,并用球磨仪研磨成粉末状,主量元素采用Axios max X射线荧光光谱仪进行测试,精度优于5%,微量元素采用电感耦合等离子体质谱仪进行测试,分析精度优于5%,技术方法满足要求,地球化学图解经过去掉烧失量重新计算作图。

    研究区流纹质凝灰岩锆石U-Pb同位素分析结果见表1。所选取锆石样品多成长柱状或方块状,透明度较好,锆石颗粒直径多为100~150 μm,锆石具有明显的岩浆成因的韵律环带(图3)。研究认为,锆石成因不同其相应的Th/U也不相同(Rubatto et al., 2000),一般岩浆锆石的Th/U大于0.4,而变质锆石的Th/U含量较低,Th/U常小于0.07。本次锆石TW11样品中的Th/U值为0.24~1.96,大部分锆石Th/U大于0.4,均表现出明显的岩浆锆石特点(王新雨等,2023代新宇等,2024)。在206Pb/238U-207Pb/235U谐和图上,部分锆石年龄谐和度差,因此不参与最后计算。其余测点年龄加权平均值为(160.3±2.2) Ma,MSWD=3.4,该年龄代表了流纹质凝灰岩形成的年龄(图4)。

    表  1  钓鱼台地区火山岩(TW11)锆石U-Pb测试结果
    Table  1.  Zircon U-Pb test results of volcanic rocks(TW11)in the Diaoyutai area
    编号含量(10−6Th/U207Pb/206Pb207Pb/235U206Pb/238U238U/232Th207Pb/206Pb207Pb/235U206Pb/238U
    PbThU比值比值比值比值年龄
    (Ma)
    年龄
    (Ma)
    年龄
    (Ma)
    TW11-0137.5162.9690.30.240.05330.0020.18780.00720.02560.00033.13342.789.8174.86.21632.1
    TW11-0244.8247.6452.10.550.05610.00290.19640.00990.02550.00031.37453.8110.2182.18.4162.32.2
    TW11-0342.6224.9609.20.370.05230.00220.17610.00760.02450.00032.16301.991.7164.76.51562
    TW11-0429.294.3139.30.680.06060.00360.39160.02360.04670.00081.12633.4123.9335.517.2294.25
    TW11-0582.2400.11221.70.330.05190.00160.17470.00530.02440.00022.4279.770.4163.54.6155.61.4
    TW11-0636.9155.2665.80.230.04930.00210.16830.00690.02490.00033.26164.9100157.96158.71.9
    TW11-0741.7148.4126.91.170.05470.00470.34620.02750.04670.00080.67466.7195.3301.820.7294.34.6
    TW11-0829.7128.9558.80.230.04830.0020.16850.00640.02550.00033.37122.396.3158.15.5162.42
    TW11-0951110.9157.70.70.06050.00320.58030.03240.06940.00121.14620.4114.8464.720.8432.37
    TW11-1061.2206.7257.20.80.05320.00310.33680.01870.04640.00070.97338.9126.8294.814.2292.44.1
    TW11-1131.3139.8495.70.280.05050.00250.17640.00850.02550.00032.8216.7112.91657.3162.42
    TW11-1220.3123.3141.90.870.05460.00440.19380.01540.02590.00050.91394.5178.7179.913.1164.83
    TW11-1338260176.41.470.04760.00470.15820.0140.02490.00050.5479.7218.5149.112.3158.63.5
    TW11-1427.492.3147.40.630.05640.00320.35240.02170.04540.00091.23477.8121.3306.516.3286.25.8
    TW11-1565.2465.6237.51.960.05450.00370.19120.01250.02590.00040.43390.8186.1177.610.71652.5
    TW11-1625.3150.5258.40.580.0480.00320.1620.01020.0250.00041.36101.9148.1152.58.9159.12.4
    TW11-1760.3278.2812.80.340.05140.0020.18780.00760.02650.00042.2257.590.7174.86.5168.52.5
    TW11-1823.7124.8289.30.430.0510.00310.18330.01130.02640.00051.72242.7144.4170.99.71682.9
    TW11-1942.1209.3649.60.320.05050.00270.17310.00940.02480.00032.59220.4119.4162.18.2158.22.1
    TW11-2092.4583801.80.730.05380.00220.18330.00740.02480.00031.43364.960.2170.96.31581.9
    下载: 导出CSV 
    | 显示表格
    图  3  钓鱼台地区火山岩部分锆石阴极发光(CL)图
    Figure  3.  CL images of partial zircon of volcanic rocks in the Diaoyutai area
    图  4  钓鱼台地区火山岩(TW11)锆石U-Pb年龄谐和图(a)及加权平均图(b)
    Figure  4.  (a) U-Pb age concordance and (b) weighted average of volcanic rocks(TW11)in the Diaoyutai area

    流纹质凝灰岩主量元素分析结果见表2,其SiO2含量为73.14%~76.64%,平均为74.98%,Al2O3含量为12.51%~14.41%,平均为13.33%,MgO含量为0.28%~1.15%,CaO含量为0.30%~2.33%,P2O5含量较低为0.03%~0.07%,全碱(ALK)含量较低为5.79%~9.04%,平均值为6.96%,同时Na2O/K2O为0.49~0.96,岩石表现为富钾特征,铝过饱和指数(A/CNK)为1.00~1.57,表现为钙碱性特征。根据火山岩TAS图解(图5a),样品全落入流纹岩范围内,根据SiO2-K2O图解(图5b),样品均显示为高钾钙碱性系列岩石。

    表  2  钓鱼台地区火山岩主量元素(%)、微量和稀土元素(10−6)分析结果
    Table  2.  Major (%), trace and REE element (10−6) analytical results of volcanic rocks in the Diaoyutai area
    样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
    岩石名称流纹质凝灰岩
    SiO275.3274.9273.147576.6474.88
    TiO20.060.060.140.230.190.29
    Al2O314.4113.6414.0412.5112.612.79
    Fe2O30.530.150.31.270.691.01
    FeO0.681.691.720.680.540.97
    MnO0.030.070.090.060.070.06
    MgO0.750.561.150.470.310.28
    CaO0.520.952.330.520.30.3
    Na2O2.682.561.92.52.184.42
    K2O3.564.43.894.874.24.62
    P2O50.040.060.070.050.030.05
    LOI1.71.071.031.182.160.71
    100.27100.1499.8199.3499.91100.4
    ALK6.246.965.797.376.389.04
    N/K0.750.580.490.510.520.96
    A/CNK1.571.281.211.211.451
    Mg#53.6135.3650.7431.4932.2520.99
    SI9.155.9812.834.813.922.48
    DI5.411.998.4918.9116.0426.17
    Li31.7334.0446.733.586.555.48
    Be3.442.2533.483.482.41
    V6.964.049.6312.0214.158.81
    Cr2.141.691.572.2714.672.52
    Co0.20.281.071.183.730.53
    Ni1.590.591.221.410.893.41
    Cu2.051.722.913.213.163.58
    Zn21.0742.3542.2980.5789.32131.63
    Ga22.9819.2216.722.4419.5918.85
    Rb148.93152.94102.92180.9199.38118.41
    Zr93.41126.5110.7251.16196.38242.26
    Nb12.4310.878.5419.6321.9913.69
    Mo1.171.820.320.533.270.36
    In0.160.030.020.030.020.02
    Ba741.571207.12595.11152.26103.65387.61
    Sr51.9205.21154.7273.0843.5354.27
    Hf3.573.13.638.438.046.74
    Ta0.980.70.61.381.680.88
    W0.450.250.261.041.562.11
    Pb2119.8811.4820.8937.0916.91
    Bi0.130.120.010.50.630.07
    下载: 导出CSV 
    | 显示表格
    续表2
    样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
    Th5.554.594.9619.421.658.77
    U1.741.571.444.056.052.1
    Au0.810.851.380.740.421.22
    Ag0.060.040.030.040.050.06
    B21.8313.2911.184.468.014.33
    F1536.74639.06880.52381.14465.67264.69
    Y1414.112.123.625.127.1
    La19.314.920.529.840.135.9
    Ce39.24237.170.664.163
    Pr3.963.254.26.528.648.84
    Nd13.911.614.622.727.134.8
    Sm2.772.482.544.074.626
    Eu0.460.530.660.360.310.79
    Gd2.512.142.223.824.265.13
    Tb0.410.360.350.610.690.78
    Dy2.362.161.983.884.44.47
    Ho0.430.390.380.80.850.84
    Er1.171.041.092.422.642.37
    Tm0.20.180.210.470.520.44
    Yb1.211.111.222.883.152.64
    Lu0.180.160.190.440.490.41
    ΣREE88.0682.387.24149.37161.87166.41
    LREE79.5974.7679.6134.05144.87149.33
    HREE8.477.547.6415.321717.08
    LREE/HREE9.49.9210.428.758.528.74
    (La/Yb)N11.449.6312.057.429.139.75
    δEu0.530.70.850.280.210.44
    δCe1.11.480.981.240.840.87
    下载: 导出CSV 
    | 显示表格
    图  5  钓鱼台地区火山岩TAS图解和SiO2-K2O图解(a据Irvine et al., 1971;b据Peccerillo et al., 1976
    Figure  5.  TAS diagram and SiO2-K2O diagram of volcanic rocks in the Diaoyutai area

    岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE)(图6a)。岩石稀土元素ΣREE=82.30×10−6~155.41×10−6,(La/Yb)N=7.42~11.44,轻重稀土分馏明显。轻稀土富集而重稀土亏损,LREE/HREE=8.52~10.42,根据稀土元素球粒陨石标准化配分图显示为明显的右倾特征(图6b),δEu=0.21~0.85,平均值为0.5,表现较为明显的负异常,其中稀土元素配分图与洋岛玄武岩(OIB)配分模式相近(Sun et al., 1989)。

    图  6  钓鱼台地区火山岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化REE图解(b)(标准化数据源自Sun等, 1989
    Figure  6.  Primitive mantle-normalized trace element spidergrams and chondrite-normalized REE distribution patterns of volcanic rocks in the Diaoyutai area

    大兴安岭地区的火山岩基本都来自于中生代,特别是中晚侏罗世和白垩纪,特别是随着锆石U-Pb测年技术的应用和日渐成熟,使该地区的火山岩的年龄特征进一步显现。郝彬等(2016)在赤峰地区厘定了晚侏罗世(160~147 Ma)和早白垩世(132~129 Ma)的火山岩,主要以中酸性火山岩为主,杨扬等(2012)同样在赤峰地区测得满克头鄂博组火山岩的U-Pb年龄分别为(156±2) Ma和(157±3) Ma,杜洋等(2017)在克一河地区测得满克头鄂博组流纹质火山岩为139 Ma,刘凯等在大兴安岭北段图里河地区测得满克头鄂博组火山岩的年龄为(156±1) Ma。同时也有大量学者获得了大兴安岭其他地区中晚侏罗世火山岩年龄,同样集中在150~170 Ma(Wang et al., 2006陈志广等,2006张吉衡, 2006张连昌等,2007苟军等,2010孙德有等,2011程银行等,2014)。本次在内蒙古中部钓鱼台地区满克头鄂博组流纹质凝灰岩采集的锆石加权平均年龄为(160.3±2.2) Ma,表明在晚侏罗世,该地区存在比较强烈的火山作用,形成了满克头鄂博组酸性的火山岩。

    根据测试分析可知,满克头鄂博组流纹质凝灰岩SiO2含量平均为74.98%,全碱(ALK)含量平均为6.96%,Na2O/K2O平均为0.64,为偏钾质,A/NKC平均为1.29,属于高钾钙碱性系列岩石,表现为壳源岩浆的特点。同时岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),特别强烈亏损Sr、P、Ti,也表明岩浆由地壳熔融产生(葛文春等,2001)。

    研究表明,斜长石的分离结晶会导致Eu和Sr的强烈亏损,二者对斜长石是强相容元素,研究区的火山岩,表现出较为明显的Eu异常,平均值为0.50,同时Sr也表现为明显亏损,P的负异常则可能表现为磷灰石的结晶分离,Ti的亏损可能受控于钛铁矿的分离结晶作用。同时在研究区内并未发现该时期基性岩的分布,说明岩浆来源不应为基性岩浆结晶分离的产物,同时岩石的Cr含量平均为4.14×10−6,Ni的含量平均为3.18×10−6,同样表现为未有幔源物质的加入(邓晋福等, 1999)。

    火山岩的Nb/U平均值为5.83,相比于大陆地壳偏低(Rudinick et al., 2003)。Nb/Ta值平均值为14.22,稍高于大陆地壳的平均值(11~12)(Xiong et al., 2005)。Rb/Sr为0.67~4.58,平均为2.25,与OIB(0.047)、原始地幔(0.03)、E-MORB(0.033)相比明显偏高(Sun et al., 1989),与壳源岩浆的范围(>0.5)一致(Tischeendorf et al., 1985),Nd/Th值的平均值为2.39,接近壳源岩石的比值(≈3)(Bea et al., 2001Rudinick et al., 2003),Ti/Zr=5.45,也均分布在壳源岩浆的范围内(Ti/Zr<20)(Wilson, 1989),Ti/Y值的平均值为48.13(Ti/Y<100)(Tischeendorf et al., 1985),其比值也属于壳源岩浆的产物特征。

    Mg#值是区分岩浆来源比较理想的参数,研究表明,典型的大洋中脊拉斑玄武岩(MORB)的Mg#值约为60,下地壳来源的溶体Mg#值均比较低,与熔融程度相关性小,一般小于40,当有地幔物质参与时,才可能导致Mg#值大于40(Rapp et al., 1995)。本次火山岩的Mg#值20.99~53.61,平均为37.41,应主要为壳源岩浆的产物,暗示存在幔源物质的参与。

    根据岩石类型判别图解,流纹质凝灰岩大部分为类似A型花岗岩(图7a),而岩石本身也具有高Si,低Sr的特点,也属于A型花岗岩特征,而根据C/MF-A/MF图解(图7b)显示,流纹质凝灰岩主要来源于变质沉积岩的部分熔融,说明岩浆的原岩均为地壳物质的熔融作用所产生的。综合分析认为钓鱼台地区满克头鄂博组流纹质凝灰岩与A型花岗岩化学特征相似,由地壳物质部分熔融而形成,可能含有少量幔源物质的参与。

    图  7  钓鱼台地区火山岩类型判别图解(a据Whalen et al., 1987; b据Alther et al., 2000
    Figure  7.  Type discrimination diagram of volcanic rocks in the Diaoyutai area

    研究区内火山岩表现富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),具有高Si特点,且Sr含量为43.53×10−6~205.21×10−6,平均为97.12×10−6(小于400×10−6),Yb为1.11×10−6~3.15×10−6,平均为2.04×10−6(大于2×10−6),且具有明显的Eu负异常,具有A型花岗岩特征,相似于造山期后花岗岩的特征,根据构造判别图解Y+Nb-Rb(图8a),流纹质凝灰岩基本位于火山弧-后碰撞花岗岩范围内,而根据A型花岗岩类型判断,部分样品为A2型范围内,其余样品基本位于A2型花岗岩与A1型接触范围内,表现为逐步向伸展构造背景之下转变。

    图  8  钓鱼台地区火山岩构造判别图解(a据Pearce et al., 1984; b据Eby, 1990
    Figure  8.  Type discrimination diagram of volcanic rocks in the Diaoyutai area

    关于大兴安岭地区中生代火山岩的形成背景一致争议较大,一种观点认为是古太平洋构造域的影响,这种观念最直接的证据就是中国东部晚中生代岩浆活动具有统一性,表明它们可能的形成受控于东部的太平洋体系(Uyeda et al., 1974Hilde et al., 1977Takahashi et al., 1983邓晋福等,1996朱勤文等,1997)。日本海沟的太平洋板块俯冲带距离大兴安岭超过1800 km,即使认为日本海并未进行弧后扩张,那么大兴安岭距离俯冲带也超过1000 km,根据前人研究成果,当板块以26 °角俯冲到600 km以后,板块中心温度将超过1200 ℃,在这种高温作用下,板块早已经软化,不再产生弹性断层,而大兴安岭与俯冲作用有关的弧火山-侵入岩要远远小于这个数字,因此,古太平洋俯冲的影响边界应截止于东亚大陆边缘,俯冲作用不能完全解释大兴安岭的岩浆活动特征(张立敏等,1983邵济安等,2000)。基于岩石圈热演化过程分析,大兴安岭地区并没有发现与太平洋板块俯冲作用相关的晚中生代安第斯型弧岩浆带,也反映出晚侏罗、早白垩世东亚陆缘的岩浆岩与太平洋板块俯冲无关(上田诚也等,1979)。

    类似于超级地幔柱作用形成的深部熔融,在区域规模上,中国东北地区燕山期岩浆岩甚至可以与大火成岩省媲美。林强等(19981999)认为古亚洲域冷板块向地幔深部运动,从而引发了热地幔柱上升是大兴安岭中生代火山岩形成的重要控制因素。环状火山岩带是地幔柱模式最为显著的特点,然而中生代岩浆作用的时空分布特征不支持该模式,并且中生代火山岩时间跨度范围较大(185~105 Ma),而传统认为地幔柱产生的岩浆作用持续时间一般较短。而且大兴安岭中生代岩浆作用明显呈带状大陆边缘分布,这一点使用地幔柱作用模式很难解释。同时按照地幔柱最为基础的理论研究,地幔柱形成的直接产物是玄武质岩浆的大规模喷溢,而大兴安岭地区中生代基性岩浆活动非常贫乏(Fan et al., 2003张连昌等,2007),因此可能与太平洋构造域也没有直接影响。

    还有一种观点就是与蒙古–鄂霍茨克洋闭合的影响有关(郭锋等,2001Fan et al., 2003)。尹志刚等(2019)在大兴安岭南段东乌旗地区测定的满克头鄂博组流纹岩,其化学特征与A型花岗岩相似,推断形成于造山后伸展环境中。何鹏等(2022)在乌拉盖地区测得满克头鄂博组火山岩形成于154~164 Ma,主要来源于壳源,同样与蒙古–鄂霍茨克洋闭合后岩石圈伸展作用有关。在内蒙古莫合尔图、满洲里、扎鲁特旗、赤峰等地也都发现了该时期具有伸展构造背景的火山岩(陈志广等,2006孟恩等,2011程银行等,2013王杰等,2014)。

    晚古生代末期蒙古–鄂霍茨克洋部分开始俯冲,并在晚三叠世开始自西向东呈剪刀式闭合(莫申国等,2006黄始琪等,2014),在侏罗世早期完成了闭合(Tomurtogoo et al., 2005),但其深部板块的俯冲后撤作用并没有立刻结束,而是持续了一段时间,虽然中生代晚期的火山岩的构造线与其不一致,但是大兴安岭地区中—晚侏罗世的火山岩,特别是大面积分布的具有A型花岗岩特征的火山岩还应与蒙古-鄂霍茨克洋闭合后板块俯冲后撤所带来的伸展减薄环境有关。

    综合研究认为,研究区内晚侏罗世满克头鄂博组的火山岩具有A型花岗岩的地球化学特征,推测岩浆来源于地壳,形成于蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用引起的地壳伸展减薄环境。

    (1)内蒙古东部钓鱼台地区满克头鄂博组火山岩年龄为(160.3±2.2) Ma,时代归属于晚侏罗世。

    (2)内蒙古东部钓鱼台地区满克头鄂博组火山岩具有A型花岗岩的地球化学特征,岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),根据微量元素及其比值,火山岩的岩浆来源于地壳沉积岩的部分熔融,可能有地幔物质参与。

    (3)结合前人研究成果,推断研究区内满克头鄂博组火山岩主要形成于伸展构造背景下,与蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用导致的岩石圈伸展作用有关。

  • 图  1   研究区位置图(a)与水头萤石矿床地质简图(b) (据Pei et al., 2017修)

    Figure  1.   (a) Location of study area and (b) simplified geological map of the Shuitou fluorite deposit

    图  2   内蒙古水头萤石矿床中矿体的垂向分带特征

    Figure  2.   Vertical zonation of ore bodies in the Shuitou fluorite deposit in Inner Mongolia, China

    图  3   同一区域Landsat-8-WorldView-2(a)与Landsat-8(b)空间分辨率对比图

    a. Landsat-8-WorldView-2北矿段影像;b. Landsat-8-WorldView-2中矿段影像;c. Landsat-8-WorldView-2南矿段影像;d. Landsat-8北矿段影像;e. Landsat-8中矿段影像;f. Landsat-8南矿段影像

    Figure  3.   (a) Comparison of the spatial resolution of Landsat-8-WorldView-2 and (b) Landsat-8 for the same region

    图  4   研究区线性增强结果

    a. NS向定向滤波结果;b. NE向定向滤波结果;c. 坡度分析结果

    Figure  4.   Linear enhancement results for the study area

    图  5   研究区线性构造提取结果图

    Figure  5.   Linear structures extraction in the study area

    图  6   蚀变矿物波谱特征图

    Figure  6.   Reflectance spectra of alteration minerals

    图  7   羟基与铁染蚀变异常信息提取结果

    基于Sentinel-2(a)和ASTER(b)羟基异常提取结果; 基于Sentinel-2(c)和ASTER(d)铁染异常提取结果

    Figure  7.   Hydroxyl and iron-stained alteration information extraction

    图  8   已知矿点Landsat-8-WorldView-2最佳波段组合影像(R-10、G-7、B-5)

    Figure  8.   The Landsat-8-WorldView-2 best band combination image (R-10, G-7, B-5) for the mineralized area

    图  9   Landsat-8-WorldView-2(R-10、G-7、B-5)去相关拉伸结果图

    Figure  9.   The de-correlation stretching image of Landsat-8-WorldView-2 (R-10, G-7, B-5)

    图  10   研究区SiO2含量分布提取图

    Figure  10.   Extracted SiO2 content in the study area

    图  11   基于GIS综合分析的萤石找矿预测图

    Figure  11.   Fluorite mineralization prediction based on comprehensive GIS analysis

    表  1   研究区线性构造解译标志

    Table  1   Linear structural deciphering signs in the study area

    走向 NNE NE NS NW NS
    影像特征 线性影像两侧具有明显的色调和纹理差异,右侧被第四系覆盖地势平坦,左侧地势起伏较大 山脊沿走向错断明显,形成延伸较短山脊 平行且直线延伸的
    沟谷
    区域地表破碎,冲沟发育 呈直线延伸的断层三角面,线性特征两侧色调和纹理差异
    较大
    最佳波段组合影像
    下载: 导出CSV

    表  2   Sentinel-2波段(2, 4, 8A, 11)特征向量值

    Table  2   Sentinel-2 band (2, 4, 8A, 11) eigenvector values

    特征向量Band 2Band 4Band 8ABand11
    PCA 10.2280080.4857970.5295310.656971
    PCA 2−0.248006−0.465049−0.3980960.750827
    PCA 30.8375120.106257−0.5326120.060057
    PCA 40.430207−0.7324210.526726−0.032271
    下载: 导出CSV

    表  3   ASTER 波段(1, 2, 3, 4)特征向量值

    Table  3   ASTER band (1, 2, 3, 4) eigenvector values

    特征向量Band 1Band 2Band 3Band 4
    PCA 10.3660910.5014760.5441080.564309
    PCA 20.3586180.3855110.247074−0.813467
    PCA 3−0.531336−0.3005640.779598−0.139893
    PCA 4−0.6745760.713838−0.187421−0.016018
    下载: 导出CSV

    表  4   Sentinel-2波段(2, 8A, 11, 12)特征向量值

    Table  4   Sentinel-2 band (2, 8A, 11, 12) eigenvector values

    特征向量Band 2Band 8ABand 11Band 12
    PCA 10.2149450.4628600.6236540.592127
    PCA 20.076734−0.741924−0.1009160.658389
    PCA 30.7753540.257379−0.5655240.112987
    PCA 40.588844−0.4111750.530146−0.450714
    下载: 导出CSV

    表  5   ASTER波段(1, 3, 4, 8)特征向量值

    Table  5   Eigenvector values for ASTER bands (1, 3, 4, 8)

    特征向量Band 1Band 3Band 4Band 8
    PCA 10.3011050.4616740.5612040.617449
    PCA 20.5018210.596173−0.075151−0.622178
    PCA 30.3136340.135309−0.8079170.480203
    PCA 40.74776−0.6427490.163316−0.032501
    下载: 导出CSV
  • 曹华文, 张寿庭, 邹灏, 等. 内蒙古林西萤石矿床石英ESR年龄及其地质意义[J]. 现代地质, 2013, 27(4): 888−894. doi: 10.3969/j.issn.1000-8527.2013.04.015

    CAO Huawen, ZHANG Shouting, ZOU Hao, et al. ESR dating of quartz from Linxi fluorite deposits, Inner Mongolia and its geological implications[J]. Geoscience,2013,27(4):888−894. doi: 10.3969/j.issn.1000-8527.2013.04.015

    曾庆栋, 刘建明, 褚少雄, 等. 大兴安岭南段多金属矿成矿作用和找矿潜力[J]. 吉林大学学报(地球科学版), 2016, 46(04): 1100−1123.

    ZENG Qingdong, LIU Jianming, CHU Shaoxiong, et al. Poly-metal mineralization and exploration potential in southern Segment of the Da Hinggan mountains[J]. Journal of Jilin University (Earth Science Edition),2016,46(04):1100−1123.

    陈江, 王安建. 利用ASTER热红外遥感数据开展岩石化学成分填图的初步研究[J]. 遥感学报, 2007(04): 601−608.

    CHEN Jiang, WANG Anjian. The pilot study on petrochemistry components mapping with ASTER thermal infrared remote sensing data[J]. Journal of Remote Sensing,2007(04):601−608.

    陈军元, 刘艳飞, 颜玲亚, 等. 石墨、萤石等战略非金属矿产发展趋势研究[J]. 地球学报, 2021, 42(02): 287−296.

    CHEN Junyuan, LIU Yanfei, YAN Lingya, et al. Research on development trend of strategic nonmetallic minerals such as graphite and fluorite[J]. Acta Geoscientica Sinica,2021,42(02):287−296.

    代晶晶, 王登红, 王海宇. 我国三稀矿产资源遥感调查综述[J]. 地质学报, 2019, 93(06): 1270−1278. doi: 10.3969/j.issn.0001-5717.2019.06.008

    DAI Jingjing, WANG Denghong, WANG Haiyu. A review of the three type rare mineral resources survey in China using remote sensing[J]. Acta Geologica Sinica,2019,93(06):1270−1278. doi: 10.3969/j.issn.0001-5717.2019.06.008

    丁俊, 李玉森, 何长宇, 等. 刚果(布)Mpassa-Moubiri铜多金属矿区多源遥感蚀变矿化异常提取[J]. 矿产勘查, 2024, 15(03): 384−394.

    DING Jun, LI Yusen, HE Changyu, et al. Extraction of multi-source remote sensing alteration-mineralization anomalies in the Mpassa-Moubiri copper-polymetallic mining district, Congo[J]. Mineral Exploration,2024,15(03):384−394.

    郭建栋, 朱谷昌, 傅朝义, 等. 基于Sentinel-2A影像对中非Cu-Co成矿带莫坎博地区地层构造解译分析研究[J]. 矿产勘查, 2022, 13(10): 1491−1497.

    GUO Jiandong, ZHU Guchang, FU Chaoyi, et al. Interpretation and analysis of stratigraphic structures in the Mokambo region of the central African Cu-Co metallogenic belt based on Sentinel-2A images[J]. Mineral Exploration,2022,13(10):1491−1497.

    韩燿徽, 王翠芝, 吴志杰, 等. 内蒙古赤峰柴胡栏子金矿田遥感地质解译和蚀变信息提取与找矿预测[J/OL]. 现代地质, 2023,1−16.

    HAN Yaohui,WANG Cuizhi,WU Zhijie,et al. Remote sensing geological interpretation,alteration information extraction,and mineral prospecting prediction in the Chaihulanzi gold ore field in Chifeng,Inner Mongolia[J/OL]. Geoscience,2023, 1−16.

    黄理善, 朱景和, 胡祥云, 等. 新疆喀喇昆仑地区伟晶岩型锂矿床综合找矿信息特征与找矿预测[J]. 矿产勘查, 2023, 14(09): 1525−1544.

    HUANG Lishan, ZHU Jinghe, HU Xiangyun, et al. Comprehensive prospecting information characteristics and prospecting prediction of pegmatite type lithium deposits in Karakoram area, Xinjiang[J]. Mineral Exploration,2023,14(09):1525−1544.

    蒋意如, 叶江, 谢璋琳, 等. 基于时序Sentinel-2影像物候特征分析的油菜种植范围提取研究[J/OL]. 成都理工大学学报(自然科学版), 2024, 1−21.

    JIANG Yiru, YE Jiang, XIE Zhanglin, et al. Rape planting extraction based on phenological characteristics analysis of time series Sentinel-2 images[J/OL]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 1−21.

    李斯, 李冬月, 鲁佳, 等. 秘鲁奇克拉约东部斑岩型铜矿带遥感找矿预测[J]. 矿产勘查, 2023, 14(11): 2135−2142.

    LI Si, LI Dongyue, LU Jia, et al. Remote sensing prospecting prediction of the porphyry copper belt, eastern Chiclayo, Peru[J]. Mineral Exploration,2023,14(11):2135−2142.

    刘道飞, 陈圣波, 陈磊, 等. 以SiO2含量为辅助因子的ASTER热红外遥感硅化信息提取[J]. 地球科学(中国地质大学学报), 2015, 40(08): 1396−1402. doi: 10.3799/dqkx.2015.124

    LIU Daofei, CHEN Shengbo, CHEN Lei, et al. Silicification information extraction based on the content of SiO2 from ASTER TIR data[J]. Earth Science——Journal of China University of Geosciences,2015,40(08):1396−1402. doi: 10.3799/dqkx.2015.124

    刘磊, 吴朦朦, 尹翠景, 等. 影像空间分辨率对蚀变信息提取结果的影响研究[J]. 遥感技术与应用, 2019, 34(5): 1040−1047.

    LIU Lei, WU Mengmeng, YIN Cuijing, et al. Influence of the Different Spatial Resolutions for Alteration Mineral Mapping[J]. Remote Sensing Technology and Application,2019,34(5):1040−1047.

    刘磊, 张婷, 尹芳, 等. 巴基斯坦胡兹达尔-拉斯贝拉铅锌成矿带遥感地质特征与成矿预测[J]. 地质学报, 2022, 96(03): 1012−1025. doi: 10.3969/j.issn.0001-5717.2022.03.017

    LIU Lei, ZHANG Ting, YIN Fang, et al. Remote sensing of geological features and mineral prospecting indicators for Pb-Zn deposits in the Khuzdar-Lasbela zone, Pakistan[J]. Acta Geologica Sinica,2022,96(03):1012−1025. doi: 10.3969/j.issn.0001-5717.2022.03.017

    刘志恒, 周绥平, 余航, 等. 融合DEM和遥感影像的黄土区断裂构造识别[J]. 遥感信息, 2023, 38(04): 57−65.

    LIU Zhiheng, ZHOU Suiping, YU Hang, et al. Geological fault detection by fusing DEM and remote sensing images in loess coverd area[J]. Remote Sensing Information,2023,38(04):57−65.

    吕毓东, 王世明, 王代强, 等. 基于全波段反射光谱的花岗岩及其主要矿物自动识别研究——以康定某隧道为例[J]. 矿产勘查, 2024, 15(04): 634−643.

    LV Yudong, WANG Shiming, WANG Daiqiang, et al. Automatic identification of granite and its main minerals based on all-band reflection spectrum: A case study of a tunnel from Kangding area[J]. Mineral Exploration,2024,15(04):634−643.

    裴秋明, 张寿庭, 曹华文, 等. 内蒙古林西地区小北沟萤石矿床地质特征及找矿潜力分析[J]. 桂林理工大学学报, 2016, 36(03): 426−434. doi: 10.3969/j.issn.1674-9057.2016.03.003

    PEI Qiuming, ZHANG Shouting, CAO Huawen, et al. Features and potential analysis of Xiaobeigou fluorite deposit in Linxi, Inner Mongolia[J]. Journal of Guilin University of Technology,2016,36(03):426−434. doi: 10.3969/j.issn.1674-9057.2016.03.003

    裴秋明 . 大兴安岭南段萤石矿成矿规律及隐伏—半隐伏矿体预测 [D]. 北京:中国地质大学(北京). 2018.

    PEI Qiuming. A study on metallogenetic regularity and prognosis of concealed ore body in southern Great Xing’an Range,Northeastern China [D]. Beijing: China University of Geosciences (Beijing),2018.

    宋坤, 王恩德, 付建飞, 等. 基于Landsat 8数据的弓长岭矿区遥感蚀变异常信息提取[J]. 金属矿山, 2022(04): 149−157.

    SONG Kun, WANG Ende, FU Jianfei, et al. Extraction of remote sensing alteration anomaly information based on Landsat 8 data in Gongchangling mining area[J]. Metal Mine,2022(04):149−157.

    宋伊圩, 王鹏, 连琛芹, 等. 基于ASTER光谱特征的岩性填图和蚀变信息提取: 念扎金矿例析[J]. 西北地质, 2021, 54(02): 126−136.

    SONG Yiwei, WANG Peng, LIAN Chenqin, et al. Lithologic mapping and alteration information extracting based on ASTER spectral signature: An example from Nianzha gold deposit[J]. Northwestern Geology,2021,54(02):126−136.

    谭荣, 徐裕敏, 徐先宇, 等. 江西德安彭山矿田遥感找矿预测研究[J/OL]. 岩石矿物学杂志, 2024, 1−8.

    TAN Rong,XU Yumin,XU Xianyu,et al. Remote sensing prospecting prediction of Pengshan ore field in De’an County,Jiangxi Province[J/OL]. Acta Petrologica et Mineralogica,2024, 1−8.

    唐超, 周可法, 张楠楠, 等. 基于Landsat-8 OLI和ASTER数据集成和融合的矿化蚀变信息提取: 以包古图斑岩型铜矿为例[J]. 地质科技情报, 2018, 37(06): 211−217.

    TANG Chao, ZHOU Kefa, ZHANG Nannan, et al. Alteration information extraction based on integration and fusion of Landsat-8 OLI and ASTER: A case study of Baogutu porphyry copper deposit[J]. Geological Science and Technology Information,2018,37(06):211−217.

    唐利, 张寿庭, 王亮, 等. 浅覆盖区隐伏萤石矿找矿预测: 以内蒙古赤峰俄力木台为例[J]. 地学前缘, 2021, 28(03): 208−220.

    TANG Li, ZHANG Shouting, WANG Liang, et al. Exploration of concealed fluorite deposit in shallow overburden areas: A case study in Elimutai, Inner Mongolia, China[J]. Earth Science Frontiers,2021,28(03):208−220.

    王登红, 代鸿章, 刘善宝, 等. 中国战略性关键矿产勘查开发进展与新一轮找矿的建议[J]. 科技导报, 2024, 42(05): 7−25.

    WANG Denghong, DAI Hongzhang, LIU Shanbao, et al. Progress in strategic critical minerals exploration and production and proposals for a new round of prospecting in China[J]. Science & Technology Review,2024,42(05):7−25.

    王辉, 范玉海, 杨金中, 等. 高分遥感技术在塔什库尔干铁矿带中的应用[J]. 西北地质, 2017, 50(02): 231−243. doi: 10.3969/j.issn.1009-6248.2017.02.024

    WANG Hui, FAN Yuhai, YANG Jinzhong, et al. The application of high resolution remote sensing technology in the Taxkorgan iron ore belt, west Kunlun mountains[J]. Northwestern Geology,2017,50(02):231−243. doi: 10.3969/j.issn.1009-6248.2017.02.024

    王吉平, 朱敬宾, 李敬, 等. 中国萤石矿预测评价模型与资源潜力分析[J]. 地学前缘, 2018, 25(03): 172−178.

    WANG Jiping, ZHU Jingbin, LI Jing, et al. Prediction model and resource potential assessment of fluorite deposits in China[J]. Earth Science Frontiers,2018,25(03):172−178.

    王晓云, 井国正, 李文君, 等. 基于多源遥感卫星数据的青海东昆仑沟里地区线性构造识别及找矿预测[J]. 地质科技通报, 2024, 43(1): 326−342.

    WANG Xiaoyun, JING Guozheng, LI Wenjun, et al. Lineament mapping and deposit prospecting in the Gouli area, East Kunlun, Qinghai Province: Using multisource remote sensing data[J]. Bulletin of Geological Science and Technology,2024,43(1):326−342.

    魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(03): 156−163.

    WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources,2021,33(03):156−163.

    吴畅宇, 代晶晶, 陈伟, 等. 内蒙古苏莫查干敖包萤石矿区遥感蚀变信息提取及其找矿指示意义[J]. 矿床地质, 2023, 42(04): 845−858.

    WU Changyu, DAI Jingjing, CHEN Wei, et al. Extraction of remote sensing alteration information and its ore prospecting indication in Sumochagan Obao fluorite mining area, Inner Mongolia[J]. Mineral Deposits,2023,42(04):845−858.

    吴志春, 叶发旺, 郭福生, 等. 主成分分析技术在遥感蚀变信息提取中的应用研究综述[J]. 地球信息科学学报, 2018, 20(11): 1644−1656. doi: 10.12082/dqxxkx.2018.180195

    WU Zhichun, YE Fawang, GUO Fusheng, et al. A review on application of techniques of principle component analysis on extracting alteration information of remote sensing[J]. Journal of Geo-information Science,2018,20(11):1644−1656. doi: 10.12082/dqxxkx.2018.180195

    武鼎, 周觅, 王俊虎, 等. 基于哨兵-2数据的白岗岩型铀矿构造蚀变特征研究——以纳米比亚罗辛矿区为例[J]. 铀矿地质, 2024, 40(02): 285−293.

    WU Ding, ZHOU Mi, WANG Junhu, et al. Structural and alteration characteristics of alaskite type uranium deposit based on Sentinel-2 data: An example from the Rossing Mine, Namibia[J]. Uranium Geology,2024,40(02):285−293.

    徐旃章, 张寿庭. 浙江省萤石矿时空演化序列与典型萤石矿田的剖析与评价[M]. 北京: 地质出版社, 2013.

    XU Zhanzhang, ZHANG Shouting. Spatiotemporal evolution of fluorite deposits and detailed investigation on the typical fluorite district in Zhejiang Province[M]. Beijing: Geological Publishing House, 2013.

    张斌, 张志, 帅爽, 等. 利用Landsat-8和Worldview-2数据进行协同岩性分类[J]. 地质科技情报, 2015, 34(03): 208−213+229.

    ZHANG Bin, ZHANG Zhi, SHUAI Shuang, et al. Lithological mapping by using the Synergestic Landsat-8 and Worldview-2 images[J]. Geological Science and Technology Information,2015,34(03):208−213+229.

    张翠芬, 杨晓霞, 郝利娜, 等. 高光谱Hyperion与高分辨率WorldView-2卫星数据协同下的岩性分类[J]. 成都理工大学学报(自然科学版), 2017, 44(05): 613−622.

    ZHANG Cuifen, YANG Xiaoxia, HAO Lina, et al. Lithological classification by synergizing hyperspectral Hyperion and high resolution WorldView-2 satellite images[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2017,44(05):613−622.

    张寿庭, 李忠权, 徐旃章. 浙江武义盆地中段萤石矿体垂向分带特征与规律[J]. 西南工学院学报, 1997, 12(04): 54−61.

    ZHANG Shouting, LI Zhongquan, XU Zhanzhang. The vertical zonality of fluorite ore-body in the middle part of Wuyi basin, Zhejiang Province[J]. Journal of Southwest Institute of Technology,1997,12(04):54−61.

    张寿庭, 曹华文, 郑硌, 等. 内蒙古林西水头萤石矿床成矿流体特征及成矿过程[J]. 地学前缘, 2014, 21(05): 31−40.

    ZHANG Shouting, CAO Huawen, ZHENG Luo, et al. Characteristics of ore-froming fluids and mineralization processes of the Shuitou fluorite deposit in Linxi, Inner Mongolia autonomous region[J]. Earth Science Frontiers,2014,21(05):31−40.

    张夏青, 王洪生, 李志阔, 等. 黑园山北部地区遥感示矿信息提取与找矿预测应用研究[J]. 矿产勘查, 2023, 14(07): 1184−1194.

    ZHANG Xiaqing, WANG Hongsheng, LI Zhikuo, et al. Applied research of extraction of remote sensing mine-indicating informationand metallogenic prediction in the north of Heiyuan Mountain, Xinjiang[J]. Mineral Exploration,2023,14(07):1184−1194.

    张彦生, 王亮, 高永璋, 等. 内蒙古林西县水头萤石矿床地质特征、类型及其开发利用价值[J]. 中国地质, 2023, 50(03): 795−805.

    ZHANG Yansheng, WANG Liang, GAO Yongzhang, et al. Geological characteristics and types of Shuitou fluorspar deposits in Linxi County, Inner Mongolia, and their development and utilization values[J]. China Geology,2023,50(03):795−805.

    赵龙贤, 代晶晶, 赵元艺, 等. 基于RS和GIS技术的西藏多龙矿集区矿山选址研究[J]. 国土资源遥感, 2021, 33(02): 182−191.

    ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, et al. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land and Resources,2021,33(02):182−191.

    赵忠海, 陈俊, 乔锴, 等. 基于分形理论的遥感蚀变信息和构造分析研究: 以黑龙江多宝山地区为例[J]. 现代地质, 2023, 37(01): 153−163.

    ZHAO Zhonghai, CHEN Jun, QIAO Kai, et al. Remote sensing alteration and structure analysis based on fractal theory: A case study of Duobaoshan area of Heilongjiang Province[J]. Geoscience,2023,37(01):153−163.

    朱亮璞, 包献华. 浙江武义萤石矿床遥感找矿预测[J]. 环境遥感, 1996(04): 267−272+324.

    ZHU Liangpu, BAO Xianhua. Prediction of fluorite deposits using remote sensing data in Wuyi area, Zhejiang Province[J]. Remote Sensing of Environment China,1996(04):267−272+324.

    Amer R , Mezayen E A , Hasanein M . ASTER spectral analysis for alteration minerals associated with gold mineralization[J]. Ore Geology Reviews, 2016, 75: 239-251.

    Eldougdoug A, Abdelazeem M, Gobashy M, et al. Exploring gold mineralization in altered ultramafic rocks in south Abu Marawat, Eastern Desert, Egypt[J]. Scientific Reports, 2023. 13(1).

    Jiang Q, Dai J J, Wang D H, et al. Lithium-bearing Pegmatite Exploration in Western Altun, Xinjiang, using Remote-Sensing Technology[J]. Acta Geologica Sinica-English Edition,2023,97(2):681−694. doi: 10.1111/1755-6724.15025

    Li S Z, Suo Y H, Li X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews,2019,192:91−137. doi: 10.1016/j.earscirev.2019.03.003

    Liu L, Feng J L, Han L, et al. Mineral mapping using spaceborne Tiangong-1 hyperspectral imagery and ASTER data: A case study of alteration detection in support of regional geological survey at Jintanzi-Malianquan area, Beishan, Gansu Province, China[J]. Geological Journal,2018,53(S2):372−383. doi: 10.1002/gj.3260

    Liu L, Yin C T, Shaheen Khalil Y, et al. Alteration Mapping for Porphyry Cu Targeting in the Western Chagai Belt, Pakistan, Using ZY1-02D Spaceborne Hyperspectral Data[J]. Economic Geology,2024,119(2):331−353. doi: 10.5382/econgeo.5045

    Noori L, Pour A, Askari G, et al. Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran[J]. Remote Sensing, 2019, 11(5).

    Pei Q M, Zhang S T, Hayashi K I, et al. Permo–Triassic granitoids of the Xing’an–Mongolia segment of the Central Asian Orogenic Belt, Northeast China: age, composition, and tectonic implications[J]. International Geology Review,2018,60(9):1172−1194. doi: 10.1080/00206814.2017.1377121

    Pei Q M, Li C H, Zhang S T, et al. Vein-type fluorite mineralization of the Linxi district in the Great Xing'an Range, Northeast China: Insights from geochronology, mineral geochemistry, fluid inclusion and stable isotope systematics[J]. Ore Geology Reviews,2022,142:104708. doi: 10.1016/j.oregeorev.2022.104708

    Pei Q M, Zhang S T, Santosh M, et al. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China[J]. Ore Geology Reviews,2017,83:174−190. doi: 10.1016/j.oregeorev.2016.12.022

    Pei Q M, Zhang S T, Hayashi K I, et al. Nature and Genesis of the Xiaobeigou Fluorite Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusions and Stable Isotopes[J]. Resource Geology,2019,69(2):148−166. doi: 10.1111/rge.12191

    Pour A B, Park T S, Park Y, et al. Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 Multispectral Satellite Imagery for Prospecting Copper-Gold Mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland[J]. Remote Sensing,2019,11(20).

    Sekandari M, Masoumi I, Pour A B, et al. Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT)[J]. Remote Sensing,2020,12(8).

    Shebl A, Abdellatif M, Badawi M, et al. Towards better delineation of hydrothermal alterations via multi-sensor remote sensing and airborne geophysical data[J]. Scientific Reports,2023,13(1).

    Sorokin A A, Zaika V A, Kovach V P, et al. Timing of closure of the eastern Mongol–Okhotsk Ocean: Constraints from U–Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect[J]. Gondwana Research,2020,81:58−78. doi: 10.1016/j.gr.2019.11.009

    Yao F J, Liu S B, Wang D H, et al. Review on the development of multi- and hyperspectral remote sensing technology for exploration of copper–gold deposits[J]. Ore Geology Reviews, 2023. 162.

    Zou H, Pei Q M, Li X Y, et al. Application of field-portable geophysical and geochemical methods for tracing the Mesozoic-Cenozoic vein-type fluorite deposits in shallow overburden areas: A case from the Wuliji’Oboo deposit, Inner Mongolia, NE China[J]. Ore Geology Reviews,2022,142:104685. doi: 10.1016/j.oregeorev.2021.104685

图(11)  /  表(5)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  14
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 修回日期:  2024-05-29
  • 录用日期:  2024-05-29
  • 网络出版日期:  2024-06-07
  • 刊出日期:  2024-08-19

目录

/

返回文章
返回