ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

萤石矿床成因研究方法及发展趋势

张建芳, 陈浩然, 伍江涵, 王振, 张琨仑, 吕鹏瑞, 曹华文, 邹灏

张建芳,陈浩然,伍江涵,等. 萤石矿床成因研究方法及发展趋势[J]. 西北地质,2024,57(4):97−112. doi: 10.12401/j.nwg.2024055
引用本文: 张建芳,陈浩然,伍江涵,等. 萤石矿床成因研究方法及发展趋势[J]. 西北地质,2024,57(4):97−112. doi: 10.12401/j.nwg.2024055
ZHANG Jianfang,CHEN Haoran,WU Jianghan,et al. Review on the Progress of Genetic Research Methods of Fluorite Deposits[J]. Northwestern Geology,2024,57(4):97−112. doi: 10.12401/j.nwg.2024055
Citation: ZHANG Jianfang,CHEN Haoran,WU Jianghan,et al. Review on the Progress of Genetic Research Methods of Fluorite Deposits[J]. Northwestern Geology,2024,57(4):97−112. doi: 10.12401/j.nwg.2024055

萤石矿床成因研究方法及发展趋势

基金项目: 浙江省级基础性公益性战略性地质资金(省资2023019),四川省自然资源厅科研项目(KJ-2023-011),四川省自然科学基金杰出青年科学基金(23NSFJQ0162)和国家自然料学基金(42272129)联合资助。
详细信息
    作者简介:

    张建芳(1985−),男,硕士,高级工程师,主要从事矿床成因和矿产勘查工作。E−mail:zhjianfang@126.com

    通讯作者:

    邹灏(1986−),男,博士,教授,主要从事矿物学、岩石学、矿床学的教学和科研工作。E−mail:zouhao@cdut.edu.cn

  • 中图分类号: P578.3

Review on the Progress of Genetic Research Methods of Fluorite Deposits

  • 摘要:

    萤石是重要的战略性非金属矿产,深化其成因理论的研究至关重要。笔者对萤石矿床成因研究方法的进展进行综述,以期促进国内萤石矿床成因的深入研究,助力新一轮找矿突破战略行动。在对全球和中国的萤石矿床分布特征和成因类型进行归纳总结的基础上,重点从流体包裹体、成矿流体和物质来源、成矿年代学等方面综述了目前的主要研究现状和进展。总结了萤石的流体包裹体组合和单个流体包裹体原位成分分析技术,探讨了H-O-Sr-Ca-Nd同位素示踪物源,讨论了原位微量稀土元素对成矿过程的精细刻画等。笔者认为应该重点使用原位分析技术对流体包裹体和萤石成分进行测试,以便更精细的刻画成矿流体组分的演化过程。萤石Lu-Hf、U-Pb、Sm-Nd、(U-Th)/He和裂变径迹年代学不仅对精确获得含萤石的矿床成矿年龄至关重要,而且在矿产勘查中对矿床抬升剥蚀的正确认识也十分有必要。

    Abstract:

    Fluorite is a strategically important nonmetallic mineral, the research on its genesis is of significant importance. This paper reviews the progress of genetic research methods in order to promote the in-depth study of the genesis of domestic fluorite deposits and make a contribution to a new round of prospecting breakthrough strategy. The distribution characteristics and genetic types of fluorite deposits worldwide and in China are summarized. Furthermore, the current status and progress of the main research methods in fluid inclusions, ore-forming fluids and material sources, and ore-forming geochronology are reviewed. The fluid inclusion assemblage and in-situ composition techniques of single fluid inclusion of fluorite are summarized, and the source of H-O-Sr-Ca-Nd isotope tracer and the fine reflection of in-situ trace rare earth elements on the mineralization process are discussed. The author proposes that the in-situ analysis technique should be employed to test the fluid inclusions and fluorite components, thereby enabling a more accurate description of the evolution process of ore-forming fluid components. The application of Lu-Hf, U-Pb, Sm-Nd, (U-Th)/He and fission track geochronology of fluorite is not only important for the accurate determination of the ore-forming age of fluorite-bearing deposits, but also necessary for the correct interpretation of deposit uplift and denudation in ore-forming exploration.

  • 研究区南临祁连造山带,北接中亚造山带,其所处构造环境的特殊性对区域构造演化及板块运动有着重大意义。该地区岩浆演化期次及构造背景研究较为薄弱且存在较大争议,前人通过对合黎山地区五坝和张家窑岩体锆石U-Pb年代学及同位素地球化学特征研究,其年龄介于432~397 Ma,为中志留世—早泥盆世,认为阿拉善地块西南缘早古生代很可能受控于祁连造山带的构造演化,处于后碰撞拉伸环境(王增振等,2020);通过对龙首山西山头窑地区三期岩体锆石U-Pb年代学研究,其年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世,处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022);而强利刚等(2019)认为龙首山地壳在晚古生代处于拉伸的稳定阶段。对合黎山地区岩浆岩形成时代及构造环境研究存在重要意义。龙首山成矿带区内侵入岩发育广泛,主要为酸性、中酸性岩石,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主(张甲民等,2017),前人对龙首山成矿带的研究工作主要以东段为主,且主要集中在早古生代(牛宇奔等,2018刘文恒等,2019王增振等,2020)。而不同构造环境下的侵入岩具有不同的地球化学特征及同位素特征,能有效反映其岩浆源区及构造演化等重要信息。笔者在前人工作基础上对该区花岗闪长岩开展了锆石U-Pb年代学、岩石地球化学及Lu-Hf同位素特征的研究,确定该岩体形成时代并探讨这些黑云母花岗闪长岩的成因问题及龙首山成矿带西南缘构造环境特征。

    合黎山地处阿拉善地块龙首山成矿带西南缘,大地构造位置属于华北板块西南边缘(图1a)(谭文娟等,2012),北以龙首山北缘断裂与潮水中新生代断陷相邻(汤中立等,1999),南以南缘断裂与走廊过渡带分开。区内成矿条件有利(焦建刚等,2007)。龙首山成矿带是中国西北重要的铀成矿带(王承花,2010),同时中国著名的金川镍矿也位于该成矿带内(强利刚等,2019张照伟等,2023)。

    图  1  阿拉善地块大地构造简图(a)及罗城地区地质简图(b)
    Figure  1.  (a) Geostructural map of Alxa Block and (b) geological map of Luocheng Area

    区内地质构造复杂,次级构造发育,逆冲构造及伸展构造叠加,总体构造为NWW向(甘肃省地质局,1974),出露地层包括前震旦系龙首山群的角闪岩相–绿片岩相变质岩等中级区域变质岩系,其与上覆地层均为不整合接触;震旦系下统及中上统的云母石英片岩、变粒岩及变质砂岩、大理岩等为主的浅变质岩,其下统与中—上统之间多为断层接触;侏罗系青土井群的砂岩、砂砾岩等为主的陆源碎屑岩夹煤层,其与上覆地层及下伏地层均为不整合接触;白垩系以砂砾岩、泥岩等为主的碎屑岩;第三系以砾岩、含砾砂岩为主的沉积岩及第四系松散堆积物(图1b)。

    测区内岩浆岩发育广泛,主要为酸性、中酸性岩石为主,侵入活动主要是在加里东中期及华力西期,以华力西期侵入岩最为发育,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主,其中以花岗闪长岩出露最为广泛,其次为英云闪长岩。罗城岩体主要为花岗闪长岩发育,其中可见花岗岩、闪长岩呈脉状发育。区内五坝和张家窑岩体锆石U-Pb年代学年龄介于432~397 Ma,为中志留世—早泥盆世(王增振等,2020);西山头窑地区岩体锆石U-Pb年代学年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世。

    罗城岩体主要位于甘肃省高台县罗城镇北侧,其岩性主要为黑云母花岗闪长岩,野外岩体出露较为完整,笔者选取了合黎山地区高台县罗城幅的黑云母花岗闪长岩进行锆石U-Pb定年分析,共采集样品5件,其中岩石年龄同位素样品1件,并在岩石年龄同位素样品采集处配套采集岩石地球化学样品4件。样品采集地理坐标:E 99°43′39″,N 39°46′30″和E 99°41′43″,N 39°48′20″。为确保锆石数据准确性,样品均为未风化蚀变的新鲜岩石。

    岩石新鲜面为灰白色,具半自形粒状结构,块状构造(图2a)。主要矿物及含量:斜长石(45%),石英(20%),碱性长石(15%),普通角闪石(15%),黑云母(5%)。斜长石粒径约0.30~1.30 mm,呈半形粒状、板状,具聚片双晶,表面浑浊,微裂隙发育,次生绢云母化,均匀分布。碱性长石粒径约0.20~1.10,呈半自形板状,具卡式双晶,少量分布。石英粒径约0.10~2.00 mm,呈他形粒状,波状消光,沿长石粒间分布。普通角闪石粒径约0.20~1.60 mm,呈他形柱状,黄褐色,截面呈菱面体状,具角闪石式解理,绿泥石化,沿长英质粒间定向分布。黑云母粒径约0.15~2.25 mm,呈鳞片状、片状,褐黄色-红褐色,沿长英质粒间定向分布。副矿物有磷灰石、绿帘石(图2b、图2c、图2d)。

    图  2  黑云母花岗闪长岩手标本及镜下照片
    a.黑云母花岗闪长岩手标本; (b,d).正交偏光镜下特征; c.单偏光镜下特征;Qtz.石英; Bt.黑云母; P1.斜长石; Kfs.钾长石; Hbl.角闪石
    Figure  2.  Biotite granodiorite hand specimen and microscopic photograph

    样品的锆石挑选、制靶、CL照相由西安瑞石地质科技有限公司完成,采用标准重矿物分离技术分选出重矿物,随后在双目镜下挑选出锆石颗粒,将不同特征的锆石颗粒粘在双面胶上,并用无色透明的环氧树脂固定,待其固化之后将表面抛光至锆石内部暴露。然后拍摄阴极发光图像、透射光图像和反射光图像,选取分析点位。

    锆石U-Pb定年和Hf同位素组成分析在中国地质调查局西安地质调查中心岩浆作用成矿与找矿重点实验室完成。锆石U-Pb定年在LA-ICP-MS仪器上用标准测定程序进行,样品采用激光剥蚀等离子体质谱仪原位分析锆石微区的铀铅比值(206Pb/238U、207Pb/235U和207Pb/206Pb)(李艳广等,2015)并通过Glitter计算程序计算锆石的年龄及标准偏差;应用Isoplot(Ludwig, 2003)计算程序对锆石样品的206Pb/238U年龄和207Pb/235U年龄在谐和图上进行投图,并计算谐和年龄测点的加权平均值。

    锆石Hf同位素组成运用Neptune型多接收电感耦合等离子体质谱仪和GeolasPro型激光剥蚀系统联用的方法完成(袁洪林等,2007),所选测试位置均与锆石U-Pb测点位置相近,测试束斑直径为32 μm,采用国际标准锆石91500进行监控和样品外部校正。

    主量元素和微量元素分析测试在中国地质调查局西安矿产资源调查中心完成,主量元素采用X荧光光谱仪进行分析,稀土和微量元素采用等离子质谱仪进行分析,测试结果见表1

    表  1  罗城黑云母花岗闪长岩主量元素(%)、微量元素(10−6)、稀土元素(10−6)分析结果表
    Table  1.  Analysis results of major elements (%), trace elements (10−6) and rare earth elements (10−6) in Luocheng biotite granodiorite
    样品编号LCYT03LCYT04LCYT05LCYT06
    SiO2 59.84 58.75 58.52 59.09
    Al2O3 16.91 17.25 17.28 17.28
    Fe2O3 7.13 7.82 7.55 7.61
    CaO 6.33 6.70 6.93 6.68
    MgO 3.13 3.38 3.53 3.34
    K2O 1.87 1.49 1.49 1.54
    Na2O 2.52 2.60 2.55 2.60
    P2O5 0.13 0.15 0.15 0.15
    TiO2 0.68 0.74 0.77 0.75
    MnO 0.13 0.14 0.14 0.14
    LOI 1.03 0.74 0.85 0.60
    总和 99.70 99.76 99.75 99.79
    K2O+Na2O 4.40 4.09 4.04 4.15
    K2O/Na2O 0.74 0.57 0.59 0.59
    δ 1.15 1.06 1.05 1.07
    A/NK 2.74 2.93 2.98 2.9
    A/CNK 0.97 0.97 0.96 0.97
    Rb 61.1 49.2 40.6 46.9
    Th 3.37 4.58 5.70 8.46
    U 0.79 0.72 0.74 0.75
    Nb 4.48 4.76 4.64 4.64
    Sr 376 429 413 403
    Zr 84.3 112 88.6 118
    Hf 2.34 2.79 2.23 2.97
    F 454 320 663 360
    Sn <1.80 <1.80 <1.80 <1.80
    Cr 12.9 17.6 14.1 14.1
    Li 16.8 18.3 17.3 17.4
    Be 0.76 0.87 0.86 0.79
    V 166 186 180 174
    Co 15.3 16.2 15.6 15.3
    Ni 8.36 10.9 11.2 10.4
    Ga 16.6 17.7 16.3 16.4
    Cs 2.52 2.92 2.69 3.15
    Ta 0.33 0.35 0.34 0.35
    W 2.30 1.91 1.81 1.80
    Bi 0.073 0.070 <0.050 0.057
    La 12.0 14.3 12.5 12.5
    Ce 27.1 28.9 25.5 25.7
    Pr 3.60 3.59 3.32 3.21
    Nd 16.4 15.3 14.6 14.1
    Sm 3.91 3.37 3.28 3.14
    Eu 1.05 1.07 1.05 1.03
    Gd 4.14 3.54 3.49 3.41
    Tb 0.66 0.55 0.54 0.52
    Dy 4.04 3.28 3.24 3.15
    Ho 0.83 0.68 0.67 0.65
    Er 2.54 2.03 2.02 1.95
    Tm 0.36 0.29 0.29 0.28
    Yb 2.33 1.88 1.87 1.84
    Lu 0.36 0.30 0.30 0.29
    Y 21.3 17.2 16.9 16.4
    ΣREE 79.32 79.08 72.67 71.77
    LREE 64.06 66.53 60.25 59.68
    HREE 15.26 12.55 12.42 12.09
    LREE/HREE 4.20 5.30 4.85 4.94
    (La/Yb)N 3.69 5.46 4.79 4.87
    δEu 0.80 0.95 0.95 0.96
    δCe 1.01 0.99 0.97 0.99
    下载: 导出CSV 
    | 显示表格

    样品的锆石颗粒的CL图像(图3)显示所选的锆石为透明的自形晶体,为无色透明或浅黄色,大部分锆石结晶较好,短柱状晶形,阴极发光电子图像特征均显示出典型的岩浆结晶韵律环带结构。

    图  3  锆石样品测点CL照片
    Figure  3.  CL photograph of the zircon sample

    本次所选锆石样品25颗,均为有效样品,黑云母花岗闪长岩锆石U-Pb分析测试结果见表2,锆石Th含量为34.81×10−6~129.66×10−6,U含量为52.88×10−6~147.36×10−6,Th/U值为0.55~0.97,均大于0.4,说明锆石为岩浆成因(吴元保等,2004)。锆石微量元素测试结果见表3,其显示出重稀土富集,相对亏损轻稀土元素的特征,显示典型的岩浆锆石成因特征(Hoskin,2000)。锆石谐和图反映出锆石U-Pb年龄数据分布比较集中且谐和程度较好(图4a),所有数据协和度均符合要求,证明数据均有效。通过数据分析得到206Pb/238U加权平均年龄为(289±3)Ma,(MSWD=0.57),代表岩浆结晶年龄(图4b)。

    表  2  罗城花岗闪长岩(LCYT01)锆石LA-ICP-MS测年结果
    Table  2.  Zircon LA-ICP-MS dating results of Luocheng granodiorite (LCYT01)
    测点号含量(10−6Th/U同位素比值同位素年龄
    PbThU207Pb/206Pb±1δ207Pb/235U±1δ206Pb/238U±1δ208Pb/232Th±1δ207Pb/206Pb±1δ207Pb/235U±1δ206Pb/238U±1δ208Pb/232Th±1δ
    LCYT00115.9679.2881.670.970.051530.004230.320790.025510.045110.001020.014520.00048264.4177.81282.519.61284.56.28291.39.56
    LCYT00214.2547.2872.220.650.052020.00460.329390.028270.045890.001080.012690.00063286.1189.7289.121.59289.26.6825512.64
    LCYT00312.0434.8163.550.550.05240.006970.324630.042270.04490.001340.013750.00088302.7277.82285.532.4283.28.26276.117.48
    LCYT00419.9293.9998.060.960.049230.004980.317720.031380.046780.001140.014320.00059158.7220.85280.124.18294.77.05287.511.7
    LCYT00511.3741.9157.970.720.05170.007620.333650.048170.046780.001520.016110.00095272.2306.78292.436.67294.79.3932318.95
    LCYT00616.7980.9285.360.950.050210.004380.312610.026510.045130.001030.013450.00049204.9190.68276.220.51284.66.352709.73
    LCYT00727.09129.66147.360.880.054120.003560.3420.02160.045820.000960.013840.00042375.8141.54298.716.34288.85.93277.88.4
    LCYT00812.5145.5565.960.690.050290.00430.320150.02660.046160.001060.015350.00062208.3187.1628220.46290.96.51307.812.31
    LCYT00913.6945.6872.340.630.051530.004440.330810.027630.046560.001090.015190.00068264.4186.14290.221.08293.36.73304.713.59
    LCYT01012.6846.0266.650.690.051150.004720.330380.02970.046850.001110.014570.00063247.4199.46289.922.67295.16.83292.512.53
    LCYT01113.0949.9268.970.720.047920.005630.309370.035630.046820.001220.014730.0008794.2257.92273.727.632957.49295.617.3
    LCYT01212.5347.865.530.730.05210.004820.336830.030330.046890.001120.016060.00063289.7198294.823.04295.46.8732212.57
    LCYT01318.3192.7198.110.940.051780.00390.329560.023990.046180.0010.013620.00044275.6163.56289.218.322916.19273.38.78
    LCYT0141993.38105.350.890.053290.003980.32730.023580.044570.000990.014330.00046340.9160.32287.518.04281.16.09287.69.21
    LCYT01515.1651.5380.720.640.049480.004120.305210.024720.044760.000980.014240.00055170.8183.56270.519.23282.36.06285.711.06
    LCYT01614.0155.4376.330.730.05030.005370.308480.032080.044510.001180.012860.00065209229.9627324.9280.77.27258.212.91
    LCYT01711.345.8860.720.760.052390.004990.332310.030790.046040.001150.012880.0006302.4203.45291.323.47290.17.1258.611.9
    LCYT01816.3873.4288.240.830.053210.00370.32920.022010.04490.000960.014090.00044337.7149.5228916.81283.25.92282.78.81
    LCYT01915.8176.5880.920.950.051660.003780.328130.023170.04610.000990.014660.00044270.4159.18288.117.72290.66.07294.28.75
    LCYT02013.253.4268.410.780.050230.004230.315340.025820.045570.001030.01510.00054205.7184.61278.319.93287.36.36302.910.68
    LCYT02110.7736.8552.880.700.050950.00440.322250.027020.045920.001050.013670.00064238.6187.4283.620.75289.46.46274.312.67
    LCYT02213.9547.6168.780.690.052830.003880.343720.024360.047240.001020.013890.00055321.3157.9430018.41297.66.25278.810.94
    LCYT02323.03103.73117.270.880.052350.003130.336940.019260.046730.000940.014210.00041300.6130.55294.914.63294.45.77285.28.1
    LCYT02416.8156.8885.690.660.053870.003470.341950.021130.046090.000950.013370.00048365.6138.52298.615.99290.55.83268.49.65
    LCYT02514.867.0576.380.880.052030.003840.330110.023590.046080.000990.014190.00047286.8160.34289.718290.46.11284.89.33
    下载: 导出CSV 
    | 显示表格
    表  3  罗城花岗闪长岩锆石分析点位微量元素(10−6)测试结果
    Table  3.  Test results of trace elements (10−6) at zircon analysis points of Luocheng granodiorite
    测点号NbLaCePrNdSmEuGdTbDyHoErTmYbLuTa
    LCYT0011.100.068.230.050.230.491.2827.740.78107.2740.27181.1235.88339.1766.630.28
    LCYT0020.490.046.690.032.073.330.4011.138.8267.1426.56126.0227.32290.7857.980.24
    LCYT0030.610.006.260.020.492.640.297.434.6545.1617.3587.1319.02192.3638.240.27
    LCYT0040.630.069.250.080.440.691.1525.903.00112.8844.64196.4439.56377.0971.610.26
    LCYT0050.550.006.420.031.794.980.368.459.9940.5119.2787.5319.76189.5237.300.23
    LCYT0060.520.019.030.050.631.340.9124.923.67102.5838.80175.9835.30323.6465.730.28
    LCYT0070.460.0217.040.111.552.650.8524.046.96113.4945.17206.5843.34418.8482.250.41
    LCYT0081.370.007.310.031.493.080.4610.508.6950.8520.8697.3221.63218.5042.570.30
    LCYT0090.530.047.760.020.671.580.247.994.0643.0818.5685.8119.58193.5236.740.31
    LCYT0100.650.007.390.030.401.280.2411.383.4352.6720.9798.2122.28213.9442.280.26
    LCYT0110.670.017.650.050.442.140.4311.654.0854.2422.14101.0221.59221.8241.650.21
    LCYT0120.580.247.210.070.731.880.489.624.4351.7020.95100.7022.19222.3343.830.39
    LCYT0133.010.019.210.081.562.820.9524.933.94113.5645.37198.1541.36399.3271.970.38
    LCYT0140.660.019.650.071.793.631.1528.879.60117.6544.48198.8541.00392.0576.110.34
    LCYT0150.580.008.440.022.164.680.3310.509.8352.8820.95100.9822.47230.3244.420.31
    LCYT0160.740.007.730.040.491.290.4012.464.0861.4326.20120.9726.57261.9652.640.38
    LCYT0170.730.006.930.020.872.130.4312.065.0454.0723.41106.0523.33232.8844.250.33
    LCYT0180.840.018.090.060.571.820.8320.894.5892.5836.57172.3935.31347.5267.400.29
    LCYT0190.610.008.040.061.533.320.9726.287.25103.3341.09175.9336.48349.5666.290.23
    LCYT0200.470.007.310.021.725.060.3914.228.7863.2324.83115.4925.21238.9145.300.22
    LCYT0210.570.015.700.020.691.870.5310.945.1553.1621.38104.6222.91221.5645.690.30
    LCYT0220.530.046.600.030.271.730.4612.333.8967.2425.79122.8627.12273.0052.930.28
    LCYT0230.700.049.560.090.571.921.1827.415.00122.9649.00227.3746.39456.0789.130.38
    LCYT0241.140.048.630.021.854.190.289.3010.4948.6820.0695.2320.74214.1041.880.34
    LCYT0251.120.027.630.071.412.911.0422.234.0193.4736.23160.6534.00327.8865.050.25
    下载: 导出CSV 
    | 显示表格
    图  4  锆石样品U-Pb谐和图
    Figure  4.  U-Pb Concord diagram of zircon samples

    在LA-ICP-MS锆石U-Pb测年的基础上,对黑云母花岗闪长岩样品25颗锆石测点进行了锆石微区Hf同位素测定。测点的数据分析结果(表4)。176Yb/177Hf值介于0.0122223510.042050552176Lu/177Hf值介于0.000424710.001378472,均小于0.002,说明锆石在形成后具有很少的放射成因Hf的积累。因此,锆石 176Hf/177Hf值可能代表该锆石形成时的176Hf/177Hf值(吴福元等,2007),176Hf/177Hf值介于0.2827260480.282787588εHf(t)值均为正值,介于+4.37~+6.88,平均为+5.6,通过锆石Hf同位素εHf(t)-U-Pb年龄t(Ma)图解(图5a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或新生地壳,Hf同位素一阶段模式年龄T(DM1)分布范围为615.4~703.0 Ma,平均值为660.5 Ma,地壳模式年龄T(DMC)分布范围为808.6~952.5 Ma,平均值为882.8 Ma,地壳模式年龄T(DMC)较集中(图5b)。

    表  4  黑云母花岗闪长岩锆石Hf同位素分析结果
    Table  4.  Zircon Hf isotope analysis results of biotite granodiorite
    分析点t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σHfiεHf (0εHf (t±1σT(DM1T(DMC±1σfLu/Hf
    LCYT01-01284.50.0185586530.0006254970.2827722620.00001941500.2827690.0799942726.141620.679525634.4846.80.06673-0.9583
    LCYT01-02289.20.0213508130.000729880.2827422290.00001733430.282738-0.9821200125.160500.606701676.8910.50.065471-0.95134
    LCYT01-03283.20.0185419030.00063320.2827615260.00001621770.282758-0.2996866935.732140.56762649.0871.00.062774-0.95779
    LCYT01-04294.70.0220882280.0007384730.2827875880.00001740890.2827840.6219991686.882540.609311615.4808.60.063449-0.95077
    LCYT01-05294.70.0164732050.0006104080.2827343750.00001781010.282731-1.2598643495.024450.623354685.4922.90.066228-0.95931
    LCYT01-06284.60.030878080.001030040.2827487010.00001693800.282743-0.7532266325.233860.59283673.2902.50.065308-0.93133
    LCYT01-07288.80.0197257310.0006696610.2827592090.00001664090.282756-0.3816205935.764270.582432652.8873.10.063558-0.95536
    LCYT01-08290.90.0257500310.0008673350.2827429880.00001806780.282738-0.9552588135.197570.632374678.1909.30.066791-0.94218
    LCYT01-09293.30.0218180770.000740690.2827526590.00001701880.282749-0.613269935.615880.595659662.8885.40.06456-0.95062
    LCYT01-10295.10.0318103150.0010723330.2827600720.00001852730.282754-0.351094865.852240.648455658.3872.00.067113-0.92851
    LCYT01-112950.0323206950.001060830.2827700290.00001875880.2827640.0010278596.204710.656558644.5850.30.066935-0.92928
    LCYT01-12295.40.0257539410.000840720.2827446190.00001950560.28274-0.8975709255.357100.682698675.5902.80.068675-0.94395
    LCYT01-132910.0420505520.0013784720.2827446020.00001883510.282737-0.8981748115.158400.659227684.9911.50.069048-0.9081
    LCYT01-14281.10.0259173880.0008951120.2827772580.00001732290.2827730.2566710656.194730.606302631.9840.90.064172-0.94033
    LCYT01-15282.30.0122223510.000424710.2827306610.00001858930.282728-1.3911864274.659460.650625687.1936.40.06705-0.97169
    LCYT01-16280.70.0260717950.000893780.2827260480.00001877770.282721-1.55432734.374300.65722701.7952.50.068661-0.94041
    LCYT01-17290.10.0263774940.0008923340.2827533610.00001776710.282749-0.5884351115.542650.621848664.4887.50.065933-0.94051
    LCYT01-18283.20.0249169180.0008804570.2827789380.00002032120.2827740.3160932876.301970.711244629.4835.90.068288-0.9413
    LCYT01-19290.60.0182103230.0006337710.2827818010.00001753640.2827780.4173397936.609510.613775621.6822.40.063668-0.95775
    LCYT01-20287.30.018020850.0006154230.2827727750.00001705720.2827690.0981199366.222220.597003633.5843.90.06338-0.95897
    LCYT01-21289.40.0203842770.0007181130.2827423720.00001847100.282738-0.97704095.172150.646485676.4909.90.067032-0.95213
    LCYT01-22297.60.025947460.0008813540.2827600120.00001615870.282755-0.3532357355.941050.565556655.2868.50.063322-0.94124
    LCYT01-23294.40.0294271320.0010148530.2827266720.00002064820.282721-1.5322865044.666560.722688703.0944.40.071574-0.93234
    LCYT01-24290.50.0185395080.0006411150.2827699110.00001629770.282766-0.0031621896.185170.570421637.8848.50.062508-0.95726
    LCYT01-25290.40.0218810360.0007494570.2827411580.00001557880.282737-1.0199706465.144730.545259678.6912.30.063102-0.95004
    下载: 导出CSV 
    | 显示表格
    图  5  罗城黑云母花岗闪长岩锆石εHft)-t(Ma)图解(a)(据李良等,2018)和地壳模式年龄T(DMC)统计直方图(b)
    Figure  5.  (a)Zircon εHf(t)-t (Ma) diagram (According to LI Liang et al., 2018) and (b) crustal model age T (DMC) statistical histogram (b) of Luocheng biotite granodiorite

    合黎山地区罗城黑云母花岗闪长岩的主量元素分析结果见表1,其SiO2含量介于58.52%~59.84%,Al2O3含量介于16.91%~17.28%。全碱含量Na2O+K2O介于4.04%~4.40%,相对富碱,Na2O含量介于2.52%~2.60%,K2O含量介于1.49%~1.87%,富钠贫钾。里特曼指数δ介于1.05~1.15。根据CIPW标准矿物计算(Le Maitre,1979),石英(Qtz)含量介于18.97%~20.69%,碱性长石(A)含量介于11.6%~14.66%,斜长石(Pl)含量介于47.86%~50.76%,在Q-A-P图解中(图6a),处在花岗闪长岩区域中。SiO2-(Na2O+K2O-CaO)图解(图6b)反应岩石属于钙性系列。SiO2-K2O图解(图6c)反映岩石主体属于钙碱性系列。铝饱和指数A/CNK比较集中,介于0.96~0.97,A/NK介于2.74~2.98,在A/CNK-A/NK图解中(图6d),处在准铝质范围内。

    图  6  罗城黑云母花岗闪长岩Q-A-P图解(a)(据Streckeisen, 1976)、SiO2-(Na2O+K2O-CaO)图解(b)(据Peccerillo et al., 1976)、SiO2-K2O图解(c)(据Peccerillo et al., 1976)及A/NK-A/CNK图解(d)(据Maniar et al.,1989
    Figure  6.  (a) Q-A-P diagram of Luocheng biotite granodiorite, (b) SiO2- (Na2O+K2O-CaO) diagram, (c) SiO2-K2O diagram and (d) A/NK-A/CNK diagrams

    合黎山地区罗城黑云母花岗闪长岩的稀土元素分析结果见表1,其稀土元素总量ΣREE在71.77×10−6~79.32×10−6之间,平均为75.71×10−6。LREE/HREE值在4.20~5.30之间,平均为4.82,相对富集轻稀土,亏损重稀土。(La/Yb)N在3.69~5.46之间,平均为4.70,稀土元素球粒陨石标准化配分曲线图(图4a)中显示稀土元素为右倾型配分模式。δEu值在0.80~0.96之间,平均值为0.91,Eu具轻度负异常,说明在岩浆演化过程中有少量的斜长石分离结晶作用。

    合黎山地区罗城黑云母花岗闪长岩的微量元素分析结果见表1,在微量元素原始地幔标准化蛛网图(图7b)上可见,岩石均相对富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素。

    图  7  罗城黑云母花岗闪长岩的稀土元素球粒陨石标准化配分曲线图(a)(据Taylor et al., 1985)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989
    Figure  7.  (a) Normalized distribution curve of rare earth element chondrites and (b) Primitive mantle-normalized trace element diagrams of Luocheng biotite granodiorite

    合黎山地区罗城岩体锆石自形程度好,具有典型的岩浆结晶韵律环带结构(图5),且Th/U值均大于0.4,为典型的岩浆锆石(王新雨等,2023李平等,2024),其锆石数据谐和度较高,206Pb/238U加权平均年龄为(289±3) Ma ,可代表岩浆结晶年龄,因此,合黎山地区罗城岩体形成于早二叠世。

    合黎山地区罗城花岗闪长岩Ga含量为16.3×10−6~17.7×10−6,Al2O3含量为16.91%~17.28%,10000Ga/Al值为1.78~1.93,平均为1.84,小于A型花岗岩下限2.6(Whalen et al., 1987),在Zr-10000Ga/Al、Ce-10000Ga/Al、Y-10000Ga/Al图解(图8b、 图8c、图8d)中,罗城岩体均投影在I&S花岗岩区域,在K2O-Na2O图解(图8a)中,罗城岩体均处于I型花岗岩区域。根据岩石主量元素特征可知,罗城花岗闪长岩具有钙碱性、准铝质特征,其A/CNK比较集中,介于0.96~0.97,均小于1.1,与I型花岗岩一致(Chappell et al., 1992李宏卫等,2021),且P2O5含量与SiO2含量存在负线性关系,与I型花岗岩演化趋势一致(Wolf et al., 1994)。综合判断分析,罗城花岗闪长岩属于结晶分异I型花岗岩。

    图  8  罗城黑云母花岗闪长岩K2O-Na2O图解(a)及Zr、Ce、Y-10000Ga图解(b、c、d)(据Whalen et al.,1987
    Figure  8.  (a) K2O-Na2O and (b, c, d) Zr, Ce, Y-10000 Ga diagram of Luocheng biotite granodiorite

    I型花岗岩主要来源于板块边缘陆壳下部,可能与地壳岩石的部分熔融(徐克勤等,1982)、交代岩石圈地幔部分熔融(Jiang et al., 2006)等有关,罗城黑云母花岗闪长岩属于钙碱性系列,富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,指示岩体具有大陆地壳物质的参与,岩石Nb/Ta=13.25~13.65,平均值为13.52,接近大陆地壳Nb/Ta值(=10~14)。在判断源岩的C/MF-A/MF图解(图9a)中,显示岩体源岩可能为基性岩的部分熔融,岩石δEu值具轻度负异常,在0.80~0.96之间,平均值为0.91,说明在岩浆演化过程中有少量的斜长石分离结晶作用,在δEu-(La/Yb)N图解中(图9b),样品投点均落在了壳源与壳幔混合源花岗岩区域,La/Ta值为35.71~40.86,大于起源于岩石圈地幔或受其混染岩浆La/Ta值的下限25,指示其为幔源或者壳幔混合源(Lassiter et al., 1997)。

    图  9  罗城黑云母花岗闪长岩C/MF-A/MF图解(a)(据Alther et al., 2000)及δEu-(La/Yb)N图解(b)(据王钊飞等,2019
    Figure  9.  (a) C/MF-A/MF diagram and (b) δEu-(La/Yb)N diagram of Luocheng biotite granodiorite

    罗城黑云母花岗闪长岩锆石Hf二阶段模式年龄T(DMC)分布范围为808.6~952.5 Ma,εHf(t)值介于+4.37~+6.88,通过锆石εHf(t)-U-Pb年龄t(Ma)图解(图7a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或具有新生地壳演化趋势(李金超等,2021)。

    在野外工作中,在黑云母花岗闪长岩中发现暗色微细粒包体发育(图10),包体形态可见椭圆状、圆状、透镜状以及不规则状,大小差异较大,包体常具淬冷边,证明岩浆发生混合作用(王德滋等,2008张建军等,2012);Mg#值可以指示壳源岩浆作用是否有幔源物质的参与,在地幔组分参与时,才能导致熔体的Mg#值大于40(Rapp et al., 1995),岩石MgO含量介于3.13%~3.53%,Mg#值介于0.64~0.66,明显高于40,表明岩体源岩明显具幔源岩浆加入。

    图  10  罗城黑云母花岗闪长岩中暗色包体的形态
    a. 椭圆状包体; b. 圆状包体; c. 透镜状包体; d. 不规则状包体
    Figure  10.  Field photos showing morphology of Luocheng biotite granodiorite

    基于上述讨论,罗城花岗闪长岩为壳源岩浆与幔源岩浆发生混合作用的产物,这种作用是由于地壳深部存在强烈的地幔岩浆底侵作用,导致新生地壳部分熔融并混入底侵的幔源物质。幔源的高温基性岩浆底侵,为其提供了少量物质来源,使岩石地球化学特征上既表现出壳源特征,也表现出幔源物质的信息。

    罗城黑云母花岗闪长岩富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,具有典型的岛弧岩浆岩特征(王秉璋等,2021),其形成与大洋板片俯冲消减作用有关。通过对黑云母花岗闪长岩构造背景判别,在Rb-(Y+Nb)(图11a)、Nb-Y(图11b)及Hf-Rb/30-3Ta(图11c)图解中,样品均落在火山弧花岗岩区域;在R1-R2图11d)图解中,样品落在地幔分异花岗岩与碰撞前花岗岩交界区域。

    图  11  花岗闪长岩构造背景判别Rb-(Y+Nb)(a)、Nb-Y(b)(据Pearce et al., 1984)、Hf-Rb/30-3Ta(c)(据Harris et al., 1986)图解及R1-R2(d)(据Batchelor et al., 1985)图解
    ① 地幔分异花岗岩;② 破坏性活动板块边缘 (板块碰撞前) 花岗岩;③ 板块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山区花岗岩;⑥ 同碰撞花岗岩;⑦造山期花岗岩
    Figure  11.  Identification of granodiorite structural background (a) Rb-(Y+Nb), (b) Nb-Y, (c) Hf-Rb/30-3Ta and (d) R1-R2 diagram

    罗城岩体位于龙首山造山带的西南缘大陆边缘活动带和祁连裂谷的发育构成了龙首山成矿带特定的构造环境(王承花,2010)。龙首山地区地壳演化自早古生代至中新生代经历了活动-稳定-再活动-再稳定-又活动的发展阶段,其在晚古生代处于稳定的拉张环境(强利刚等,2019),早古生代祁连造山带经历了北祁连洋向南俯冲,俯冲受阻,转为向北俯冲,引起北祁连岛弧与阿拉善陆块的碰撞,从而形成了一系列火山弧I型花岗岩(夏林圻等,2003刘文恒等,2019王增振等,2020)。罗城二叠纪黑云母花岗闪长岩指示其形成环境为岩浆弧,且R1-R2判别图解指示其形成环境为碰撞前消减花岗岩环境,说明在晚古生代该区还存在一期俯冲碰撞活动,与前人对龙首山晚石炭世—早二叠世西山头窑地区岩体处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022)相吻合,同时与前人认为的北山地区二叠纪时期仍发生的俯冲–增生造山过程延续可至三叠纪(宋东方等,2018)存在相关性,而并非处于拉张稳定发展期(强利刚等,2019)。

    (1)通过对罗城黑云母花岗闪长岩LA-ICP-MS锆石U-Pb测年得出,岩石锆石结晶年龄为(289±3) Ma ,属于早二叠世,指示了区域上华力西期的强烈构造岩浆事件。

    (2)通过罗城黑云母花岗闪长岩岩相学、岩石地球化学及Hf同位素特征,岩体富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Ba、Nb、Ta、P等高场强元素,属于准铝质钙碱性I型花岗岩,是由新生地壳部分熔融并混入底侵幔源物质的产物,指示了地壳深部强烈的地幔岩浆底侵作用。

    (3)罗城黑云母花岗闪长岩地球化学特征指示其形成于碰撞前的消减花岗岩环境,结合龙首山地区构造演化历史,表明该区在晚古生代还存在一期俯冲碰撞,而并非一直处于拉张稳定发展期。

  • 图  1   全球主要萤石矿床分布图(Hayes et al., 2017

    Figure  1.   Distribution map of major fluorite deposits around the world

    图  2   中国主要萤石矿床分布图(王吉平等, 2014

    Figure  2.   Distribution map of major fluorite deposits in China

    图  3   萤石矿床成因类型划分(Hayes et al., 2017

    a. 含氟或可能含氟的8种矿物或矿物群;b. 根据构造和岩浆组合对热液萤石矿床进行的简化分类

    Figure  3.   Genetic classification of fluorite deposit

    图  4   中国典型萤石矿床成因模式

    a. 内蒙古赤峰地区与花岗岩岩浆热有关的萤石矿床构造背景(Pei et al., 2017);b. 内蒙古赤峰地区与花岗岩岩浆热有关的萤石矿床成因模式图(Pei et al., 2017);c、d. 浙江骨洞坑与次火山岩热液有关的断裂控矿的萤石矿床成因模式图(Fang et al., 2020);e. 黔东北双河与热卤水热液有关的重晶石-萤石矿床成因模式图(李敏等,2021);f. 扬子板块西缘碳酸盐岩地层中似层状产出的与铅锌矿床伴生的萤石矿床(Yu et al., 2022

    Figure  4.   Genetic model of typical fluorite ore deposit in China

  • 曹华文, 张寿庭, 高永璋, 等. 内蒙古林西萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球化学, 2014, 432): 131140.

    CAO Huawen, ZHANG Shouting, GAO Yongzhang, et al. REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications, Inner Mongolia Autonomous Region[J]. Geochimica, 2014, 432): 131140.

    曹华文, 张伟, 裴秋明, 等. 滇西小龙河、来利山锡矿床的萤石、方解石微量元素地球化学特征[J]. 矿物岩石地球化学通报, 2016, 355): 925935. doi: 10.3969/j.issn.1007-2802.2016.05.013

    CAO Huawen, ZHANG Wei, PEI Qiuming, et al. Trace Element Geochemistry of Fluorite And Calcite from the Xiaolonghe Tin Deposits and Lailishan Tin Deposits in Western Yunnan, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 355): 925935. doi: 10.3969/j.issn.1007-2802.2016.05.013

    曹俊臣. 初论中国层控萤石矿床分类及某些地球化学特征[J]. 地质与勘探, 1985,217): 814.
    曹俊臣. 热液脉型萤石矿床萤石气液包裹体氢、氧同位素特征[J]. 地质与勘探, 1994, 304): 2829.
    陈登, 刘志臣, 汤子程, 等. 贵州务川涪洋地区萤石矿床稀土元素地球化学特征[J]. 矿物学报, 2023, 436): 861872.

    CHEN Deng, LIU Zhichen, TANG Zicheng, et al. Geochemical characteristics of rare earth elements of samples in some fluorite deposits in the Fuyang area, Wuchuan, Guizhou, China[J]. Acta Mineralogica Sinica, 2023, 436): 861872.

    陈怀录, 张良旭, 吕鸿图. 马衔山萤石矿床萤石裂变径迹年龄的测定及成矿时代探讨[J]. 科学通报, 1987,14): 10871090.
    陈军元, 刘艳飞, 颜玲亚, 等. 石墨、萤石等战略非金属矿产发展趋势研究[J]. 地球学报, 2021, 422): 287296.

    CHEN Junyuan, LIU Yanfei, YAN Lingya, et al. Research on Development Trend of Strategic Nonmetallic Minerals such as Graphite and Fluorite[J]. Acta Geoscientica Sinica, 2021, 422): 287296.

    陈应华, 蓝廷广, 唐燕文, 等. 闪锌矿中单个流体包裹体成分LA-ICP-MS分析及其指示意义: 以南岭新田岭钨矿床为例[J]. 矿床地质, 2023, 425): 859876.

    CHEN Yinghua, LAN Tingguang, TANG Yanwen, et al. LA-ICP-MS analysis of single fluid inclusions in sphalerite and its implications: A case study from Xintianling tungsten deposit in Nanling region, South China[J]. Nineral Deposits, 2023, 425): 859876.

    戴慧, 黄文清, 曹素巧, 等. 激光拉曼光谱在包裹体研究中的应用[J]. 宝石和宝石学杂志(中英文), 2022, 245): 146154.

    DAI Hui, HUANG Wenqing, CAO Suqiao, et al. Application of Laser Raman Spectroscopy in the Study of Inclusion[J]. Journal of Gems & Gemmology, 2022, 245): 146154.

    董会, 曹佰迪, 董敏, 等. 天然流体包裹体均一状态下拉曼光谱研究[J]. 西北地质, 2021, 544): 274279.

    DONG Hui, CAO Baidi, DONG Min, et al. Study on the Raman Spectra of Natural Fluid Inclusions Under Uniform State[J]. Northwestern Geology, 2021, 544): 274279.

    董文超, 庞绪成, 司媛媛, 等. 河南嵩县车村萤石矿床稀土元素特征及地质意义[J]. 中国稀土学报, 2020, 385): 706714.

    DONG Wenchao, PANG Xucheng, SI Yuanyuan, et al. REE Geological Characteristics of Checun Fluorite Deposit in Song County, Henan Province[J]. Journal of The Chiness Society of Rare Earths, 2020, 385): 706714.

    方贵聪, 王登红, 陈毓川, 等. 南岭萤石矿床成矿规律及成因[J]. 地质学报, 2020, 941): 140178.

    FANG Guicong, WANG Denghong, CHEN Yuchuan, et al. Metallogenic Regularities and genesis of the fluorite deposits in Nanlingregion[J]. Acta Geological Sinica, 2020, 941): 140178.

    方乙, 张寿庭, 邹灏, 等. 浅覆盖区萤石矿综合勘查方法研究——以内蒙古林西赛波萝沟门萤石矿为例[J]. 成都理工大学学报(自然科学版), 2014, 411): 94101.

    FANG Yi, ZHANG Shouting, ZOU Hao, et al. Comprehensive exploration method for fluorite deposits in grasslands covered area: A case study of the Saiboluogoumen fluorite deposit in Linxi, Inner Mongolia, China[J]. Journal of Chengdu University of Technology (Science & Technology edition), 2014, 411): 94101.

    龚雪婧, 孟贵祥, 汤贺军, 等. 湘东光明萤石矿黑云母花岗岩地球化学特征及其对萤石成矿的启示[J]. 地质通报, 2023, 429): 14321452.

    GONG Xuejing, MENG Guixiang, TANG Hejun, et al. Geochemical characteristics of biotite granite in the Guangming fluorite deposit in eastern Hunan, China: Implications to fluorite mineralization[J]. Geological Bulletin of China, 2023, 429): 14321452.

    郭宇, 陈登, 汤子程, 等. 黔东北地区金亮萤石矿床稀土元素地球化学特征与成矿物质来源[J]. 矿物学报, 2023, 436): 873881.

    GUO Yu, CHEN Deng, TANG Zicheng, et al. Ceochemical characteristics of rare earth elements and the source of ore-forming materials in the Jinliang fluorite deposit in the northeastern Guizhou[J]. Acta Mineralogica Sinica, 2023, 436): 873881.

    何佳乐, 潘忠习, 杜谷. 激光拉曼光谱技术在地矿领域的应用与研究进展[J]. 中国地质调查, 2022, 95): 111119.

    HE Jiale, PAN Zhongxi, DU Gu. Application and research progress of Laser Raman spectroscopy in geology and mineral resources[J]. Geological Survey of China, 2022, 95): 111119.

    何俊, 齐泽秋, 李为用, 等. 单种矿物单颗粒Rb-Sr同位素等时线定年的成矿年代学应用前景[J]. 华东地质, 2024, 451): 1625.

    HE Jun, QI Zeqiu, LI Weiyong, et al. Application prospect of the single-grain mineral Rb-Sr isotopic isochron dating in metallogenic geochronology[J]. East China Geology, 2024, 451): 1625.

    蒋子琦, 蓝廷广, 郭海浩, 等. 适用于单个流体包裹体LA-ICP-MS分析的多元素流体包裹体标样合成及飞秒激光分析方法的建立[J]. 矿物岩石地球化学通报, 2024: https://doi.org/10.19658/j.issn.1007-2802.2023.42.109.

    JIANG Ziqi, LAN Tingguang, GUO Haihao, et al. Synthesis of multi-element fluid inclusion standards suitable for the LA-ICP-MS analysis and establishment of the femtosecond laser analytical method[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024: https://doi.org/10.19658/j.issn.1007-2802.2023.42.109.

    李敬, 张寿庭, 商朋强, 等. 萤石资源现状及战略性价值分析[J]. 矿产保护与利用, 2019, 396): 6268.

    LI Jing, ZHANG Shouting, SHANG Pengqiang, et al. Present Situation and Analysis of Strategic Value of Fluorite Resource[J]. Conservation and Utilization of Mineral Resources, 2019, 396): 6268.

    李敏, 邹灏, 陈海锋, 等. 黔东北双河重晶石-萤石矿床流体包裹体组合研究及成因[J]. 矿物岩石地球化学通报, 2021, 404): 858870.

    LI Min, ZOU Hao, CHEN Haifeng, et al. Study on Fluid Inclusion Assemblages ( FIA) and Origin of the Shuanghe Barite-fluorite Deposit in the Northeastern Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 404): 858870.

    李晓东, 张艳, 韩润生, 等. 流体包裹体研究进展及其在矿床学中的应用[J]. 地质论评, 2022, 686): 23052318.

    LI Xiaodong, ZHANG Yan, HAN Runsheng, et al. Research progress of fluid inclusions and its application in ore deposit[J]. Geological Review, 2022, 686): 23052318.

    李阳, 邹灏, 刘行, 等. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用[J]. 岩矿测试, 2020, 392): 300310.

    LI Yang, ZOU Hao, LIU Hang, et al. Application of SILLS Software in Data Processing of Single Fluorite Fluid Inclusion LA-ICP-MS Trace Element Analysis[J]. Rock and Mineral Analysis, 2020, 392): 300310.

    李育彪, 杨旭. 我国萤石资源及选矿技术进展[J]. 矿产保护与利用, 2022, 422): 4958.

    LI Yubiao, YANG Xu. Overview of Fluorite Resources and Processing Technology in China[J]. Conservation and Utilization of Mineral Resources, 2022, 422): 4958.

    李长江, 蒋叙良. 浙江萤石矿床的裂变径迹年龄测定及有关问题讨论[J]. 地球化学, 1989, 182): 181188. doi: 10.3321/j.issn:0379-1726.1989.02.009

    LI Cangjiang, JIANG Xuliang. Fission-track Dating of Fluorite Deposits in Zhejiang Province and Some Related Probolems[J]. Geochimica, 1989, 182): 181188. doi: 10.3321/j.issn:0379-1726.1989.02.009

    刘道荣, 商朋强. 中国萤石矿床分类及稀土元素地球化学特征[J]. 地质与勘探, 2023, 592): 211222.

    LIU Daorong, SHANG Pengqiang. Classification and REE geochemical characteristics of fluorite deposits in China[J]. Geology and Exploration, 2023, 592): 211222.

    刘道荣, 商朋强. 中国萤石矿床流体包裹体研究进展[J]. 地质科学, 2024, 592): 510521. doi: 10.12017/dzkx.2024.035

    LIU Daorong, SHANG Pengqiang. Progress of fluid inclusion research in fluorite deposits in China[J]. Chinese Journal of Geology, 2024, 592): 510521. doi: 10.12017/dzkx.2024.035

    刘秋颖. 中国萤石资源供需形势分析及对策建议[J]. 矿产勘查, 2023, 1410): 17981804.

    LIU Qiuying. Analysis of supply-demand situation of fluorite resources in China and suggestions[J]. Mineral Exploration, 2023, 1410): 17981804.

    倪培, 范宏瑞, 潘君屹, 等. 流体包裹体研究进展与展望(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 404): 802818+1001.

    NI Pei, FAN Hongrui, PAN Junyi, et al. Progress and Prospect of Fluid Inclusion Research in the Past Decade in China (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 404): 802818+1001.

    裴秋明, 张寿庭, 曹华文, 等. 内蒙古林西地区小北沟萤石矿床地质特征及找矿潜力分析[J]. 桂林理工大学学报, 2016, 363): 426434.

    PEI Qiuming, ZHANG Shouting, CAO Huawen, et al. Features and potential analysis of Xiaobeigou fluorite deposit in Linxi, Inner Mongolia[J]. Journal of Guilin University of Technology, 2016, 363): 426434.

    裴秋明. 大兴安岭南段萤石矿成矿规律及隐伏—半隐伏矿体预测[D]. 北京:中国地质大学(北京), 2018.

    PEI Qiuming. A studyon metallogenetic regularity and prognosis of concealed ore body in southern Great Xing’an Range, Northeastern China[D]. Beijing: China University of Geosciences (Beijing), 2018.

    彭建堂, 胡瑞忠, 蒋国豪. 萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J]. 岩石学报, 2003, 194): 785791.

    PENG Jiantang, HU Ruizhong,JIANG Guohao. Samarium-Neodymium isotope system of fluorites from the Qinglong antimony deposit, Guizhou Province: Constraints on the mineralizing age and ore-forming materials' sources[J]. Acta Petrowgica Sinica, 2003, 194): 785791.

    王春连, 王九一, 游超, 等. 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报, 2022, 433): 267278.

    WANG Chunlian, WANG Jiuyi, YOU Chao, et al. A Study on Strategic Non-metallic Mineral Definition, Key Applications, and Supply and Demand Situation[J]. Acta Geoscientica Sinica, 2022, 433): 267278.

    王吉平, 商朋强, 熊先孝, 等. 中国萤石矿床分类[J]. 中国地质, 2014, 412): 315325.

    WANG Jiping, SHANG Pengqiang, XIONG Xianxiao, et al. The classification of fluorite deposits in China[J]. Geology in China, 2014, 412): 315325.

    王吉平, 朱敬宾, 李敬, 等. 中国萤石矿预测评价模型与资源潜力分析[J]. 地学前缘, 2018, 253): 172178.

    WANG Jiping, ZHU Jingbin, LI fing, et al. Prediction model and resource potential assessment of fluorite deposits in China[J]. Earth Science Frontiers, 2018, 253): 172178.

    王志海, 叶美芳, 董会, 等. 流体包裹体盐度低温拉曼光谱测定方法研究[J]. 岩矿测试, 2014, 336): 813821.

    WANG Zhihai, YE Meifang, DONG Hui, et al. Study on Salinity Determination of Fluid Inclusions by Cryogenic Raman Spectroscopy[J]. Rock and Mineral Analysis, 2014, 336): 813821.

    吴迪, 欧光习, 马剑, 等. 单个流体包裹体原位成分分析方法及其地质应用[J]. 天然气与石油, 2022, 404): 9097+107.

    WU Di, OU Guangxi, MA Jian, et al. In-situ composition analytical method of single fluid inclusion and its geological application[J]. Natural Gas and Oil, 2022, 404): 9097+107.

    吴越, 张长青, 田广. 四川跑马铅锌矿萤石稀土元素地球化学特征与指示意义[J]. 矿物学报, 2013, 333): 295301.

    WU Yue, ZHANG Changqing, TIAN Guang. REE Geochemistry of Fluorite from Paoma Lead-Zinc Deposit in Sichuan Province, China and Its Geological Implications[J]. Acta Mieralogica Sinica, 2013, 333): 295301.

    向蜜, 龚迎莉, 刘涛, 等. 钙同位素地球化学研究新进展及其在碳酸岩-共生硅酸盐研究中的应用[J]. 地质学报, 2021, 9512): 39373960.

    XIANG Mi, GONG Yingli, LlU Tao, et al. New advances in calcium isotope geochemistry and its application to carbonatite and associated silicate rocks[J]. Acta Geologica Sinica, 2021, 9512): 39373960.

    许成, 黄智龙, 漆亮, 等. 四川牦牛坪稀土矿床萤石REE配分模式的影响因素[J]. 矿物学报, 2001, 213): 557559.

    XU Cheng, HUANG Zhilong, QI Liang, et al. Factors affecting the REE patterns of fluorites in Maoniuping ore deposit, Sichuan Province[J]. Acta Mineralogica Sinica, 2001, 213): 557559.

    许若潮, 龙训荣, 刘飚, 等. 湘南界牌岭锡多金属矿床萤石LA-ICP-MS微量元素地球化学特征及意义[J]. 矿床地质, 2022, 411): 158173.

    XU Ruochao, LONG Xunrong, LIU Biao, et al. LA-ICP-MS trace element analysis of fluorite and implications in Jiepailing tinpolymetallic deposit from South of Hunan Province[J]. Mineral Deposits, 2022, 411): 158173.

    杨莉, 袁万明, 洪树炯, 等. 裂变径迹技术及其地质应用[J]. 中国地质调查, 2022, 93): 104112.

    YANG Li, YUAN Wanming, HONG Shujiong, et al. Fission track technology and its geological applications[J]. Geological Survey of China, 2022, 93): 104112.

    叶锡芳. 浙江萤石矿床成矿规律与成矿模式[J]. 西北地质, 2014, 471): 208220. doi: 10.3969/j.issn.1009-6248.2014.01.019

    YE Xifang. Mineralization and Metallogenic Model of Fluorite Deposits in the Zhejiang Area[J]. Northwestern Geology, 2014, 471): 208220. doi: 10.3969/j.issn.1009-6248.2014.01.019

    占岗乐, 吴火星. 江西南城小竺萤石矿成矿作用及找矿方向[J]. 华东地质, 2021, 423): 302309.

    ZHAN Gangle, WU Huoxing. Mineralization and prospecting direction of Xiaozhu fluorite deposit in Nancheng, Jiangxi Province[J]. East China Geology, 2021, 423): 302309.

    张生辉, 王振涛, 李永胜, 等. 中国关键矿产清单、应用与全球格局[J]. 矿产保护与利用, 2022, 425): 138168.

    ZHANG Shenghui, WANG Zhentao, LI Yongsheng, et al. List, application and global pattern of critical minerals of China[J]. Conservation and Utilization of Mineral Resources, 2022, 425): 138168.

    张寿庭, 曹华文, 郑硌, 等. 内蒙古林西水头萤石矿床成矿流体特征及成矿过程[J]. 地学前缘, 2014, 215): 3140.

    ZHANG Shouting, CAO Huawen, ZHENG Luo, et al. Characteristics of ore-forming fhuids and mineralization processes of the Shuitou fluorite deposit in Linxi, inner Mongolia Autonomous Region[J]. Earth Seience Frontiers, 2014, 215): 3140.

    赵辛敏, 高永宝, 燕洲泉, 等. 阿尔金卡尔恰尔超大型萤石矿带成因: 来自年代学、稀土元素和Sr-Nd同位素的约束[J]. 西北地质, 2023, 561): 3147. doi: 10.12401/j.nwg.2022035

    ZHAO Xinmin, GAO Yongbao, YAN Zhouquan, et al. Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr-Nd Isotopes Constraints[J]. Northwestern Geology, 2023, 561): 3147. doi: 10.12401/j.nwg.2022035

    中华人民共和国自然资源部. 中国矿产资源报告2023[M]. 北京: 地质出版社,2023.
    朱敬宾, 王吉平, 商朋强, 等. 中国萤石矿床锶同位素、氢氧同位素地球化学特征[J]. 化工矿产地质, 2021, 431): 716. doi: 10.3969/j.issn.1006-5296.2021.01.002

    ZHU Jingbin, WANG Jiping, SHANG Pengqiang, et al. Geochemical characteristics of strontium and hydrogen and oxygen isotopes in fluorite deposits in China[J]. Geology of Chemical Minerals, 2021, 431): 716. doi: 10.3969/j.issn.1006-5296.2021.01.002

    邹灏, 张寿庭, 方乙, 等. 中国萤石矿的研究现状及展望[J]. 国土资源科技管理, 2012, 295): 3542. doi: 10.3969/j.issn.1009-4210.2012.05.006

    ZOU Hao, ZHANG Shouting, FANG Yi, et al. Current Situation and Prospeet of Fluorite Deposit Researches in China[J]. Scientific and Technological Management of Land and Resources, 2012, 295): 3542. doi: 10.3969/j.issn.1009-4210.2012.05.006

    邹灏, 徐旃章, 张寿庭, 等. 重庆彭水火石垭重晶石-萤石矿床控矿因素与成因[J]. 成都理工大学学报(自然科学版), 2013, 401): 8996.

    ZOU Hao, XU Zhanzhang, ZHANG Shouting, et al. Ore-control factors and genesis of Huoshiya barite-fluorite deposit in Pengshui, Chongqing, China[J]. Journal of Chengdu University of Technology (Science & Technology edition), 2013, 401): 8996.

    邹灏, 张强, 包浪, 等. 浙江天台盆地下陈萤石矿床地质特征及ESR年代学[J]. 成都理工大学学报(自然科学版), 2016, 431): 8694.

    ZOU Hao, ZHANG Qiang, BAO Lang, et al. Geological characteristics and ESR dating of Xiachen fluorite deposit in Tiantai basin, Zhejiang, China[J]. Journal of Chengdu University of Technology (Science& Technology edition), 2016, 431): 8694.

    Alaminia Z, Tadayon M, Griffith E M, et al. Tectonic-controlled sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment, Komsheche, NE Isfahan, Central Iran[J]. Chemical Geology, 2021, 566: 120084. doi: 10.1016/j.chemgeo.2021.120084

    Banerjee A, Chakrabarti R. A geochemical and Nd, Sr and stable Ca isotopic study of carbonatites and associated silicate rocks from the ~65 Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India: Implications for crustal contamination, carbonate recycling, hydrothermal alteration and source-mantle mineralogy[J]. Lithos, 2019, 326−327: 572585. doi: 10.1016/j.lithos.2019.01.007

    Barker S L L, Bennett V C, Cox S F, et al. Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite-fluorite veins: Implications for fluid-rock reaction and geochronology[J]. Chemical Geology, 2009, 2681−2): 5866. doi: 10.1016/j.chemgeo.2009.07.009

    Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 1995, 1192): 213223.

    Bau M, Romer R L, Luders V, et al. Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England[J]. Mineralium Deposita, 2003, 388): 9921008. doi: 10.1007/s00126-003-0376-x

    Bedoya A, Glorie S, Hand M, et al. Apatite Triple Dating (Lu-Hf, U-Pb, FT) Constrains Deformation and Cooling in the Coompana and Madura Provinces, Western Australia[J]. Lithosphere, 2024, 202314): 122.

    Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 573): 683684. doi: 10.1016/0016-7037(93)90378-A

    Bodnar R J, Lecumberri-Sanchez P, Moncada D, et al. 13.5 - Fluid Inclusions in Hydrothermal Ore Deposits[A]. In: Holland Heinrich D, Turekian Karl K (editors). Treatise on Geochemistry (Second Edition)[M]. Oxford: Elsevier, 2014, 119−142.

    Cao H W, Li G M, Zhang R Q, et al. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes[J]. Gondwana Research, 2021, 92: 72101. doi: 10.1016/j.gr.2020.12.020

    Chernyshev I V, Golubev V N, Aleshin A P, et al. Fluorite as an Sm-Nd geochronometer of hydrothermal processes: Dating of mineralization hosted in the Strel’tsovka uranium ore field, eastern Baikal region[J]. Geology of Ore Deposits, 2017, 586): 447455.

    Chesley J T, Halliday A N, Kyser T K, et al. Direct dating of mississippi valley-type mineralization; use of Sm-Nd in fluorite[J]. Economic Geology, 1994, 895): 11921199. doi: 10.2113/gsecongeo.89.5.1192

    Chesley J T, Halliday A N, Scrivener R C. Samarium-Neodymium Direct Dating of Fluorite Mineralization[J]. Science, 1991, 2525008): 949951. doi: 10.1126/science.252.5008.949

    Deng X H, Chen Y J, Bagas L, et al. Isotope (S-Sr-Nd-Pb) constraints on the genesis of the ca. 850Ma Tumen Mo–F deposit in the Qinling Orogen, China[J]. Precambrian Research, 2015, 266: 108118. doi: 10.1016/j.precamres.2015.05.019

    Dill H G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium[J]. Earth-Science Reviews, 2010, 1001−4): 1420. doi: 10.1016/j.earscirev.2009.10.011

    Duan Z P, Jiang S Y, Su H M, et al. Textural features and in situ trace element analysis of fluorite from the Wujianfang fluorite deposit, Inner Mongolia (NE China): Insights into fluid metasomatism and ore-forming process[J]. Ore Geology Reviews, 2022, 147: 104982. doi: 10.1016/j.oregeorev.2022.104982

    Evans N J, Wilson N S F, Cline J S, et al. Fluorite (U-Th)/He thermochronology: Constraints on the low temperature history of Yucca Mountain, Nevada[J]. Applied Geochemistry, 2005, 206): 10991105. doi: 10.1016/j.apgeochem.2005.02.008

    Fang Y, Zou H, Bagas L, et al. Fluorite deposits in the Zhejiang Province, southeast China: The possible role of extension during the late stages in the subduction of the Paleo-Pacific oceanic plate, as indicated by the Gudongkeng fluorite deposit[J]. Ore Geology Reviews, 2020, 117: 103276. doi: 10.1016/j.oregeorev.2019.103276

    Farley K A. (U-Th)/He Dating: Techniques, Calibrations, and Applications[J]. Reviews in Mineralogy and Geochemistry, 2002, 471): 819844. doi: 10.2138/rmg.2002.47.18

    Galindo C, Tornos F, Darbyshire D P F, et al. The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study[J]. Chemical Geology, 1994, 1123−4): 351364. doi: 10.1016/0009-2541(94)90034-5

    Gigoux M, Négrel P, Guerrot C, et al. δ44Ca of Stratabound Fluorite Deposits in Burgundy (France): Tracing Fluid Origin and/or Fractionation Processes[J]. Procedia Earth and Planetary Science, 2015, 13: 129133. doi: 10.1016/j.proeps.2015.07.031

    Glorie S, Mulder J, Hand M, et al. Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins[J]. Geoscience Frontiers, 2023: 101629.

    Grønlie A, Harder V, Roberts D. Preliminary fission-track ages of fluorite mineralisation along fracture zones, inner Trondheimsfjord, Central Norway[J]. Norsk Geologisk Tidsskrift, 1990, 703): 173178.

    Günther D, Audétat A, Frischknecht R, et al. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasmamass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1998, 134): 263270. doi: 10.1039/A707372K

    Halliday A N, Shepherd T J, Dickin A P, et al. Sm-Nd evidence for the age and origin of a Mississippi Valley type or deposit[J]. Nature, 1990, 3446261): 5456. doi: 10.1038/344054a0

    Hayes T S, Miller M M, Orris G J, et al. Chapter G. Fluorine, in Critical Mineral Resources of the United States[A]. In: Schulz Klaus J, DeYoung Jr John H, Seal Robert R, et al (editors). Economic and Environmental Geology and Prospects for Future Supply[M]. Reston: U. S. Geological Survey, 2017, G1−G80.

    Heijlen W, Vos K, Kartalis N, et al. The formation of vein-type barite (± base metal, gold) deposits in northern Madagascar and its link with Mesozoic Pangean rifting[J]. Mineralium Deposita, 2024, 59: 255273. doi: 10.1007/s00126-023-01205-8

    Hintzen R, Werner W, Hauck M, et al. Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry[J]. European Journal of Mineralogy, 2023, 353): 403426. doi: 10.5194/ejm-35-403-2023

    Kinnaird J A, Kruger F J, Cawthorn R G. Rb-Sr and Nd-Sm isotopes in fluorite related to the granites of the Bushveld Complex[J]. South African Journal of Geology, 2004, 1073): 413430. doi: 10.2113/107.3.413

    Koul S L, Chadderton L T. The chemical etching of fission fragment tracks in natural fluorite[J]. Radiation Effects, 1988, 1064): 319333. doi: 10.1080/00337578808225712

    Lenoir L, Blaise T, Chourio-Camacho D, et al. The origin of fluorite-barite mineralization at the interface between the Paris Basin and its Variscan basement: insights from fluid inclusion chemistry and isotopic (O, H, Cl) composition[J]. Mineralium Deposita, 2024, 59: 397417. doi: 10.1007/s00126-023-01219-2

    Lenoir L, Blaise T, Somogyi A, et al. Uranium incorporation in fluorite and exploration of U-Pb dating[J]. Geochronology, 2021, 3: 19227.

    Li S, Zhang W, Cai J, et al. Multiple pulses of fluids involved in the formation of carbonatite-related REE deposits as revealed by fluorite[J]. Ore Geology Reviews, 2023, 159: 105546. doi: 10.1016/j.oregeorev.2023.105546

    Liu B, Wu Q H, Li H, et al. Fault-controlled fluid evolution in the Xitian W-Sn-Pb-Zn-fluorite mineralization system (South China): Insights from fluorite texture, geochemistry and geochronology[J]. Ore Geology Reviews, 2020, 116: 103233. doi: 10.1016/j.oregeorev.2019.103233

    Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 119): 899904. doi: 10.1039/JA9961100899

    Mernagh T P, Wilde A R. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1989, 534): 765771. doi: 10.1016/0016-7037(89)90022-7

    Möller P, Bau M, Dulski P, et al. REE and yttrium fractionation in fluorite and their bearing on fluorite formation[M]. Stuttart: Proceedings of the Ninth Quadrennial IAGOD Symposium, 1998, 575−592.

    Möller P, Parekh P P, Schneider H J. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis[J]. Mineralium Deposita, 1976, 111): 111116. doi: 10.1007/BF00203098

    Munoz M, Premo W, Courjault-Rade P. Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France[J]. Mineralium Deposita, 2005, 398): 970975. doi: 10.1007/s00126-004-0453-9

    Nägler T F, Pettke T, Marshall D. Initial isotopic heterogeneity and secondary disturbance of the Sm-Nd system in fluorites and fluid inclusions: A study on mesothermal veins from the central and western Swiss Alps[J]. Chemical Geology, 1995, 1253−4): 241248. doi: 10.1016/0009-2541(95)00091-Y

    Ni P, Li W S, Pan J Y, et al. Fluid Processes of Wolframite-Quartz Vein Systems: Progresses and Challenges[J]. Minerals, 2022, 122): 237. doi: 10.3390/min12020237

    Pan J Y, Ni P, Wang R C. Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions[J]. American Mineralogist, 2019, 1048): 10921116. doi: 10.2138/am-2019-6958

    Pei Q, Zhang S, Santosh M, et al. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 2017, 83: 174190. doi: 10.1016/j.oregeorev.2016.12.022

    Pei Q M, Zhang S T, Hayashi K I, et al. Nature and Genesis of the Xiaobeigou Fluorite Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusions and Stable Isotopes[J]. Resource Geology, 2019, 69: 148166. doi: 10.1111/rge.12191

    Pei Q M, Li C H, Zhang S T, et al. Vein-type fluorite mineralization of the Linxi district in the Great Xing'an Range, Northeast China: Insights from geochronology, mineral geochemistry, fluid inclusion and stable isotope systematics[J]. Ore Geology Reviews, 2022, 142: 104708. doi: 10.1016/j.oregeorev.2022.104708

    Pi T, Solé J, Taran Y. (U-Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico[J]. Mineralium Deposita, 2005, 398): 976982. doi: 10.1007/s00126-004-0443-y

    Piccione G, Rasbury E T, Elliott B A, et al. Vein fluorite U-Pb dating demonstrates post-6.2 Ma rare-earth element mobilization associated with Rio Grande rifting[J]. Geosphere, 2019, 156): 19581972. doi: 10.1130/GES02139.1

    Richardson C K, Holland H D. The solubility of fluorite in hydrothermal solutions, an experimental study[J]. Geochimica Et Cosmochimica Acta, 1979, 438): 13131325. doi: 10.1016/0016-7037(79)90121-2

    Richardson C K, Rye R O, Wasserman M D. The chemical and thermal evolution of the fluids in the Cave-in-Rock fluorspar district, Illinois; stable isotope systematics at the Deardorff Mine[J]. Economic Geology, 1988, 834): 765783. doi: 10.2113/gsecongeo.83.4.765

    Ronchi L H, Touray J C, Michard A, et al. The Ribeira Fluorite District, Southern Brazil - Geological and Geochemical (Ree, Sm-Nd Isotopes) Characteristics[J]. Mineralium Deposita, 1993, 284): 240252. doi: 10.1007/BF02421574

    Rosa D, Schneider J, Chiaradia M. Timing and metal sources for carbonate-hosted Zn-Pb mineralization in the Franklinian Basin (North Greenland): Constraints from Rb-Sr and Pb isotopes[J]. Ore Geology Reviews, 2016, 79: 392407. doi: 10.1016/j.oregeorev.2016.05.020

    Ruiz J, Kesler S E, Jones L M, et al. Geology and geochemistry of the Las Cuevas fluorite deposit, San Luis Potosi, Mexico[J]. Economic Geology, 1980, 758): 12001209. doi: 10.2113/gsecongeo.75.8.1200

    Ruiz J, Kesler S E, Jones L M. Strontium isotope geochemistry of fluorite mineralization associated with fluorine-rich igneous rocks from the Sierra Madre Occidental, Mexico; possible exploration significance[J]. Economic Geology, 1985, 801): 3342. doi: 10.2113/gsecongeo.80.1.33

    Sallet R, Moritz R, Fontignie D. Fluorite 87Sr/86Sr and REE constraints on fluid-melt relations, crystallization time span and bulk DSr of evolved high-silica granites. Tabuleiro granites, Santa Catarina, Brazil[J]. Chemical Geology, 2000, 1641): 8192.

    Scharrer M, Fusswinkel T, Markl G. Triple-halogen (Cl-Br-I) fluid inclusion LA-ICP-MS microanalysis to unravel iodine behavior and sources during marine fluid infiltration into the basement in unconformity settings[J]. Geochimica et Cosmochimica Acta, 2023, 357: 6476. doi: 10.1016/j.gca.2023.06.023

    Scharrer M, Reich R, Fusswinkel T, et al. Basement aquifer evolution and the formation of unconformity-related hydrothermal vein deposits: LA-ICP-MS analyses of single fluid inclusions in fluorite from SW Germany[J]. Chemical Geology, 2021, 575: 120260. doi: 10.1016/j.chemgeo.2021.120260

    Seal R R, Rye R O. Stable isotope study of fluid inclusions in fluorite from Idaho: Implications for continental climates during the Eocene[J]. Geology, 1993, 213): 219222. doi: 10.1130/0091-7613(1993)021<0219:SISOFI>2.3.CO;2

    Shafiei Bafti B, Dunkl I, Madanipour S. Timing of fluorite mineralization and exhumation events in the east Central Alborz Mountains, northern Iran: constraints from fluorite (U-Th)/He thermochronometry[J]. Geological Magazine, 2021, 1589): 16001616. doi: 10.1017/S0016756821000169

    Shepherd T J, Chenery S R. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study[J]. Geochimica et Cosmochimica Acta, 1995, 5919): 39974007. doi: 10.1016/0016-7037(95)00294-A

    Shepherd T J, Rankin A H, Richards J P, et al. Fluid Inclusion Techniques of Analysis, in Techniques in Hydrothermal Ore Deposits Geology1998, Society of Economic Geologists. p. 125-149.

    Siebel W, Hann H, Danišík M, et al. Age constraints on faulting and fault reactivation: a multi-chronological approach[J]. International Journal of Earth Sciences, 2010, 996): 11871197. doi: 10.1007/s00531-009-0474-9

    Silva D A d, Geraldes M C, McMaster M, et al. (U-Th)/He ages from the fluorite mineralization of the Tanguá alkaline intrusion[J]. Anuario do Instituto de Geociencias (Online), 2018, 412): 1421. doi: 10.11137/2018_2_14_21

    Tritlla J, Levresse G. Comments on “(U-Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico” by Pi et al. (Mineralium Deposita 39: 976-982)[J]. Mineralium Deposita, 2006, 413): 296299. doi: 10.1007/s00126-006-0053-y

    USGS. Mineral commodity summaries 2024[M]. U. S. Geological Survey, 2024.

    Walter B F, Jensen J L, Coutinho P, et al. Formation of hydrothermal fluorite-hematite veins by mixing of continental basement brine and redbed-derived fluid: Schwarzwald mining district, SW-Germany[J]. Journal of Geochemical Exploration, 2020, 212: 106512. doi: 10.1016/j.gexplo.2020.106512

    Wolff R, Dunkl I, Kempe U, et al. Variable helium diffusion characteristics in fluorite[J]. Geochimica et Cosmochimica Acta, 2016, 188: 2134. doi: 10.1016/j.gca.2016.05.029

    Wolff R, Dunkl I, Kempe U, et al. The Age of the Latest Thermal Overprint of Tin and Polymetallic Deposits in the Erzgebirge, Germany: Constraints from Fluorite (U-Th-Sm)/He Thermochronology[J]. Economic Geology, 2015, 1108): 20252040. doi: 10.2113/econgeo.110.8.2025

    Xu W G, Fan H R, Hu F F, et al. Geochronology of the Guilaizhuang gold deposit, Luxi Block, eastern North China Craton: Constraints from zircon U-Pb and fluorite-calcite Sm-Nd dating[J]. Ore Geology Reviews, 2015, 65: 390399. doi: 10.1016/j.oregeorev.2014.10.010

    Yu L M, Zou H, Santosh M, et al. The link between Paleo-Tethys subduction and regional metallogeny in the SW Yangtze Block: New evidence from the Zubu carbonate-hosted F-Pb-Zn deposit[J]. Ore Geology Reviews, 2022, 144: 104809. doi: 10.1016/j.oregeorev.2022.104809

    Zhao Y, Pei Q, Zhang S T, et al. Formation timing and genesis of Madiu fluorite deposit in East Qinling, China: Constraints from fluid inclusion, geochemistry, and H-O-Sr-Nd isotopes[J]. Geological Journal, 2020, 554): 25322549. doi: 10.1002/gj.3522

    Zou H, Fang Y, Zhang S T, et al. The source of Fengjia and Langxi barite-fluorite deposits in southeastern Sichuan, China: evidence from rare earth elements and S, Sr, and Sm-Nd isotopic data[J]. Geological Journal, 2017, 523): 470488. doi: 10.1002/gj.2779

    Zou H, Li M, Bagas L, et al. Fluid composition and evolution of the Langxi Ba-F deposit, Yangtze Block, China: New Insight from LA-ICP-MS study of individual fluid inclusion[J]. Ore Geology Reviews, 2020, 125: 103702. doi: 10.1016/j.oregeorev.2020.103702

    Zou H, Zhang S T, Chen A Q, et al. Hydrothermal Fluid Sources of the Fengjia Barite-fluorite Deposit in Southeast Sichuan, China: Evidence from Fluid Inclusions and Hydrogen and Oxygen Isotopes[J]. Resource Geology, 2016, 661): 2436. doi: 10.1111/rge.12084

    Zou H, Li Q L, Bagas L, et al. A Neoproterozoic low-δ18O magmatic ring around South China: Implications for configuration and breakup of Rodinia supercontinent[J]. Earth and Planetary Science Letters, 2021, 575: 117196 . doi: 10.1016/j.jpgl.2021.117196

图(4)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  68
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 修回日期:  2024-06-02
  • 录用日期:  2024-06-02
  • 网络出版日期:  2024-06-05
  • 刊出日期:  2024-08-19

目录

/

返回文章
返回