Review on the Progress of Genetic Research Methods of Fluorite Deposits
-
摘要:
萤石是重要的战略性非金属矿产,深化其成因理论的研究至关重要。笔者对萤石矿床成因研究方法的进展进行综述,以期促进国内萤石矿床成因的深入研究,助力新一轮找矿突破战略行动。在对全球和中国的萤石矿床分布特征和成因类型进行归纳总结的基础上,重点从流体包裹体、成矿流体和物质来源、成矿年代学等方面综述了目前的主要研究现状和进展。总结了萤石的流体包裹体组合和单个流体包裹体原位成分分析技术,探讨了H-O-Sr-Ca-Nd同位素示踪物源,讨论了原位微量稀土元素对成矿过程的精细刻画等。笔者认为应该重点使用原位分析技术对流体包裹体和萤石成分进行测试,以便更精细的刻画成矿流体组分的演化过程。萤石Lu-Hf、U-Pb、Sm-Nd、(U-Th)/He和裂变径迹年代学不仅对精确获得含萤石的矿床成矿年龄至关重要,而且在矿产勘查中对矿床抬升剥蚀的正确认识也十分有必要。
Abstract:Fluorite is a strategically important nonmetallic mineral, the research on its genesis is of significant importance. This paper reviews the progress of genetic research methods in order to promote the in-depth study of the genesis of domestic fluorite deposits and make a contribution to a new round of prospecting breakthrough strategy. The distribution characteristics and genetic types of fluorite deposits worldwide and in China are summarized. Furthermore, the current status and progress of the main research methods in fluid inclusions, ore-forming fluids and material sources, and ore-forming geochronology are reviewed. The fluid inclusion assemblage and in-situ composition techniques of single fluid inclusion of fluorite are summarized, and the source of H-O-Sr-Ca-Nd isotope tracer and the fine reflection of in-situ trace rare earth elements on the mineralization process are discussed. The author proposes that the in-situ analysis technique should be employed to test the fluid inclusions and fluorite components, thereby enabling a more accurate description of the evolution process of ore-forming fluid components. The application of Lu-Hf, U-Pb, Sm-Nd, (U-Th)/He and fission track geochronology of fluorite is not only important for the accurate determination of the ore-forming age of fluorite-bearing deposits, but also necessary for the correct interpretation of deposit uplift and denudation in ore-forming exploration.
-
Keywords:
- fluorite /
- ore-forming fluid /
- metallogenic geochronology /
- LA-ICP-MS /
- Development trend
-
研究区位于甘肃崖湾–大桥金锑矿带,属于国家级整装勘查区,该勘查区具有金、锑、铜、砷、铁多金属成矿条件及找矿潜力,是西秦岭地区主要的金矿集中区,同时也是陕甘川“金三角”的重要组成部分(彭素霞等,2007;张翔等,2009;孙则朋等,2016)。近二三十年来,先后在该地区发现了具有工业价值的大桥金矿、崖湾大型锑矿、坪定金砷矿、白草坝锑砷矿、白崖沟锑金矿、甘江头金矿、河畔沟金锑矿、范家坝铜矿、张家沟铅锌矿等大中型金、锑矿床(姜寒冰等,2023),充分显示在该地区找矿潜力十分优越。
土壤地球化学测量是通过采集地表风化疏松物质下方的残积物样品,分析元素的含量与集中规律,通过发现土壤中的异常,并进行找矿的一种勘查手法(罗先熔等,2008)。作为勘查地球化学的勘查方法之一,被常规运用于寻找不同类型矿床及矿产评价(谢学锦,2002)。随着地表找矿难度的逐渐增大,尤其地表覆盖层厚,基岩出露较少,水系不发育,地形条件差等因素下,运用土壤地球化学测量来直观指示其与下伏岩层矿化线索,对寻找隐伏矿体是一种更直观的找矿方法(Cohen et al.,2010;李天虎等,2022)。
研究区属于南北秦岭之间的高山丘陵区,地形陡峻,切割强烈,森林覆盖区大,且第四系覆盖物厚,因此选用土壤地球化学测量作为勘查区找矿方法。前人先后在该区带做过相关地质调查工作(段晓华等,2008;张鹤启等,2020;杨明莉等,2021),但对该地区地球化学异常信息研究较少,区内开展的地质工作程度较低。为了进一步加强在研究区地质调查工作,明确地化异常和优选找矿远景区,对研究区开展了1∶2.5万土壤地球化学测量,运用分形及因子分析和相关性分析等多元统计方法,确定研究区各元素之间的时空分布,运用异常衬值,圈定异常远景区,为开展下一步地质找矿工作,提供找矿依据。
1. 成矿地质背景
甘肃崖湾–大桥地区金锑矿成矿带,位于秦岭–大别新元古代—古生代造山带之白龙江隆起带与阿尼玛卿裂陷沉积区东段(张家瑞等,2020)(图1a),成矿区带属夏河–崖湾印支期—燕山期金、锑、汞成矿带。区域内出露地层广泛,主要为泥盆系、石炭系、二叠系、三叠系、侏罗系及古近系和第四系。其中,三叠系最为发育,为复理石建造;泥盆系、石炭系及二叠系以浅海相碳酸盐建造为主;古近系为红色砂砾岩、砂岩、粉砂岩。
1.第四系;2.古近系;3.侏罗系;4.三叠系中统;5.三叠系中统;6.三叠系下统;7.二叠系;8.石炭系中上统;9.石炭系下统;10、11.泥盆系洞山组;12.泥盆系西汉水组;13.泥盆系安家岔组;14.泥盆系吴家山组;15.印支期花岗闪长岩;16.印支期玻基玄武岩;17.印支期石英闪长岩;18.石英斑岩;19.粗面岩;20.实测地质界线;21.推测地质界线;22.实测不整合界线;23.实测断层;24.推断性质不明断层;25.河流;26.金矿点;27.金、锑矿点;28.金、铜、铁矿点;29.铅、锌、铜矿点;30.铜矿点;31.锑矿点;32.铁矿点;33.锑、雄黄矿点;34.研究区Figure 1. (a) Schematic diagram of the geotectonic location in the study area and (b) regional geology and mineral resources map泥盆系主要由泥盆统吴家山组(D1w2):碳质千枚岩、大理岩、结晶灰岩及白云岩、变砂砾岩。中泥盆统西汉水组(D2x):绢云母方解石千枚岩、粉砂质条带千枚岩及钙质细砂岩夹中厚层生物碎屑灰岩、薄-厚层粉晶灰岩、生物碎屑灰岩夹方解石千枚岩、钙质板岩、棕褐色砂岩、砂板岩。安家岔组(D2a)、洞山组(D3d):绢云母千枚岩、粉砂质千枚岩夹粉晶灰岩、生物碎屑灰岩、大理岩、白云岩等组成。石炭系主要由下石炭统(C1):灰色中厚层灰岩灰红色块状灰岩、板岩、粉砂岩、页岩、石英砂岩。中上石炭统(C2-3):灰、灰白色中厚层致密纯灰岩组成。二叠系主要由大关山群(P1dg):灰—暗灰色中厚层灰岩组成。三叠系主要由下三叠统隆务河组(T1l)、中三叠统古浪堤组(T2g):砂岩、灰黑色板岩、灰色灰岩互层、砾岩、泥岩组成、该层已发现崖湾锑矿、大桥金矿、上坝铜矿等矿(床)点分布。侏罗系为中下侏罗统(J1-2):分别不整合于中上石炭统、三叠系之上。主要为沉积岩系组成。古近系为一套陆相红色碎屑岩沉积。岩性以红色砾岩为主,夹少量砂岩、粉砂岩和砂质黏土。第四系较发育,主要为冲、残、坡积物。
区内岩浆岩较为发育,主要出露印支期赵家沟石英闪长岩体(δΟ52)、申家庄黑云母花岗闪长岩(γδ51)、石英斑岩(λπ)、玻基玄武岩(β52)等岩脉。
该区位于秦岭东西构造带的西延部分与武都山子型构造西翼复合部位,地质构造极其复杂。主要构造线为北西向。褶皱受晚期断层破坏明显。褶皱构造发育,构造线呈NW向,向东转为EW向。最大的褶皱构造为白龙江复背斜、石家河复式向斜。区域内断裂构造主要有NW、NE、近SN向3组断裂,其中NW向断层最为发育。
区带上多金属矿床(点)及异常星罗棋布、成群成带分布,周边有Au、Cu、Sb、Fe矿(化)点20余处(图1b)。研究区出露地层主要为下三叠统隆务河组(T1l),主要为灰绿−灰色砂岩、灰黑色板岩、灰色灰岩互层,含砾灰岩夹灰岩透镜体,尚夹流纹岩、英安岩及火山碎屑岩。三叠系为寻找锑金矿的重点层位,该层为区域上主要的含矿层位,崖湾大型锑矿就赋存与此层中(刘开君,2016;谢世强,2018;周叶泽,2020)。
2. 地球化学元素的采集与分析
研究区工作方法主要遵循《土壤地球化学测量规程》(DZ/T0145-2017)规范,根据研究区地形地质条件情况,开展1∶2.5万土壤地球化学测量,按250 m×50 m网度布设土壤地球化学采样点,通过野外实际踏勘情况,来布设测线,测线应垂直或大致垂直于岩层走向及构造线方向,方位40°,并在其测线上按照50 m的间距来布设测点。因此样品采集B层位一般为距地表15~50 cm,但研究区森林范围大且覆盖较厚,为尽量避开其附近的污染源,采样深度一般多为30 cm以下,有时可能40~50 cm,采如遇于大于1 m的覆层时,可将采样点移动至覆盖厚度较小的地段,一般移动距离不大于50 cm,避免采集腐植物(A层)。根据该研究区及其外围以往工作经验,取100网目以下粒度为采集对象,样品重量为150~200 g。要严格按照规范,对其采样点及周围地质特征做好详细的记录,要求保证采样物质一致,避免岩屑样品混杂现象。
本次野外工作共采集到土壤样品1200件,样品分析由甘肃省有色金属地质勘查局天水矿产勘查院实验室来完成,分析元素为Au、Ag、Cu、Pb、Zn、Ni、Sb、Bi、Hg共9种元素。其中,Au运用石墨炉原子吸收法测定,Ag采用原子吸收测定,Cu、Pb和Zn采用X射线荧光测定,As、Hg、Sb、Bi和Sn采用电感耦合等离子体发射光谱测定,各样品分析元素的检测率均大于95%。
3. 分形特征
元素在空间的结构及各方向的变化趋势,具有明显的空间属性即分形特征(成秋明,2012)。分形主要表现为局部与整体具有相似性(申维,2007;龚晶晶等,2020),由于成矿过程表现为复杂的多期次元素叠加,往往表现出元素富集或亏损,使地球化学背景值和异常形成各自独立的幂指数关系,服从多重分形规律(Wang et al.,2017;Liu et al.,2020)。本次对研究区采用含量-面积求和法模型,其特点主要是元素含量r和与该含量等值线所圈定之和N(r)服从幂律关系。
$$ \mathrm{N}_{(\mathrm{r})}=\mathrm{Cr}^{-\mathrm{D}} \qquad {\mathrm{r}}>0 $$ (1) 将公式(1)两边取对数,得到一元性回归方程,即lgN(r)=–Dlgr+lgC,通过在对对数图及散点图中,用最小平方法(最小二乘法)直线拟合,根据拟合直线斜率的绝对值求出分维数D。
通过对研究区9种元素进行统计分形,得到以横坐标为元素含量和以纵坐标为和数之间的对数散点图(图2),根据图2可以看到,元素含量分布体现在空间中有不同的无标度区域,且有不同的直线斜率,及分维数D,为使更加合理确定分维数,即在区间内对最小平方法(最小二乘法)进行回归,对通过对各个分区间的拟合直线与原始值之间的剩余平和Ei(i=1,2)在两区间总和最小(张焱等,2011;施海鹏等,2015;赵欣怡等,2020),主要检验公式如下。
$$\begin{split} E = & E_1 + E_2 = {\sum\limits_{i = 1}^{{i_0}} {\left[ {{\rm{lg}}N({r_{_i}}) + {D_1}{\rm{lg}}{r_i} - {\rm{lg}}{C_1}} \right]} ^2} + \\& {\sum\limits_{i = {i_0} + 1}^{{i_0}} {\left[ {{\rm{lg}}N({r_i}) + {D_2}{\rm{lg}}{r_i} - {\rm{lg}}{C_2}} \right]} ^2} \end{split} $$ (2) 式中:ri拟合直线交点;D1、D2为拟合直线斜率及分维数。
从图2可知,9种元素拟合出不同的直线方程,且呈先慢后快的趋势,表现为右倾,代表了元素在土壤中的具有多重分形特点,D1表示为拟合直线较平缓,都近似成水平,且D1值基本较小,表现为元素含量的背景分布;D2表示拟合直线倾斜,且斜率大小不均一,反映元素不均一,可能由元素在空间表示有元素异常变化引起,拟合值越小,元素引起异常特征显著,富集成矿规律越明显。面积-求和法确定土壤化学元素含量对研究区分组界线,根据对各元素直线方程回归拟合,且通过显著性检验(申维等,2007)。将研究区9种元素以D等于4为界,可划分为2类:①Au、Ag、Zn、Sb元素斜率较小,表明元素其成矿可能潜力大,与研究区三叠系成矿特征相吻合,可作为研究区主要关注对象。②Cu、Pb、Ni、Bi、Hg元素斜率较大,异常值可能与区域地层有关,对比研究区地层分布,但高值点较少,元素密集程度较低,其成矿的可能性较小。
4. 地球化学特征
4.1 土壤地球化学元素参数统计
①依据研究区9种元素的原始数据分析表,对元素的最大值、算术平均值、标准离差、变异系数等地球化学参数来分析和阐明1∶2.5万土壤地球化学元素的分布规律及特征。②通过对原始数据处理,按照X+3S和X–3S的标准,循环剔除其中的离群数据(黄学强等,2013)。③求得剔除后的各元素算术平均值、标准离差、变异系数等地球化学参数(表1)。从表1可知,原始Sb变异系数大于0.5,表明元素离散程度高,Au、Ag、Bi和Zn元素变异系数相当,元素离散程度中等,Cu、Pb、Ni和Hg变异系数较低,元素离散程度低。浓度系数主要用来描述其元素在化学异常中所反映的富集程度,为元素算术平均值与陇南地区背景值比值得到(黎彤,1976;刘建宏等,2015;李超等,2020)。结果显示,Sb(2.20)、Pb(1.69)、Ni(1.52)的浓度系数大于1.5,说明在该区元素分布不均匀,有强的富集程度,元素的迁移程度明显。Cu(1.23)、Zn(1.29)、Bi(1.30)元素浓度系数相差不大;但有较高的富集程度和明显的富集特征,有形成地球化学异常的可能。Hg的浓度系数相对较低。研究区Au、Sb、Pb、Ni、Cu、Zn、Bi元素呈富集状态,易形成地球化学异常。而Hg元素表明元素在研究区内分布较均匀,且在局部地段元素富集的趋势较小,则不易于形成地球化学异常(施海鹏等,2015;王发明等,2015;王会敏等,2016)。
表 1 甘肃省礼县三峪地区地球化学元素含量参数统计特征表Table 1. Statistical characteristics of geochemical element content parameters in Sanyu area, Lixian County, Gansu Province元素 样品数目
(件)最大值 算术
平均值标准
离差变异系数
CV1浓度
系数陇南地区
背景值算术
平均值标准
离差变异系数
CV2Au 1200 6.4 1.6 0.7 0.46 1.01 1.58 1.58 0.61 0.39 Ag 1200 0.23 0.04 0.02 0.44 / 71.14 0.04 0.02 0.39 Cu 1200 65 30.5 5.1 0.17 1.23 24.7 30.24 4.31 0.15 Pb 1200 24 36.8 6 0.16 1.69 21.81 35.75 3.31 0.1 Zn 1200 700 95.1 28.8 0.3 1.29 73.89 90.92 12.56 0.16 Ni 1200 201 46 9.8 0.21 1.52 30.25 44.85 4.82 0.14 Sb 1200 23.11 1.8 0.98 0.55 2.2 0.82 1.57 0.26 0.23 Bi 1200 3.37 0.43 0.16 0.38 1.3 0.33 0.42 0.11 0.29 Hg 1200 21 14 3 0.19 0.52 26.75 14.46 2.74 0.19 注: Au、Ag含量为10−9;其他元素含量为10−6;变异系数=标准离差/平均值;浓度系数=平均值/陇南地区背景值;“/”表示数值低。 4.2 研究区元素组合分析
4.2.1 R型聚类分析
R型聚类分析主要对各个元素之间相关性大小按其分类,及各元素和元素之间的亲疏程度。便于了解在地质条件各成矿作用下于元素间的各种成因聚类(袁和等,2017;何旺等,2019;苏艺怀等,2021)。得出R型聚类分析谱系图(图3),当距离系数R取0.3时,将研究区9种元素归为4类组合:第一类为Ag–Pb–Zn–Sb元素,主要为中低温成矿元素;第二类为Bi–Ni–Cu元素,主要为中高温成矿元素;第三类为Au元素,单独元素,代表低温元素;第四类为Hg元素,为低温元素。
4.2.2 因子分析
为更深入清晰刻画元素在空间共生组合之间的关系,在上述R型聚类分析的基础上,运用其因子分析来研究元素共生组合之间的关联性。因子分析是把多个变量的原始数据进行整理、归纳、提炼,通过对数据降维方法,从变量中提取公用因子,来分析研究各元素地质成因所获得的共生组合关系(龚晶晶等,2020;李文明等,2021;王乔林等,2021;李天虎等,2022)。利用统计学软件SPSS 25,对数据用巴特莱特(Bartlett)球度检验和变量间偏相关性KMO(Kaiser-Meyer-Olkin)检验(唐瑞等,2021;冯博鑫等,2023)(表2)。从表2可以看出,KMO值为0.655,符合Kaiser提出的判断其标准(>0.6),巴特莱特球形度检验Sig(概率值)为0.000,不大于显著性为0.05。因此,根据以上条件,认为研究区数据适合做因子分析(樊会民等,2018;牟妮妮等,2020)。对数据的分析结果运用其主成分分析法,采用正交旋转因子载荷矩阵划,按其特征值>1和方差累计贡献率65.796%的阈值,共提取3中因子成分(表3)。
表 2 KMO和巴特利特检验表Table 2. KMO and Bartlett testKMO取样适切性量数 0.655 巴特利特球形度检验 近似卡方 1668.056 自由度 36 显著性 0 表 3 正交旋转因子载荷矩阵表Table 3. Orthogonal rotation factor loading matrix元素 F1 F2 F3 Au 0.052 0.489 0.263 Ag 0.512 −0.111 −0.502 Cu 0.235 0.792 −0.134 Pb 0.852 0.096 −0.015 Zn 0.821 0.119 −0.071 Ni 0.009 0.682 0.15 Sb 0.642 0.106 0.252 Bi 0.02 0.565 −0.273 Hg 0.114 −0.034 0.763 方差贡献率(%) 28.655 22.239 14.902 旋转累计方差贡献率(%) 28.655 50.894 65.796 4.3 研究区元素组合异常特征
4.3.1 元素组合异常下限
对上述研究区9种元素多元统计分析,结合研究区成矿地质背景、成矿规律,划分3类元素组合,即F1(Ag–Pb–Zn–Sb)、F2(Au–Cu–Ni–Bi)、F3(Hg)组合元素,运用其异常衬度(杨宝荣等,2019;黄文斌等,2020;李超等,2020),来确定元素组合异常下限。异常衬度法是指原始数值与背景值之比,来提高异常信息,加强弱异常、突出多种元素嵌套组合异常的特点,元素组合异常衬值为各单元素异常衬值之和。利用其衬度法,可以消除不同元素平均值之间的差异,消除元素间的量纲(袁和等,2017;王东等,2020)。运用软件SPSS 25箱图法,按其各单元素衬值相加,通过箱图上下方不出现异常点为止,同时配合直方图,来得出组合元素的均值(背景值)及标准差。通过公式C=C1+Kσ(C:衬值异常下限;C1:衬值背景值;σ:标准差)来计算衬度异常下限。元素组合地球化学衬值内、中、外带值统计结果(表4)。根据统计结果,利用软件Surfer 13对研究区元素组合异常绘制因子得分异常图(图4)。
表 4 甘肃礼县三峪地区元素组合异常衬值参数统计表Table 4. Statistics of soil geochemical lining parameters in Sanyu area, Li County, Gansu元素组合 背景值 标准差 外带值下限 中带值 内带值 F1 4.090 0.586 4.382 4.676 5.262 F2 4.024 0.615 4.332 4.639 5.254 F3 1.000 0.190 1.095 1.190 1.380 F1因子代表Ag–Pb–Zn–Sb元素组合,其方差贡献率为28.655%,为中–低温热液成矿得元素组合形式,在3个因子中占比最大,反映其在研究区与构造薄弱带的运移及沉积岩层有关,是主要的成矿元素,且从表4中可以看出,其因子的数值接近,可推断为是本研究区锑多金属矿的成矿元素组合。F2因子代表Au–Cu–Ni–Bi元素组合,其方差贡献率为22.239%,为中高温成矿元素组合。F3因子代表Hg元素。其方差贡献率14.902%,为独立元素,为低温热液元素。从表3可以看出,F1因子中比例最大,综合元素参数统计及研究区内地质构造及成矿规律,得出研究区Sb有具有良好的找矿潜力,结合元素聚类及因子分析,其得出的分析结果相吻合。
4.3.2 元素组合异常特征
F1因子(Ag–Pb–Zn–Sb)主要为中低温热液成矿元素组合,根据其地球化学中元素分类,Pb、Zn元素都为亲硫元素,且Pb元素主要为亲酸性元素、不易迁移,而Zn元素灵活性较强、迁移能力强,Sb元素为低温元素,亲铜,Ag元素亲铜,且容易形成硫化物,因此,F1元素组合可认为是一组有利于形成硫化物元素组合。研究区内异常主要集中分布在构造带F1及附近,呈带状分布,其赋存在下三叠统隆务河组(T1l)灰岩及泥钙质板岩夹灰岩中,与岩层走向及F1构造带方向一致,且该地层为主要的含矿层位。从整体异常分布看,主要分布在研究区北部、中部及东南部,且南部异常未封闭,向外延伸。东南部元素组合异常长轴横穿构造线,呈带状分布。异常组合元素套合程度高、强度大、元素共生组合好,具有一定的组分分带及浓集分带。其形态呈不规则及近椭圆状。通过与已知矿床成矿规律相结合,认为研究区内寻找Sb多金属矿的潜力较大。
F2因子为(Au–Cu–Ni–Bi)为高低温成矿元素元素组合,Au为低温成矿元素,为亲硫性,且Cu主要表现为亲硫性,Ni、Bi主要为高温元素。Bi元素通常富集在中酸性岩中,同时也会在常见的硫化矿物中富集,异常主要位于研究区北部及中部及南部,Au异常主要在分布于研究区西南部干沟子附近及中部蒲家湾,西南部异常与F1因子Sb元素异常套合程度较好,且异常未封闭,向南部延伸,其岩性主要为薄层灰岩,有明显的浓集分带,呈不规则状展布。中部Au主要分布在研究区蒲家湾,且分布范围较小,且强度低,呈不规则状分布,异常规模不大,其岩性主要为下三叠统隆务河组(T1l)灰岩。研究区不仅有中高温元素,而且低温元素也参与,Au元素异常可能由中高温硫化物元素参与了金矿的形成。Cu–Ni–Bi元素主要出露在研究区北部,呈圆形分布,局部呈星点状分布,元素强度较低,异常规模不大,中部异常位于小沿脉闪长玢岩中,异常中心穿过F1构造带,推测研究区异常由高温元素为低温元素成矿提供了热源。
F3因子(Hg)为独立元素,且Hg主要为熔点低的金属元素,迁移能力较强,研究区异常分布小,强度低,且内、外、中带组分不明显,呈椭圆状,星点状,研究区异常主要分布在F1构造带两侧,零星状分布。因子异常对研究区成矿元素关联较小。
5. 远景区圈定及找矿前景分析
5.1 远景区圈定
对研究区原始数据计算得出因子分析,根据元素组合衬值异常,按照衬值法,结合研究区地质成矿区域背景及成矿地质特征及构造等综合因素,共圈定4处远景区,其编号分别为A、B、C、D(图5)。
A远景区:主要在研究区东南部,主要为Ag、Pb、Zn、Sb元素异常组合,且Pb、Zn元素异常未封闭,向测区东南外延伸,面积约为0.34 km2,元素异常之间套合程度好,异常强度相对较高,浓集中心明显,远景区内出露主要地层为下三叠统隆务河组,岩性主要为深灰色灰岩、灰白色–灰色泥质、钙质板岩互层,角砾灰岩夹板岩透镜体,灰岩硅化较强。研究区内构造破碎带F1穿过元素组合异常长轴中心,与构造线方向大致相同,且破碎带F1见有断层角砾岩、泉水出露,见有方解石细脉相互交叉分布,且方解石脉有强的褐铁矿化,沿方解石脉裂隙嵌入。从已知相邻崖湾锑矿床成矿规律及成矿条件分析,主要受层位和构造控制,成矿条件清晰,因此,预测远景区对寻找以Sb为主要矿种的多金属矿找矿潜力较大。
B远景区:主要在研究区南家山西侧附近分布,主要为Ag、Pb、Zn、Sb、Hg元素异常组成,Sb、Pb、Zn、元素套合密切,其异常分布面积约为0.97 km2,异常强度高、元素共生组合好,具有一定的组分分带及浓集分带。远景区内出露主要地层为下三叠统隆务河组,主要岩性为深灰色薄–中层灰岩,灰岩硅化较强。研究区内构造破碎带F1穿过远景区组合异常中心,大致平行于异常长轴。远景区北部单元素Pb、Zn、Sb元素组合紧密套合,异常处于第四系残坡积物中,应重点检查该远景区,异常是由隐伏多金属矿导致还是与土壤样品引起。因此,该远景区对于寻找Sb多金属隐伏矿床意义重大。
C远景区:主要在研究区简河里附近分布,且Pb、Zn、Sb、Au、Cu、Ni、Hg元素均有显示,其异常分布面积为1.24 km2。Pb–Zn–Sb、Cu–Ni组合套合密切,异常元素共生组合好,具有浓集分带。Au异常出露在简河里及蒲家湾,异常面积小,分布范围小,呈椭圆状分布,且强度低,异常规模不大。远景区内出露主要地层为下三叠统隆务河组,主要岩性为深灰色薄–中层灰岩夹泥钙质板岩中,且围岩蚀变主要为褐铁矿化,灰岩硅化较强。远景区内有小沿脉煌斑岩侵入,为异常成矿物质提供了热液移动及汇聚重要场所。远景区组合异常位于研究区内构造破碎带F1南侧。该远景区对寻找Pb、Zn多金属矿找矿潜力大。
D远景区:主要在研究区北部,主要为Ag、Pb、Zn、Sb、Au、Cu、Ni、Hg元素,Sb元素异常未封闭,向测区北部延伸,与Pb–Zn–Sb、Cu–Ni元素组合套合紧密,异常元素共生组合好,具有三级浓集中心。其异常分布面积为2.02 km2。其中,Ag–Pb–Zn–Sb元素组合规模最大。远景区内出露主要地层为下三叠统隆务河组,主要岩性为深灰色薄–中层灰岩,灰岩硅化较强。远景区组合异常位于研究区内构造破碎带F1西侧。该远景区对寻找隐伏Sb多金属矿找矿前景潜力大。
5.2 找矿前景分析
研究区下三叠统隆务河组,根据前期野外现场踏勘,在研究区滴嘴里东约为100m处(踏勘位置见图5),发现一构造蚀变带,该带宽约为1 m,带内整体呈黄褐色,主要充填物为灰岩碎块、板岩碎块及泥钙质胶结物组成,局部见有方解石脉,上盘主要为钙质板岩,下盘为薄层灰岩,该带与下盘接触面产状为30°∠72°。围岩蚀变主要为褐铁矿化、硅化。通过与相邻崖湾锑矿床的成矿规律及控矿要素来看,其Sb主要受层位及断裂控制。根据对研究区土壤地球化学元素分析,所得出研究区内元素异常高值与层位及与构造密切相关,且与异常元素组合特征吻合程度基本一致,对圈定的A、B、C、D远景区都在研究区下三叠统隆务河组及构造带F1中。因此,遵循从已知到未知的找矿思路,研究区内Sb多金属矿,可能受下三叠统隆务河组及构造带F1控制,通过对研究区现场踏勘,进一步为缩小找矿远景区找矿指明了方向。研究区具有较好的成矿地质背景及成矿条件,找矿潜力及前景优越。
6. 结论
(1)通过元素统计分析,定量分析Au、Ag、Cu、Pb、Zn、Ni、Sb、Bi、Hg 9种元素,运用变异系数、浓度系数及元素分形分布特征等方法,发现研究区内Au、Pb、Zn、Sb元素找矿有一定潜力,元素异常分布与区域成矿地质条件相吻合。Ag、Cu、Hg、Bi、Ni元素分异程度弱,找矿潜力较小,土壤地球化学在该研究区寻找锑多金属矿有良好效果,对该区进一步找矿有指导意义。
(2)根据聚类分析及因子得分分析,将研究区9种元素分为3类元素组合,即F1因子代表Ag–Pb–Zn–Sb元素组合为中–低温热液成矿得元素组合形式,反映其在研究区与构造薄弱带的运移及沉积岩层有关,是主要的成矿元素。F2因子代表Au–Cu–Ni–Bi元素组合,为中高温成矿元素组合。F3因子代表Hg元素,为低温热液元素。
(3)通过对元素异常衬度计算,结合元素组合异常特征,在研究区共圈出4处找矿远景区,经过系统全面综合分析,结合已知矿床成矿背景及成矿规律特征,认为圈定的4处远景区是以锑多金属矿的有利部位,成矿前景广阔,是寻找锑多金属为主的重要远景区,为下一步地质找矿工作指明了方向。
-
图 1 全球主要萤石矿床分布图(Hayes et al., 2017)
Figure 1. Distribution map of major fluorite deposits around the world
图 2 中国主要萤石矿床分布图(王吉平等, 2014)
Figure 2. Distribution map of major fluorite deposits in China
图 3 萤石矿床成因类型划分(Hayes et al., 2017)
a. 含氟或可能含氟的8种矿物或矿物群;b. 根据构造和岩浆组合对热液萤石矿床进行的简化分类
Figure 3. Genetic classification of fluorite deposit
图 4 中国典型萤石矿床成因模式
a. 内蒙古赤峰地区与花岗岩岩浆热有关的萤石矿床构造背景(Pei et al., 2017);b. 内蒙古赤峰地区与花岗岩岩浆热有关的萤石矿床成因模式图(Pei et al., 2017);c、d. 浙江骨洞坑与次火山岩热液有关的断裂控矿的萤石矿床成因模式图(Fang et al., 2020);e. 黔东北双河与热卤水热液有关的重晶石-萤石矿床成因模式图(李敏等,2021);f. 扬子板块西缘碳酸盐岩地层中似层状产出的与铅锌矿床伴生的萤石矿床(Yu et al., 2022)
Figure 4. Genetic model of typical fluorite ore deposit in China
-
曹华文, 张寿庭, 高永璋, 等 . 内蒙古林西萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球化学,2014 ,43 (2 ):131 −140 .CAO Huawen, ZHANG Shouting, GAO Yongzhang, et al . REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications, Inner Mongolia Autonomous Region[J]. Geochimica,2014 ,43 (2 ):131 −140 .曹华文, 张伟, 裴秋明, 等 . 滇西小龙河、来利山锡矿床的萤石、方解石微量元素地球化学特征[J]. 矿物岩石地球化学通报,2016 ,35 (5 ):925 −935 . doi: 10.3969/j.issn.1007-2802.2016.05.013CAO Huawen, ZHANG Wei, PEI Qiuming, et al . Trace Element Geochemistry of Fluorite And Calcite from the Xiaolonghe Tin Deposits and Lailishan Tin Deposits in Western Yunnan, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2016 ,35 (5 ):925 −935 . doi: 10.3969/j.issn.1007-2802.2016.05.013曹俊臣 . 初论中国层控萤石矿床分类及某些地球化学特征[J]. 地质与勘探,1985,21 (7 ):8 −14 .曹俊臣 . 热液脉型萤石矿床萤石气液包裹体氢、氧同位素特征[J]. 地质与勘探,1994 ,30 (4 ):28 −29 .陈登, 刘志臣, 汤子程, 等 . 贵州务川涪洋地区萤石矿床稀土元素地球化学特征[J]. 矿物学报,2023 ,43 (6 ):861 −872 .CHEN Deng, LIU Zhichen, TANG Zicheng, et al . Geochemical characteristics of rare earth elements of samples in some fluorite deposits in the Fuyang area, Wuchuan, Guizhou, China[J]. Acta Mineralogica Sinica,2023 ,43 (6 ):861 −872 .陈怀录, 张良旭, 吕鸿图 . 马衔山萤石矿床萤石裂变径迹年龄的测定及成矿时代探讨[J]. 科学通报,1987, (14 ):1087 −1090 .陈军元, 刘艳飞, 颜玲亚, 等 . 石墨、萤石等战略非金属矿产发展趋势研究[J]. 地球学报,2021 ,42 (2 ):287 −296 .CHEN Junyuan, LIU Yanfei, YAN Lingya, et al . Research on Development Trend of Strategic Nonmetallic Minerals such as Graphite and Fluorite[J]. Acta Geoscientica Sinica,2021 ,42 (2 ):287 −296 .陈应华, 蓝廷广, 唐燕文, 等 . 闪锌矿中单个流体包裹体成分LA-ICP-MS分析及其指示意义: 以南岭新田岭钨矿床为例[J]. 矿床地质,2023 ,42 (5 ):859 −876 .CHEN Yinghua, LAN Tingguang, TANG Yanwen, et al . LA-ICP-MS analysis of single fluid inclusions in sphalerite and its implications: A case study from Xintianling tungsten deposit in Nanling region, South China[J]. Nineral Deposits,2023 ,42 (5 ):859 −876 .戴慧, 黄文清, 曹素巧, 等 . 激光拉曼光谱在包裹体研究中的应用[J]. 宝石和宝石学杂志(中英文),2022 ,24 (5 ):146 −154 .DAI Hui, HUANG Wenqing, CAO Suqiao, et al . Application of Laser Raman Spectroscopy in the Study of Inclusion[J]. Journal of Gems & Gemmology,2022 ,24 (5 ):146 −154 .董会, 曹佰迪, 董敏, 等 . 天然流体包裹体均一状态下拉曼光谱研究[J]. 西北地质,2021 ,54 (4 ):274 −279 .DONG Hui, CAO Baidi, DONG Min, et al . Study on the Raman Spectra of Natural Fluid Inclusions Under Uniform State[J]. Northwestern Geology,2021 ,54 (4 ):274 −279 .董文超, 庞绪成, 司媛媛, 等 . 河南嵩县车村萤石矿床稀土元素特征及地质意义[J]. 中国稀土学报,2020 ,38 (5 ):706 −714 .DONG Wenchao, PANG Xucheng, SI Yuanyuan, et al . REE Geological Characteristics of Checun Fluorite Deposit in Song County, Henan Province[J]. Journal of The Chiness Society of Rare Earths,2020 ,38 (5 ):706 −714 .方贵聪, 王登红, 陈毓川, 等 . 南岭萤石矿床成矿规律及成因[J]. 地质学报,2020 ,94 (1 ):140 −178 .FANG Guicong, WANG Denghong, CHEN Yuchuan, et al . Metallogenic Regularities and genesis of the fluorite deposits in Nanlingregion[J]. Acta Geological Sinica,2020 ,94 (1 ):140 −178 .方乙, 张寿庭, 邹灏, 等 . 浅覆盖区萤石矿综合勘查方法研究——以内蒙古林西赛波萝沟门萤石矿为例[J]. 成都理工大学学报(自然科学版),2014 ,41 (1 ):94 −101 .FANG Yi, ZHANG Shouting, ZOU Hao, et al . Comprehensive exploration method for fluorite deposits in grasslands covered area: A case study of the Saiboluogoumen fluorite deposit in Linxi, Inner Mongolia, China[J]. Journal of Chengdu University of Technology (Science & Technology edition),2014 ,41 (1 ):94 −101 .龚雪婧, 孟贵祥, 汤贺军, 等 . 湘东光明萤石矿黑云母花岗岩地球化学特征及其对萤石成矿的启示[J]. 地质通报,2023 ,42 (9 ):1432 −1452 .GONG Xuejing, MENG Guixiang, TANG Hejun, et al . Geochemical characteristics of biotite granite in the Guangming fluorite deposit in eastern Hunan, China: Implications to fluorite mineralization[J]. Geological Bulletin of China,2023 ,42 (9 ):1432 −1452 .郭宇, 陈登, 汤子程, 等 . 黔东北地区金亮萤石矿床稀土元素地球化学特征与成矿物质来源[J]. 矿物学报,2023 ,43 (6 ):873 −881 .GUO Yu, CHEN Deng, TANG Zicheng, et al . Ceochemical characteristics of rare earth elements and the source of ore-forming materials in the Jinliang fluorite deposit in the northeastern Guizhou[J]. Acta Mineralogica Sinica,2023 ,43 (6 ):873 −881 .何佳乐, 潘忠习, 杜谷 . 激光拉曼光谱技术在地矿领域的应用与研究进展[J]. 中国地质调查,2022 ,9 (5 ):111 −119 .HE Jiale, PAN Zhongxi, DU Gu . Application and research progress of Laser Raman spectroscopy in geology and mineral resources[J]. Geological Survey of China,2022 ,9 (5 ):111 −119 .何俊, 齐泽秋, 李为用, 等 . 单种矿物单颗粒Rb-Sr同位素等时线定年的成矿年代学应用前景[J]. 华东地质,2024 ,45 (1 ):16 −25 .HE Jun, QI Zeqiu, LI Weiyong, et al . Application prospect of the single-grain mineral Rb-Sr isotopic isochron dating in metallogenic geochronology[J]. East China Geology,2024 ,45 (1 ):16 −25 .蒋子琦, 蓝廷广, 郭海浩, 等. 适用于单个流体包裹体LA-ICP-MS分析的多元素流体包裹体标样合成及飞秒激光分析方法的建立[J]. 矿物岩石地球化学通报, 2024: https://doi.org/10.19658/j.issn.1007-2802.2023.42.109. JIANG Ziqi, LAN Tingguang, GUO Haihao, et al. Synthesis of multi-element fluid inclusion standards suitable for the LA-ICP-MS analysis and establishment of the femtosecond laser analytical method[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024: https://doi.org/10.19658/j.issn.1007-2802.2023.42.109.
李敬, 张寿庭, 商朋强, 等 . 萤石资源现状及战略性价值分析[J]. 矿产保护与利用,2019 ,39 (6 ):62 −68 .LI Jing, ZHANG Shouting, SHANG Pengqiang, et al . Present Situation and Analysis of Strategic Value of Fluorite Resource[J]. Conservation and Utilization of Mineral Resources,2019 ,39 (6 ):62 −68 .李敏, 邹灏, 陈海锋, 等 . 黔东北双河重晶石-萤石矿床流体包裹体组合研究及成因[J]. 矿物岩石地球化学通报,2021 ,40 (4 ):858 −870 .LI Min, ZOU Hao, CHEN Haifeng, et al . Study on Fluid Inclusion Assemblages ( FIA) and Origin of the Shuanghe Barite-fluorite Deposit in the Northeastern Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2021 ,40 (4 ):858 −870 .李晓东, 张艳, 韩润生, 等 . 流体包裹体研究进展及其在矿床学中的应用[J]. 地质论评,2022 ,68 (6 ):2305 −2318 .LI Xiaodong, ZHANG Yan, HAN Runsheng, et al . Research progress of fluid inclusions and its application in ore deposit[J]. Geological Review,2022 ,68 (6 ):2305 −2318 .李阳, 邹灏, 刘行, 等 . SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用[J]. 岩矿测试,2020 ,39 (2 ):300 −310 .LI Yang, ZOU Hao, LIU Hang, et al . Application of SILLS Software in Data Processing of Single Fluorite Fluid Inclusion LA-ICP-MS Trace Element Analysis[J]. Rock and Mineral Analysis,2020 ,39 (2 ):300 −310 .李育彪, 杨旭 . 我国萤石资源及选矿技术进展[J]. 矿产保护与利用,2022 ,42 (2 ):49 −58 .LI Yubiao, YANG Xu . Overview of Fluorite Resources and Processing Technology in China[J]. Conservation and Utilization of Mineral Resources,2022 ,42 (2 ):49 −58 .李长江, 蒋叙良 . 浙江萤石矿床的裂变径迹年龄测定及有关问题讨论[J]. 地球化学,1989 ,18 (2 ):181 −188 . doi: 10.3321/j.issn:0379-1726.1989.02.009LI Cangjiang, JIANG Xuliang . Fission-track Dating of Fluorite Deposits in Zhejiang Province and Some Related Probolems[J]. Geochimica,1989 ,18 (2 ):181 −188 . doi: 10.3321/j.issn:0379-1726.1989.02.009刘道荣, 商朋强 . 中国萤石矿床分类及稀土元素地球化学特征[J]. 地质与勘探,2023 ,59 (2 ):211 −222 .LIU Daorong, SHANG Pengqiang . Classification and REE geochemical characteristics of fluorite deposits in China[J]. Geology and Exploration,2023 ,59 (2 ):211 −222 .刘道荣, 商朋强 . 中国萤石矿床流体包裹体研究进展[J]. 地质科学,2024 ,59 (2 ):510 −521 . doi: 10.12017/dzkx.2024.035LIU Daorong, SHANG Pengqiang . Progress of fluid inclusion research in fluorite deposits in China[J]. Chinese Journal of Geology,2024 ,59 (2 ):510 −521 . doi: 10.12017/dzkx.2024.035刘秋颖 . 中国萤石资源供需形势分析及对策建议[J]. 矿产勘查,2023 ,14 (10 ):1798 −1804 .LIU Qiuying . Analysis of supply-demand situation of fluorite resources in China and suggestions[J]. Mineral Exploration,2023 ,14 (10 ):1798 −1804 .倪培, 范宏瑞, 潘君屹, 等 . 流体包裹体研究进展与展望(2011-2020)[J]. 矿物岩石地球化学通报,2021 ,40 (4 ):802 −818+1001 .NI Pei, FAN Hongrui, PAN Junyi, et al . Progress and Prospect of Fluid Inclusion Research in the Past Decade in China (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2021 ,40 (4 ):802 −818+1001 .裴秋明, 张寿庭, 曹华文, 等 . 内蒙古林西地区小北沟萤石矿床地质特征及找矿潜力分析[J]. 桂林理工大学学报,2016 ,36 (3 ):426 −434 .PEI Qiuming, ZHANG Shouting, CAO Huawen, et al . Features and potential analysis of Xiaobeigou fluorite deposit in Linxi, Inner Mongolia[J]. Journal of Guilin University of Technology,2016 ,36 (3 ):426 −434 .裴秋明. 大兴安岭南段萤石矿成矿规律及隐伏—半隐伏矿体预测[D]. 北京:中国地质大学(北京), 2018. PEI Qiuming. A studyon metallogenetic regularity and prognosis of concealed ore body in southern Great Xing’an Range, Northeastern China[D]. Beijing: China University of Geosciences (Beijing), 2018.
彭建堂, 胡瑞忠, 蒋国豪 . 萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J]. 岩石学报,2003 ,19 (4 ):785 −791 .PENG Jiantang, HU Ruizhong,JIANG Guohao . Samarium-Neodymium isotope system of fluorites from the Qinglong antimony deposit, Guizhou Province: Constraints on the mineralizing age and ore-forming materials' sources[J]. Acta Petrowgica Sinica,2003 ,19 (4 ):785 −791 .王春连, 王九一, 游超, 等 . 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报,2022 ,43 (3 ):267 −278 .WANG Chunlian, WANG Jiuyi, YOU Chao, et al . A Study on Strategic Non-metallic Mineral Definition, Key Applications, and Supply and Demand Situation[J]. Acta Geoscientica Sinica,2022 ,43 (3 ):267 −278 .王吉平, 商朋强, 熊先孝, 等 . 中国萤石矿床分类[J]. 中国地质,2014 ,41 (2 ):315 −325 .WANG Jiping, SHANG Pengqiang, XIONG Xianxiao, et al . The classification of fluorite deposits in China[J]. Geology in China,2014 ,41 (2 ):315 −325 .王吉平, 朱敬宾, 李敬, 等 . 中国萤石矿预测评价模型与资源潜力分析[J]. 地学前缘,2018 ,25 (3 ):172 −178 .WANG Jiping, ZHU Jingbin, LI fing, et al . Prediction model and resource potential assessment of fluorite deposits in China[J]. Earth Science Frontiers,2018 ,25 (3 ):172 −178 .王志海, 叶美芳, 董会, 等 . 流体包裹体盐度低温拉曼光谱测定方法研究[J]. 岩矿测试,2014 ,33 (6 ):813 −821 .WANG Zhihai, YE Meifang, DONG Hui, et al . Study on Salinity Determination of Fluid Inclusions by Cryogenic Raman Spectroscopy[J]. Rock and Mineral Analysis,2014 ,33 (6 ):813 −821 .吴迪, 欧光习, 马剑, 等 . 单个流体包裹体原位成分分析方法及其地质应用[J]. 天然气与石油,2022 ,40 (4 ):90 −97+107 .WU Di, OU Guangxi, MA Jian, et al . In-situ composition analytical method of single fluid inclusion and its geological application[J]. Natural Gas and Oil,2022 ,40 (4 ):90 −97+107 .吴越, 张长青, 田广 . 四川跑马铅锌矿萤石稀土元素地球化学特征与指示意义[J]. 矿物学报,2013 ,33 (3 ):295 −301 .WU Yue, ZHANG Changqing, TIAN Guang . REE Geochemistry of Fluorite from Paoma Lead-Zinc Deposit in Sichuan Province, China and Its Geological Implications[J]. Acta Mieralogica Sinica,2013 ,33 (3 ):295 −301 .向蜜, 龚迎莉, 刘涛, 等 . 钙同位素地球化学研究新进展及其在碳酸岩-共生硅酸盐研究中的应用[J]. 地质学报,2021 ,95 (12 ):3937 −3960 .XIANG Mi, GONG Yingli, LlU Tao, et al . New advances in calcium isotope geochemistry and its application to carbonatite and associated silicate rocks[J]. Acta Geologica Sinica,2021 ,95 (12 ):3937 −3960 .许成, 黄智龙, 漆亮, 等 . 四川牦牛坪稀土矿床萤石REE配分模式的影响因素[J]. 矿物学报,2001 ,21 (3 ):557 −559 .XU Cheng, HUANG Zhilong, QI Liang, et al. Factors affecting the REE patterns of fluorites in Maoniuping ore deposit, Sichuan Province[J]. Acta Mineralogica Sinica,2001 ,21 (3 ):557 −559 .许若潮, 龙训荣, 刘飚, 等 . 湘南界牌岭锡多金属矿床萤石LA-ICP-MS微量元素地球化学特征及意义[J]. 矿床地质,2022 ,41 (1 ):158 −173 .XU Ruochao, LONG Xunrong, LIU Biao, et al . LA-ICP-MS trace element analysis of fluorite and implications in Jiepailing tinpolymetallic deposit from South of Hunan Province[J]. Mineral Deposits,2022 ,41 (1 ):158 −173 .杨莉, 袁万明, 洪树炯, 等 . 裂变径迹技术及其地质应用[J]. 中国地质调查,2022 ,9 (3 ):104 −112 .YANG Li, YUAN Wanming, HONG Shujiong, et al . Fission track technology and its geological applications[J]. Geological Survey of China,2022 ,9 (3 ):104 −112 .叶锡芳 . 浙江萤石矿床成矿规律与成矿模式[J]. 西北地质,2014 ,47 (1 ):208 −220 . doi: 10.3969/j.issn.1009-6248.2014.01.019YE Xifang . Mineralization and Metallogenic Model of Fluorite Deposits in the Zhejiang Area[J]. Northwestern Geology,2014 ,47 (1 ):208 −220 . doi: 10.3969/j.issn.1009-6248.2014.01.019占岗乐, 吴火星 . 江西南城小竺萤石矿成矿作用及找矿方向[J]. 华东地质,2021 ,42 (3 ):302 −309 .ZHAN Gangle, WU Huoxing . Mineralization and prospecting direction of Xiaozhu fluorite deposit in Nancheng, Jiangxi Province[J]. East China Geology,2021 ,42 (3 ):302 −309 .张生辉, 王振涛, 李永胜, 等 . 中国关键矿产清单、应用与全球格局[J]. 矿产保护与利用,2022 ,42 (5 ):138 −168 .ZHANG Shenghui, WANG Zhentao, LI Yongsheng, et al . List, application and global pattern of critical minerals of China[J]. Conservation and Utilization of Mineral Resources,2022 ,42 (5 ):138 −168 .张寿庭, 曹华文, 郑硌, 等 . 内蒙古林西水头萤石矿床成矿流体特征及成矿过程[J]. 地学前缘,2014 ,21 (5 ):31 −40 .ZHANG Shouting, CAO Huawen, ZHENG Luo, et al . Characteristics of ore-forming fhuids and mineralization processes of the Shuitou fluorite deposit in Linxi, inner Mongolia Autonomous Region[J]. Earth Seience Frontiers,2014 ,21 (5 ):31 −40 .赵辛敏, 高永宝, 燕洲泉, 等 . 阿尔金卡尔恰尔超大型萤石矿带成因: 来自年代学、稀土元素和Sr-Nd同位素的约束[J]. 西北地质,2023 ,56 (1 ):31 −47 . doi: 10.12401/j.nwg.2022035ZHAO Xinmin, GAO Yongbao, YAN Zhouquan, et al . Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr-Nd Isotopes Constraints[J]. Northwestern Geology,2023 ,56 (1 ):31 −47 . doi: 10.12401/j.nwg.2022035中华人民共和国自然资源部. 中国矿产资源报告2023[M]. 北京: 地质出版社,2023. 朱敬宾, 王吉平, 商朋强, 等 . 中国萤石矿床锶同位素、氢氧同位素地球化学特征[J]. 化工矿产地质,2021 ,43 (1 ):7 −16 . doi: 10.3969/j.issn.1006-5296.2021.01.002ZHU Jingbin, WANG Jiping, SHANG Pengqiang, et al . Geochemical characteristics of strontium and hydrogen and oxygen isotopes in fluorite deposits in China[J]. Geology of Chemical Minerals,2021 ,43 (1 ):7 −16 . doi: 10.3969/j.issn.1006-5296.2021.01.002邹灏, 张寿庭, 方乙, 等 . 中国萤石矿的研究现状及展望[J]. 国土资源科技管理,2012 ,29 (5 ):35 −42 . doi: 10.3969/j.issn.1009-4210.2012.05.006ZOU Hao, ZHANG Shouting, FANG Yi, et al . Current Situation and Prospeet of Fluorite Deposit Researches in China[J]. Scientific and Technological Management of Land and Resources,2012 ,29 (5 ):35 −42 . doi: 10.3969/j.issn.1009-4210.2012.05.006邹灏, 徐旃章, 张寿庭, 等 . 重庆彭水火石垭重晶石-萤石矿床控矿因素与成因[J]. 成都理工大学学报(自然科学版),2013 ,40 (1 ):89 −96 .ZOU Hao, XU Zhanzhang, ZHANG Shouting, et al . Ore-control factors and genesis of Huoshiya barite-fluorite deposit in Pengshui, Chongqing, China[J]. Journal of Chengdu University of Technology (Science & Technology edition),2013 ,40 (1 ):89 −96 .邹灏, 张强, 包浪, 等 . 浙江天台盆地下陈萤石矿床地质特征及ESR年代学[J]. 成都理工大学学报(自然科学版),2016 ,43 (1 ):86 −94 .ZOU Hao, ZHANG Qiang, BAO Lang, et al . Geological characteristics and ESR dating of Xiachen fluorite deposit in Tiantai basin, Zhejiang, China[J]. Journal of Chengdu University of Technology (Science& Technology edition),2016 ,43 (1 ):86 −94 .Alaminia Z, Tadayon M, Griffith E M, et al . Tectonic-controlled sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment, Komsheche, NE Isfahan, Central Iran[J]. Chemical Geology,2021 ,566 :120084 . doi: 10.1016/j.chemgeo.2021.120084Banerjee A, Chakrabarti R . A geochemical and Nd, Sr and stable Ca isotopic study of carbonatites and associated silicate rocks from the ~65 Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India: Implications for crustal contamination, carbonate recycling, hydrothermal alteration and source-mantle mineralogy[J]. Lithos,2019 ,326−327 :572 −585 . doi: 10.1016/j.lithos.2019.01.007Barker S L L, Bennett V C, Cox S F, et al . Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite-fluorite veins: Implications for fluid-rock reaction and geochronology[J]. Chemical Geology,2009 ,268 (1−2 ):58 −66 . doi: 10.1016/j.chemgeo.2009.07.009Bau M, Dulski P . Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology,1995 ,119 (2 ):213 −223 .Bau M, Romer R L, Luders V, et al . Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England[J]. Mineralium Deposita,2003 ,38 (8 ):992 −1008 . doi: 10.1007/s00126-003-0376-xBedoya A, Glorie S, Hand M, et al . Apatite Triple Dating (Lu-Hf, U-Pb, FT) Constrains Deformation and Cooling in the Coompana and Madura Provinces, Western Australia[J]. Lithosphere,2024 ,2023 (14 ):1 −22 .Bodnar R J . Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta,1993 ,57 (3 ):683 −684 . doi: 10.1016/0016-7037(93)90378-ABodnar R J, Lecumberri-Sanchez P, Moncada D, et al. 13.5 - Fluid Inclusions in Hydrothermal Ore Deposits[A]. In: Holland Heinrich D, Turekian Karl K (editors). Treatise on Geochemistry (Second Edition)[M]. Oxford: Elsevier, 2014, 119−142.
Cao H W, Li G M, Zhang R Q, et al . Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes[J]. Gondwana Research,2021 ,92 :72 −101 . doi: 10.1016/j.gr.2020.12.020Chernyshev I V, Golubev V N, Aleshin A P, et al . Fluorite as an Sm-Nd geochronometer of hydrothermal processes: Dating of mineralization hosted in the Strel’tsovka uranium ore field, eastern Baikal region[J]. Geology of Ore Deposits,2017 ,58 (6 ):447 −455 .Chesley J T, Halliday A N, Kyser T K, et al . Direct dating of mississippi valley-type mineralization; use of Sm-Nd in fluorite[J]. Economic Geology,1994 ,89 (5 ):1192 −1199 . doi: 10.2113/gsecongeo.89.5.1192Chesley J T, Halliday A N, Scrivener R C . Samarium-Neodymium Direct Dating of Fluorite Mineralization[J]. Science,1991 ,252 (5008 ):949 −951 . doi: 10.1126/science.252.5008.949Deng X H, Chen Y J, Bagas L, et al . Isotope (S-Sr-Nd-Pb) constraints on the genesis of the ca. 850Ma Tumen Mo–F deposit in the Qinling Orogen, China[J]. Precambrian Research,2015 ,266 :108 −118 . doi: 10.1016/j.precamres.2015.05.019Dill H G . The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium[J]. Earth-Science Reviews,2010 ,100 (1−4 ):1 −420 . doi: 10.1016/j.earscirev.2009.10.011Duan Z P, Jiang S Y, Su H M, et al . Textural features and in situ trace element analysis of fluorite from the Wujianfang fluorite deposit, Inner Mongolia (NE China): Insights into fluid metasomatism and ore-forming process[J]. Ore Geology Reviews,2022 ,147 :104982 . doi: 10.1016/j.oregeorev.2022.104982Evans N J, Wilson N S F, Cline J S, et al . Fluorite (U-Th)/He thermochronology: Constraints on the low temperature history of Yucca Mountain, Nevada[J]. Applied Geochemistry,2005 ,20 (6 ):1099 −1105 . doi: 10.1016/j.apgeochem.2005.02.008Fang Y, Zou H, Bagas L, et al . Fluorite deposits in the Zhejiang Province, southeast China: The possible role of extension during the late stages in the subduction of the Paleo-Pacific oceanic plate, as indicated by the Gudongkeng fluorite deposit[J]. Ore Geology Reviews,2020 ,117 :103276 . doi: 10.1016/j.oregeorev.2019.103276Farley K A . (U-Th)/He Dating: Techniques, Calibrations, and Applications[J]. Reviews in Mineralogy and Geochemistry,2002 ,47 (1 ):819 −844 . doi: 10.2138/rmg.2002.47.18Galindo C, Tornos F, Darbyshire D P F, et al . The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study[J]. Chemical Geology,1994 ,112 (3−4 ):351 −364 . doi: 10.1016/0009-2541(94)90034-5Gigoux M, Négrel P, Guerrot C, et al . δ44Ca of Stratabound Fluorite Deposits in Burgundy (France): Tracing Fluid Origin and/or Fractionation Processes[J]. Procedia Earth and Planetary Science,2015 ,13 :129 −133 . doi: 10.1016/j.proeps.2015.07.031Glorie S, Mulder J, Hand M, et al. Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins[J]. Geoscience Frontiers, 2023: 101629.
Grønlie A, Harder V, Roberts D . Preliminary fission-track ages of fluorite mineralisation along fracture zones, inner Trondheimsfjord, Central Norway[J]. Norsk Geologisk Tidsskrift,1990 ,70 (3 ):173 −178 .Günther D, Audétat A, Frischknecht R, et al . Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasmamass spectrometry[J]. Journal of Analytical Atomic Spectrometry,1998 ,13 (4 ):263 −270 . doi: 10.1039/A707372KHalliday A N, Shepherd T J, Dickin A P, et al . Sm-Nd evidence for the age and origin of a Mississippi Valley type or deposit[J]. Nature,1990 ,344 (6261 ):54 −56 . doi: 10.1038/344054a0Hayes T S, Miller M M, Orris G J, et al. Chapter G. Fluorine, in Critical Mineral Resources of the United States[A]. In: Schulz Klaus J, DeYoung Jr John H, Seal Robert R, et al (editors). Economic and Environmental Geology and Prospects for Future Supply[M]. Reston: U. S. Geological Survey, 2017, G1−G80.
Heijlen W, Vos K, Kartalis N, et al . The formation of vein-type barite (± base metal, gold) deposits in northern Madagascar and its link with Mesozoic Pangean rifting[J]. Mineralium Deposita,2024 ,59 :255 −273 . doi: 10.1007/s00126-023-01205-8Hintzen R, Werner W, Hauck M, et al . Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry[J]. European Journal of Mineralogy,2023 ,35 (3 ):403 −426 . doi: 10.5194/ejm-35-403-2023Kinnaird J A, Kruger F J, Cawthorn R G . Rb-Sr and Nd-Sm isotopes in fluorite related to the granites of the Bushveld Complex[J]. South African Journal of Geology,2004 ,107 (3 ):413 −430 . doi: 10.2113/107.3.413Koul S L, Chadderton L T . The chemical etching of fission fragment tracks in natural fluorite[J]. Radiation Effects,1988 ,106 (4 ):319 −333 . doi: 10.1080/00337578808225712Lenoir L, Blaise T, Chourio-Camacho D, et al . The origin of fluorite-barite mineralization at the interface between the Paris Basin and its Variscan basement: insights from fluid inclusion chemistry and isotopic (O, H, Cl) composition[J]. Mineralium Deposita,2024 ,59 :397 −417 . doi: 10.1007/s00126-023-01219-2Lenoir L, Blaise T, Somogyi A, et al . Uranium incorporation in fluorite and exploration of U-Pb dating[J]. Geochronology,2021 ,3 :19 −227 .Li S, Zhang W, Cai J, et al . Multiple pulses of fluids involved in the formation of carbonatite-related REE deposits as revealed by fluorite[J]. Ore Geology Reviews,2023 ,159 :105546 . doi: 10.1016/j.oregeorev.2023.105546Liu B, Wu Q H, Li H, et al . Fault-controlled fluid evolution in the Xitian W-Sn-Pb-Zn-fluorite mineralization system (South China): Insights from fluorite texture, geochemistry and geochronology[J]. Ore Geology Reviews,2020 ,116 :103233 . doi: 10.1016/j.oregeorev.2019.103233Longerich H P, Jackson S E, Günther D . Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry,1996 ,11 (9 ):899 −904 . doi: 10.1039/JA9961100899Mernagh T P, Wilde A R . The use of the laser Raman microprobe for the determination of salinity in fluid inclusions[J]. Geochimica et Cosmochimica Acta,1989 ,53 (4 ):765 −771 . doi: 10.1016/0016-7037(89)90022-7Möller P, Bau M, Dulski P, et al. REE and yttrium fractionation in fluorite and their bearing on fluorite formation[M]. Stuttart: Proceedings of the Ninth Quadrennial IAGOD Symposium, 1998, 575−592.
Möller P, Parekh P P, Schneider H J . The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis[J]. Mineralium Deposita,1976 ,11 (1 ):111 −116 . doi: 10.1007/BF00203098Munoz M, Premo W, Courjault-Rade P . Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France[J]. Mineralium Deposita,2005 ,39 (8 ):970 −975 . doi: 10.1007/s00126-004-0453-9Nägler T F, Pettke T, Marshall D . Initial isotopic heterogeneity and secondary disturbance of the Sm-Nd system in fluorites and fluid inclusions: A study on mesothermal veins from the central and western Swiss Alps[J]. Chemical Geology,1995 ,125 (3−4 ):241 −248 . doi: 10.1016/0009-2541(95)00091-YNi P, Li W S, Pan J Y, et al . Fluid Processes of Wolframite-Quartz Vein Systems: Progresses and Challenges[J]. Minerals,2022 ,12 (2 ):237 . doi: 10.3390/min12020237Pan J Y, Ni P, Wang R C . Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions[J]. American Mineralogist,2019 ,104 (8 ):1092 −1116 . doi: 10.2138/am-2019-6958Pei Q, Zhang S, Santosh M, et al . Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China[J]. Ore Geology Reviews,2017 ,83 :174 −190 . doi: 10.1016/j.oregeorev.2016.12.022Pei Q M, Zhang S T, Hayashi K I, et al . Nature and Genesis of the Xiaobeigou Fluorite Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusions and Stable Isotopes[J]. Resource Geology,2019 ,69 :148 −166 . doi: 10.1111/rge.12191Pei Q M, Li C H, Zhang S T, et al . Vein-type fluorite mineralization of the Linxi district in the Great Xing'an Range, Northeast China: Insights from geochronology, mineral geochemistry, fluid inclusion and stable isotope systematics[J]. Ore Geology Reviews,2022 ,142 :104708 . doi: 10.1016/j.oregeorev.2022.104708Pi T, Solé J, Taran Y . (U-Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico[J]. Mineralium Deposita,2005 ,39 (8 ):976 −982 . doi: 10.1007/s00126-004-0443-yPiccione G, Rasbury E T, Elliott B A, et al . Vein fluorite U-Pb dating demonstrates post-6.2 Ma rare-earth element mobilization associated with Rio Grande rifting[J]. Geosphere,2019 ,15 (6 ):1958 −1972 . doi: 10.1130/GES02139.1Richardson C K, Holland H D . The solubility of fluorite in hydrothermal solutions, an experimental study[J]. Geochimica Et Cosmochimica Acta,1979 ,43 (8 ):1313 −1325 . doi: 10.1016/0016-7037(79)90121-2Richardson C K, Rye R O, Wasserman M D . The chemical and thermal evolution of the fluids in the Cave-in-Rock fluorspar district, Illinois; stable isotope systematics at the Deardorff Mine[J]. Economic Geology,1988 ,83 (4 ):765 −783 . doi: 10.2113/gsecongeo.83.4.765Ronchi L H, Touray J C, Michard A, et al . The Ribeira Fluorite District, Southern Brazil - Geological and Geochemical (Ree, Sm-Nd Isotopes) Characteristics[J]. Mineralium Deposita,1993 ,28 (4 ):240 −252 . doi: 10.1007/BF02421574Rosa D, Schneider J, Chiaradia M . Timing and metal sources for carbonate-hosted Zn-Pb mineralization in the Franklinian Basin (North Greenland): Constraints from Rb-Sr and Pb isotopes[J]. Ore Geology Reviews,2016 ,79 :392 −407 . doi: 10.1016/j.oregeorev.2016.05.020Ruiz J, Kesler S E, Jones L M, et al . Geology and geochemistry of the Las Cuevas fluorite deposit, San Luis Potosi, Mexico[J]. Economic Geology,1980 ,75 (8 ):1200 −1209 . doi: 10.2113/gsecongeo.75.8.1200Ruiz J, Kesler S E, Jones L M . Strontium isotope geochemistry of fluorite mineralization associated with fluorine-rich igneous rocks from the Sierra Madre Occidental, Mexico; possible exploration significance[J]. Economic Geology,1985 ,80 (1 ):33 −42 . doi: 10.2113/gsecongeo.80.1.33Sallet R, Moritz R, Fontignie D . Fluorite 87Sr/86Sr and REE constraints on fluid-melt relations, crystallization time span and bulk DSr of evolved high-silica granites. Tabuleiro granites, Santa Catarina, Brazil[J]. Chemical Geology,2000 ,164 (1 ):81 −92 .Scharrer M, Fusswinkel T, Markl G . Triple-halogen (Cl-Br-I) fluid inclusion LA-ICP-MS microanalysis to unravel iodine behavior and sources during marine fluid infiltration into the basement in unconformity settings[J]. Geochimica et Cosmochimica Acta,2023 ,357 :64 −76 . doi: 10.1016/j.gca.2023.06.023Scharrer M, Reich R, Fusswinkel T, et al . Basement aquifer evolution and the formation of unconformity-related hydrothermal vein deposits: LA-ICP-MS analyses of single fluid inclusions in fluorite from SW Germany[J]. Chemical Geology,2021 ,575 :120260 . doi: 10.1016/j.chemgeo.2021.120260Seal R R, Rye R O . Stable isotope study of fluid inclusions in fluorite from Idaho: Implications for continental climates during the Eocene[J]. Geology,1993 ,21 (3 ):219 −222 . doi: 10.1130/0091-7613(1993)021<0219:SISOFI>2.3.CO;2Shafiei Bafti B, Dunkl I, Madanipour S . Timing of fluorite mineralization and exhumation events in the east Central Alborz Mountains, northern Iran: constraints from fluorite (U-Th)/He thermochronometry[J]. Geological Magazine,2021 ,158 (9 ):1600 −1616 . doi: 10.1017/S0016756821000169Shepherd T J, Chenery S R . Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study[J]. Geochimica et Cosmochimica Acta,1995 ,59 (19 ):3997 −4007 . doi: 10.1016/0016-7037(95)00294-AShepherd T J, Rankin A H, Richards J P, et al. Fluid Inclusion Techniques of Analysis, in Techniques in Hydrothermal Ore Deposits Geology1998, Society of Economic Geologists. p. 125-149.
Siebel W, Hann H, Danišík M, et al . Age constraints on faulting and fault reactivation: a multi-chronological approach[J]. International Journal of Earth Sciences,2010 ,99 (6 ):1187 −1197 . doi: 10.1007/s00531-009-0474-9Silva D A d, Geraldes M C, McMaster M, et al . (U-Th)/He ages from the fluorite mineralization of the Tanguá alkaline intrusion[J]. Anuario do Instituto de Geociencias (Online),2018 ,41 (2 ):14 −21 . doi: 10.11137/2018_2_14_21Tritlla J, Levresse G . Comments on “(U-Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico” by Pi et al. (Mineralium Deposita 39: 976-982)[J]. Mineralium Deposita,2006 ,41 (3 ):296 −299 . doi: 10.1007/s00126-006-0053-yUSGS. Mineral commodity summaries 2024[M]. U. S. Geological Survey, 2024.
Walter B F, Jensen J L, Coutinho P, et al . Formation of hydrothermal fluorite-hematite veins by mixing of continental basement brine and redbed-derived fluid: Schwarzwald mining district, SW-Germany[J]. Journal of Geochemical Exploration,2020 ,212 :106512 . doi: 10.1016/j.gexplo.2020.106512Wolff R, Dunkl I, Kempe U, et al . Variable helium diffusion characteristics in fluorite[J]. Geochimica et Cosmochimica Acta,2016 ,188 :21 −34 . doi: 10.1016/j.gca.2016.05.029Wolff R, Dunkl I, Kempe U, et al . The Age of the Latest Thermal Overprint of Tin and Polymetallic Deposits in the Erzgebirge, Germany: Constraints from Fluorite (U-Th-Sm)/He Thermochronology[J]. Economic Geology,2015 ,110 (8 ):2025 −2040 . doi: 10.2113/econgeo.110.8.2025Xu W G, Fan H R, Hu F F, et al . Geochronology of the Guilaizhuang gold deposit, Luxi Block, eastern North China Craton: Constraints from zircon U-Pb and fluorite-calcite Sm-Nd dating[J]. Ore Geology Reviews,2015 ,65 :390 −399 . doi: 10.1016/j.oregeorev.2014.10.010Yu L M, Zou H, Santosh M, et al . The link between Paleo-Tethys subduction and regional metallogeny in the SW Yangtze Block: New evidence from the Zubu carbonate-hosted F-Pb-Zn deposit[J]. Ore Geology Reviews,2022 ,144 :104809 . doi: 10.1016/j.oregeorev.2022.104809Zhao Y, Pei Q, Zhang S T, et al . Formation timing and genesis of Madiu fluorite deposit in East Qinling, China: Constraints from fluid inclusion, geochemistry, and H-O-Sr-Nd isotopes[J]. Geological Journal,2020 ,55 (4 ):2532 −2549 . doi: 10.1002/gj.3522Zou H, Fang Y, Zhang S T, et al . The source of Fengjia and Langxi barite-fluorite deposits in southeastern Sichuan, China: evidence from rare earth elements and S, Sr, and Sm-Nd isotopic data[J]. Geological Journal,2017 ,52 (3 ):470 −488 . doi: 10.1002/gj.2779Zou H, Li M, Bagas L, et al . Fluid composition and evolution of the Langxi Ba-F deposit, Yangtze Block, China: New Insight from LA-ICP-MS study of individual fluid inclusion[J]. Ore Geology Reviews,2020 ,125 :103702 . doi: 10.1016/j.oregeorev.2020.103702Zou H, Zhang S T, Chen A Q, et al . Hydrothermal Fluid Sources of the Fengjia Barite-fluorite Deposit in Southeast Sichuan, China: Evidence from Fluid Inclusions and Hydrogen and Oxygen Isotopes[J]. Resource Geology,2016 ,66 (1 ):24 −36 . doi: 10.1111/rge.12084Zou H, Li Q L, Bagas L, et al . A Neoproterozoic low-δ18O magmatic ring around South China: Implications for configuration and breakup of Rodinia supercontinent[J]. Earth and Planetary Science Letters,2021 ,575 :117196 . doi: 10.1016/j.jpgl.2021.117196