Basemental Attribution of the Fe-Cu-Au-W-Mo Polymetallic Ore Cluster in the Southeastern Hubei: Constraint from the Ages and Hf Isotopes of the Inherited Zircons
-
摘要:
长江中下游成矿带鄂东南矿集区的基底存在统一的川中式基底和北部川中式基底、南部江南式基底的争议。笔者对灵乡岩体西段闪长玢岩开展锆石U-Pb定年和Hf同位素分析,结果显示闪长玢岩的锆石具有复杂的组成与来源:最年轻的4颗锆石加权平均年龄为(141±4) Ma,结合前人测年结果推测其可作为闪长玢岩的成岩年龄;其余16颗锆石具有较为宽泛的年龄(217~
2550 Ma)和Hf同位素组成(εHf(t) = −11.2~11.7)。进一步结合前人获得的鄂东南矿集区岩浆岩继承锆石数据,分别对比川中式基底崆岭杂岩、江南式基底梵净山群及下江群的锆石数据,发现其与崆岭杂岩具有明显差异,但和梵净山群及下江群具有高度相似性。并且鄂东南矿集区岩浆岩继承锆石和梵净山群、下江群均记录了~1.5 Ga地壳增生事件。结合区域地球物理特征,笔者认为鄂东南矿集区南部为江南式基底,北部为川中式基底,两者的分界线大致为灵乡-大冶-网湖一线。Abstract:There are two different opinions about the basemental attribution of the ore cluster in the southeastern Hubei Province, Middle-Lower Yangtze Metallogenic Belt that all attributed to the Chuanzhong-type basement or the north part related to Chuanzhong-type basement and the south part classified to the Jiangnan-type basement. In this study, zircon U-Pb dating and Hf isotope analysis were conducted for diorite porphyrite in the western Lingxiang pluton. The results indicate that the zircons of diorite porphyrite show complex compositions and sources. The youngest four zircons yield a mean 206Pb/238U age of (141±4)Ma, which coincide with previous researches and interpreted as the crystallization age of the diorite porphyrite. In addition, The other 16 older zircons have varied ages (217~
2 550 Ma) and Hf isotopic compositions (εHf(t) = −11.2~11.7). Combined with the reported ages and εHf(t) values of inherited igneous zircons from the ore cluster in the southeastern Hubei, we compared with the data from Chuanzhong-type and Jiangnan-type basements respectively. The results suggest that they are different from Kongling Complex of the Chuanzhong-type basement, but are similar to the Fanjingshan and XiaJiang Groups of the Jiangnan-type basements. Particularly, the ~1.5 Ga crustal accretion both record in the ore cluster in the southeastern Hubei and the Fanjingshan and XiaJiang Groups. Combined with the regional geophysics, bounded by the line from Lingxiang, Daye to Wanghu Lake, the north part of ore cluster in the southeastern Hubei belong to Chuanzhong-type basement and the south part relate to Jiangnan-type basement. -
月牙泉湖地处敦煌市南部的鸣沙山之中,处于一个北西南三面沙山环抱东面开口的半封闭形洼地中,总的地形南北部高,中东部低,形酷似一弯新月(李平平等,2020)。敦煌鸣沙山月牙泉是甘肃省著名风景名胜区,以“山泉共处,沙水共生”的奇妙景观著称于世,被誉为“塞外风光之一绝”。月牙泉湖形成距今约为12 ka(许朋柱等,2002)。对于月牙泉湖的形成研究者有上升泉、断层泉、风成泉、基岩裂隙泉、沙漠地下水溢出泉和古河道残留湖等6种观点(孙显科等,2006;尹念文等,2010),由于缺乏充分的资料和专门性的研究,对上述观点仍存在较大分歧(张号等,2014),没有形成科学的定论。从20世纪70年代开始,由于党河水库的修建、渠道衬砌及垦荒造田大面积抽水灌溉引起区域地下水位急剧下降,从而导致月牙泉湖水位急剧下降,逐渐威胁月牙泉存亡(安志山等,2013,2016),以致于从1986年开始月牙泉湖底多次露出水面,形成2个小泉成葫芦形,造成月牙泉周围环境地质的恶化,导致敦煌市旅游资源的衰竭(张克存等,2012)。近年来,国内虽有学者对月牙泉泉域沉积环境及泉水的形成、水位下降等原因进行探讨分析,这些研究结果对月牙泉湖的形成及治理具有重要意义。笔者梳理前人研究成果,分析月牙泉形成的水文地质条件,探讨月牙泉湖水位下降的原因,论证月牙泉水位下降过程中不同时期的治理措施与效果。
1. 月牙泉湖水文地质条件
月牙泉湖地处河西走廊西端内陆敦煌盆地,气候干燥,多年平均降水量仅39.1 mm,蒸发量高达2487.7 mm,蒸发量为降水量的62倍。月牙泉湖在党河洪积扇与西水沟洪积扇之间的风蚀沙漠洼地之中形成,因地形低洼风蚀切割地下水出露,为第四系松散岩类孔隙潜水含水层,含水层厚度达数百米(图1),砂质纯净,富水性丰富,水质良好。党河是补给月牙泉湖唯一的一条河流(图2),河道距月牙泉湖最近处约为4.5 km,地下水自西南向东北径流,泉域水力坡度为0.2%~0.3%(杨俊仓等,2003;Tu,2009),单井涌水量一般小于1000 m3/d,渗透系数为0.50~6.43 m/d,矿化度为0.60~1.0 g/L,月牙泉地下水化学类型以SO4–HCO3–Na–Mg– Ca型或SO4–Cl–Na型为主(黎涛等,2013)。
2. 月牙泉湖水位下降原因分析
2.1 月牙泉湖水位动态特征
20世纪60年代以前,人类活动对月牙泉湖水位影响极小,湖水位一直相对稳定(图3),是一种天然状态下的补给、径流、排泄过程(张文化等,2009),即便是严重干旱的年份,月牙泉湖也没有出现萎缩现象(袁国映等,1997;丁宏伟等,2004)。从70年代中期开始,月牙泉湖水位急剧下降,以致于月牙泉湖底几度部分露出水面,到90年代后期,月牙泉接近枯涸。2008年开始,月牙泉湖应急治理工程实施后水位开始缓慢上升(桑学锋等,2007),为月牙泉湖后期的治理赢得了时间;2018年4月,月牙泉湖恢复治理工程实施以来,月牙泉湖水位快速上升,当年上升了1.58 m,遏制了月牙泉湖周边环境地质的进一步恶化。
2.2 泉湖水位下降影响因素分析
月牙泉湖地处河西走廊西端内陆,属典型的大陆性气候(Li et al.,2009;张晨等,2016)、温热沙漠型气候区,降水量少(冀钦等,2018;柴娟等,2018),蒸发强烈,是干旱气候区的显著特征(岳峰等,2007)。月牙泉湖水面年蒸发消耗量为1.3382×104 m3,月牙泉湖水来自西部党河冲洪积平原区地下水的补给,只要区域地下水位始终保持一定的高度,水面蒸发对泉湖水位的影响微乎其微。
泉湖域地下水的运动规律大体上受区域地下水位控制,径流方向与党河地表水系状况基本一致,总体泉湖周围地下水径流方向为由西南向东北。党河水库修建前,党河河道处自然径流状态(Phan et al.,2008;韩积斌等,2019),通过入渗补给地下水,月牙泉湖处于稳定状态。1975年党河水库的修建及后期高标准输水渠道的修建,党河基本断流,大部分河水被引入灌区,灌溉敦煌绿洲。输水渠道的修建,从而代替了原来以河道流水为主的自然水流输送状态,造成入渗补给地下水量迅速减少,导致区域性地下水位下降,并进一步对月牙泉湖产生影响(安志山等,2013,2016)。近半个世纪以来,特别是改革开放以来,敦煌随着人口的快速增长和旅游业的快速发展,种植面积不断扩大,区域内用水量剧增,人们开始开采地下水(施锦等,2014)。1971年到1997年再到2007年及2019年,敦煌市地下水开采机井由400余眼发展到1134眼再快速发展到3217眼及3231眼(李平平等,2020),机井数量逐年增加(Zhu et al.,2015;祁泽学等,2018),开采地下水量(Katsifarakis,2008;Gaur et al.,2011;Lan et al.,2015)由小于1000×104 m3增加到4123.72×104 m3,再增加到近13084×104 m3及6440×104 m3(图4),地下水严重超采(张明泉等,2004),地下水位持续下降(李平平,2019),造成区内地下水补给、排泄严重失衡和区域地下水位的下降(Garth et al.,2008),月牙泉水域不断萎缩(张克存等,2012)。2007年以后,地下水开采量逐渐减少,月牙泉湖水位开始缓慢上升。
3. 治理工程
3.1 淘泉工程和注水工程
月牙泉湖水位持续下降,1986年月牙泉湖中部泉底出露变成“亚铃形”,水域面积缩小到4600.0 m2,最大水深为1.9 m。于当年10月15日开始掏泉工程,历时45 d,掏泉工程只增大水面以下深度,并不能提高泉湖水位的海拔标高。
1988年10月,在小泉湾利用人工湖开始向月牙泉进行注水(2根100 mm暗管),注水历时15 d,注水量约为28460 m3,期间泉湖水面升高65.2 cm。停止注水约31天后,湖水位下降61 cm。注水工程期间,由于注水水质与月牙泉水质相差较大,导致月牙泉湖水变浑浊。
3.2 渗水试验
为了不使月牙泉湖在2001年干凅,于当年3月9日在小泉湾林草地直接利用人工湖地表水进行灌溉渗水,灌水量约为32×104 m3,期间月牙泉湖水位升高0.496 m。渗水期间泉湖水由清变浑浊,pH值由7.8变到9.0,在泉湖周边的林草灌水地出现盐渍化即土壤次生盐碱化迹象。
3.3 应急治理工程
2007年4月开始月牙泉湖近期工程,工程包括供水工程、输水工程、水处理工程和渗水工程4部分组成。2007年3月12日开始渗水,日渗水量为10000 m3,到6月15日上升了1.70 m;泉域面积由5333.3 m2扩大到7333.3 m2,9月15日扩大到11200.0 m2。此后,月牙泉湖水位基本稳定且缓慢上升。
3.4 水位恢复治理工程
为遏制月牙泉湖水位下降,使月牙泉湖及周边生态恶化趋势得以遏制,不再恶化,提出了月牙泉恢复补水工程,即通过综合治理使月牙泉湖面积和水深实现恢复性转变,逐步恢复水深并提高到2.0 m以上,恢复月牙形状,满足自然景观要求。本研究采用国际上较为流行的FEFLOW软件模拟(吕晓立等,2020),按照研究区地下水的补给、径流与排泄关系,计算地下水流场,根据监测孔水位数据进行拟合(朱亮等,2020),最后通过模型进行预测分析不同地段补水后水位变化及月牙泉上升至2.0 m所需的水量。
4. 结果与分析
4.1 自然洼地补水
利用鸣沙山前的自然洼地地段进行补水,每年所需补水量为1004.8×104 m3,加上蒸发损耗量约占渗水量30%,每年总补水量为1306.24×104 m3的情况下,月牙泉湖水位由1134.24 m上升到1135.44 m,可提升1.2 m(图5、图6)。
4.2 党河河道补水
黑山嘴子至鱼场段长为5.92 km,单位面积渗水量为1.51 m3/m2·d,包气带厚度为3.595 m,每天可入渗量为32136.424 m3,年补水时间按258 d计,共可入渗量为1658.24×104 m3。在此补给条件下,通过模拟计算,河道入渗补给量为1658.24×104 m3的情况下,月牙泉湖水位可上升2.0 m(图7、图8)。
4.3 对比分析
4.3.1 从地下水流场分析
研究区地下水初始等水位线可看出,不管在丰水期还是枯水期,研究区南部鸣沙山前黑山嘴子至S6监测孔之间地下水流向基本均为自西向东径流至月牙泉,该段地下水位于月牙泉上游,对月牙泉的补给方式最为直接。
4.3.2 从地下水水力坡降分析
根据监测数据,党河河道中没有地表水入渗补给时,S5与月牙泉湖形成的天然水力坡降为4.658‰;当党河河道泄水量3887.36×104 m3时,导致S5水位升高,与月牙泉湖之间的水力坡降增大至5.534‰。随着长时间的径流,党河河道下部形成的“水丘”向东南侧的月牙泉湖扩散,最终导致月牙泉水位上升。从S5上游进行补水其效果要好于S5以下段。
4.3.3 从补水所需水量分析
鸣沙山前自然洼地地段每年补水量为1306.24×104 m3,月牙泉湖水位可提升1.2 m。党河河道每年补水量为1658.24×104 m3,月牙泉湖水位可提升2.0 m。在党河河道补水需水量要大于鸣沙山前自然洼地补水需水量但月牙泉湖水位能上升2.0 m,分析表明党河河道补水方案为最佳。
4.4 恢复补水工程效果
按照FEFLOW软件模拟补水方案,月牙泉湖恢复补水工程修建于党河河道黑山嘴下游,修建12个渗水场,最大蓄水量为98×104 m3;2017年10月开始蓄水,保证了月牙泉湖地下水的补给来源;补水开始后月牙泉湖水位呈上升趋势,湖水面上升1.58 m,年均上升0.53 m,月牙泉湖水域面积由11183.31 m2也逐渐扩大到18334.75 m2。
恢复补水工程发现,党河水未进行除砂除泥处理直接引入渗水场,水位下降后底部有一层沉淀淤泥,随着时间越长淤泥越厚。淤泥透水性很差并未作处理,随着淤泥厚度的增加,渗水场内水体下渗速度逐渐降低,最终会形成一潭死水而无法下渗。
5. 结论
(1)月牙泉湖水位下降由自然因素和人为因素所造成,其中人为因素是导致月牙泉水位下降最主要原因,也是最直接原因。泉湖水位的下降导致周围环境地质的恶化和旅游资源的衰竭。
(2)月牙泉湖水位的急剧下降和周围环境地质的恶化,引起党和国家领导人及相关部门的极大关注。1986年开始,先后进行淘泉工程、注水工程、渗灌工程及应急治理工程等一系列的治理工程,效果都不尽人意,为了从根本上解决月牙泉湖水位下降问题,开始实施恢复补水工程。
(3)FEFLOW软件模拟预测表明,鸣沙山前自然洼地地段每年补水量为1306.24×104 m3,月牙泉湖水位可提升1.2 m;党河河道每年补水量为1658.24×104 m3,月牙泉湖水位可提升2.0 m。党河河道补水效果最佳。
(4)补水方案实施后,月牙泉湖水面上升了1.58 m,水域面积扩大到18 334.75 m2,达到预期效果。恢复补水工程直接把党河水引入渗水场,随着时间的推移渗水场底部逐渐沉淀一层淤泥,此淤泥透水性很差并未作处理,水体下渗速度逐渐降低。此外,关于短期监测中发现的问题与判定仍需进一步监测与研究。
-
图 2 鄂东南地区岩浆岩和矿床分布简图(据Li et al., 2014a修改)
Figure 2. Distribution of igneous rocks and mineral deposits in southeastern Hubei Province
图 8 鄂东南矿集区继承锆石Hf同位素组成及其与江南造山带西段基底碎屑锆石和崆岭杂岩锆石Hf同位素对比
图中黑色数据点均为鄂东南矿集区继承锆石数据,数据来源见表3;江南造山带西段基底碎屑锆石数据引自Wang et al.,(2010);崆岭杂岩数据范围据邱啸风等 (2014)、Li等(2014b)、Guo等(2015);鄂东南地区晚中生代侵入岩范围据Xie等(2011a)
Figure 8. Inheritance zircon Hf isotopic composition in the southeastern Hubei mineral district and its comparison with the Hf isotopic compositions of detrital zircons from the western segment of the Jiangnan Orogen and zircons from the Kongling Complex
表 1 灵乡闪长玢岩锆石年龄数据
Table 1 Zircon U-Pb age data of Lingxiang dioritic porphyrite
分析点 Th
(10−6)U
(10−6)Th/U 同位素比值 年龄(Ma) 误差
(%)207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ D020-3-1-01 47 32 1.5 0.1105 0.0052 5.1151 0.2333 0.3364 0.0070 1807 86.4 1839 38.8 1869 33.7 103 D020-3-1-02 56 44 1.3 0.1017 0.0055 4.2227 0.2309 0.2991 0.0059 1655 101.1 1678 44.9 1687 29.3 102 D020-3-1-03 1014 599 1.7 0.0949 0.0032 3.0391 0.0968 0.2297 0.0026 1528 62.7 1417 24.3 1333 13.7 87 D020-3-1-04 250 287 0.9 0.1590 0.0048 9.2537 0.2654 0.4182 0.0048 2445 50.8 2363 26.3 2252 21.9 92 D020-3-1-06 200 220 0.9 0.0545 0.0062 0.1602 0.0152 0.0219 0.0007 391 252.7 151 13.3 140 4.6 93 D020-3-1-07 230 184 1.3 0.1080 0.0043 4.2916 0.1689 0.2860 0.0042 1765 72.2 1692 32.4 1621 21.0 92 D020-3-1-09 554 881 0.6 0.0544 0.0024 0.3900 0.0277 0.0508 0.0026 387 98.1 334 20.2 319 15.8 96 D020-3-1-10 363 561 0.6 0.0476 0.0029 0.1460 0.0092 0.0220 0.0004 79.7 140.7 138 8.1 140 2.6 102 D020-3-1-11 199 193 1.0 0.1099 0.0033 5.0993 0.1651 0.3330 0.0052 1798 54.5 1836 27.5 1853 25.2 103 D020-3-1-12 515 737 0.7 0.0917 0.0028 3.1650 0.0941 0.2478 0.0030 1461 52.9 1449 23.0 1427 15.4 98 D020-3-1-13 293 562 0.5 0.0588 0.0025 0.6222 0.0261 0.0760 0.0010 567 94.4 491 16.3 472 5.9 96 D020-3-1-14 241 205 1.2 0.0510 0.0052 0.1580 0.0164 0.0222 0.0005 243 218.5 149 14.4 142 3.0 95 D020-3-1-15 255 743 0.3 0.0545 0.0027 0.2570 0.0123 0.0342 0.0005 391 113.0 232 9.9 217 3.2 93 D020-3-1-16 313 401 0.8 0.0552 0.0022 0.5839 0.0236 0.0764 0.0009 420 92.6 467 15.1 474 5.5 102 D020-3-1-17 2820 1631 1.7 0.0508 0.0052 0.1585 0.0188 0.0219 0.0009 232 218.5 149 16.5 140 5.9 93 D020-3-1-18 135 64 2.1 0.0564 0.0070 0.5589 0.0592 0.0738 0.0018 478 275.9 451 38.6 459 10.9 102 D020-3-1-19 437 757 0.6 0.0571 0.0028 0.3134 0.0144 0.0401 0.0007 494 107.4 277 11.1 254 4.1 92 D020-3-1-20 384 565 0.7 0.0716 0.0028 1.4407 0.0595 0.1461 0.0026 976 79.6 906 24.8 879 14.4 97 D020-3-1-21 113 96 1.2 0.1690 0.0057 10.7709 0.3818 0.4625 0.0067 2550 57.6 2504 33.0 2451 29.6 96 D020-3-1-22 139 204 0.7 0.0571 0.0037 0.3524 0.0223 0.0452 0.0007 494 142.6 307 16.8 285 4.4 93 表 2 灵乡闪长玢岩锆石Hf同位素数据
Table 2 Zircon Hf isotope data of Lingxiang dioritic porphyrite
样品编号 176Lu/177Hf 1σ 176Hf/177Hf 1σ 176Yb/177Hf 1σ 年龄(Ma) (176Hf/177Hf)i εHf(t) TDM (Ma) T2DM (Ma) D20-3-1 - 1 0.000570 0.000005 0.281424 0.000009 0.021425 0.000240 1807 0.281404 −8.1 2526 2964 D20-3-1 - 2 0.000663 0.000013 0.281489 0.000010 0.025059 0.000457 1655 0.281468 −9.3 2443 2921 D20-3-1 - 3 0.001057 0.000021 0.282144 0.000011 0.038954 0.000827 1528 0.282113 10.7 1564 1585 D20-3-1 - 4 0.000600 0.000006 0.281100 0.000008 0.022012 0.000191 2445 0.281072 −5.1 2963 3280 D20-3-1 - 6 0.002287 0.000044 0.282495 0.000036 0.071227 0.001076 140 0.282489 −7.4 1108 1627 D20-3-1 - 7 0.001532 0.000027 0.281691 0.000023 0.050118 0.000749 1765 0.281640 −0.7 2218 2477 D20-3-1 - 9 0.001994 0.000048 0.282431 0.000026 0.064281 0.001985 319 0.282419 −5.8 1191 1670 D20-3-1 - 10 0.001281 0.000031 0.282579 0.000013 0.050481 0.000824 140 0.282576 −4.3 959 1433 D20-3-1 - 11 0.000457 0.000015 0.281549 0.000013 0.016213 0.000459 1798 0.281534 −3.7 2348 2687 D20-3-1 - 12 0.001862 0.000045 0.282169 0.000018 0.062988 0.001202 1461 0.282118 9.3 1561 1617 D20-3-1 - 13 0.001463 0.000028 0.282251 0.000010 0.049887 0.000612 472 0.282238 −8.8 1429 1975 D20-3-1 - 14 0.002842 0.000031 0.282530 0.000031 0.092366 0.000907 142 0.282522 −6.1 1074 1552 D20-3-1 - 15 0.001126 0.000022 0.282463 0.000009 0.037917 0.000721 217 0.282459 −6.7 1119 1646 D20-3-1 - 16 0.002427 0.000064 0.282664 0.000013 0.075969 0.001666 474 0.282642 5.5 866 1075 D20-3-1 - 17 0.000989 0.000032 0.282407 0.000015 0.032420 0.000913 140 0.282404 −10.4 1193 1815 D20-3-1 - 18 0.001332 0.000025 0.282729 0.000016 0.055075 0.000864 459 0.282717 7.8 748 916 D20-3-1 - 19 0.002403 0.000101 0.282322 0.000015 0.086403 0.003255 254 0.282310 −11.2 1364 1952 D20-3-1 - 20 0.001155 0.000023 0.282295 0.000016 0.040620 0.000626 879 0.282276 1.7 1356 1635 D20-3-1 - 21 0.000745 0.000029 0.281511 0.000020 0.028769 0.000946 2550 0.281475 11.7 2418 2338 D20-3-1 - 22 0.001094 0.000019 0.282632 0.000012 0.042042 0.000667 285 0.282626 0.7 880 1230 注:206Pb/238U 年龄< 1000 Ma时,Con% = (206Pb/238U年龄/207Pb/235U年龄)×100%;206Pb/238U 年龄>1000 Ma时,Con% = (206Pb/238U年龄/207Pb/206Pb年龄)×100%。表 3 鄂东南矿集区内继承锆石U-Pb年龄及Hf同位素数据汇总表
Table 3 Inherited zircon age and Hf isotope data of intrusions in the Southeastern Hubei Province
岩体 点号 Th(10−6) U(10−6) Th/U 年龄(Ma) εHf(t) TDM(Ma) T2DM(Ma) 数据来源 鄂城 CC375–16–5 – – – 1569 −0.5 2040 2311 Xie et al., 2011a 铁山 TS3–7 399 596 0.7 1871 −0.7 2299 2558 D20-3-1 - 1 47 32 1.5 1807 −8.1 2526 2964 − D20-3-1 - 2 56 44 1.3 1655 −9.3 2443 2921 − D20-3-1 - 3 1014 599 1.7 1528 10.7 1564 1585 − D20-3-1 - 4 250 287 0.9 2445 −5.1 2963 3280 − D20-3-1 - 7 230 184 1.3 1765 −0.7 2218 2477 − D20-3-1 - 9 554 881 0.6 319 −5.8 1191 1670 文中 灵乡 D20-3-1 - 11 199 193 1.0 1798 −3.7 2348 2687 − D20-3-1 - 12 515 737 0.7 1461 9.3 1561 1617 − D20-3-1 - 13 293 562 0.5 472 −8.8 1429 1975 − D20-3-1 - 15 255 743 0.3 217 −6.7 1119 1646 − D20-3-1 - 16 313 401 0.8 474 5.5 866 1075 − D20-3-1 - 18 135 64 2.1 459 7.8 748 916 − D20-3-1 - 19 437 757 0.6 254 −11.2 1364 1952 − D20-3-1 - 20 384 565 0.7 879 1.7 1356 1635 − D20-3-1 - 21 113 96 1.2 2550 11.7 2418 2338 − D20-3-1 - 22 139 204 0.7 285 0.7 880 1230 ZK02810-6-06c 133 170 0.8 1207 −8.9 2063 2549 − ZK02810-6-08c 53 133 0.4 2220 −2.6 2670 2953 − ZK02810-6-10c 67 139 0.5 2505 8.9 2483 2470 − ZK02810-6-11c 96 164 0.6 2046 3.6 2292 2435 铜绿山 ZK02810-6-15c 79 76 1.0 2293 2.6 2541 2688 黄圭成等,2013 ZK02810-6-17c 67 97 0.7 2613 8.9 2578 2556 − ZK02810-6-21c 158 466 0.3 1979 1.2 2318 2526 − ZK02810-6-18c 103 95 1.1 2895 6.2 2927 2946 − Dy254-1-13c 49 24 2.0 799 − − − − Dy254-1-21c 69 109 0.6 1127 −15.0 2205 2861 − TLS801-103-3 31 22 1.4 1820 −7.0 2494 2909 − TLS801-103-4 172 286 0.6 751 −6.0 1543 2015 − TLS801-103-6 113 194 0.6 2613 −1.4 2974 3188 − TLS801-103-8 114 92 1.2 2061 − − − − TLS801-103-9 41 61 0.7 1732 −7.1 2421 2846 − TLS801-103-14 202 155 1.3 299 −12.1 1400 2043 − TLS801-103-15 147 139 1.1 850 − − − − TLS801-103-16 187 344 0.5 1862 −0.2 2276 2521 − TLS801-103-21 160 180 0.9 2457 5.8 2562 2627 − TLS801-103-22 316 426 0.7 1132 − − − − TLS801-103-30 462 435 1.1 320 − − − − TLS801-103-32 491 382 1.3 263 − − − − TLS801-103-34 313 168 1.9 830 − − − − 铜绿山煌斑岩 TLS803-159-1 185 85 2.2 837 −20.6 2203 2982 − TLS803-159-2 108 136 0.8 323 11.5 480 572 Zhang et al., 2021a TLS803-159-3 30 61 0.5 1632 −9.0 2411 2885 − TLS803-159-14 251 397 0.6 836 − − − − TLS803-159-15 545 563 1.0 997 − − − − TLS803-159-16 140 201 0.7 2498 − − − − TLS803-159-17 335 352 0.9 423 − − − − TLS803-159-18 143 248 0.6 2345 − − − − TLS803-159-19 50 149 0.3 2567 − − − − TLS803-159-20 264 424 0.6 427 − − − − TLS803-159-21 71 110 0.6 784 − − − − TLS803-159-22 216 291 0.7 880 − − − − TLS803-159-23 121 115 1.1 2147 − − − − TLS803-159-24 332 388 0.9 835 − − − − TLS803-159-25 195 148 1.3 421 − − − − TLS803-159-26 89 411 0.2 1950 − − − − TLS803-159-27 373 641 0.6 437 − − − − TLS803-159-28 436 612 0.7 444 − − − − TLS803-159-29 30 44 0.7 2469 − − − − 阳新 YX2–7 377 170 2.2 1117 −4.9 1812 2229 Xie et al., 2011a Dy116-06 872 1008 0.9 614 −7.6 1490 2006 丁丽雪等,2016 Dy116-15 184 253 0.7 422 Dy311-01 51 303 0.2 2258 −3.6 2738 3040 − Dy311-03 27 226 0.1 1713 −7.0 2408 2823 − Dy311-06 53 70 0.8 1158 −0.7 1685 2002 − 姜桥 Dy311-10 11 27 0.4 2117 −14.4 3019 3588 − Dy311-13 120 143 0.8 1111 − − − 丁丽雪等,2013 Dy311-15 101 114 0.9 1127 − − − − Dy311-18 326 315 1.0 1124 − − − − Dy311-19 68 122 0.6 1182 − − − − Dy311-21 58 149 0.4 2032 − − − − 殷租* 08YZ38.1@6 227 117 1.9 2424 − − − Li et al., 2010 Dy314-13inh 77 107 0.7 1846 − − − − Dy314-15 96 281 0.3 313 − − − − Dy314-20 117 275 0.4 306 − − − − Dy314-21inh 56 27 2.0 1798 −23.2 3100 3869 − 铜鼓山 Dy314-22inh 161 126 1.3 1809 −23.2 3103 3881 夏金龙等,2013a Dy314-23inh 282 189 1.5 1884 −23.0 3173 3924 − Dy314-24inh 222 127 1.8 1888 − − − − Dy314-25inh 50 61 0.8 1728 − − − − Dy314-26inh 51 50 1.0 1574 − − − − DY145-1inh 19 46 0.4 2959 3.1 3101 3188 − DY145-2inh 98 89 1.1 1785 −14.6 2769 3344 − DY145-5inh 72 83 0.9 1803 − − − − DY145-8inh 92 60 1.5 1746 −18.1 2857 3526 − 古家山 DY145-11inh 324 526 0.6 2499 − − − 夏金龙等,2013b DY145-12inh 107 109 1.0 1847 −1.0 2292 2558 − DY145-13inh 77 107 0.7 2342 − − − − DY145-19inh 102 165 0.6 2036 1.1 2377 2583 − DY145-20inh 117 275 0.4 1929 − − − − XNS1-6 180 215 0.8 2358 − − − − 阮家湾 XNS1-7 40 136 0.3 2379 − − − 颜代蓉等,2012 XNS1-16 168 374 0.4 2337 − − − − XNS17-15 109 657 0.2 1816 − − − − 注:εHf(t)和模式年龄值均按照本文提供的参数重新计算。 -
蔡恒安, 徐江嬿, 陈松林, 等 . 鄂东南矿集区深部找矿进展及下步找矿思路[J]. 资源环境与工程,2020 ,34 (4 ):501 −505+511 .CAI Heng'an, XU Jiangyan, CHEN Songlin, et al . Deep Prospecting Progress and Next Prospecting Thoughts of Southeast Hubei Mining Area[J]. Resources Environment and Engineering,2020 ,34 (4 ):501 −505+511 .曹洛华, 葛宗侠 . 鄂东深部地质初步探讨[J]. 湖北地质,1987 ,1 (1 ):47 −59 .CAO Luohua, GE Zongxia . A Preliminary Approach to the Deep-Seated Geology of Eastern Hubei[J]. Geology of Hubei,1987 ,1 (1 ):47 −59 .常印佛, 董树文, 黄德志 . 论中-下扬子“一盖多底”格局与演化[J]. 火山地质与矿产,1996 ,17 (1-2 ):1 −15 .CHANG Yinfo, DONG Shuwen, HUANG Dezhi . On Tectonics of ‘Poly-Basement with One Cover’ in Middle-Lower Yangtze Carton China[J]. Volcanology and Mineral Resources,1996 ,17 (1-2 ):1 −15 .丁丽雪, 黄圭成, 夏金龙 . 鄂东南地区阳新复式岩体成因: LA-ICP-MS锆石U-Pb年龄及Hf同位素证据[J]. 高校地质学报,2016 ,22 (3 ):443 −458 .DING Lixue, HUANG Guicheng, XIA Jinlong . Petrogenesis of the Yangxin Complex in Southeast Hubei Province: Constraints from LA-ICP-MS U-Pb Ages and Hf Isotopes of Zircon[J]. Geological Journal of China Universities,2016 ,22 (3 ):443 −458 .丁丽雪, 黄圭成, 夏金龙 . 鄂东南地区殷祖岩体的成因及其地质意义: 年代学、地球化学和Sr-Nd-Hf同位素证据[J]. 地质学报,2017 ,91 (2 ):362 −383 . doi: 10.3969/j.issn.0001-5717.2017.02.005DING Lixue, HUANG Guicheng, XIA Jinlong . Petrogrnrsis and Implications of the Yinzu Pluton in Southeast Hubei Province: Evidence from Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes[J]. Acta Geologica Sinica,2017 ,91 (2 ):362 −383 . doi: 10.3969/j.issn.0001-5717.2017.02.005丁丽雪, 黄圭成, 夏金龙, 等 . 鄂东南地区姜桥花岗闪长岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 岩石矿物学杂志,2013 ,32 (3 ):275 −290 .DING Lixue, HUANG Guicheng, XIA Jinlong, et al . U-Pb Ages and Hf Isotope Characteristics of Zircon from Jiangqiao Granodiorite in Southeastern Hubei Province and Their Geological Implications[J]. Acta Petrologica et Mineralogica,2013 ,32 (3 ):275 −290 .董树文, 马立成, 刘刚, 等 . 论长江中下游成矿动力学[J]. 地质学报,2011 ,85 (5 ):612 −625 .DONG Shuwen, MA Licheng, LIU Gang, et al . On Dynamics of the Metallogenic Belt of Middle-Lower Reaches of Yangtze River, Eastern China[J]. Acta Geologica Sinica,2011 ,85 (5 ):612 −625 .高林志, 陈建书, 戴传固, 等 . 黔东地区梵净山群与下江群凝灰岩SHRIMP锆石U-Pb年龄[J]. 地质通报,2014 ,33 (7 ):949 −959 . doi: 10.3969/j.issn.1671-2552.2014.07.002GAO Linzhi, CHEN Jianshu, DAI Chuan’gu, et al . Shrimp Zircon U-Pb Dating of Tuff in Fanjingshan Group and Xiajiang Group from Guizhou and Hunan Provinces and its Stratigraphic implications[J]. Geological Bulletin of China,2014 ,33 (7 ):949 −959 . doi: 10.3969/j.issn.1671-2552.2014.07.002黄圭成, 夏金龙, 丁丽雪, 等 . 鄂东南地区铜绿山岩体的侵入期次和物源: 锆石U-Pb年龄和Hf同位素证据[J]. 中国地质,2013 ,40 (5 ):1392 −1408 .HUANG Guicheng, XIA Jinlong, DING Lixue, et al . Stage Division and Origin of Tonglushan Pluton in Southeast Hubei Province: Evidence from Zircon U-Pb Ages and Hf Isotopes[J]. Geology in China,2013 ,40 (5 ):1392 −1408 .梁学堂, 李义, 徐元璋, 等 . 鄂西地区基底构造特征新认识——基于重磁场特征的判别[J]. 工程地球物理学报,2020 ,17 (4 ):432 −440 . doi: 10.3969/j.issn.1672-7940.2020.04.007LIANG Xuetang, LI Yi, XU Yuanzhang, et al . New Perspectives on the Basement Tectonic Features in Weastern Hubei: Based on the Discrimination of Gravity and Magnetic Fields Characteristics[J]. Chinese Journal of Engineering Geophysics,2020 ,17 (4 ):432 −440 . doi: 10.3969/j.issn.1672-7940.2020.04.007李平, 朱涛, 吕鹏瑞, 等 . 西天山早寒武世夏特辉长岩: 南天山洋早期俯冲的岩浆记录[J]. 西北地质,2024 ,57 (3 ):44 −58 .LI Ping, ZHU Tao, LÜ Pengrui, et al . Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024 ,57 (3 ):44 −58 .邱啸风 . 扬子克拉通北部前泥盆纪地壳: 来自碎屑锆石U-Pb和Hf同位素证据[J]. 地质学报,2022 ,96 (11 ):1 −25 . doi: 10.1111/1755-6724.14903QIU Xiaofeng . Pre-Devonian Crustal Evolution of the Northern Yangtze Craton: Evidence from U-Pb Ages and Hf Isotopes of Detrital Zircons[J]. Acta Geologica Sinica,2022 ,96 (11 ):1 −25 . doi: 10.1111/1755-6724.14903邱啸风, 凌文黎, 柳小明 . 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和H同位素的约束[J]. 地质科技情报,2014 ,33 (2 ):1 −8 .QIU Xiaofeng, LING Wenli, LIU Xiaoming . Correlation between the Mesoproterozoic Yangtze Continental Nucleus and the Shennongjia Area: Constraints from Zircon Geochronological and Hf Isotope[J]. Bulletin of Geological Science and Technology,2014 ,33 (2 ):1 −8 .冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121. RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.
舒全安, 陈培良, 程建荣. 鄂东铁铜矿产地质[M]. 北京: 冶金工业出版社, 1992. 谭忠福, 林玉石, 汤吉方, 等 . 鄂东南地区铁铜矿床的构造控制规律及其隐伏矿床的预测问题[J]. 中国地质科学院院报 宜昌地质矿产研究所分刊,1980 ,1 (2 ):1 −22 .TAN Zhongfu, LIN Yushi, TANG Jifang, et al . The Control of Tectonic Systems on the Iron (Copper) Ore Deposits and the Prognosis of Concealed Ore Deposits in Southeastern Hubei, China[J]. Journal of the Chinese Academy of Geological Sciences, Yichang Institute of Geology and Mineral Resources,1980 ,1 (2 ):1 −22 .王敏, 戴传固, 王雪华, 等 . 贵州梵净山群沉积时代——来自原位锆石U-Pb测年证据[J]. 岩石矿物学杂志,2012 ,31 (6 ):843 −857 . doi: 10.3969/j.issn.1000-6524.2012.06.006WANG Min, DAI Chuangu, WANG Xuehua, et al . Sedimentation Age of the Fanjingshan Group in East Guizhou Province: Evidence from In-Situ Zircon LA-ICP-MS U-Pb Dating[J]. Acta Petrologica et Mineralogica,2012 ,31 (6 ):843 −857 . doi: 10.3969/j.issn.1000-6524.2012.06.006王强, 赵振华, 许继峰, 等 . 鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比: (拆沉)下地壳熔融与斑岩铜矿的成因[J]. 岩石学报,2004 ,20 (2 ):351 −360 . doi: 10.3321/j.issn:1000-0569.2004.02.015WANG Qiang, ZHAO Zhenhua, XU Jifeng, et al . The Geochemical Comparison between the Tongshankou and Yinzu Adakitic Intrusive Rocks in Southeastern Hubei: (Delaminated) Lower Crustal Melting and the Genesis of Porphyry Copper Deposit[J]. Acta Petrologica Sinica,2004 ,20 (2 ):351 −360 . doi: 10.3321/j.issn:1000-0569.2004.02.015吴福元, 李献华, 郑永飞, 等 . Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报,2007 ,23 (2 ):185 −220 . doi: 10.3969/j.issn.1000-0569.2007.02.001WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al . Lu-Hf Isotopic Systematics and Their Applications in Petrology[J]. Acta Petrologica Sinica,2007 ,23 (2 ):185 −220 . doi: 10.3969/j.issn.1000-0569.2007.02.001吴元保, 郑永飞 . 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004 ,49 (16 ):1589 −1604 . doi: 10.3321/j.issn:0023-074X.2004.16.002WU Yuanbao, ZHENG Yongfei . Genetic Mineralogy of Zircon and Its Restriction on U-Pb Age Interpretation[J]. Chinese Science Bulletin,2004 ,49 (16 ):1589 −1604 . doi: 10.3321/j.issn:0023-074X.2004.16.002夏金龙, 黄圭成, 丁丽雪, 等 . 鄂东南地区存在古元古代-太古宙基底—来自铜鼓山岩体锆石U-Pb-Hf同位素的证据[J]. 地球学报,2013a ,34 (6 ):691 −701 .XIA Jinlong, HUANG Guicheng, DING Lixue, et al . Paleoproterozoic-Archean Basement Beneath Southeast Hubei Province: Evidence from U-Pb-Hf Isotopes in Zircons from the Tonggushan Pluton[J]. Acta Geoscientica Sinica,2013a ,34 (6 ):691 −701 .夏金龙, 黄圭成, 丁丽雪, 等 . 鄂东南地区古家山岩体锆石U-Pb年龄和Hf同位素组成: 对岩浆源区的指示[J]. 华南地质与矿产,2013b ,29 (2 ):116 −125 .XIA Jinlong, HUANG Guicheng, DING Lixue, et al . Zircon U-Pb Age and Hf Isotope of the Gujiashan Pluton, Southeast Hubei Province: Implications for the Magma Source[J]. South China Geology,2013b ,29 (2 ):116 −125 .谢桂青, 李瑞玲, 蒋国豪, 等 . 鄂东南地区晚中生代侵入岩的地球化学和成因及对岩石圈减薄时限的制约[J]. 岩石学报,2008 ,24 (8 ):1703 −1714 .XIE Guiqing, LI Ruiling, JIANG Guohao, et al . Geochemistry and Petrogenesis of Late Mesozoic Granitoids in Southeastern Hubei Province and Constrains on the Timing of Lithospheric Thinning, Middle-Lower Reaches of the Yangtze River, Eastern China[J]. Acta Petrologica Sinica,2008 ,24 (8 ):1703 −1714 .谢桂青, 朱乔乔, 李伟, 等. 湖北大冶式铁矿地质[M]. 北京:地质出版社, 2016. 谢桂青, 朱乔乔, 姚磊, 等 . 鄂东南地区晚中生代铜铁金多金属矿的区域成矿模型探讨[J]. 矿物岩石地球化学通报,2013 ,32 (4 ):418 −426 . doi: 10.3969/j.issn.1007-2802.2013.04.005X IE Gguiqing, ZHU Qiaoqiao, YAO Lei, et al . Discussion on Regional Metal Mineral Deposit Model of Late Mesozoic Cu-Fe-Au Polymetallic Deposits in the Southeast Hubei Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2013 ,32 (4 ):418 −426 . doi: 10.3969/j.issn.1007-2802.2013.04.005颜代蓉, 邓晓东, 胡浩, 等 . 鄂东南地区阮家湾和犀牛山花岗闪长岩的时代、成因及成矿和找矿意义[J]. 岩石学报,2012 ,28 (10 ):3373 −3388 .YAN Dairong, DENG Xiaodong, HU Hao, et al . U-Pb Age and Petrogenesis of the Ruanjiawan Granodiorite Pluton and Xiniushan Granodiorite Porphyry, Southeast Hubei Province: Implications for Cu-Mo Mineralization[J]. Acta Petrologica Sinica,2012 ,28 (10 ):3373 −3388 .翟裕生, 姚书振, 林新多, 等. 长江中下游地区铁铜(金)成矿规律[M]. 北京: 地质出版社, 1992. 张少兵, 郑永飞 . 扬子陆核的生长和再造: 锆石U-Pb年龄和Hf同位素研究[J]. 岩石学报,2007 ,23 (2 ):393 −402 . doi: 10.3969/j.issn.1000-0569.2007.02.018ZHANG Shaobing, ZHENG Yongfei . Growth and Reworking of the Yangtze Continental Nucleus: Evidence from Zircon U-Pb Ages and Hf Isotopes[J]. Acta Petrologica Sinica,2007 ,23 (2 ):393 −402 . doi: 10.3969/j.issn.1000-0569.2007.02.018赵新福, 李建威, 马昌前 . 鄂东南铁铜矿集区铜山口铜(钼)矿床40Ar/39Ar年代学及对区域成矿作用的指示[J]. 地质学报,2006 ,80 (6 ):849 −862 .ZHAO Xinfu, LI Jianwei, MA Changqian . 40Ar/39Ar Geochronology of the Tongshankou Cu (Mo) Deposit in the Southeastern Hubei Fe-Cu Province: Implications for Regional Metallogeny[J]. Acta Geologica Sinica,2006 ,80 (6 ):849 −862 .周涛发, 范裕, 王世伟, 等 . 长江中下游成矿带成矿规律和成矿模式[J]. 岩石学报,2017 ,33 (11 ):3373 −3372 .ZHOU Taofa, FAN Yu, WANG Shiwei, et al . Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt[J]. Acta Petrologica Sinica,2017 ,33 (11 ):3373 −3372 .Belousova E, Griffin W, O'Reilly S Y, et al . Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002 ,143 (5 ):602 −622 .Bouvier A, Vervoort J D, Patchett, P J . The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters,2008 ,273 (1-2 ):48 −57 .Chu G B, Chen H Y, Falloon T J, et al . Early Cretaceous mantle upwelling and melting of juvenile lower crust in the Middle-Lower Yangtze River Metallogenic Belt: Example from Tongshankou Cu-(Mo W) ore deposit[J]. Gondwana Research,2020 ,83 :183 −200 .Griffin W L, Pearson N J, Belousova E, et al . The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta,2000 ,64 (1 ):133 −147 .Griffin W L, Wang X, Jackson S E, et al . Zircon chemistry and magma mixing, SE China; in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos,2002 ,61 (3−4 ):237 −269 .Guo J L, Wu Y B, Gao S, et al . Episodic Paleoarchean-Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tectonics[J]. Precambrian Research,2015 ,270 :246 −266 .Hu Z C, Liu Y S, Gao S, et al . Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2012 ,27 :1391 −1399 .Li J W, Vasconcelos P M, Zhou M F, et al . Longevity of magmatic–hydrothermal systems in the Daye Cu–Fe–Au District, eastern China with implications for mineral exploration[J]. Ore Geology Reviews,2014a ,57 :375 −392 .Li J W, Zhao X F, Zhou M F, et al . Vasconcelos, P. Late Mesozoic magmatism from the Daye region, eastern China: U–Pb ages, petrogenesis, and geodynamic implications[J]. Contributions to Mineralogy and Petrology,2009 ,157 (3 ):383 −409 .Li J W, Zhao X F, Zhou M F, et al . Origin of the Tongshankou porphyry–skarn Cu–Mo deposit, eastern Yangtze craton, Eastern China: geochronological, geochemical, and Sr–Nd–Hf isotopic constraints[J]. Mineralium Deposita,2008 ,43 (3 ):315 −336 .Li L M, Lin S F, Davis D W, et al . Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block[J]. Precambrian Research,2014b ,255 :30 −47 .Li X H, Li W X, Wang X C, et al . SIMS U–Pb zircon geochronology of porphyry Cu–Au–(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension[J]. Lithos,2010 ,119 (3-4 ):427 −438 .Liu Y S, Hu Z C, Gao S, et al . In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,2008 ,257 (1−2 ):34 −43 .Ludwig K R . Isoplot 3.00: A geochronological toolkit for microsoft excel[J]. Berkeley Geochronology Center Special Publication,2003 ,4 :70 .Söderlund U, Patchett P J, Vervoort J D, et al . The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters,2004 ,219 (3-4 ):311 −324 .Wang L J, Griffin W L, Yu J H, et al . Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research,2010 ,177 (1-2 ):131 −144 .Xie G Q, Mao J W, Li X W, et al . Late Mesozoic bimodal volcanic rocks in the Jinniu basin, Middle–Lower Yangtze River Belt (YRB), East China: Age, petrogenesis and tectonic implications[J]. Lithos,2011b ,127 (1−2 ):144 −164 .Xie G Q, Mao J W, Zhao, H . J. Zircon U–Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle–Lower Yangtze River belt (MLYRB), East China[J]. Lithos,2011a ,125 (1−2 ):693 −710 .Yan J, Liu J M, Li Q Z, et al . In situ zircon Hf-O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China: Implications for petrogenesis and geodynamic evolution[J]. Lithos,2015 ,227 :57 −76 .Zhang S T, Ma Q, Chen H Y, et al . Petrogenesis of Early Cretaceous granitoids and mafic microgranular enclaves from the giant Tonglushan Cu–Au–Fe skarn orefield, Eastern China[J]. Lithos,2021a ,392-393 :106103 .Zhang S T, Ma Q, Chen H Y, et al . Precambrian crust growth and reworking of the eastern Yangtze Craton: insights from xenocrystic zircons in the lamprophyres from the Middle–Lower Yangtze Belt, China[J]. Precambrian Research,2021b ,355 :106121 .Zhao J H, Zhou M F, Yan D P, et al . Reappraisal of the ages of Neoproterozoic strata in south China; no connection with the Grenvillian Orogeny[J]. Geology,2011 ,39 (4 ):299 −302 .Zheng J P, Griffin W L, O'Reilly S Y, et al . Widespread Archean basement beneath the Yangtze Craton[J]. Geology,2006 ,34 (6 ):417 −420 .Zong K Q, Klemd R, Yuan Y, et al . The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research,2017 ,290 :32 −48 . -
期刊类型引用(2)
1. 李平平,盖楠,王晓丹,杨俊仓. 敦煌月牙泉域地下水系统水文地球化学特征分析. 干旱区研究. 2024(02): 240-249 . 百度学术
2. 李平平,黎涛,杨俊仓,郑跃军. 月牙泉应急治理工程水环境效益评价分析. 地下水. 2024(06): 93-95 . 百度学术
其他类型引用(0)