ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义

王立峰, 薛志强, 王振强, 王鹏飞, 张苏坤, 孙保花, 王社全, 杨智超, 张鹏

王立峰,薛志强,王振强,等. 小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义[J]. 西北地质,2024,57(5):74−87. doi: 10.12401/j.nwg.2024060
引用本文: 王立峰,薛志强,王振强,等. 小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义[J]. 西北地质,2024,57(5):74−87. doi: 10.12401/j.nwg.2024060
WANG Lifeng,XUE Zhiqiang,WANG Zhenqiang,et al. LA-ICP-MS In-situ Trace Element Characteristic of Pyrite from Yangzaiyu-Fancha Ore Block in Xiaoqinling Gold Field and Its Indication[J]. Northwestern Geology,2024,57(5):74−87. doi: 10.12401/j.nwg.2024060
Citation: WANG Lifeng,XUE Zhiqiang,WANG Zhenqiang,et al. LA-ICP-MS In-situ Trace Element Characteristic of Pyrite from Yangzaiyu-Fancha Ore Block in Xiaoqinling Gold Field and Its Indication[J]. Northwestern Geology,2024,57(5):74−87. doi: 10.12401/j.nwg.2024060

小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义

基金项目: 河南省自然资源科研项目“小秦岭金矿田南中矿带超深部流体蚀变特征与金成矿机理研究”(豫自然资函2022-7),河南省财政项目“河南省灵宝市小秦岭金矿田南中矿带深部探测”(豫自然资发〔2020〕18号)、“小秦岭3 500 m深钻岩心红外光谱特征及蚀变分带研究”(豫地矿青科创[2021]1号)联合资助。
详细信息
    作者简介:

    王立峰(1978−),男,高级工程师,主要从事地质探矿、资源环境调查工作。E−mail:15093295380@163.com

    通讯作者:

    薛志强(1988−),男,工程师,从事地质矿产勘查及科研工作。E−mail:649159022@qq.com

  • 中图分类号: P618.51

LA-ICP-MS In-situ Trace Element Characteristic of Pyrite from Yangzaiyu-Fancha Ore Block in Xiaoqinling Gold Field and Its Indication

  • 摘要:

    小秦岭金矿田位于华北克拉通南缘,目前探明金储量611 t。前人对该区金矿床做了大量科研工作,但区内金矿的成矿地质背景与成矿物质来源仍存在较大的争议。笔者以小秦岭金矿田南中矿带杨砦峪、樊岔金矿床S60矿脉中黄铁矿为研究对象,通过细致的野外观察与镜下鉴定,将黄铁矿从早到晚分为3个世代,并对不同世代的黄铁矿进行LA-ICP-MS微量元素分析,取得认识如下:不同世代黄铁矿中Au、Ag、Te、As、Co、Ni等微量元素的含量及其分布特征具有较显著的差异性,各个世代黄铁矿中As的含量均很低,暗示该区金矿床的形成与As无关;第2世代黄铁矿中Au与Te尤为富集且两者存在显著和稳定的线性正相关关系,指示该世代为金矿床形成重要阶段,并且Te元素在成矿过程中对Au的搬运、富集、沉淀等过程具有重要作用;S60矿脉中普遍发育Te-Au-Ag矿物,并且黄铁矿中呈现低As、高Te特征,暗示小秦岭金矿床的成矿流体、成矿物质可能来自深部岩浆的脱挥发分或地幔脱气作用,小秦岭地区成矿地质背景与早白垩世华北克拉通破坏有关。

    Abstract:

    Located in the southern margin of the North China Craton, the Xiaoqinling gold field has a proven gold reserve of over 611t. Although most gold deposits have been extensively studied, issues related to the metallogenic geological background and the source of the ore materials remain debated. This paper conduct further studies on the Yangzhaiyu-Fancha S60 vein of sothern-medium ore belt from Xiaoqinling gold field. Three generations of (PyⅠ, PyⅡ, PyⅢ) were identified according to detailed field investigation and microscopic identification. We presents a study of the distribution characteristics of trace elements in gold-bearing pyrite from different generation, The results show that the contents and trace element distribution characteristics of Au, Ag, Te, As, Co, Ni from different generation assum significant difference, the content of pyrite from different generation is lightly lower, and plays an insignificant role in gold mineralization; There is prominently positive correlation relationship between Au and Te in the second generation and the contents of Au, Te are relatively higher, it shows that the second generation is important for gold mineralization and the Te play an important role in transfer enrichment and precipitation of gold. An intimate Te-Au-Ag association has been widely noticed in widespread gold mineralization in Xiaoqinling gold district, and low-As, high-Te in pyrite, suggesting that the ore-forming materials and ore-forming fluids of the gold deposits may have come from the deep magma devolatilization or mantle degassing, the geogical background of the gold deposit mainly due to the destruction of the North China Craton.

  • 图  1   小秦岭金矿带地质图(王雷,2018

    Figure  1.   Geological map of the Xiaoqinling gold belt

    图  2   杨砦峪矿区地质图(a)(据Jian et al., 2014)与樊岔矿区地质图(b)(据展恩鹏等,2019

    Figure  2.   (a) Geological map of the Yangzhaiyu gold deposit, (b) geological map of the Fancha gold deposit

    图  3   杨砦峪、樊岔矿床S60矿脉蚀变特征

    Figure  3.   The alteration of S60 vein in Yangzhaiyu and Fancha deposit

    图  4   S60矿脉不同矿化阶段矿物穿插关系

    a.第1阶段石英脉中粗粒自形黄铁矿;b.第3阶段方铅矿–黄铁矿–石英–黄铜矿网脉穿插第2阶段黄铁矿–石英脉;c.第3阶段方铅矿–石英–方解石呈网脉状分布于第1阶段石英-黄铁矿脉;d.第2阶段细脉状黄铁矿穿插第1阶段粗大石英脉; e.第3阶段方铅矿–石英脉呈透镜状产于早阶段石英–黄铁矿脉中;f.第4阶段石英–碳酸盐岩–长石脉被后期构造运动剪切成透镜状;g.第4阶段石英–碳酸盐–长石脉随后期构造运动弯曲变形

    Figure  4.   The mineral interspersed relationship of S60 vein in different mineralization stage

    图  5   S60矿脉不同世代黄铁矿的结构、形态及分布特征

    a~c. 第1世代粗粒黄铁矿(PyⅠ),呈立方体晶形分布于乳白色石英中;d~f. 第2世代中细粒黄铁矿(PyⅡ),呈脉状分布于烟灰色的石英脉中,黄铁矿较为破碎,形成众多裂隙被长英质物质充填;g~i. 第3世代黄铁矿(PyⅢ),常常与黄铜矿、闪锌矿、方铅矿等硫化物密切共生;Py. 黄铁矿;PyⅠ. 第1世代黄铁矿;PyⅡ. 第2世代黄铁矿;PyⅢ. 第3世代黄铁矿;Gn. 方铅矿;Sp. 闪锌矿;Ccp. 黄铜矿

    Figure  5.   The structure and distribution about different generation pyrites of S60 vein

    图  6   S60矿脉不同世代黄铁矿中微量元素的LA-ICP-MS剥蚀曲线

    Figure  6.   Time-resolved laser ablation depth-profiles of representative grains of different stage pyrites from S60 mineral vein

    图  7   S60矿脉PyⅡ中Au与Ag-Te-As的相关关系

    Figure  7.   Au, Ag, Te, and As absolute cps values for the second generation

    图  8   S60矿脉不同世代黄铁矿Co、Ni元素在黄铁矿颗粒中的分布及含量

    Figure  8.   The distribution and absolute contents of Co and Ni from the different generation of pyrites in S60 mineral vein

    图  9   克拉通破坏型金矿成矿模式图(朱日祥,2021

    Figure  9.   The metallogenic model of decratonic gold deposits

    表  1   小秦岭南中矿带S60矿脉不同世代黄铁矿LA-ICP-MS微量元素(10−6)分析结果

    Table  1   Trace elements analysis(10−6) for different generation pyrites of S60 vein from southern-medium ore belt of Xiaoqinling

    样品编号 黄铁矿世代 微量元素含量
    Au Ag As Te Co Ni
    B3/YM810-16-5 PyⅠ 0.289 0.261 0.000 3.008 51.065 10.156
    B4/ym860-3 PyⅠ 0.125 0.898 0.375 0.589 172.563 102.110
    B1-2/ym980-60-1 PyⅠ 0.064 1.352 0.000 6.772 0.165 5.593
    B1/YM1100-60-1-4 PyⅠ 0.027 0.000 1.290 0.174 0.000 1.170
    B1/YM1340-706(2)-1 PyⅠ 0.026 0.023 10.510 2.143 1617.610 139.482
    B3/YM810-16-1 PyⅠ 0.020 0.641 0.088 0.362 0.783 0.857
    B1/YM1250-S60-2 PyⅠ 0.012 0.579 0.448 3.937 1.266 3988.748
    B1/YM1250-S60-1 PyⅠ 0.009 3.165 0.000 12.774 103.671 57.349
    B1/YM860-60-3 PyⅠ 0.008 2.919 0.000 0.038 46.078 161.800
    B2/YM1100-60-1-1 PyⅠ 0.003 0.005 4.032 0.311 2773.345 39.256
    B3/YM810-16-3 PyⅠ 0.002 1.148 0.644 22.432 10.573 2.247
    B1/YM1100-60-1-5 PyⅠ 0.001 0.003 0.722 0.368 0.026 0.923
    B3/YM1220-6'-2 PyⅠ 0.000 0.005 12.879 0.185 30.398 559.956
    B1/YM860-60-4 PyⅠ 0.000 0.014 8.301 0.000 1215.701 17.754
    B1/YM860-60-8 PyⅠ 0.000 0.003 2.407 0.152 370.177 28.096
    B1/YM1100-60-1-1 PyⅠ 0.000 0.190 0.223 0.246 5.428 13.462
    B1/YM1100-60-1-2 PyⅠ 0.000 0.802 0.010 0.455 1.076 35.580
    B1/YM1100-60-1-3 PyⅠ 0.000 0.030 0.328 0.028 1.535 89.319
    B1/YM1340-706(2)-2 PyⅠ 0.000 0.120 8.599 0.676 1361.614 56.775
    B2/YM1100-60-1-4 PyⅠ 0.000 0.000 2.408 0.052 116.124 38.612
    B2/YM1100-60-1-5 PyⅠ 0.000 0.047 2.206 0.120 183.658 15.761
    J1/YM1140(1)-2 PyⅠ 0.000 4.355 9.233 0.001 0.017 3.220
    J1/YM1140(1)-3 PyⅠ 0.000 4.045 10.151 0.000 0.018 3.984
    B1/ym730-2 PyⅡ 36.922 153.509 0.265 44.136 156.506 158.765
    B1/YM1100-60-1-6 PyⅡ 22.339 189.304 1.050 1949.083 21.412 94.730
    B2/YM1100-60-1-2 PyⅡ 0.031 0.000 6.444 0.314 10.712 367.962
    B1/ym860-1 PyⅡ 0.114 0.076 0.218 0.824 211.179 248.814
    B4/YM540-FC-5 PyⅡ 284.940 218.853 0.258 477.787 56.877 628.359
    J2/YM540-FC(2)-1 PyⅡ 129.061 316.858 0.157 21182.135 5.084 11.049
    J2/YM540-FC(2)-5 PyⅡ 56.407 164.167 1.608 867.542 155.490 286.144
    B4/YM540-FC-6 PyⅡ 12.492 22.570 0.219 87.628 8.755 199.259
    B4/YM540-FC-1 PyⅡ 4.139 3.626 0.029 20.804 109.985 169.994
    B1/YM1250-S60-5 PyⅢ 0.143 7.555 0.081 25.553 103.771 387.159
    J1/YM1140(1)-1 PyⅢ 0.072 19.842 351.868 1.610 0.180 13.184
    B1/YM1340-706-6 PyⅢ 0.052 0.119 0.357 9.325 7.543 181.415
    B2-1/YM800-60-6 PyⅢ 0.047 0.263 0.000 0.436 0.560 175.172
    B3/YM1220-6'-4 PyⅢ 0.040 0.161 5.777 0.526 21.375 215.513
    B2-1/YM800-60-4 PyⅢ 0.031 0.071 4.224 0.850 968.843 323.802
    B3-2/YM980-60-2 PyⅢ 0.023 4.536 16.324 2.621 3047.222 49.869
    B3-2/YM980-60-5 PyⅢ 0.021 3.515 2.500 0.889 726.130 43.289
    J2/YM380(2)-2 PyⅢ 0.014 0.019 0.693 28.829 1718.654 220.770
    B1-2/ym980-60-4 PyⅢ 0.013 0.006 0.126 0.983 0.507 28.962
    B3-2/YM980-60-1 PyⅢ 0.008 0.133 6.087 1.022 457.775 27.651
    B2-1/YM800-60-2 PyⅢ 0.006 0.013 0.603 0.127 521.782 119.516
    B1/YM860-60-1 PyⅢ 0.000 9.886 1.501 1.127 53.225 163.838
    B1/YM860-60-5 PyⅢ 0.000 3.874 0.000 23.452 55.775 243.199
    B1/YM860-60-6 PyⅢ 0.000 0.458 2.063 0.489 249.658 15.994
    B1/YM860-60-7 PyⅢ 0.000 0.874 1.411 0.083 28.961 150.559
    B1/YM1250-S60-8 PyⅢ 0.000 0.002 0.094 0.000 49.423 374.494
    B1/YM1340-706-4 PyⅢ 0.000 0.006 0.172 0.235 222.915 94.672
    B2-1/YM800-60-3 PyⅢ 0.000 0.656 1.244 0.464 3.368 215.149
    J2/YM540-FC(2)-7 PyⅢ 0.657 2.018 0.000 274.815 40.359 163.165
    J2/YM540-FC(2)-2 PyⅢ 0.485 45.818 0.013 176.692 0.025 0.000
    J2/YM380(2)-3 PyⅢ 0.034 1.573 0.542 38.064 420.350 128.781
     注:0代表检测限以下,样品采自杨砦峪、樊岔金矿床;测试单位为南京聚谱检测科技有限公司。
    下载: 导出CSV
  • 毕诗健, 李占轲, 唐克非, 等. 小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义[J]. 地球科学, 2016, 41(7): 1121−1140.

    BI Shijian,LI Zhanke,TANG Kefei,et al. LA-ICP-MS In Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance,Xiaoqinling Gold District[J]. Earth Science,2016,41(7):1121−1140.

    陈衍景, 郭光军, 李欣. 华北克拉通花岗绿岩地体中中生代金矿床的成矿地球动力学背景[J]. 中国科学D辑: 地球科学, 1998, 28(1): 35−40.

    CHEN Yan jing,GUO Guangjun,LI Xin. Metallogenic Geodynamic Setting of Mesozoic gold deposits in granite greenstone terrane of North China Craton[J]. Science in China Series D-Earth Sciences,1998,28(1):35−40.

    陈衍景. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质, 2006, 33(6): 1181−1196.

    CHEN Yanjing. Orogenic-type deposits and their metallogenic model and exploration potential[J]. Geological in China,2006,33(6):1181−1196.

    范东旭, 夏元鹏. 小秦岭西峪-桐峪金矿矿床物质组分及金赋存状态研究[J]. 西北地质, 2023, 56(1): 254−265. doi: 10.12401/j.nwg.2022038

    FAN Dongxu, XIA Yuanpeng. Material Components and Occurrence States of Gold and Silver in the Xiyu–Tongyu Gold Deposit, Xiaoqinling, Shaanxi Province[J]. Northwestern Geology,2023,56(1):254−265. doi: 10.12401/j.nwg.2022038

    范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479−3496.

    FAN Hongrui,LI Xinghui,ZUO Yabin,et al. In situ LA-MC-ICP-MS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica,2018,34(12):3479−3496.

    冯建之. 河南小秦岭金矿构造控矿规律及控矿模式[J]. 矿产与地质, 2009, 23(4): 302−307. doi: 10.3969/j.issn.1001-5663.2009.04.003

    FENG Jianzhi. Ore-controlling structure and model in Xiaoqinling gold deposit, Henan[J]. Mineral Resources and Geology,2009,23(4):302−307. doi: 10.3969/j.issn.1001-5663.2009.04.003

    高山, 章军锋, 许文良, 等. 拆沉作用与华北克拉通破坏[J]. 科学通报, 2009, 54: 1962−1973.

    GAO Shan,ZHANG Junfeng,XU Wenliang,et al. Delamination and destruction of the North China Craton[J]. Chinese Science Bulletin,2009,54:1962−1973.

    葛战林, 顾雪祥, 章永梅, 等. 南秦岭柞水−山阳矿集区金盆梁金矿床载金硫化物矿物学特征及成矿指示[J]. 西北地质, 2023, 56(5): 278−293. doi: 10.12401/j.nwg.2023118

    GE Zhanlin, GU Xuexiang, ZHANG Yongmei, et al. Mineralogical Characteristics and Metallogenic Indication of Gold−Bearing Sulfides in the Jinpenliang Gold Deposit, Zhashui−Shanyang Ore Cluster Area, South Qinling[J]. Northwestern Geology,2023,56(5):278−293. doi: 10.12401/j.nwg.2023118

    姜寒冰, 杨合群, 赵国斌, 等. 西秦岭成矿带区域成矿规律概论[J]. 西北地质, 2023, 56(2): 187−202. doi: 10.12401/j.nwg.2023012

    JIANG Hanbing, YANG Hequn, ZHAO Guobin, et al. Discussion on the Metallogenic Regularity in West Qinling Metallogenic Belt, China[J]. Northwestern Geology,2023,56(2):187−202. doi: 10.12401/j.nwg.2023012

    蒋少涌, 戴宝章, 姜耀辉, 等. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25(11): 2727−2738.

    JIANG Shaoyong, DAI Baozhang, JIANG Yaohui, et al. Jiaodong and Xiaoqinling: two orogenic gold province formed in different tectonic settings[J]. Acta Petrological Sinica,2009,25(11):2727−2738.

    李厚民, 王登红, 王晓霞, 等. 华北地块南缘熊耳山早中生代正长花岗岩——SHRIMP锆石U-Pb年龄、地球化学及意义[J]. 岩石矿物学杂志, 2012, 31(6): 771−782. doi: 10.3969/j.issn.1000-6524.2012.06.001

    LI Houmin, WANG Denghong, WANG Xiaoxia, et al. The Early Mesozoic syenogranite in Xionger Mountain area, Southern margin of North China Craton: SHRIMP zircon U-Pb dating, geochemistry and its significance[J]. Acta Petrologica et Mineralogica,2012,31(6):771−782. doi: 10.3969/j.issn.1000-6524.2012.06.001

    刘俊辰. 小秦岭金矿集区成矿物质来源与富集机制-以樊岔金矿床为例[D].北京: 中国地质大学(北京), 2020, 1−90.

    LIU Junchen. Origins of the ore-forming materials and enrichment mechanism in the Xiaoqinling goldfield,southern margin of the North China Craton: A case study of the Fancha gold deposit[D]. Beijing: China University of Geosciences,2020,1−90.

    卢欣祥, 尉向东, 董有, 等. 小秦岭—熊耳山地区金矿特征与地幔流体[M]. 北京: 地质出版社: 2004, 82−101.

    LU Xinxiang, YU Xiangdong, DONG You, et al. Characteristics of Gold Deposits of Xiaoqinling-Xiongershan region and mantle fluid[M]. Beijing: Geological Publishing House, 2004, 82−101.

    毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力背景[J]. 岩石学报, 2005, 21(1): 169−188.

    MAO Jingwen,XIE Guiqing, ZHANG Zuoheng,et al. Mesozoic Large-scale metallogenic pules in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica,2005,21(1):169−188.

    邵克忠, 栾文楼. Bi-硫盐、Bi-碲化物-祁雨沟爆发-坍塌角砾岩型金矿床成因及找矿标志[J]. 河北地质学院学报, 1989, 12(3): 299−305.

    SHAO Kezhong,LUAN Wenlou. Bi- Sulfosalts and Bi-Tellurides—Genetic and Exploration Criteria for the Exp1osive-Collapsed Breecia Gold Ore Deposits,Qiyugou Area[J]. Journal of Hebei College of Geology,1989,12(3):299−305.

    王洁明, 董苏庆, 雷群英. 陕西金矿成矿规律与找矿靶区圈定[J]. 西北地质, 2023, 56(5): 308−321. doi: 10.12401/j.nwg.2023151

    WANG Jieming, DONG Suqing, LEI Qunying. Metallogenic Regularity and Prospecting Target Delineation of Shaanxi Gold Deposit[J]. Northwestern Geology,2023,56(5):308−321. doi: 10.12401/j.nwg.2023151

    王雷, 刘家军, 翟德高, 等. 小秦岭镰子沟金矿床成矿物质来源与成矿过程[J]. 地质学报, 2018, 92(2): 341−358.

    WANG Lei,LIU Jiajun,ZHAI Degao,et al. Material Sources and Ore-Forming Process of the Lianzigou Gold Deposit in Xiaoqinling[J]. Acta Geological Sinica,2018,92(2):341−358.

    吴桐. 小秦岭杨砦峪金矿床地球化学特征及矿床成因探讨[D]. 北京:中国地质大学(北京), 2019, 1−85.

    WU Tong. Geochemical characteristics and ore genesis of the Yangzhaiyu gold deposit in Xiaoqinling district[D]. Beijing:China University of Geosciences: 2019,1−85.

    杨合群, 赵国斌, 姜寒冰, 等. 西秦岭成矿带矿床成矿系列概论[J]. 西北地质, 2022, 55(1): 114−128.

    YANG Hequn, ZHAO Guobin, JIANG Hanbing, et al. Discussion on the Metallogenic Series of Mineral Deposits in the Metallogenic Belt of West Qinling, China[J]. Northwestern Geology,2022,55(1):114−128.

    展恩鹏, 王玭, 齐楠, 等. 河南灵宝樊岔金矿床成矿流体和同位素地球化学研究[J]. 矿床地质, 2019, 38(3): 459−478.

    ZHAN EnPeng, WANG Pin, QI Nan, et al. Ore-forming fluid and isotope geochemical study of Fancha gold deposit in Lingbao County Henan Province[J]. Mineral Deposits,2019,38(3):459−478.

    朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45(8): 1153−1168.

    ZHU Rixiang,FAN Hongrui,LI Jianwei,et al. Decratonic gold deposits[J]. Science China: Earth Sciences,2015,45(8):1153−1168.

    朱日祥, 孙卫东. 大地幔楔与克拉通破坏型金矿[J]. 中国科学: 地球科学, 2021, 51: 1−8.

    ZHU Rixiang,SUN Weidong. The big mantle wedge and decratonic gold deposits[J]. Science China Earth Sciences,2021,51:1−8.

    Barton P B, Skinner B J. Sulfide Mineral Stabilities. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits[J]. Wiley Interscience, New York, 1979, 278−403.

    Bi S J, Li J W, Zhou M F, et al. Gold distribution in As-deficient pyrite and Telluride minerallogy of the Yangzhaiyu gold deposit, Xiaoqinling district, southern Northern China Craton[J]. Mineralium Deposita,2011,46(8):925−941. doi: 10.1007/s00126-011-0359-2

    Chen L, Cheng C, Wei Z G. Seismic Evidence for Significant Lateral Variations in Lithospheric Thickness beneath the Central and Western North China Craton[J]. Earth and Planetary Science Letters,2009,286(1−2):171−183.

    Chen Y J , Santosh M. Triassic tectonics and mineral systems in the Qinling Orogen, central China[J]. Geological Journal,2014,49(4−5):338−358. doi: 10.1002/gj.2618

    Deng X, Peng T, Zhao T. Geochronology and geochemistry of the late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton: Petrogenesis and tectonic implications[J]. Precambrian Research,2016,285:127−146. doi: 10.1016/j.precamres.2016.09.013

    Fan H R, Hu F F, Wilde S A, et al. The Qiyugou Gold-Bearing Breccia Pipes, Xiong ershan Region, Central China: Fluid-Inclusion and Stable-Isotope Evidence for an Origin from Magmatic Fluids[J]. International Geology Review,2011,53(1):25−45.

    Gao S, Xu H, LI S R, et al. Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China[J]. Ore Geology Reviews,2017,80:166−184. doi: 10.1016/j.oregeorev.2016.06.023

    Goldfarb R, Groves D I, Gardoll S. Orogenic gold and geologic time: A global synthesis[J]. Ore Geol Rev,2001,18:1−75. doi: 10.1016/S0169-1368(01)00016-6

    Grundler P V, Brugger J, Etschmann B E, et al. Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition[J]. Geochimica et Cosmochimica Acta,2013,120:298−32.

    Jian W, Lehmann B, Mao J W, et al. Telluride and Bi-sulfosalt mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling region, Central China. Canad[J]. Mineralogist,2014,52:883−898. doi: 10.3749/canmin.1400007

    Jian W, Mao J, Lehmann B, et al. Lingbaoite, AgTe3, a new silver telluride from the Xiaoqinling gold district, central China[J]. American Mineralogist,2020,105:745−755. doi: 10.2138/am-2020-7167

    Keith M, Smith D J, Jenkin G R T, et al. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes[J]. Ore Geology Reviews,2018,96:269−282. doi: 10.1016/j.oregeorev.2017.07.023

    Li C, Li L, Li S R, et al. Late Paleoproterozoic mafic-intermediate dykes from the southern margin of the North China Craton: Implication for magma source and Columbia reconstruction[J]. Precambrian Research,2020,347:105837. doi: 10.1016/j.precamres.2020.105837

    Li J W, Bi S J, Selby David, et al. Giant Mesozoic gold provinces related to the destruction of the North China Craton[J]. Earth and Planetary Science Letters, 2012a, 349–350: 26–37.

    Li J W, Li Z K, Zhou M F, et al. The Early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: A link between craton reactivation and gold veining[J]. Economic Geology,2012b,107(1):43−79. doi: 10.2113/econgeo.107.1.43

    Li N, Chen Y J, Santosh M, et al. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews,2018,182:141−173. doi: 10.1016/j.earscirev.2018.05.004

    Li Y, Zhu G, Su N, et al. The Xiaoqinling metamorphic core complex: A record of Early Cretaceous backarc extension along the southern part of the North China Craton[J]. GSA Bulletin,2020,132:617−637. doi: 10.1130/B35261.1

    Liu J, Wang Y, Huang S, et al. The gold occurrence in pyrite and Te–Bi mineralogy of the Fancha gold deposit, Xiaoqinling gold field, southern margin of the North China Craton: Implication for ore genesis[J]. Geological Journal,2020,55:5791−5811. doi: 10.1002/gj.3637

    Liu J C, Wang Y T, Hu Q Q, et al. Ore genesis of the Fancha gold deposit, Xiaoqinling goldfield, southern margin of the North China Craton: Constraints from pyrite Re-Os geochronology and He-Ar, in-situ S-Pb isotopes[J]. Ore Geology Reviews,2020,119:1−17.

    Mao J W, Wang Y T, Li H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics[J]. Ore Geology Reviews,2008,33:361−381. doi: 10.1016/j.oregeorev.2007.01.003

    Mao J W, Xie G Q, Pirajno F, et al. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences,2010,57:51−78. doi: 10.1080/08120090903416203

    McPhail, D. C. Thermodynamic Properties of Aqueous Tellurium Species between 25 ℃ and 350 ℃[J]. Geochimica et Cosmochimica Acta,1995,59(5):851−866.

    Reich M, Kesler S E, Utsunomiya S, et al. Solubility of Gold in Arsenian Pyrite[J]. Geochimica et Cosmochimica Acta,2005,69(11):2781−2796. doi: 10.1016/j.gca.2005.01.011

    Robert F, Poulsen K H, Cassidy K F, et al. Gold metallogeny of the Superior and Yilgarn cratons. Bull Soc Econom Geol[J]. One Hundredth Anniversary, 1905–2005: 1001–1033.

    Wang P, Mao J W, Ye H S, et al. The Qiyugou Au orefield — An intrusion-related gold system in the Eastern Qinling ore belt, China: Constraints from SIMS zircon U-Pb, molybdenite Re-Os, sericite 40Ar-39Ar geochronology, in-situ S-Pb isotopes, and mineralogy[J]. Ore Geology Reviews,2020,124:103636.

图(9)  /  表(1)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  12
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-19
  • 修回日期:  2023-12-17
  • 网络出版日期:  2024-08-05
  • 刊出日期:  2024-10-19

目录

    /

    返回文章
    返回