ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    塔里木克拉通太古宙大陆起源:进展与问题

    葛荣峰, 朱文斌, 周腾, 司杨, 马丁

    葛荣峰,朱文斌,周腾,等. 塔里木克拉通太古宙大陆起源:进展与问题[J]. 西北地质,2024,57(6):1−24. doi: 10.12401/j.nwg.2024061
    引用本文: 葛荣峰,朱文斌,周腾,等. 塔里木克拉通太古宙大陆起源:进展与问题[J]. 西北地质,2024,57(6):1−24. doi: 10.12401/j.nwg.2024061
    GE Rongfeng,ZHU Wenbin,ZHOU Teng,et al. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues[J]. Northwestern Geology,2024,57(6):1−24. doi: 10.12401/j.nwg.2024061
    Citation: GE Rongfeng,ZHU Wenbin,ZHOU Teng,et al. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues[J]. Northwestern Geology,2024,57(6):1−24. doi: 10.12401/j.nwg.2024061

    塔里木克拉通太古宙大陆起源:进展与问题

    基金项目: 国家自然科学基金优秀青年基金项目(41922017)、面上项目(41872191、42372228),国家重点研发计划(2023YFF0804402),中央高校基本科研业务费专项资金-关键地球物质循环前沿科学中心“GeoX”交叉项目联合资助。
    详细信息
      作者简介:

      葛荣峰(1986−),男,教授,博士生导师,从事前寒武纪地质学与构造地质学研究。E−mail:gerongfeng@nju.edu.cn

    • 中图分类号: P581,P597,P541

    Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues

    • 摘要:

      塔里木克拉通是中国三大古老陆块之一,但由于大面积沉积覆盖,其古老基底的形成演化研究程度较低。然而,近年来在塔里木盆地周缘的库鲁克塔格、敦煌、北阿尔金、铁克里克等地,以及塔里木盆地基底钻井岩心中,均发现了太古宙岩石,表明其可能普遍存在太古宙基底。笔者对塔里木克拉通太古宙岩石的研究历史和最新进展进行了简要总结,对太古宙大陆地壳的形成时间、机制和动力学背景进行了讨论,并指出了未来研究的方向。结果表明,塔里木克拉通的太古宙大陆地壳形成似乎具有区域差异性,北部的库鲁克塔格、敦煌和北阿尔金地区广泛发育新太古代岩浆作用,峰期为~2.5 Ga和~2.7 Ga,北阿尔金地区~3.7 Ga岩石的发现为塔里木克拉通始太古代陆核的存在提供了可靠证据,而西南部的铁克里克地区和盆地基底以中太古代(3.2~2.8 Ga)地壳生长和再造为特征,目前尚未发现新太古代岩石。地球化学、热力学模拟和锆石氧逸度–湿度计研究表明,太古宙大陆地壳可能是不同源岩在不同深度(压力)通过水致熔融产生的,形成于俯冲相关构造背景,而早期板块构造自始太古代以来就已运行。太古宙大陆地壳物质组成的确定、变质–变形的识别、岩浆形成物理化学条件的厘定等方向仍是未来塔里木克拉通太古宙地质研究的重点。

      Abstract:

      The Tarim Craton is one of the three ancient continental blocks in China, but the formation and evolution of its ancient basement have been poorly studied due to extensive sedimentary cover. However, in recent years, Archean rocks have been found in the Kuruktag, Dunhuang, North Altyn Tagh, Tiekelike areas on the periphery of the Tarim Basin, as well as in the drill core from its basement, indicating that there may be a widespread Archean basement. In this paper, the study history and recent progress of Archean rocks in the Tarim Craton are summarized, the formation time, mechanism and geodynamics of Archean continental crust are discussed, and the future research direction is pointed out. The results show that the formation of the Archean continental crust in the Tarim Craton appears to have regional differences. Neoarchean magmatism was widely developed in the Kuruktag, Dunhuang and North Altyn areas, with peaks of ~2.5 Ga and ~2.7 Ga. The discovery of ~3.7 Ga rocks in the North Altyn Tagh area provides reliable evidence for the existence of an Eoarchean continental nucleus in the Tarim Craton. The Tiekelike area and basin basement in the southwest Tarim are characterized by Mesoarchean (3.2~2.8 Ga) crustal growth and reworking, and no Neoarchean rocks have been found. Geochemistry, thermodynamic modelling and zircon oxybarometer-hygrometer indicate that the Archean continental crust might have been produced by water-induced melting of different source rocks at different depths (pressures) and formed in subduction-related tectonic settings, indicating that early plate tectonics have been in operation since the Eoarchean. The elucidation of the components of the Archean continental crust, the identification of metamorphism and deformation, and the determination of the physical and chemical conditions of magma formation are still the focus of future studies of the Archean geology in the Tarim Craton.

    • 图  1   塔里木克拉通的位置及前寒武纪岩石分布图 (据Ge et al., 2018修改)

      Figure  1.   Location and distribution of Precambrian rocks of the Tarim craton

      图  2   库鲁克塔格地区太古宙岩石分布图

      Figure  2.   Distribution of Archean rocks in the Kuruktag area

      图  3   敦煌地区太古宙岩石分布图 (据Si et al., 2022修改)

      Figure  3.   Distribution of Archean rocks in the Dunhuang area

      图  4   北阿尔金地区太古宙岩石分布图 (据Ge et al., 2018, 2020修改)

      Figure  4.   Distribution of Archean rocks in the North Altyn Tagh area

      图  5   赫罗斯坦杂岩太古宙岩石分布图 (据Ge et al., 2022修改)

      Figure  5.   Distribution of Archean rocks in the Heluositan Complex

      图  9   热力学–地球化学模拟结果与岩石成分的对比图 (据Ge et al., 2022修改)

      Figure  9.   Comparison of thermodynamic–geochemical modelling results and rock compositions

      图  6   塔里木克拉通早前寒武纪构造–热事件对比图 (据Ge et al., 2022修改)

      Figure  6.   Comparison of Early Precambrian tectonothermal events in the Tarim Craton

      图  7   塔里木克拉通早前寒武纪锆石Hf同位素组成与地壳演化图 (据Ge et al., 2022修改)

      Figure  7.   Early Precambrian zircon Hf isotope composition and crustal evolution of the Tarim craton

      图  8   太古宙TTG成因的热力学–地球化学模拟图 (据Ge et al., 2022修改)

      Figure  8.   Thermodynamic–geochemical modelling for the formation of TTG melts

      图  10   锆石氧逸度–湿度计的原理和应用 (据Ge et al., 2023修改)

      a.锆石氧逸度–湿度计的原理,以Bishop凝灰岩为例,插图展示了水含量计算结果的准确性;b. 锆石氧逸度–湿度计给出的太古宙花岗质岩浆的氧逸度和水含量及其与其他岩浆的对比

      Figure  10.   Principle and application of the zircon oxybarometer–hygrometer

      图  11   太古宙花岗质岩浆氧逸度和水含量及锆石Hf同位素随时间的长期演化(据Ge et al., 2023修改)

      Figure  11.   Secular change in magma oxygen fugacity, H2O content and zircon Hf isotopic composition of Archean granitoids

      图  12   太古宙大陆起源的岛弧俯冲–拼贴模式图(据Ge et al., 2022修改)

      Figure  12.   A subduction–arc accretion model for the origin of continents

    • 邓兴梁, 舒良树, 朱文斌, 等. 新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄[J]. 岩石学报, 2008, 2412): 28002808.

      DENG Xingliang, SHU Liangshu, ZHU Wenbin, et al. Precambrian tectonism, deformation and geochronology of igneous rocks in the Xingdi fault zone, Xinjiang[J]. Acta Petrologica Sinica, 2008, 2412): 28002808.

      翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动——前沿热点介绍与展望[J]. 岩石学报, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

      ZHAI Mingguo, ZHAO Lei, ZHU Xiyan, et al. Review and overview for the frontier hotspot: Early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

      董昕, 张泽明, 唐伟. 塔里木克拉通北缘的前寒武纪构造热事件——新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J]. 岩石学报, 2011, 271): 4758.

      DONG Xin, ZHANG Zeming, TANG Wei. Precambrian tectono-thermal events of the northern margin of the Tarim Craton: Constraints of zircon U-Pb chronology from high-grade metamorphic rocks of the Korla, Xinjiang[J]. Acta Petrologica Sinica, 2011, 271): 4758.

      高振家, 陈晋镳, 彭昌文, 等. 新疆北部前寒武系[M]. 北京: 地质出版社, 1993: 171.

      GAO Zhenjia, CHEN Jinbiao, PENG Changwen., et al. Precambrian Geology of the North Xinjing[M]. Beijing: Geological Press, 1993: 171.

      辜平阳, 计文化, 陈锐明, 等. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示[J]. 地球科学, 2020, 459): 32683281.

      GU Pingyang, JI Wenhua, CHEN Ruiming, et al. Petrogenesis of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution[J]. Earth Science, 2020, 459): 32683281.

      辜平阳, 徐学义, 何世平, 等. 塔里木东南缘安南坝地区约 2.5 Ga 花岗闪长质片麻岩的发现及岩石成因[J]. 地质通报, 2019, 385): 834844.

      GU Pingyang, XU Xueyi, HE Shiping, et al. Ca. 2.5 Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis[J]. Geological Bulletin of China, 2019, 385): 834844.

      郭新成, 郑玉壮, 高军, 等. 新疆西昆仑中太古界古陆核的确定及地质意义[J]. 地质论评, 2013, 593): 401412. doi: 10.3969/j.issn.0371-5736.2013.03.001

      GUO Xincheng, ZHENG Yuzhuang, GAO Jun, et al. Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains, Xinjiang, China[J]. Geological Review, 2013, 593): 401412. doi: 10.3969/j.issn.0371-5736.2013.03.001

      郭瑞清, 秦切, 邹明煜, 等. 新疆库鲁克塔格西段辉长岩脉年代学、岩石地球化学特征及构造意义[J]. 西北地质, 2018, 514): 7081.

      GUO Ruiqing, QIN Qie, ZOU Mingyu, et al. Geochronology, Petrogeochemical Characteristics and Tectonic Significance of Gabbro Dike from Western Quruqtagh in Xinjiang[J]. Northwestern Geology, 2018, 514): 7081.

      郭召杰, 张志诚, 刘树文, 等. 塔里木克拉通早前寒武纪基底层序与组合: 颗粒锆石U-Pb年龄新证据[J]. 岩石学报, 2003, 193): 537542. doi: 10.3969/j.issn.1000-0569.2003.03.020

      GUO Zhaojie, ZHANG Zhicheng, LIU Shuwen, et al. U-Pb geochronological evidence for the early Precambrian complex of the Tarim Craton, NW China[J]. Acta Petrologica Sinica, 2003, 193): 537542. doi: 10.3969/j.issn.1000-0569.2003.03.020

      胡霭琴, 罗杰斯. 新疆塔里木北缘首次发现33亿年的岩石[J]. 科学通报, 1992, (7): 627630.

      HU Aiqin, Rogers G. Discovery of 3.3 Ga Archean Rocks in North Tarim Block of Xinjiang, Western China[J]. Science Bulletin, 1992, (7): 627630.

      胡霭琴, 韦刚健. 塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J]. 地质学报, 2006, 801): 126134. doi: 10.3321/j.issn:0001-5717.2006.01.014

      HU Aiqin, WEI Gangjian. On the Age of the Neo-Archean Qingir Gray Gneisses from the Northern Tarim Basin, Xinjiang, China[J]. Acta Geologica Sinica, 2006, 801): 126134. doi: 10.3321/j.issn:0001-5717.2006.01.014

      黎敦朋, 李新林, 周小康, 等. 塔里木西南缘新太古代变质辉长岩脉的锆石SHRIMP U-Pb定年及其地质意义[J]. 中国地质, 2007, 342): 262269. doi: 10.3969/j.issn.1000-3657.2007.02.007

      LI Dunpeng, LI Xinlin, ZHOU Xiaokang, et al. SHRIMP U-Pb Zircon Dating of Neoarchean Metagabbro Dikes On the Southwestern Margin of the Tarim Plate and its Significance[J]. Geology in China, 2007, 342): 262269. doi: 10.3969/j.issn.1000-3657.2007.02.007

      李惠民, 陆松年, 郑健康, 等. 阿尔金山东端花岗片麻岩中3.6 Ga锆石的地质意义[J]. 矿物岩石地球化学通报, 2001, 204): 259262. doi: 10.3969/j.issn.1007-2802.2001.04.016

      LI Huimin, LU Songnian, ZHENG Jiangkang, et al. Dating of 3.6 Ga Zircons in Granite-Gneiss from the Eastern Altyn Mountains and Its Geological Significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 204): 259262. doi: 10.3969/j.issn.1007-2802.2001.04.016

      李晓剑, 王毅, 李慧莉, 等. 新元古代陆缘岩浆弧——塔里木盆地巴楚隆起的基底: 来自钻井岩芯的最新证据[J]. 岩石学报, 2018, 347): 21402164.

      LI Xiaojian, WANG Yi, LI Huili, et al. Bachu uplift in the central Tarim Basin based on Neoproterozoic continental arc: New lines of evidence from drilled andesite and dacite[J]. Acta Petrologica Sinica, 2018, 347): 21402164.

      陆松年. 新疆库鲁克塔格元古宙地质演化[A]. 中国地质科学院天津地质矿产研究所文集[C].1992, 26−27: 279292.

      LU Songnian. Geological evolution of Proterozoic in Kuruktage, Xinjiang[A]. Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences[C].1992, 26−27: 279292.

      陆松年, 袁桂邦. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据[J]. 地质学报, 2003, 771): 6168. doi: 10.3321/j.issn:0001-5717.2003.01.008

      LU Songnian, YUAN Guibang. Geochronology of early Precambrian magmatic activities in Aketashitage, east Altyn Tagh[J]. Acta Geologica Sinica, 2003, 771): 6168. doi: 10.3321/j.issn:0001-5717.2003.01.008

      梅华林, 于海峰, 李铨, 等. 甘肃北山地区首次发现榴辉岩和古元古花岗质岩石[J]. 科学通报, 1998, 2119): 21052111. doi: 10.3321/j.issn:0023-074X.1998.19.022

      MEI Hualin, YU Haifeng, LI Quan, et al. Archean tonalite in the Dunhuang, Gansu Provience: age from the U-Pb sigle zircon and Nd isotope[J]. Progress in Precambrian Research, 1998, 2119): 21052111. doi: 10.3321/j.issn:0023-074X.1998.19.022

      邬光辉, 张承泽, 汪海, 等. 塔里木盆地中部塔参1井花岗闪长岩的锆石SHRIMP U-Pb年龄[J]. 地质通报, 2009, 285): 568571.

      WU Guanghui, ZHANG Chengze, WANG Hai, et al. Zircon SHRIMP U-Pb age of granodiorite of the Tacan 1 well in the cen-tral Tarim basin, China[J]. Geologcal Bulletin of China, 2009, 285): 568571.

      辛后田, 刘永顺, 罗照华, 等. 塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生: 米兰岩群和 TTG 片麻岩的地球化学及年代学约束[J]. 地学前缘, 2013, 201): 240259.

      XIN Houtian, LIU Yongshun, LUO Zhaohua, et al. The growth of Archean continental crust in Aqtashtagh Area of Southeast Tarim, China: Constraints from petrochemistry and chronology about Milan Group and TTG-gneiss[J]. Earth Science Frontiers, 2013, 201): 240259.

      辛后田, 罗照华, 刘永顺, 等. 塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义[J]. 地学前缘, 2012, 196): 167178.

      XIN Houtian, LUO Zhaohua, LIU Yongshun, et al. Geological features and significance of Paleoproterozoic carbonatite of crust origin in Aqtashtagh area of southeast Tarim Basin, China[J]. Earth Science Frontiers, 2012, 196): 167178.

      辛后田, 赵凤清, 罗照华, 等. 塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义[J]. 地质学报, 2011, 8512): 19771993.

      XIN Houtian, ZHAO Fengqing, LUO Zhaohua, et al. Determination of the Paleoproterozoic Geochronological Framework in Aqtashtagh Area in Southeastern Tarim, China, and Its Geological Significance[J]. Acta Geologica Sinica, 2011, 8512): 19771993.

      新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993: 762.
      叶现韬, 张传林. 阿尔金北缘新太古代 TTG 片麻岩的成因及其构造意义[J]. 岩石学报, 2020, 3611): 33973413. doi: 10.18654/1000-0569/2020.11.09

      YE Xiantao, ZHANG Chuanlin. Petrogenesis and tectonic implications of the Neoarchean TTG gneiss in the North Altyn Tagh area, southeastern Tarim Craton[J]. Acta Petrologica Sinica, 2020, 3611): 33973413. doi: 10.18654/1000-0569/2020.11.09

      张传林, 王中刚, 沈加林, 等. 西昆仑山阿卡孜岩体锆石SHRIMP定年及其地球化学特征[J]. 岩石学报, 2003, 193): 523529. doi: 10.3969/j.issn.1000-0569.2003.03.018

      ZHANG Chuanlin, WANG Zhonggang, SHEN Jialin, et al. Zircon SHRIMP dating and geochemistry characteristics of Akazi rock mass of Western Kunlun[J]. Acta Petrologica Sinica, 2003, 193): 523529. doi: 10.3969/j.issn.1000-0569.2003.03.018

      赵国春, 张国伟. 大陆的起源[J]. 地质学报, 2021, 951): 119. doi: 10.1111/1755-6724.14621

      ZHAO Guochun, ZHANG Guowei. Origin of continents[J]. Acta Geologica Sinica, 2021, 951): 119. doi: 10.1111/1755-6724.14621

      赵燕, 第五春荣, 敖文昊, 等. 敦煌地块发现~3.06 Ga花岗闪长质片麻岩[J]. 科学通报, 2015, 601): 7587.

      ZHAO Yan, DIWU Chunrong, AO Wenhao, et al. Ca. 3.06 Ga granodioritic gneiss in Dunhuang block[J]. 科学通报, 2015, 601): 7587.

      赵燕, 第五春荣, 孙勇, 等. 甘肃敦煌水峡口地区前寒武纪岩石的锆石 U-Pb 年龄, Hf 同位素组成及其地质意义[J]. 岩石学报, 2013, 295): 16981712.

      ZHAO Yan, DIWU Chunrong, SUN Yong, et al. Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area, Gansu Province[J]. Acta Petrologica Sinica, 2013, 295): 16981712.

      郑永飞. 太古宙地质与板块构造: 观察与解释[J]. 中国科学: 地球科学, 2024, 541): 130.

      ZHENG Yongfei. Plate tectonics in the Archean: Observations versus interpretations[J]. Science China Earth Sciences, 2024, 541): 130.

      朱文斌, 林和丰, 葛荣峰, 等. 塔里木克拉通北缘库鲁克塔格地块太古宙基底组成与地壳演化[J]. 地质学报, 2022, 969): 30843101.

      ZHU Wenbin, LIN Hefeng, GE Rongfeng, et al. Archean basement composition and crustal evolution of the Kuluketage block in the northern margin of the Tarim Craton[J]. Acta Geologica Sinica, 2022, 969): 30843101.

      Aarons S M, Johnson A C, Rader S T. Forming Earth's Continental Crust: A Nontraditional Stable Isotope Perspective[J]. Elements, 2021, 176): 413418. doi: 10.2138/gselements.17.6.413

      Aarons S M, Reimink J R, Greber N D, et al. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex[J]. Science Advances, 2020, 650): eabc9959. doi: 10.1126/sciadv.abc9959

      Armstrong R L. A model for the evolution of strontium and lead isotopes in a dynamic earth[J]. Reviews of Geophysics, 1968, 62): 175199. doi: 10.1029/RG006i002p00175

      Armstrong R L. The Persistent Myth of Crustal Growth[J]. Australian Journal of Earth Sciences, 1991, 385): 613630. doi: 10.1080/08120099108727995

      Arndt N T. The Formation and Evolution of the Continental Crust[J]. Geochemical Perspectives, 2013, 32): 405533.

      Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 3626416): 144146. doi: 10.1038/362144a0

      Aulbach S, Stagno V. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle[J]. Geology, 2016, 449): 751754. doi: 10.1130/G38070.1

      Barker F, Arth J G. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites[J]. Geology, 1976, 410): 596600. doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2

      Bédard J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle[J]. Geochimica et Cosmochimica Acta, 2006, 705): 11881214. doi: 10.1016/j.gca.2005.11.008

      Bédard J H. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics[J]. Geoscience Frontiers, 2018, 91): 1949. doi: 10.1016/j.gsf.2017.01.005

      Belousova E A, Kostitsyn Y A, Griffin W L, et al. The growth of the continental crust: Constraints from zircon Hf-isotope data[J]. Lithos, 2010, 1193−4): 457466. doi: 10.1016/j.lithos.2010.07.024

      Cai Z, Jiao C, He B, et al. Archean–Paleoproterozoic tectonothermal events in the central Tarim Block: constraints from granitic gneisses revealed by deep drilling wells [J]. Precambrian Research, 2020: 105776.

      Cai Z, Xu Z, Yu S, et al. Neoarchean magmatism and implications for crustal growth and evolution of the Kuluketage region, northeastern Tarim Craton[J]. Precambrian Research, 2018, 304: 156170. doi: 10.1016/j.precamres.2017.11.016

      Cawood P A, Chowdhury P, Mulder J A, et al. Secular evolution of continents and the Earth system [J]. Reviews of Geophysics, 2023: e2022RG000789.

      Collins W J, Murphy J B, Johnson T E, et al. Critical role of water in the formation of continental crust[J]. Nature Geoscience, 2020, 13: 331338. doi: 10.1038/s41561-020-0573-6

      Condie K C. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?[J]. Earth and Planetary Science Letters, 1998, 1631−4): 97108. doi: 10.1016/S0012-821X(98)00178-2

      Condie K C. How to make a continent: thirty-five years of TTG research. In Dilek Y, Furnes H (eds). Evolution of Archean Crust and Early Life[M]. Springer, 2014: 179−193.

      Condie K C, Kröner A. The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean[J]. Gondwana Research, 2013, 232): 394402. doi: 10.1016/j.gr.2011.09.011

      Dhuime B, Hawkesworth C J, Cawood P A, et al. A change in the geodynamics of continental growth 3 billion years ago[J]. Science, 2012, 3356074): 13341336. doi: 10.1126/science.1216066

      Dong C, Ge R, Liu S, et al. Multiple episodes of early Precambrian magmatism and tectonism in the Tarim Craton: A North China connection[J]. Lithos, 2022, 430: 106883.

      Drummond M S, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting - Archean to modern comparisons[J]. Journal of Geophysical Research-Solid Earth and Planets, 1990, 95B13): 2150321521. doi: 10.1029/JB095iB13p21503

      Feng L, Lin S, Davis D W, et al. Dunhuang Tectonic Belt in northwestern China as a part of the Central Asian Orogenic Belt: Structural and U-Pb geochronological evidence[J]. Tectonophysics, 2018, 747−748: 281297. doi: 10.1016/j.tecto.2018.09.008

      Fischer R, Gerya T. Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modelling[J]. Gondwana Research, 2016, 37: 5370. doi: 10.1016/j.gr.2016.06.002

      Ganne J, Feng X. Primary magmas and mantle temperatures through time[J]. Geochemistry, Geophysics, Geosystems, 2017, 183): 872888. doi: 10.1002/2016GC006787

      Gao L, Liu S, Cawood P A, et al. Oxidation of Archean upper mantle caused by crustal recycling[J]. Nature Communications, 2022, 131): 3283. doi: 10.1038/s41467-022-30886-4

      Ge R F, Zhu W B, Wilde S A, et al. Archean magmatism and crustal evolution in the northern Tarim Craton: Insights from zircon U–Pb–Hf–O isotopes and geochemistry of ~2.7 Ga orthogneiss and amphibolite in the Korla Complex[J]. Precambrian Research, 2014a, 252: 145165. doi: 10.1016/j.precamres.2014.07.019

      Ge R F, Zhu W B, Wilde S A, et al. Zircon U–Pb–Lu–Hf–O isotopic evidence for ≥3.5 Ga crustal growth, reworking and differentiation in the northern Tarim Craton[J]. Precambrian Research, 2014b, 249: 115128. doi: 10.1016/j.precamres.2014.05.004

      Ge R F, Zhu W B, Wilde S A, et al. Synchronous crustal growth and reworking recorded in late Paleoproterozoic granitoids in the northern Tarim craton: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints and tectonic implications[J]. Geological Society of America Bulletin, 2015, 1275−6): 781803. doi: 10.1130/B31050.1

      Ge R F, Zhu W B, Wu H L, et al. Timing and mechanisms of multiple episodes of migmatization in the Korla Complex, northern Tarim Craton, NW China: Constraints from zircon U–Pb–Lu–Hf isotopes and implications for crustal growth[J]. Precambrian Research, 2013, 231: 136156. doi: 10.1016/j.precamres.2013.03.005

      Ge R, Wilde S A, Kemp A I S, et al. Generation of Eoarchean continental crust from altered mafic rocks derived from a chondritic mantle: The ∼3.72 Ga Aktash gneisses, Tarim Craton (NW China)[J]. Earth and Planetary Science Letters, 2020, 538: 116225. doi: 10.1016/j.jpgl.2020.116225

      Ge R, Wilde S A, Zhu W, et al. Formation and evolution of Archean continental crust: A thermodynamic–geochemical perspective of granitoids from the Tarim Craton, NW China[J]. Earth-Science Reviews, 2022, 234: 104219. doi: 10.1016/j.earscirev.2022.104219

      Ge R, Wilde S A, Zhu W, et al. Earth’s early continental crust formed from wet and oxidizing arc magmas[J]. Nature, 2023, 623: 334339. doi: 10.1038/s41586-023-06552-0

      Ge R, Zhu W, Wilde S A, et al. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 2018, 42): aao3159. doi: 10.1126/sciadv.aao3159

      Gehrels G E, Yin A, Wang X. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108B9): 2423.

      Green E, White R W, Diener J, et al. Activity‐composition relations for the calculation of partial melting equilibria in metabasic rocks[J]. Journal of Metamorphic Geology, 2016, 349): 845869. doi: 10.1111/jmg.12211

      Guo Z J, Yin A, Robinson A, et al. Geochronology and Geochemistry of Deep-Drill-Core Samples From the Basement of the Central Tarim Basin[J]. Journal of Asian Earth Sciences, 2005, 251): 4556. doi: 10.1016/j.jseaes.2004.01.016

      Harrison T M. Hadean Earth[M]. Springer, 2020:1−291.

      Hastie A R, Fitton J G, Bromiley G D, et al. The origin of Earth's first continents and the onset of plate tectonics[J]. Geology, 2016, 4410): 855858. doi: 10.1130/G38226.1

      Hawkesworth C J, Kemp A I S. Evolution of the continental crust[J]. Nature, 2006, 4437113): 811817. doi: 10.1038/nature05191

      Herzberg C, Condie K, Korenaga J. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 2010, 2921): 7988.

      Hoffmann J E, Zhang C, Nagel T. The formation of Tonalites–Trondjhemite–Granodiorites in Early continental crust. In Earth's oldest rocks, Van Kranendonk M J, Bennett V, Hoffmann E, Eds.; Elsevier: 2019: 133−168.

      Holland T J B, Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011, 293): 333383. doi: 10.1111/j.1525-1314.2010.00923.x

      Holland T J, Green E C, Powell R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr[J]. Journal of Petrology, 2018, 595): 881900. doi: 10.1093/petrology/egy048

      Jagoutz O, Schmidt M W, Enggist A, et al. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust[J]. Contributions to Mineralogy and Petrology, 2013, 1664): 10991118. doi: 10.1007/s00410-013-0911-4

      Jahn B, Glikson A Y, Peucat J J, et al. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 1981, 459): 16331652. doi: 10.1016/S0016-7037(81)80002-6

      Johnson T E, Brown M, Gardiner N J, et al. Earth's first stable continents did not form by subduction[J]. Nature, 2017, 543: 239242. doi: 10.1038/nature21383

      Johnson T E, Kirkland C L, Lu Y, et al. Giant impacts and the origin and evolution of continents[J]. Nature, 2022, 6087922): 330335. doi: 10.1038/s41586-022-04956-y

      Kamber B S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic[J]. Precambrian Research, 2015, 258: 4882. doi: 10.1016/j.precamres.2014.12.007

      Kemp A I S, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature, 2006, 4397076): 580583. doi: 10.1038/nature04505

      Kendrick J, Duguet M, Yakymchuk C. Diversification of Archean tonalite - trondhjemite - granodiorite suites in a mushy middle crust[J]. Geology, 2022, 501): 7680. doi: 10.1130/G49287.1

      Kleinhanns I C, Kramers J D, Kamber B S. Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa[J]. Contributions to Mineralogy and Petrology, 2003, 1453): 377389. doi: 10.1007/s00410-003-0459-9

      Korenaga J. Hadean geodynamics and the nature of early continental crust[J]. Precambrian Research, 2021, 359: 106178. doi: 10.1016/j.precamres.2021.106178

      Laurent O, Björnsen J, Wotzlaw J, et al. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 2020, 132): 163169. doi: 10.1038/s41561-019-0520-6

      Lee C A, Luffi P, Chin E J. Building and Destroying Continental Mantle[J]. Annual Review of Earth and Planetary Sciences, 2011, 391): 5990. doi: 10.1146/annurev-earth-040610-133505

      Li W, Costa F. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets[J]. Geochimica et Cosmochimica Acta, 2020, 269: 203222. doi: 10.1016/j.gca.2019.10.035

      Liou P, Guo J. Generation of Archaean TTG Gneisses Through Amphibole-Dominated Fractionation[J]. Journal of Geophysical Research: Solid Earth, 2019, 1244): 36053619. doi: 10.1029/2018JB017024

      Long X P, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim Craton, NW China: zircon U-Pb and Hf isotopic constraints[J]. Precambrian Research, 2010, 1803−4): 272284. doi: 10.1016/j.precamres.2010.05.001

      Long X P, Yuan C, Sun M, et al. The discovery of the oldest rocks in the Kuluketage area and its geological implications[J]. Science in China Series D: Earth Sciences, 2011, 543): 342348. doi: 10.1007/s11430-010-4156-z

      Long X P, Yuan C, Sun M, et al. New geochemical and combined zircon U–Pb and Lu–Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang Block and crust formation in NW China [J]. Lithos, 2014, 200–201: 418 - 431.

      Long X, Wilde S A, Yuan C, et al. Provenance and depositional age of Paleoproterozoic metasedimentary rocks in the Kuluketage Block, northern Tarim Craton: Implications for tectonic setting and crustal growth[J]. Precambrian Research, 2015, 260: 7690. doi: 10.1016/j.precamres.2015.01.008

      Loucks R R, Fiorentini M L, Henríquez G J. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 2020, 613): egaa34.

      Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 2008, 1601−2): 94107. doi: 10.1016/j.precamres.2007.04.025

      Martin H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas[J]. Geology, 1986, 149): 753756. doi: 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

      Martin H, Moyen J, Guitreau M, et al. Why Archaean TTG cannot be generated by MORB melting in subduction zones[J]. Lithos, 2014, 198−199: 113.

      Moore W B, Webb A A G. Heat-pipe earth[J]. Nature, 2013, 5017468): 501505. doi: 10.1038/nature12473

      Moyen J F, Stevens G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[J]. Geophysical Monograph-American Geophysical Union, 2006, 164: 149175.

      Moyen J. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 2011, 1231−4): 2136. doi: 10.1016/j.lithos.2010.09.015

      Moyen J. Archean granitoids: classification, petrology, geochemistry and origin[J]. Geological Society, London, Special Publications, 2020, 4891): 1549. doi: 10.1144/SP489-2018-34

      Moyen J, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148: 312336. doi: 10.1016/j.lithos.2012.06.010

      Palin R M, White R W, Green E C R. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling[J]. Precambrian Research, 2016, 287: 7390. doi: 10.1016/j.precamres.2016.11.001

      Pearson D G, Scott J M, Liu J, et al. Deep continental roots and cratons[J]. Nature, 2021, 5967871): 199210. doi: 10.1038/s41586-021-03600-5

      Pourteau A, Doucet L S, Blereau E R, et al. TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia[J]. Earth and Planetary Science Letters, 2020, 550: 116548. doi: 10.1016/j.jpgl.2020.116548

      Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite[J]. Nature, 2003, 4256958): 605609. doi: 10.1038/nature02031

      Rollinson H. Do all Archaean TTG rock compositions represent former melts?[J]. Precambrian Research, 2021, 367: 106448. doi: 10.1016/j.precamres.2021.106448

      Roman A, Arndt N. Differentiated Archean oceanic crust: Its thermal structure, mechanical stability and a test of the sagduction hypothesis[J]. Geochimica et Cosmochimica Acta, 2020, 278: 6577. doi: 10.1016/j.gca.2019.07.009

      Rozel A B, Golabek G J, Jain C, et al. Continental crust formation on early Earth controlled by intrusive magmatism[J]. Nature, 2017, 5457654): 332335. doi: 10.1038/nature22042

      Rudnick R L. Making continental crust[J]. Nature, 1995, 3786557): 571578. doi: 10.1038/378571a0

      Rudnick R L, Gao S. Composition of the continental crust[A]. In: Rudnick R L (ed). Treatise on geochemistry[M]. Elsevier, 2014, 4: 1−51.

      Shi M, Hou Q, Wu C, et al. Paleozoic Sanweishan arc in the northern Dunhuang region, NW China: The Dunhuang block is a Phanerozoic orogen, not a Precambrian block[J]. Journal of Asian Earth Sciences, 2020, 194: 103954. doi: 10.1016/j.jseaes.2019.103954

      Shu L S, Deng X L, Zhu W B, et al. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences, 2011, 425): 774790. doi: 10.1016/j.jseaes.2010.08.018

      Si Y, Ge R, Zhou T, et al. Decoupling of metamorphic zircon U-Pb ages and P-T paths in the Dunhuang metamorphic complex, northwestern China [J]. Precambrian Research, 2022, 379: 106783.

      Sizova E, Gerya T, Brown M, et al. Subduction styles in the Precambrian: Insight from numerical experiments[J]. Lithos, 2010, 1163−4): 209229. doi: 10.1016/j.lithos.2009.05.028

      Sizova E, Gerya T, Stüwe K, et al. Generation of felsic crust in the Archean: A geodynamic modeling perspective[J]. Precambrian Research, 2015, 271: 198224. doi: 10.1016/j.precamres.2015.10.005

      Smithies R H, Lu Y, Johnson T E, et al. No evidence for high-pressure melting of Earth's crust in the Archean[J]. Nature Communications, 2019, 101): 112. doi: 10.1038/s41467-018-07882-8

      Smithies R H, Lu Y, Kirkland C L, et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust[J]. Nature, 2021, 5927852): 7075. doi: 10.1038/s41586-021-03337-1

      Smythe D J, Brenan J M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium[J]. Earth and Planetary Science Letters, 2016, 453: 260266. doi: 10.1016/j.jpgl.2016.08.013

      Sobolev A V, Asafov E V, Gurenko A A, et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir[J]. Nature, 2016, 5317596): 628632. doi: 10.1038/nature17152

      Sobolev A V, Asafov E V, Gurenko A A, et al. Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago[J]. Nature, 2019, 5717766): 555559. doi: 10.1038/s41586-019-1399-5

      Sun X, Li X, Lei R, et al. Paleoproterozoic crustal evolution of the Tarim Craton, NW China: Constraints from geochronology and geochemistry of orthogneisses and granitic veins in the Xingdi region of the Quruqtagh Block[J]. Precambrian Research, 2023, 399: 107247. doi: 10.1016/j.precamres.2023.107247

      Tang M, Wang X, Shu X, et al. Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal anatexis[J]. Earth and Planetary Science Letters, 2014, 389: 188199. doi: 10.1016/j.jpgl.2013.12.036

      Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 332): 241265. doi: 10.1029/95RG00262

      Taylor S R, McLennan S. Planetary crusts: their composition, origin and evolution[M]. Cambridge: Cambridge University Press, 2009, 378.

      Van Hunen J, Moyen J. Archean Subduction: Fact or Fiction?[J]. Annual Review of Earth and Planetary Sciences, 2012, 401): 195219. doi: 10.1146/annurev-earth-042711-105255

      Van Hunen J, van den Berg A P. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere[J]. Lithos, 2008, 1031−2): 217235. doi: 10.1016/j.lithos.2007.09.016

      Van Kranendonk M J, Bennett V C, Hoffmann J E. Earth's oldest rocks[M]. Elsevier, 2019, 1078.

      Vervoort J D, Kemp A I S. Clarifying the zircon Hf isotope record of crust–mantle evolution[J]. Chemical Geology, 2016, 425: 6575. doi: 10.1016/j.chemgeo.2016.01.023

      Wang C, Liu L, Wang Y, et al. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2015, 257: 6582. doi: 10.1016/j.precamres.2014.11.022

      Wang C, Wang Y, Liu L, et al. The Paleoproterozoic magmatic–metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2014, 254: 210225. doi: 10.1016/j.precamres.2014.08.018

      Wang H Y, Chen H, Zhang Q W, et al. Tectonic mélange records the Silurian–Devonian subduction-metamorphic process of the southern Dunhuang terrane, southernmost Central Asian Orogenic Belt[J]. Geology, 2017, 455): 427430. doi: 10.1130/G38834.1

      Wu Z, Song J, Zhao G, et al. Water-Induced Mantle Overturns Leading to the Origins of Archean Continents and Subcontinental Lithospheric Mantle[J]. Geophysical Research Letters, 2023, 5022): e2023GL105178. doi: 10.1029/2023GL105178

      Xia X, Cui Z, Li W, et al. Zircon water content: Reference material development and simultaneous measurement with oxygen isotope by SIMS [J]. Journal of Analytical Atomic Spectrometry, 2019.

      Xiang H, Connolly J A D. GeoPS: an interactive visual computing tool for thermodynamic modeling of phase equilibria[J]. Journal of Metamorphic Geology, 2022, 40: 243255. doi: 10.1111/jmg.12626

      Xu Z Q, He B Z, Zhang C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150162. doi: 10.1016/j.precamres.2013.06.001

      Yang H, Wu G, Kusky T M, et al. Paleoproterozoic assembly of the North and South Tarim terranes: New insights from deep seismic profiles and Precambrian granite cores[J]. Precambrian Research, 2018, 305: 151165. doi: 10.1016/j.precamres.2017.11.015

      Ye X, Zhang C, Santosh M, et al. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: New evidence from the ca. 1.4 Ga A-type granites and Paleoproterozoic intrusive complex[J]. Precambrian Research, 2016, 275: 1834. doi: 10.1016/j.precamres.2015.12.017

      Zhang C L, Li H K, Santosh M, et al. Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro-TTG–potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences, 2012, 47: 520. doi: 10.1016/j.jseaes.2011.05.018

      Zhang C L, Li Z X, Li X H, et al. An early Paleoproterozoic high-K intrusive complex in southwestern Tarim block, NW China: Age, geochemistry, and tectonic implications[J]. Gondwana Research, 2007, 121−2): 101112. doi: 10.1016/j.gr.2006.10.006

      Zhang C, Ye X, Zou H, et al. Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China: New evidence from field observations, detrital zircon U–Pb ages and Hf isotope compositions[J]. Precambrian Research, 2016, 280: 3145. doi: 10.1016/j.precamres.2016.04.011

      Zhang C, Zou H, Santosh M, et al. Is the Precambrian basement of the Tarim Craton in NW China composed of discrete terranes?[J]. Precambrian Research, 2014, 254: 226244. doi: 10.1016/j.precamres.2014.08.006

      Zhang J X, Yu S Y, Gong J H, et al. The latest Neoarchean–Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: Evidence from zircon U–Pb dating and Hf isotopic analyses[J]. Precambrian Research, 2013, 226: 2142. doi: 10.1016/j.precamres.2012.11.014

      Zhang Q, Zhao L, Zhou D, et al. No evidence of supracrustal recycling in Si-O isotopes of Earth’s oldest rocks 4 Ga ago[J]. Science Advances, 2023, 926): eadf693.

      Zhao Y, Sun Y, Diwu C, et al. The Dunhuang block is a Paleozoic orogenic belt and part of the Central Asian Orogenic Belt (CAOB), NW China[J]. Gondwana Research, 2016, 30: 207223. doi: 10.1016/j.gr.2015.08.012

      Zhao Y, Sun Y, Yan J, et al. The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China: Constraints from zircon U–Pb geochronology and in situ Hf isotopes[J]. Precambrian Research, 2015, 271: 8397. doi: 10.1016/j.precamres.2015.10.002

      Zhu R, Zhao G, Xiao W, et al. Origin, Accretion and Reworking of Continents [J]. Reviews of Geophysics, 2021: e2019RG000689.

      Zong K Q, Liu Y S, Zhang Z M, et al. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China[J]. Precambrian Research, 2013, 235: 251263. doi: 10.1016/j.precamres.2013.07.002

    图(12)
    计量
    • 文章访问数:  339
    • HTML全文浏览量:  42
    • PDF下载量:  139
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-22
    • 修回日期:  2024-06-04
    • 录用日期:  2024-06-28
    • 网络出版日期:  2024-10-09
    • 刊出日期:  2024-12-19

    目录

      /

      返回文章
      返回