Permian Formation Characteristics and Petroleum Geological Significance of Well MSD1 in Suhongtu Depression, Yin’e Basin
-
摘要:
长久以来,由于银额盆地覆盖区二叠系地层特征认识不清,致使盆地内钻井揭示的油气产层地质时代存在争议。本次研究利用银额盆地苏红图坳陷MSD1井下部井段岩心样品开展了孢粉学、矿物学、锆石年代学等研究工作,结合盆地内钻井、地震测线及地表露头资料开展地层对比,取得了以下认识:①苏红图坳陷MSD1井
2669.00 ~2726.00 m井段内发现的Florinites,Vesicaspora,Striatoabieites,Vittatina和Hamiapollenites等孢粉分子,且碎屑岩薄片显微镜下见腕足、海百合、苔藓虫等零散生物碎屑分布,均指示该段地层为上二叠统哈尔苏海组,时代为二叠纪晚期。②结合钻井时井深标定及地震层位追踪,明确银额盆地二叠系在盆地覆盖区广泛分布,二叠系地震反射呈现弱反射–空白反射、中–弱振幅、层内连续性差、底界偶见强振幅连续界线的特征,反映二叠系沉积后经历了多期构造改造作用。③盆地内多口钻井发现白垩系、二叠系的两套含油气系统,钻井烃源岩地球化学特征显示银额盆地二叠系具有丰富的油气勘探潜力。综合研究认为,银额盆地二叠系原型盆地分布范围广、油气资源潜力丰富,后期构造改造分区性强,局部地区构造破坏严重,MSD1井二叠系古生物地层学、锆石年代学、岩石矿物学及地球物理学地层特征的发现,实现了盆地露头区与覆盖区二叠系特征对比统一,明确了银额盆地二叠系的油气勘探前景。Abstract:For a long time, due to the unclear understanding of the characteristics of Permian residual strata in the coverage area of yin'e basin, the geological age of oil and gas production layers revealed by drilling in the basin is controversial. In this study, palynology, mineralogy, zircon chronology and other research work were carried out by using the core samples of the lower well section of well msd1 in Suhongtu depression of yine basin, and stratigraphic correlation was carried out in combination with the drilling, seismic survey line and surface outcrop data in the basin. The following understandings were obtained: ① sporopollen molecules such as florinites, vesicaspora, stratoabieites, vittatina and hamiapollenites found in the
2669.00 ~2726.00 m well section of well msd1 in Suhongtu depression, The scattered bioclastic distribution of brachiopods, crinoids and bryozoans can be seen under the thin section microscope of clastic rock, indicating that the stratum of this section is the upper Permian halsuhai formation, which is in the Late Permian. ② Combined with drilling time depth calibration and seismic horizon tracking, it is clear that the Permian in yine basin is widely distributed in the coverage area of the basin. The seismic reflection of the Permian presents the characteristics of weak reflection blank reflection, medium weak amplitude, poor continuity in the layer and occasional strong amplitude continuous boundary at the bottom, reflecting that the Permian has experienced multi-stage structural transformation after sedimentation. ③ Two sets of oil and gas systems of Cretaceous and Permian have been found in many wells in the basin. The geochemical characteristics of drilling source rocks show that the Permian in yine basin has rich oil and gas exploration potential. It is comprehensively considered that the Permian prototype basin in yine basin has a wide distribution range, rich oil and gas resource potential, strong zoning of late structural transformation, and serious structural damage in some areas. The discovery of Permian paleontostratigraphic evidence in well msd1 further strengthens the exploration prospect of Permian.-
Keywords:
- Upper Permian /
- Haersuhai Formation /
- palynological paleontology /
- zircon dating /
- Yin’e basin
-
页岩气是清洁化石能源,具有自生自储的特征(邹才能等,2014,2016)。页岩气的储量、产能分别与页岩的厚度以及页岩的含气性、脆性矿物含量密切相关,而页岩有机质丰度、有机质成熟度是控制页岩富气性的最关键因素(郭旭升,2014a,2014b,2019)。页岩的埋藏深度既影响含气性,又影响页岩气勘探、开发的工程难度和投资收益(解习农,2017)。因而,系统研究页岩厚度、组成及其空间展布和埋藏深度等基本地质条件,可指导页岩气的勘探开发(Curtis J B, 2002)。
近年来,中国南方页岩气研究和勘探开发取得了重大突破,先后探明长宁、威远、昭通、涪陵、威荣(威远–荣县)页岩气田地质储量超5 000亿cm3(郭彤楼,2014;姜振学等,2016,2020)。它们的主力产气层为五峰组–龙马溪组(邹才能等,2021),显示了中国南方五峰组–龙马溪组页岩气具有良好的勘探潜力。黔北宽阔–浮焉地区五峰组–龙马溪组分布面积约500 km2,是寻找页岩气值得关注的地区,位于该区东北侧安场向斜的安页1井(图1)获得超过10×104 m3/d的天然气产量,其主产层系为五峰组–龙马溪组(中国地质调查局油气资源调查中心,2016)。
笔者主要基于露头、钻井资料,结合地震、电磁资料,在区域地质背景分析基础上,系统研究了五峰组–龙马溪组的埋藏深度、页岩的厚度、有机质丰度(TOC)、有机质成熟度(Ro)、页岩脆性矿物含量,对黔北宽阔–浮焉地区五峰组–龙马溪组页岩气有利区进行了分类预测,以期为该区页岩气的进一步勘探提供参考,为类似地区的页岩气有利区预测提供借鉴。
1. 区域地质背景
上扬子地区主体为四川盆地,西北部为龙门山逆冲褶皱带,东北部为大巴山褶皱带,东南部为滇黔川鄂褶皱带,西南部为康滇褶皱带(刘树根等,1995;陈竹新等,2008;张国伟等,2013;徐政语等,2016;王茜等,2020)。发育了前寒武系至新生代界,显生宙经历了加里东、印支、燕山、喜马拉雅多期差异构造变动(刘树根等,1995;丁道桂等,2008;张岳桥等,2011;张国伟等,2013;邹才能等,2014;李皎等,2015;徐政语等,2016),形成了现今的构造–地层分布格局(图1)。
上奥陶统五峰组–下志留统龙马溪组主要缺失区为川中隆起,四川盆地其余地区广泛发育。龙门山褶皱带、大巴山褶皱带、康滇褶皱带、滇黔川鄂褶皱带均有前寒武系出露,并称之为“古陆”,但也有五峰组—龙马溪组因剥蚀而不连续分布。四川盆地周缘褶皱带五峰组—龙马溪组的缺失主要是泥盆纪以来,特别是晚三叠世以来多期构造隆升、剥蚀的结果。与这些“古陆”相邻的五峰组—龙马溪组分布区并不发育陆源粗碎屑岩相带(四川油气区石油地质志编写组,1989;徐政语等,2015;孙莎莎等,2018),表明在晚奥陶世—早志留世时期,四川盆地周缘褶皱带是接受沉积的,而且陆源碎屑供应能力极其微弱(蒋恕等,2017)。因此,五峰组–龙马溪组为缺少陆源粗碎屑供应的、广阔海水覆盖的克拉通台地泥质陆棚沉积(四川油气区石油地质志编写组,1989;徐政语等,2015;孙莎莎等,2018;尚玥等,2020),形成了广泛分布的五峰组—龙马溪组富有机质暗色页岩,成为中国南方页岩气勘探、开发的主要目的层系(杨平等,2019;邱振等,2020)。
研究区在构造上位于上扬子区东南部滇黔川鄂褶皱带中部(图1),地理上位于贵州省北部,横跨绥阳、正安两县(图2)。背斜、向斜相间发育,被断层复杂化。由老到新,出露的地层有寒武系明心寺组、金顶山组、清虚洞组、高台组、石冷水组、娄山关组,奥陶系桐梓组、红花园组、湄潭组、十字铺组、宝塔组,五峰组、志留系龙马溪组、新滩组、松坎组、石牛栏组、韩家店组,二叠系大竹园组、梁山组、栖霞组、茅口组、合山组,三叠系夜郎组、嘉陵江组,野外出露及钻井揭示未见观音桥段。寒武系明心寺组—奥陶系宝塔组出露最为广泛。上奥陶统五峰组—下志留统龙马溪组主要分布于南西–北东向的宽阔镇–浮焉乡复向斜内,复向斜由宽阔、太白、小雅、浮焉4个向斜组成,总面积约为500 km2。其上覆盖志留系新滩组—三叠系嘉陵江组。向斜边部发育多条逆冲断层,向斜内部有少量正断层发育(图2)。
图 2 贵州省宽阔–浮焉地区地质简图(贵州省地质调查院,2010)及资料分布示意图①.浮焉向斜;②.小雅向斜;③.太白向斜;④.宽阔向斜Figure 2. Geological map of Kuankuo–Fuyan area in Guizhou Province and data distribution2. 五峰组—龙马溪组页岩气地质条件分析
露头剖面以及QSD1钻井、地震、电磁等资料综合分析显示,黔北宽阔–浮焉地区五峰—龙马溪组主要由泥岩、粉砂质泥岩组成,形成于深水陆棚环境;地层厚度普遍大于30 m,并具有由东北向西南部减薄特征,页岩底面埋深普遍小于1 926 m;TOC分布具有中部低、东北部和西南部高的特征;Ro平均值大于2.50 %,以过成熟烃源岩为主;脆性矿物含量多在50%以上。研究区五峰—龙马溪组页岩气地质条件评价基础数据见表1。
表 1 五峰组—龙马溪组页岩气地质条件基础数据表Table 1. Basic data of shale gas geological conditions of Wufeng Fm.–Longmaxi Fm.剖面名称 五峰组厚度 (m) 龙马溪组厚度(m) 脆性矿物含量(%) Ro(%) TOC(%) 顶部层位 SP01 4.33 76 60.8(50~73)/5 3.04(2.85~3.20)/7 1.18(0.47~3.31)/23 S1x SP02 10.8 30.5 70.0(63~78)/3 2.99(2.56~3.57)/7 1.89(0.28~6.3)/21 S1x SP03 4.1 38 62.3(49~78)/4 2.66(2.24~3.08)/4 1.29(0.44~4.63)/16 S1x SP04 6.99 66.59 50.3(46~58)/3 2.79(2.54~3.18)/6 1.17(0.26~5.03)/23 S1x SP05 6.3 58.25 37.0/1 2.76(2.07~3.17)/3 1.38(0.22~4.90)/13 S1x SP06 4.8 35.4 44.8(20~59)/4 2.88(2.75~3.04)/4 1.88(0.20~6.48)/16 S1x SP07 7.56 38.11 50.5(50~51)/2 2.84(2.58~3.04)/5 3.20(0.72~6.72)/12 S1x SP08 6.52 34.36 73.0/1 2.83/1 3.81(2.76~4.53)/7 S1x SP09 4.9 61.1 / / / S1x SP10 11.7 56.4 65.8(53~74)/4 3.05(2.93~3.20)/3 3.19(0.43~5.49)/7 S1x SP11 13.3 70.4 60.0/1 2.80/1 2.99(2.34~3.89)/4 S1x SP12 5.7 55.6 54.5(53~56)/2 2.86(2.50~3.17)/3 3.71(0.81~5.81)/9 S1x SP13 4.5 69.8 71.3(57~86)/3 2.85(2.70~3.01)/5 2.62(0.32~4.93)/18 S1x SP14 6.67 50.7 48.0/1 3.07(2.96~3.17)/2 1.57(0.24~5..21)/6 S1x SP15 9.1 25.7 74.0/1 1.68(1.20~2.52)/3 2.20(0.50~3.70)/6 S1x SP16 10.71 20.55 81.0/1 2.30(1.9~2.68)/2 2.40(0.62~4.31)/7 S1x SP17 11.25 80.05 71.5(63~80)/2 2.66(2.46~2.85)/2 2.91(0.51~3.82)/8 S1x SP18 7.12 18.36 74.0/1 2.44(2.23~2.65)/2 2.92(0.70~5.22)/11 S1x SP19 8.27 >10.63 67.5(66~69)/2 2.75(2.45~3.04)/2 2.85(1.62~4.31)/8 S1l SP20 9.62 36.42 71.0/1 2.58(2.29~2.75)/3 2.49(0.66~4.91)/13 S1x SP21 19.68 23.37 68.0/1 2.64(2.36~2.93)/4 4.03(0.99~6.01)/14 S1x SP22 19.44 >28.87 68.0(64~72)/2 2.80(2.30~3.08)/4 3.16(0.86~6.43)/16 S1l SP23 6.75 28.01 69.0/1 2.51(2.08~2.85)/5 2.75(0.88~4.85)/9 S1x SP24 5.89 30.04 69.0/1 2.84(2.77~2.94)/3 1.01(0.41~2.53)/5 S1x SP25 4.72 23.74 62.0/1 2.88(2.75~3.01)/2 1.08(0.61~1.90)/3 S1x SP26 7.27 28.03 / / / S1x QSD1 5.5 49.5 56(41~80)/27 / 1.84(0.10~3.17)/11 S1x 注:脆性矿物含量、Ro、TOC数据:平均值(最小值~最大值)/样品数;S1x.新滩组,S1l.龙马溪组。 2.1 五峰组—龙马溪组页岩分布及沉积特征
综合电磁、地震、钻井资料,研究揭示宽阔镇–浮焉乡复向斜内五峰组—龙马溪组底界埋深多在500 m~1 500 m之间,边缘埋深不足500 m,仅浮焉向斜、小雅向斜、太白向斜、宽阔向斜的局限部位埋深超过1 500 m,以浮焉向斜内埋深超过1 500 m的范围最大,约20 km2,其最大埋深为1 926 m(图3)。
研究区五峰组–龙马溪组暗色泥质岩厚度在浮焉向斜和小雅向斜厚一带通常超过60 m,浮焉向斜SP17附近最大厚度超过90 m,而在太白向斜和宽阔向斜厚度变化在30~50 m之间,且宽阔向斜SP18剖面厚度最小( 25.48 m)(图4,表1)。这些结果表明,宽阔镇–浮焉乡地区五峰组—龙马溪组暗色泥质岩厚度在空间上具有自北东向南西减薄的趋势特征,但其厚度普遍大于30 m,与上扬子已发现的页岩气田泥质岩厚度(长宁页岩气田为60~80 m,威远页岩气田为30~60 m,太阳页岩气田为30~50 m,涪陵页岩气田为40~80 m)基本相当(伍坤宇等,2016;翟刚毅等,2017),具有页岩气田形成的泥质岩厚度条件。
研究区五峰组—龙马溪组暗色泥质岩主要为灰黑色泥岩,次为深灰色粉砂质泥岩,见少量灰色泥质粉砂岩、泥晶灰岩、泥质灰岩、泥灰岩,偶夹凝灰岩(QSD1井五峰组顶部)。灰黑色泥岩和深灰色粉砂质泥岩普遍含炭质,局部含钙质或硅质,为一套泥质深水陆棚沉积(图5、图6)。
图 5 五峰组—龙马溪组地层对比及沉积相分析剖面图(露头及钻井位置见图4)Figure 5. Stratigraphic correlation and sedimentary facies analysis profile of Wufeng Fm.–Longmaxi Fm.2.2 五峰组—龙马溪组页岩有机地球化学特征
综合露头和钻井剖面290件样品总有机碳含量(TOC)分析结果,研究区五峰组–龙马溪组暗色泥质岩TOC变化较大,为0.2%~6.92%,各剖面TOC平均值多大于2.0%(表1)。平面上,TOC分布呈两高一低的特征,浮焉向斜大部、小雅向斜中部、宽阔向斜中偏西部TOC平均含量在3.0%以上,宽阔向斜SP21剖面附近TOC平均值达4.0%以上,浮焉向斜SP08剖面至SP12剖面一带TOC平均值在3.5%以上;太白向斜中部、宽阔向斜东缘、小雅向斜两翼局部TOC平均值小于2.0%(图7),各剖面TOC平均值均大于1.0%。
综合露头剖面83件样品油浸镜质体反射率(Ro)分析结果,研究区五峰组—龙马溪组暗色泥质岩Ro普遍较高,平均值>2.5%,最大值可达3.57%,个别样品Ro值较低,最小值为1.2%(表1)。这些结果表明,研究区五峰组—龙马溪组暗色泥质岩有机质主要为过成熟烃源岩,极少为成熟烃源岩。
根据H/C原子比和O/C原子比“范氏”图(图8),研究区五峰组—龙马溪组露头剖面68件暗色泥质岩样品干酪根主要为Ⅲ型(腐殖型),其次为Ⅱ2型(腐泥–腐殖型),极少为Ⅱ1型(腐殖–腐泥型)。然而,碳同位素分析结果显示,五峰组—龙马溪组暗色泥质岩有机质类型主要为Ⅱ1型,其次为Ⅰ型(腐泥型),少数为Ⅱ2型(表2)。干酪根显微组分主要为腐泥组无定形体,占有机组分比例多数样品在80%以上;腐殖组占有机组分比例较低,多数样品不足20%。其中腐殖组主要为底栖藻无定形体,其次为镜质体,样品SP16-17-s可见腐殖无定形体,含量为28%。总之,研究区五峰组—龙马溪组暗色泥质岩干酪根类型以Ⅰ型占绝对优势,仅2个样品Ⅱ1型干酪根,约占总样品数的4.35%(表3)。
表 2 宽阔–浮焉地区五峰组—龙马溪组露头样品有机质碳同位素数据表Table 2. Carbon isotope data of the Wufeng Fm.–Longmaxi Fm. in the Kuankuo–Fuyan area样品编号 13 CPDB/‰ 有机质类型 样品编号 13 CPDB/‰ 有机质类型 样品编号 13 CPDB/‰ 有机质类型 sp17-7-s −30.6 Ⅰ型 sp02-6a −29.7 Ⅱ1型 sp04-12a −28.6 Ⅱ1型 sp21-18H −30.6 sp04-6-1a −29.7 sp01-25-s11a −28.5 sp13-9-sa −30.5 sp07-11 −29.7 sp02-14a −28.5 sp16-17-s −30.5 sp01-12-s6a −29.6 sp06-13 −28.4 sp19-11H −30.5 sp02-9a −29.6 sp07-21a −28.3 sp19-13H −30.5 sp08-5-sa −29.6 sp10-22-sa −28.3 sp19-7H −30.5 sp01-15-s7a −29.5 sp12-17a-sa −28.3 sp21-7H −30.5 sp01-7-s1a −29.5 sp01-30-s16a −28.2 sp13-5-sa −30.4 sp11-6-sa −29.5 sp02-18a −28.2 sp18-8H −30.4 sp22-13H −29.5 sp03-11a −28.2 sp21-3H −30.4 sp23-10H −29.5 sp03-12 −28.2 sp16-19-s −30.3 sp03-6 −29.3 sp01-33-s20a −28.1 sp20-7H −30.3 sp17-13-s −29.3 sp05-11a −28.1 sp15-5-s −30.2 sp22-30H −29.3 sp05-14a −28.1 sp13-3-sa −30.1 sp02-4 −29.2 sp04-30 −28 sp14-17-s −30 sp12-4-sa −29.2 sp02-24a −27.9 sp21-12H −30 sp22-17H −29.2 sp04-22a −27.8 sp22-23H −30 sp06-7 −29.1 sp04-18a −27.7 sp10-10-s −29.9 Ⅱ1型 sp07-5 −29.1 sp06-21 −27.3 Ⅱ2型 sp24-2H −29.9 sp20-15H −29.1 sp06-4a −27.3 sp03-4a −29.8 sp23-18H −29 sp04-23a −27 sp10-12-s −29.8 sp25-19H −29 sp03-19a −26.9 sp10-6-sa −29.8 sp24-9H −28.8 注:δ13C (‰)值≤−30‰为I 型,−30‰~−27.5‰为II1 型,−27.5‰~−25‰为II2 型,>−25‰为III 型(黄籍中,1988)。 表 3 宽阔–浮焉地区五峰组—龙马溪组露头样品有机质显微组分数据表Table 3. Organic macerals data of the Wufeng Fm.–Longmaxi Fm. in the Kuankuo–Fuyan area样品编号 腐泥组(%) 腐殖组(%) 类型指数 干酪根类型 样品编号 腐泥组(%) 腐殖组(%) 类型指数 干酪根类型 sp01-12-s6a 78 22 82.8 Ⅰ sp10-22-sa 80 20 87.5 Ⅰ sp01-15-s7a 78 22 81.5 Ⅰ sp10-6-sa 98 2 96.5 Ⅰ sp01-25-s11a 81 19 85.5 Ⅰ sp11-6-sa 81 19 83 Ⅰ sp01-33-s20a 77 23 86 Ⅰ sp12-17a-sa 71 29 83 Ⅰ sp01-7-s1a 86 14 90.5 Ⅰ sp12-4-sa 83 17 82.8 Ⅰ sp02-14a 81 19 85.5 Ⅰ sp13-3-sa 86 14 89.3 Ⅰ sp02-4 87 13 89.8 Ⅰ sp13-5-sa 93 7 94 Ⅰ sp02-6a 93 7 94 Ⅰ sp13-9-sa 98 2 96.5 Ⅰ sp03-11a 73 27 84 Ⅰ sp14-17-sa 46 54 57.3 Ⅱ1 sp03-19a 81 19 86.8 Ⅰ sp15-5-s 86 14 85.5 Ⅰ sp03-4a 94 6 89.5 Ⅰ sp16-17-s 34 66 47.3 Ⅱ1 sp03-6 85 15 88.8 Ⅰ sp17-13-s 97 3 94.8 Ⅰ sp04-12a 72 28 83.5 Ⅰ sp17-7-s 84 16 89.5 Ⅰ sp04-22a 70 30 81.3 Ⅰ sp18-8H 92 8 86 Ⅰ sp04-23a 68 32 80.3 Ⅰ sp19-11H 97 3 94.8 Ⅰ sp05-11a 77 23 82.3 Ⅰ sp19-13H 98 2 96.5 Ⅰ sp06-4a 82 18 87.3 Ⅰ sp20-7H 95 5 91.3 Ⅰ sp06-7 85 15 90 Ⅰ sp21-12H 96 4 93 Ⅰ sp07-21a 93 7 92.8 Ⅰ sp22-17H 94 6 89.5 Ⅰ sp07-5 87 13 86 Ⅰ sp22-23H 98 2 96.5 Ⅰ sp08-5-sa 98 2 96.5 Ⅰ sp23-10H 95 5 91.3 Ⅰ sp10-10-sa 98 2 96.5 Ⅰ sp24-2H 94 6 89.5 Ⅰ sp10-12-sa 94 6 93.3 Ⅰ sp25-19H 95 5 91.3 Ⅰ 对于高成熟度烃源岩,稳定碳同位素能够更好地反映有机质类型。随着成熟度增高,H/C和O/C原子比急剧降低,导致有机质类型难以判别,或判别不够准确。稳定碳同位素主要受原始物质的同位素平衡和演化影响,因而能够较好反映原始物质的性质(黄籍中,1980,1988;樊薛沛等,2018)。稳定碳同位素数据和显微组分鉴定结构结果共同显示,研究区五峰组-龙马溪组暗色泥质岩有机质类型主要为Ⅰ型和Ⅱ1型,这一结果与深水泥质陆棚沉积环境的有机质类型相吻合。
2.3 五峰组—龙马溪组页岩脆性矿物含量特征
露头48件样品X–衍射分析结果显示,研究区五峰组—龙马溪组暗色泥质岩主要由石英和黏土矿物组成,次为方解石、斜长石(表4)。
表 4 宽阔–浮焉地区五峰组—龙马溪组露头样品暗色泥质岩矿物组成统计表Table 4. Mineral composition statistics of outcrop samples from Wufeng Fm.– Longmaxi Fm. in Kuankuo–Fuyan area矿物成分 石英 钾长石 斜长石 方解石 白云石 菱铁矿 黄铁矿 硬石膏 黏土矿物 最大值(%) 80 5 15 29 5 2 11 15 80 最小值(%) 10 2 3 1 2 2 1 2 14 平均值(%) 48.5 3.1 6.5 8.8 3.5 2 2.8 5.4 37.9 样品数 48 32 40 23 6 4 12 5 48 48件分析样品中均含有石英和黏土矿物。石英最高含量为80%,最低含量为10%,平均含量为48.5%;黏土矿物最高含量为80%,最低含量为14%,平均含量为37.9%。其中40件分析样品中含有斜长石,最高含量为15%,最低含量为3%,平均含量为6.5%;32件分析样品中含有钾长石,最高含量为5%,最低含量为2%,平均含量为3.1%;23件分析样品中含有方解石颗粒,最高含量为29%,最低含量为1%,平均含量为8.8%;12件分析样品中含有黄铁矿,最高含量为11%,最低含量为1%,平均含量为2.8%;6件分析样品含有白云石,最高含量为5%,最低为2%,平均值为3.5%;5件分析样品含有硬石膏,最高含量为15%,最低含量为2%,平均含量为5.4%;4件分析样品含有菱铁矿,含量均为2%(表4)。
石英、钾长石、斜长石、方解石、白云石、菱铁矿、黄铁矿为脆性矿物,不同露头剖面脆性矿物数据见表1。平面上,脆性矿物含量分布呈南北高中部低的特征,浮焉向斜大部–小雅向斜东北部、宽阔向斜中部–西南部脆性矿物平均含量在70%以上,浮焉向斜SP16剖面附近脆性矿物平均值超过80%;太白向斜东部SP14、西部SP06、小雅向斜西北部SP05剖面附近,脆性矿物含量平均值不足50%(图9),但各剖面脆性矿物含量平均值均在30%以上(表1)。
3. 黔北宽阔–浮焉地区五峰组—龙马溪组页岩气潜力分析
页岩气的富集程度及开发潜力主要受暗色泥质岩的埋藏深度、厚度、沉积相带、TOC、Ro、有机质类型、脆性矿物含量等因素的控制(张金川等,2003,2004,2008;姜振学等,2020;贺永忠等,2020;邹才能等,2021)。
2020年,中国已在埋深500~3 500 m的海相页岩区实现年产页岩气200×108 m3的规模,这些页岩气田泥质岩的厚度为30~80 m,均为深水陆棚沉积;TOC普遍大于1.0%,随着TOC的增加,含气量增高;Ro为1.7%~3.1%;有机质类型为Ⅰ型和Ⅱ1型;脆性矿物含量在42%以上,脆性矿物含量增加,产气量增加(Ross,2009;赵文智等,2014;姜振学等,2020;邹才能等,2021)。
宽阔–浮焉地区五峰组—龙马溪组均为泥质深水陆棚沉积,Ro多大于2.5%,有机质类型为Ⅰ型和Ⅱ1型,这些参数空间变化小,均满足页岩气有利区条件,由此,在有利区预测中主要综合考虑埋藏深度、暗色泥质岩厚度、TOC、脆性矿物含量4种参数及其耦合效应,区分为Ⅰ类、Ⅱ类和Ⅲ类有利区(图10)。
浮焉向斜中部–小雅向斜中部Ⅰ类有利区面积约110 km2(图10),五峰组—龙马溪组埋深在500~2 000 m,暗色泥质岩厚度大于50 m,TOC>3.0%,脆性矿物含量>50%,具备形成页岩气田的良好条件,是本区下步页岩气勘探的首选靶区。宽阔向斜中部Ⅰ类有利区面积约50 km2(图10),五峰组–龙马溪组埋深在500~2 000 m以浅,暗色泥质岩厚度大于30 m,TOC>3.0%,脆性矿物含量>70%,具备形成页岩气田条件,但其面积小,暗色泥质岩厚度相对较薄,是本区下步页岩气勘探值得关注的对象。
Ⅱ类有利区连片分布,面积超过300 km2(图10),五峰组—龙马溪组埋深在2 000 m以浅,暗色泥质岩厚度大于20 m,TOC>1.0%,脆性矿物含量>38%,基本具备形成页岩气条件,QSD1井位于这一区带,气测曲线显示,在1 095~1 097.5 m和1 133~1 135.5 m井段含甲烷气量超过3%(图6),现场岩心浸水试验有米粒状气泡持续冒出(吴纪修等,2018),表明Ⅱ类有利区具有一定含气性,值得进一步开展页岩气潜力研究。
Ⅲ类有利区靠近露头零星分布,总面积不足100 km2(图10),五峰组—龙马溪组埋深浅,暗色泥质岩厚度相对较小,TOC相对较低,脆性矿物含量<38%,页岩气形成及保存条件差,页岩气开发潜力十分有限。
4. 结论
(1)黔北宽阔–浮焉地区五峰组—龙马溪组面积达500 km2,埋深多为0~1 500 m,最大埋深为1 926 m;暗色泥质岩厚度普遍大于30m,主要由泥岩、粉砂质泥岩组成,夹薄层泥质粉砂岩、偶见泥灰岩,为泥质深水陆棚微相沉积,具有页岩气田形成的宏观地质条件。
(2)暗色泥质岩中TOC值为1.08%~4.03%,具有中部低(<2.0%)、东北部和西南部高(>3.5%)的特征;Ro为1.20%~3.17%、平均值多大于2.50 %,主要为过成熟烃源岩;脆性矿物含量多在50%以上,具有中部低(<60%)、东北部和西南部高(>70%)的特征;具备页岩气田形成的微观地质条件。
(3)参考已开发页岩气田的主要宏观和微观地质指标,综合研究区宏观和微观地质指标变化及耦合效应,预测了3类页岩气有利区,浮焉–小雅向斜中部和开阔向斜中部为2个为Ⅰ类有利区,其余绝大部分地带为Ⅱ类有利区,Ⅲ类有利区靠近露头零星分布。浮焉向斜中部–小雅向斜中部Ⅰ类有利区是本区下步页岩气勘探的首选靶区。
-
图 1 银额盆地及周缘地质简图(a)、银额盆地研究区亚洲主要基底地块位置图(Zhang et al., 2022)(b)、银额盆地周缘中亚造山带南部构造轮廓图(Chen et al., 2019)(c)
Figure 1. (a) The tectonic sketch of Yin’e Basin, (b) major Asian cratons and smaller basement blocks location of Yin’e Basin study region, (c) Tectonic outlines of the southwestern CAOB in Northwest China
图 3 银额盆地MSD1井二叠系岩性特征
a、b.杂色凝灰质角砾岩(取样井段为2 389.18~2 389.34 m);c. 砾质不等粒砂状结构(−)20×;d.砂质砾状结构(−)20×;e、f.绿灰色凝灰岩(取样井段为2 756.72~2 756.79 m);g. 含砾粗粒砂状结构(+)20×;h. 砂质砾状结构(−)20×;i. 砂质砾状结构(−)20×;j. 砂质砾状结构(−)20×;Qm.单晶石英;Qp.多晶石英;Lv.火成岩岩屑;Lm.变质岩岩屑;Ls.沉积岩岩屑;P.斜长石
Figure 3. Lithology characteristics of Permian in well MSD1 in Yin’e Basin
图 4 银额盆地二叠系哈尔苏海组MSD1井孢粉化石
1. 中大光面单缝孢Laevigatosporites medius Kosanke,1950(井深:
2720.00 m);2~4、7. 弗氏粉(未定种)Florinites sp.(2、3. 井深2697.00 m;4、7. 井深2719.00 m);5. 苍白开通粉Vitreisporites pallidus(Reissinger)Nilsson,1958(井深2695.00 m);6. 四方十字粉.Crucisaccites quadratoides(Zhou)Hou and Song,1995(井深2719.00 m);8、9、13. 聚囊粉(未定种)Vesicaspora sp.(8、9. 井深2725.00 m;13. 井深2697.00 m);10. 冷杉型多肋粉(未定种)Striatoabieites sp.(井深2697.00 m);11. 叉肋粉(未定种)Vittatina sp.(井深2725.00 m);12. 葵鳞羊齿粉(未定种)Pteruchipollenites sp.(井深2697.00 m);14、16. 松型粉(未定种)Pityosporites sp.(井深2697.00 m);15. 蝶囊粉(未定种)Platysaccus sp.(井深2697.00 m);17. 逆沟粉(未定种)?Anticapipollis sp.(井深2697.00 m);18. 单束多肋粉(未定种)Protohaploxypinus sp.(井深2697.00 m);19~25. 不能鉴定的类型(19、 20. 井深2720.00 m;21、22. 井深2697.00 m;23~25. 井深2719.00 m)Figure 4. Sporopollen fossils of Well MSD1 in Haersuhai Formation, Yin’e Basin
-
白晓寅, 贺永红, 韩小锋, 等. 银额盆地哈日凹陷灰质泥岩气藏识别技术[J]. 西北地质, 2020, 53(2): 270−279. BAI Xiaoyin, HE Yonghong, HAN Xiaofeng, et al. Identification Technology of Grey Mudstone Gas Reservoir in Hari Sag of Yin'e Basin[J]. Northwestern Geology,2020,53(2):270−279.
陈践发, 卢进才, 唐友军, 等. 内蒙古西部银根-额济纳旗盆地石炭系—二叠系暗色泥质岩有机质丰度变化特征和生烃潜力[J]. 地质通报, 2011, 30(6): 859−864. doi: 10.3969/j.issn.1671-2552.2011.06.006 CHEN Jianfa, LU Jincai, TANG Youjun, et al. Abundance Variation Characteristics and Hydrocarbon-Generating Potential of Organic Matter in Carboniferous-Permian Dark Argillaceous Rock of Yingen-Ejin Banner Basin, Western Inner Mongolia[J]. Geological Bulletin of China,2011,30(6):859−864. doi: 10.3969/j.issn.1671-2552.2011.06.006
陈启林, 周洪瑞, 卫平生, 等. 内蒙西部银根-额济纳中生代盆地群叠置类型与勘探领域[J]. 西北地质, 2006, 39(1): 89−96. CHEN Qilin,ZHOU Hongrui,WEI Pingsheng,et al. Superposed Basin Types and Exploration Realms in Mesozoic Yingen-Ejina Basins in the West of Nei Mongol[J]. Northwestern Geology,2006,39(1):89−96.
陈治军, 高怡文, 刘护创, 等. 银根—额济纳旗盆地哈日凹陷下白垩统烃源岩地球化学特征与油源对比[J]. 石油学报, 2018, 39(1): 69−81. CHEN Zhijun, GAO Yiwen, LIU Huchuang, et al. Geochemical Characteristics of Lower Cretaceous Source Rocks and Oil-Source Correlation in Hari Sag, Yingen-Ejinaqi Basin[J]. Acta Petrolei Sinica,2018,39(1):69−81.
陈治军, 高怡文, 孟江辉, 等. 内蒙古银额盆地哈日凹陷下白垩统碎屑锆石U-Pb测年及其物源意义[J]. 古地理学报, 2018, 20(6): 1086−1101. CHEN Zhijun, GAO Yiwen, MENG Jianghui, et al. Lower Cretaceous Detrital Zircon U-Pb Dating and its Provenance Significance in Hari Sag, Yingen-Ejinaqi Basin, Inner Mongolia[J]. Journal of Palaeogeography,2018,20(6):1086−1101.
陈治军, 刘舵, 刘护创, 等. 银额盆地厚层粗碎屑岩沉积特征与地层沉积年代的厘定[J]. 沉积学报, 2018, 36(3): 468−482. CHEN Zhijun, LIU Duo, LIU Huchuang, et al. Sedimentary Characteristics and Stratigraphic Age of the Thick-Bedded Coarse Clastic Rocks in the Yingen-Ejin Banner Basin, Northern China[J]. Acta Sedimentologica Sinica,2018,36(3):468−482.
陈治军, 马芳侠, 肖刚, 等. 银额盆地哈日凹陷巴音戈壁组精细油源对比[J]. 石油与天然气地质, 2019, 40(4): 900−916. CHEN Zhijun, MA Fangxia, XIAO Gang, et al. Oil-Sources Rock Correlation of Bayingebi Formation in Hari Sag, Yinges-Ejinaqi Basin[J]. Oil & Gas Geology,2019,40(4):900−916.
崔海峰, 韩小锋, 白晓寅, 等. 银额盆地构造单元划分与油气勘探方向[J]. 天然气工业, 2024, 44(7): 89−96. CUI Haifeng, HAN Xiaofeng, BAI Xiaoyin, et al. Structural Unit Division and Petroleum Exploration Direction in the Yin'E Basin[J]. Natural Gas Industry,2024,44(7):89−96.
甘立胜, 吴泰然, 陈彦, 等. 内蒙古阿拉善北缘尚丹岩体的年代学、地球化学特征及构造意义[J]. 岩石学报, 2018, 34(11): 3359−3374. GAN Lisheng, WU Tairan, CHEN Yan, et al. Geochronology and Geochemical Characteristics of the Shangdan Pluton in the Northern Margin of the Alxa Block, Inner Mongolia and its Tectonic Implications[J]. Acta Petrologica Sinica,2018,34(11):3359−3374.
韩伟, 任战利, 卢进才, 等. 银额盆地石炭-二叠系包裹体成分特征对油气运移的讨论[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1342−1351. HAN Wei, REN Zhanli, LU Jincai, et al. Discussion On Hydrocarbon Migration Based On Characteristics of Inclusions in Carboniferous- Permian of Yin'e Basin[J]. Journal of Jilin University(Earth Science Edition),2015,45(5):1342−1351.
金庆花, 魏仙样, 魏建设, 等. 内蒙古额济纳旗西部Zk0-1井二叠系烃源岩特征及其意义[J]. 地质通报, 2015, 34(5): 953−960. doi: 10.3969/j.issn.1671-2552.2015.05.015 JIN Qinghua, WEI Xianyang, WEI Jianshe, et al. Characteristics of Permian Hydrocarbon Source Rocks From Well ZK0-1, Western Ejin Banner, Inner Mongolia and their Significance[J]. Geological Bulletin of China,2015,34(5):953−960. doi: 10.3969/j.issn.1671-2552.2015.05.015
李素萍, 柳永清, 旷红伟, 等. 银额盆地侏罗纪孢粉植物群的发现及其地层时代意义——以蒙额地1井为例[J]. 地质学报, 2021, 95(5): 1382−1399. doi: 10.3969/j.issn.0001-5717.2021.05.005 LI Suping, LIU Yongqing, KUANG Hongwei, et al. Palynoflora From the Jurassic of Yingen-Ejin Basin, NW China and its Implications for the Stratigraphy and Geochronology: A Case Study on MED-1 Drill Core[J]. Acta Geologica Sinica,2021,95(5):1382−1399. doi: 10.3969/j.issn.0001-5717.2021.05.005
柳蓉, 闫旭, 刘招君, 等. 银额盆地下白垩统巴音戈壁组含油页岩岩系孢粉化石特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 341−355. LIU Rong, YAN Xu, LIU Zhaojun, et al. Characteristics and Geological Significance of Palynological Fossils From Bayingebi Formation of Lower Cretaceous in Yin’E Basin[J]. Journal of Jilin University(Earth Science Edition),2020,50(2):341−355.
卢进才, 陈高潮, 魏仙样, 等. 内蒙古西部额济纳旗及邻区石炭系—二叠系沉积后的构造演化、盖层条件与油气信息——石炭系—二叠系油气地质条件研究之三[J]. 地质通报, 2011, 30(6): 838−849. doi: 10.3969/j.issn.1671-2552.2011.06.004 LU Jincai, CHEN Gaochao, WEI Xianyang, et al. Post-Sedimentary Tectonic Evolution, Cap Rock Condition and Hydrocarbon Information of Carboniferous-Permian in Ejin Banner and its Vicinities, Western Inner Mongolia: A Study of Carboniferous-Permian Petroleum Geological Conditions (Part 3)[J]. Geological Bulletin of China,2011,30(6):838−849. doi: 10.3969/j.issn.1671-2552.2011.06.004
卢进才, 牛绍武, 魏建设, 等. 银额盆地西部蒙额地1井二叠纪叶肢介的发现及其意义[J]. 地质通报, 2018, 37(01): 16−25. LU Jincai, NIU Shaowu, WEI Jianshe, et al. The Discovery of Permian Estheria in the Core of No. 1 Meng' Edi Well, Western Yingen-Ejin Basin, and its Significance[J]. Geological Bulletin of China,2018,37(01):16−25.
卢进才, 宋博, 牛亚卓, 等. 银额盆地哈日凹陷Y井天然气产层时代厘定及其意义[J]. 地质通报, 2018, 37(01): 93−99. LU Jincai, SONG Bo, NIU Yazhuo, et al. The Age Constraints On Natural Gas Strata and its Geological Signficance of Well Y in Hari Depression, Yingen-Ejin Basin[J]. Geological Bulletin of China,2018,37(01):93−99.
卢进才, 魏仙样, 李玉宏, 等. 内蒙古西部额济纳旗祥探9井石炭系—二叠系烃源岩地球化学特征[J]. 地质通报, 2012, 31(10): 1628−1638. doi: 10.3969/j.issn.1671-2552.2012.10.008 LU Jincai, WEI Xianyang, LI Yuhong, et al. Geochemical Characteristics of Carboniferous-Permian Hydrocarbon Source Rocks of Xiangtan 9 Well in Ejin Banner, Western Inner Mongolia[J]. Geological Bulletin of China,2012,31(10):1628−1638. doi: 10.3969/j.issn.1671-2552.2012.10.008
卢进才, 魏仙样, 魏建设, 等. 内蒙古西部额济纳旗及其邻区石炭系—二叠系油气地质条件初探[J]. 地质通报, 2010, 29(Z1): 330−340. LU Jincai, WEI Xianyang, WEI Jianshe, et al. Petroleum Geological Conditions of Carboniferous- Permian in Ejina Banner and its Vicinities, Western Inner Mongolia, China[J]. Geological Bulletin of China,2010,29(Z1):330−340.
卢进才, 魏仙样, 魏建设, 等. 内蒙古银额盆地额济纳旗赛汉陶来地区石炭系——二叠系煤层的发现及其意义[J]. 地质通报, 2013, 32(10): 1653−1664. doi: 10.3969/j.issn.1671-2552.2013.10.017 LU Jincai, WEI Xianyang, WEI Jianshe, et al. The Carboniferous-Permian Coal-Bearing Bed in Saihan Toroi Area of Ejin Banner within Yin'e Basin, Inner Mongolia, and its Significances[J]. Geological Bulletin of China,2013,32(10):1653−1664. doi: 10.3969/j.issn.1671-2552.2013.10.017
卢进才, 魏仙样, 魏建设, 等. 银额盆地哈日凹陷Y井油气地球化学特征与油气源对比[J]. 地质通报, 2018, 37(01): 100−106. LU Jincai, WEI Xianyang, WEI Jianshe, et al. Geochemical Characteristics and Oil-Source Correlation of Well Y in Hari Depression, Yingen-Ejin Basin[J]. Geological Bulletin of China,2018,37(01):100−106.
罗正江, 王睿, 詹家祯, 等. 新疆准噶尔盆地东北缘孔雀坪剖面二叠纪金沟组孢粉组合及其地层意义[J]. 微体古生物学报, 2014, 31(03): 311−319. LUO Zhengjiang, WANG Rui, ZHAN Jiazhen, et al. Sporopollen Assemblage From the Permian Jingou Formation at the Kongqueping Section in the Northeast Margin of the Junggar Basin, Xinjiang, NW China and its Stratigraphical Significance[J]. Acta Micropalaeontologica Sinica,2014,31(03):311−319.
吕程, 张敏, 李洪波. 内蒙古银额盆地居延海坳陷0-1井烃源岩地球化学特征[J]. 长江大学学报(自科版), 2015, 12(29): 13−17. LU Cheng, ZHANG Min, LI Hongbo. Geochemistry Characteristics of Hydrocarbon Source Rocks in Well 0-1 of Juyanhai Depres-Sion in Yin’E Basin of Inner Mongolia[J]. Journal of Yangtze University (Natural Science Edition),2015,12(29):13−17.
牛海青, 韩小锋, 吴俊, 等. 甘蒙地区北山盆地群含煤系地层时代归属[J]. 地质科技通报, 2021, 40(06): 32−42. NIU Haiqing, HAN Xiaofeng, WU Jun, et al. Age Attribution of Coal Bearing Strata in Beishan Basin Group, Ganmeng Area[J]. Bulletin of Geological Science and Technology,2021,40(06):32−42.
欧阳舒, 朱怀诚, 高峰. 内蒙古准格尔旗早二叠世早期煤层孢子花粉——古生态个案分析[J]. 古生物学报, 2003(03): 428−441. doi: 10.3969/j.issn.0001-6616.2003.03.010 OUYANG shu, ZHU Huaicheng, GAO Feng. Early Early Permian Spores From Coals of the Heidaigou Coal-Mine, Jungar Qi, Nei Mongol: a Case Study of Palaeoecology[J]. Acta Palaeontologica Sinica,2003(03):428−441. doi: 10.3969/j.issn.0001-6616.2003.03.010
齐雪峰, 何云生, 赵亮, 等. 新疆三塘湖盆地二叠系芦草沟组古生态环境[J]. 新疆石油地质, 2013, 34(06): 623−626. QI Xuefeng, HE Yunsheng, ZHAO Liang, et al. Palaeoecological Environment of Permian Lucaogou Formation of Santanghu Basin in Xinjiang[J]. Xinjiang Petroleum Geology,2013,34(06):623−626.
祁凯, 任战利, 崔军平, 等. 银额盆地苏红图坳陷西部中生界烃源岩热演化史恢复[J]. 地球科学, 2018, 43(06): 1957−1971. QI Kai, REN Zhanli, CUI Junping, et al. Thermal History Reconstruction of Mesozoic Source Rocks in Western of Suhongtu Depression, Inner Mongolia, Northern China[J]. Earth Science,2018,43(06):1957−1971.
任来义, 贺永红, 陈治军, 等. 银额盆地哈日凹陷巴音戈壁组流体包裹体特征与油气成藏期次[J]. 中国石油勘探, 2019, 24(06): 709−720. doi: 10.3969/j.issn.1672-7703.2019.06.003 REN Laiyi, HE Yong hong, CHEN Zhijun, et al. Fluid Inclusion Characteristics and Hydrocarbon Accumulation Periods of Bayingebi Formation in Hari Sag, the Yingen-Ejinaqi Basin[J]. China Petroleum Exploration,2019,24(06):709−720. doi: 10.3969/j.issn.1672-7703.2019.06.003
宋博, 许伟, 计文化, 等. 中亚造山带恩格尔乌苏蛇绿混杂岩中发现大洋型锰结核[J]. 中国地质, 2021, 48(04): 1302−1303. SONG Bo, XU Wei, JI Wenhua, et al. Discovery of Oceanic Manganese Nodules in the Enger Us Ophiolitic Mélange in the Central Asian Orogenic Belt[J]. Geology in China,2021,48(04):1302−1303.
宋博, 张慧元, 魏东涛, 等. 中亚造山带南缘中—新元古代地壳的揭示——来自北山—阿拉善北部钻遇碱性花岗岩的年代学和Hf同位素示踪研究[J]. 地球学报, 2021, 42(01): 9−20. SONG Bo, ZHANG Huiyuan, WEI Dongtao, et al. Revelation of the Meso–Neoproterozoic Crust On the Southern Margin of the Central Asian Orogenic Belt: Chronology and Hf Isotope Tracer From Drilling-Intersected Alkaline Granites, Northern Beishan–Alxa[J]. Acta Geoscientica Sinica,2021,42(01):9−20.
王蕙. 塔里木盆地棋盘-杜瓦地区早二叠世孢粉植物群及生态环境[J]. 古生物学报, 1989(03): 402−414. WANG Hui. Early Permian Sporopollen Flora and Ecological Environment in Qipan-DUWA Area, Tarim Basin[J]. Acta Palaeontologica Sinica,1989(03):402−414.
王萍, 向连格, 姜海健, 等. 银根—额济纳旗盆地拐子湖凹陷白垩系油源对比分析[J]. 石油实验地质, 2019, 41(03): 427−434. WANG Ping, XIANG Liange, JIANG Haijian, et al. Cretaceous Oil-Source Correlation in Guaizihu Sag, Yin’Gen-E’Ji’Naqi Basin[J]. Petroleum Geology and Experiment,2019,41(03):427−434.
王香增, 陈治军, 任来义, 等. 银根—额济纳旗盆地苏红图坳陷H井锆石LA-ICP-MSU-Pb定年及其地质意义[J]. 沉积学报, 2016, 34(05): 853−867. WANG Xiangzeng, CHEN Zhijun, REN Laiyi, et al. U-Pb Age of Zircon and its Geological Significance in Suhongtu Depression, Yingen-Ejinaqi Basin[J]. Acta Sedimentologica Sinica,2016,34(05):853−867.
魏建设, 王宝文, 乔世海, 等. 内蒙古西部额济纳旗希热哈达地区二叠系页岩油(气)地质条件初探[J]. 西北地质, 2018, 51(03): 200−213. doi: 10.3969/j.issn.1009-6248.2018.03.019 WEI Jianshe, WANG Baowen, QIAO Shihai. A Preliminary Study On the Geological Conditions of the Permian Shale Oil(Gas) in Xirehada Area, Western Inner Mongolia[J]. Northwest Geology,2018,51(03):200−213. doi: 10.3969/j.issn.1009-6248.2018.03.019
魏建设, 赵琳雁, 周俊林, 等. 银额盆地吉格达凹陷原油地球化学特征及其意义[J]. 西北地质, 2023, 56(5): 332−342. WEI Jianshe, ZHAO Linyan, ZHOU Junlin, et al. Geochemical Characteristics of Crude Oil in Jigeda Sag of Yingen–Ejin Basin and Its Significances[J]. Northwestern Geology,2023,56(5):332−342.
魏仙样, 卢进才, 魏建设, 等. 内蒙古银额盆地居延海坳陷X井地层划分修正及其油气地质意义[J]. 地质通报, 2014, 33(9): 1409−1416. doi: 10.3969/j.issn.1671-2552.2014.09.016 WEI Xianyang, LU Jincai, WEI Jianshe, et al. The Revision of Stratigraphic Division of X Well in Juyanhai Depression, Yingen-Ejin Banner Basin, Inner Mongolia, and its Geological Significance[J]. Geological Bulletin of China,2014,33(9):1409−1416. doi: 10.3969/j.issn.1671-2552.2014.09.016
吴晓智, 何登发, 陈晓明, 等. 银根—额济纳旗盆地石油地质特征与资源潜力[J]. 地质科学, 2020, 55(2): 404−419. doi: 10.12017/dzkx.2020.027 WU Xiaozhi, HE Dengfa, CHEN Xiaoming, et al. Geological Characteristics and Resource Potential of the Yingen-Ejin Banner Basin[J]. Chinese Journal of Geology,2020,55(2):404−419. doi: 10.12017/dzkx.2020.027
谢力, 尹海权, 周洪瑞, 等. 内蒙古阿拉善地区恩格尔乌苏缝合带二叠纪放射虫及其地质意义[J]. 地质通报, 2014, 33(5): 691−697. doi: 10.3969/j.issn.1671-2552.2014.05.010 XIE Li, YIN Haiquan, ZHOU Hongrui, et al. Permian Radiolarians From the Engeerwusu Suture Zone in Alxa Area of Inner Mon- Golia and its Geological Significance[J]. Geological Bulletin of China,2014,33(5):691−697. doi: 10.3969/j.issn.1671-2552.2014.05.010
邢智峰, 付玉鑫, 郑伟, 等. 豫西宜阳上二叠统孙家沟组孢粉组合及其地质意义[J]. 古地理学报, 2021, 23(05): 901−918. XING Zhifeng, FU Yuxin, ZHENG Wei, et al. Sporopollen Assemblage of the Upper Permian Sunjiagou Formation in Yiyang Area, Western Henan Province and its Geological Significance[J]. Journal of Palaeogeography (Chinese Edition),2021,23(05):901−918.
尹凤娟, 刘洪福, 华洪. 三塘湖盆地晚二叠世芦草沟组孢粉组合[J]. 石油与天然气地质, 2002, 23(4): 392−396. doi: 10.3321/j.issn:0253-9985.2002.04.019 YIN Fengjuan, LIU Hongfu, HUA Hong. Late Permian Sporopollen Assemblage From Lucaogou Formation in Santanghu Basin[J]. Oil & Gas Geology,2002,47(4):392−396. doi: 10.3321/j.issn:0253-9985.2002.04.019
尹海权, 周洪瑞, 程瑞, 等. 内蒙古阿拉善北部杭乌拉地区圆包山组时代、沉积特征及大地构造意义[J]. 沉积学报, 2015, 33(04): 665−678. YIN Haiquan, ZHOU Hongrui, CHENG Rui, et al. The Age, Sedimentary Characteristics and Tectonic Significance On the Yuanbaoshan Formation in the Southern Margin of the Siberian Plate, North of Alxa, Inner Mongolia[J]. Acta Sedimentologica Sinica,2015,33(04):665−678.
张德军, 张健, 郑月娟, 等. 内蒙古自治区兴安盟突泉盆地Td-2井晚二叠世孢粉的发现及其油气地质意义[J]. 中国地质, 2020, 47(03): 798−809. ZHANG Dejun, ZHANG Jian, ZHENG Yuejuan, et al. Discovery of Late Permian Pollen and Spores in TD-2 Borehole in Tuquan Basin of Hinggan League of Inner Mongolia and their Oil and Gas Geological Implications[J]. Geology in China,2020,47(03):798−809.
张海华, 李晓海, 张健, 等. 松辽盆地北部上二叠统林西组古生物年代学、地球化学特征及地质意义[J]. 现代地质, 2021, 35(02): 568−578. ZHANG Haihua, LI Xiaohai, ZHANG Jian, et al. Paleochronology, Geochemical Characteristics, and Geological Significance of the Upper Permian Linxi Formation in the Northern Songliao Basin[J]. Geoscience,2021,35(02):568−578.
张洪安, 李继东, 王学军, 等. 银额盆地形成演化及油气勘探展望[J]. 石油实验地质, 2020, 42(05): 780−789. ZHANG Hong'an, LI Jidong, WANG Xuejun, et al. Formation and Evolution of Yin'gen-E'ji'naqi Basin and Prospects for Oil and Gas Exploration[J]. Petroleum Geology & Experiment,2020,42(05):780−789.
张进学, 李付雷, 孙博, 等. 银额盆地居延海坳陷地层归属探讨[J]. 石油地球物理勘探, 2020, 55(04): 892−897. ZHANG Jinxue, LI Fulei, SUN Bo, et al. Formation Classification of Juyanhai Depression in Yin-E Basin[J]. Oil Geophysical Prospecting,2020,55(04):892−897.
郑小明, 尹海权, 高磊, 等. 内蒙古阿拉善北部杭乌拉地区早古生代硅质岩地球化学特征及其构造意义[J]. 古地理学报, 2017, 19(3): 491−502. doi: 10.7605/gdlxb.2017.03.038 ZHENG Xiaoming, YIN Haiquan, GAO Lei, et al. Geochemical Characteristics and its Tectonic Significance of the Early Paleozoic Siliceous Rocks in Hangwula Area of Northern Alxa, Inner Mongolia[J]. Journal of Palaeogeography,2017,19(3):491−502. doi: 10.7605/gdlxb.2017.03.038
郑月娟, 张健, 陈树旺, 等. 内蒙古阿鲁科尔沁旗陶海营子剖面林西组化石新发现[J]. 地质通报, 2013, 32(08): 1269−1276. doi: 10.3969/j.issn.1671-2552.2013.08.013 ZHENG Yuejuan, ZHANG Jian, CHEN Shuwang, et al. New Fossil Discovery Along the Section of Linxi Formation at Taohaiyingzi in Ar Horqin Banner, Inner Mongolia[J]. Geological Bulletin of China,2013,32(08):1269−1276. doi: 10.3969/j.issn.1671-2552.2013.08.013
朱怀诚. 塔里木盆地二叠系孢粉组合及生物地层学[J]. 古生物学报, 1997(S1): 40−61. ZHU Huaicheng. Permian Sporopollen Assemblages and Biostratigraphy in Tarim Basin[J]. Acta Palaeontologica Sinica,1997(S1):40−61.
Chen Yan, Gan Lisheng, Wu Tairan. The Carboniferous-Permian Tectonic Setting for the Southernmost Central Asian Orogenic Belt: Constraint From Magmatic and Sedimentary Records in the Alxa Area, NW China[J]. Lithos, 2021, 398-399,106350.
Chen Yan, Wu Tairan, Gan Lisheng, et al. Provenance of the Early to Mid-Paleozoic Sediments in the Northern Alxa Area: Implications for Tectonic Evolution of the Southwestern Central Asian Orogenic Belt[J]. Gondwana Research, 2019, 67115-130.
Li Tianjun, Huang Zhilong, Yin Yue, et al. Sedimentology and Geochemistry of Cretaceous Source Rocks From the Tiancao Sag, Yin'e Basin, North China: Implications for the Enrichment Mechanism of Organic Matters in Small Lacustrine Rift Basins[J]. Journal of Asian Earth Sciences, 2020, 204.
Liu Qian, Zhao Guochun, Han Yigui, et al. Timing of the Final Closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints From Geochronology and Geochemistry of Late Carboniferous to Permian Gabbros and Diorites[J]. Lithos, 2017, 274-275.
Qi Kai, Ren Zhanli, Chen Zhipeng, et al. Characteristics and Controlling Factors of Lacustrine Source Rocks in the Lower Cretaceous, Suhongtu Depression, Yin'e Basin, Northern China[J]. Marine and Petroleum Geology, 2021, 127.
Zheng Rongguo, Li Jinyi, Xiao Wenjiao, et al. A New Ophiolitic Melange Containing Boninitic Blocks in Alxa Region; Implications for Permian Subduction Events in Southern CAOB[J]. Di xue qian yuan.,2018,9(5):1355−1367.
Xie Fenquan, Wu Jinghua, Sun Yonghe, et al. Permian to Triassic Tectonic Evolution of the Alxa Tectonic Belt, NW China: Constraints From Petrogenesis and Geochronology of Felsic Intrusions[J]. Lithos, 2021, 384-385, 105980.
Zhang Jin, Cunningham Dickson, Qu Junfeng, et al. Poly-Phase Structural Evolution of the Northeastern Alxa Block, China: Constraining the Paleozoic-Recent History of the Southern Central Asian Orogenic Belt[J]. Gondwana Research, 2022, 10525-50.
Zheng Rongguo, Wu Tairan, Zhang Wen, et al. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids: Geochronological and Geochemical Evidences From Ophiolites[J]. Gondwana Research,2014,25(2):842−858. doi: 10.1016/j.gr.2013.05.011