ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

鄂尔多斯盆地神木气田石千峰组千5段砂体发育规模与储层特征

黄有根, 王晔, 路归一, 陈存良, 吴和源, 张芳, 冯炎松

黄有根,王晔,路归一,等. 鄂尔多斯盆地神木气田石千峰组千5段砂体发育规模与储层特征[J]. 西北地质,2024,57(6):186−198. doi: 10.12401/j.nwg.2024082
引用本文: 黄有根,王晔,路归一,等. 鄂尔多斯盆地神木气田石千峰组千5段砂体发育规模与储层特征[J]. 西北地质,2024,57(6):186−198. doi: 10.12401/j.nwg.2024082
HUANG Yougen,WANG Ye,LU Guiyi,et al. Development Scale and Reservoir Characteristics of Sand Bodies in the Qian 5 Member of the Shiqianfeng Formation of the Shenmu Gas Field in the Ordos Basin[J]. Northwestern Geology,2024,57(6):186−198. doi: 10.12401/j.nwg.2024082
Citation: HUANG Yougen,WANG Ye,LU Guiyi,et al. Development Scale and Reservoir Characteristics of Sand Bodies in the Qian 5 Member of the Shiqianfeng Formation of the Shenmu Gas Field in the Ordos Basin[J]. Northwestern Geology,2024,57(6):186−198. doi: 10.12401/j.nwg.2024082

鄂尔多斯盆地神木气田石千峰组千5段砂体发育规模与储层特征

基金项目: 中国石油科技重大专项“复杂碳酸盐岩气藏效益上产与提高采收率技术研究”(2023ZZ16-03)资助
详细信息
    作者简介:

    黄有根(1980−),男,硕士,高级工程师,从事鄂尔多斯盆地天然气沉积储层等相关研究。E−mail:hyg_cq@petrochina.com.cn

  • 中图分类号: P618.13

Development Scale and Reservoir Characteristics of Sand Bodies in the Qian 5 Member of the Shiqianfeng Formation of the Shenmu Gas Field in the Ordos Basin

  • 摘要:

    石千峰组作为鄂尔多斯盆地二叠系区域顶部天然气储集层,具有砂岩厚度大、分布广的特点。在露头、钻测井资料与岩心沉积相分析基础上,利用露头测量法、经验公式法以及密井网解剖法,对千5段开展砂体发育规模评价研究,结合显微薄片、扫描电镜、压汞、核磁等分析手段进行千5段储层特征研究及分类评价,为后续高精度开发提供线索。研究认为,神木地区千5段为辫状河三角洲平原沉积,以辫状分流河道与洪泛平原亚相为主,局部发育洪泛越岸砂沉积;沉积期辫状河道平均水深为5~6 m,千5上亚段聚合河道宽度为800~1200 m,千5下亚段聚合河道宽度主体为12001600 m。形成厚层岩屑砂岩、长石岩屑砂岩和岩屑长石砂岩储层,具有高岩屑含量、高原生粒间孔含量的特点,表现为4类砂岩储层:Ⅰ类微米级裂缝孔隙型;Ⅱ类微米-纳米级联通孔隙型;Ⅲ类纳米–微米级连通–孤立孔隙型;Ⅳ类纳米级孤立孔隙型。千5段砂岩浊沸石胶结作用局部富集,对寻找高孔隙度、高渗透率储层创造了潜在的物质条件。

    Abstract:

    The Shiqianfeng Formation, as the top natural gas reservoir in the Permian of the Ordos Basin, has the characteristics of large sandstone thickness and wide distribution. Based on the analysis of outcrop, drilling and logging data, and core sedimentary facies, the outcrop measurement method, empirical formula method, and dense well network dissection method were used to evaluate the development scale of sand bodies in the Qian5 member. Combining microscopic thin sections, scanning electron microscopy, mercury intrusion, nuclear magnetic resonance, and other analytical methods, the study and classification evaluation of reservoir characteristics in the Qian5 member are conducted, providing clues for subsequent high-precision development. Research suggests that the Qian5 section of the Shenmu area is a braided river delta plain deposit, mainly composed of braided distributary channels and flood plain subfacies, with locally developed flood crossing sand deposits. During the sedimentation period, the average depth of braided river channels is 5-6 m, with a width of 800-1200 m in the upper section of Qian5 and a width of 1200-1600 m in the lower section of Qian5. Thick layers of lithic sandstone, feldspathic lithic sandstone, and lithic feldspathic sandstone reservoirs were formed, characterized by high rock debris content and high intergranular pore content. It is manifested as four types of sandstone reservoirs: type I, micron level fracture pore type; Class II micron-nano interconnected pore type; Class III nano-micron level connected to isolated pore type; Class IV nanoscale isolated pore type. The local enrichment of laumontite in the sandstone of Qian5 member has created potential material conditions for searching for reservoirs with high porosity and permeability.

  • 鄂尔多斯盆地东缘古生界致密砂岩气勘探不断突破,自下而上多层位成藏,资源潜力巨大,勘探前景好(郑萌等,2023张瑶瑶等,2023)。早期勘探目的层主要集中于本溪组、太原组、山西组以及盒8段(王震亮等,2004; 杨华等,2004,2016;兰朝利等,2010吴颖等,2024),自2021年以来,先后在神84井区以及米33井区石千峰组千5段探明优质天然气藏,获得显著的开发效果,其中米33井日产20.83×104 m3,神84井日产16.18×104 m3,表明千5段具良好的勘探前景。对比鄂尔多斯盆地东南缘以及苏里格等区域石千峰组鲜有成藏的现状,该发现唤起了区域范围内对石千峰组油气勘探的巨大愿景(肖玲等,2022欧阳明华等,2023)。部分学者对盆地范围内石千峰组沉积环境(张翔等,2009)、沉积相(李君文等,2007张翔等,2008)及成藏特征(王震亮等,2004杨华等,2004李振宏等,2005闫小雄等,2005; 张清等,2005)已经开展大量的研究工作,但是关于石千峰组砂体发育规模以及储层特征方面的研究少有涉及,研究程度整体偏低。因而,笔者认为结合目前勘探突破,在沉积微相分析的基础上,结合多类型实验手段,总结石千峰组砂岩储层特征,为区域储层研究提供基础资料;同时,对石千峰组千5段开展系统性的砂体发育规模评价分析,可为区域范围开发井的部署提供重要线索。

    神木气田构造上位于鄂尔多斯盆地晋西挠褶带以西的伊陕斜坡上,构造上表现为西倾单斜的特点(王震亮等, 2004; 闫小雄等, 2005; 杨华等, 2015唐玮玮等,2022牛艳伟等,2023)。石千峰组与下伏上石盒子组整合接触,与上覆下三叠统刘家沟组平行不整合接触,为干旱、炎热、氧化的淡水沉积环境(张翔等, 2008)。石千峰组由5个亚段构成,千5段位于底部,神木地区千5段地层厚度约为60~65 m,西南部最大埋深为1180 m,北东部最浅,约为360 m。

    千5段纵向上由4个中期沉积旋回纵向叠置,对应两个亚段(千5上亚段与千5下亚段)4个小层,下部3个中期旋回可容纳空间持续增加,顶部旋回可容纳空间缓慢降低(图1),各旋回由底部厚层砂岩与顶部薄层泥岩组合而成。砂岩多呈浅肉粉色-粉褐色,为中厚层-厚层状中-粗粒砂岩或含砾粗砂岩,具丰富的交错层理、平行层理以及冲刷面构造。测井曲线形态以箱形、钟形为主,少量指形曲线,箱形与钟形曲线含量约为60%和36%。由于砂岩中泥质含量变化,箱形与钟形平滑程度不同,泥质含量相对较高的齿状箱形在千5上、下亚段中均占主导,平均厚度约10 m,个别区域厚层箱状砂体可达25 m。为高能河道频繁聚合冲刷而成,呈典型的辫状河道沉积特点。

    图  1  神木气田区域位置图(据赵龙梅等,2023修改)与千5段综合柱状图
    Figure  1.  Location map of Shenmu las field and comprehensive histogram of Qian5 section

    千5段泥岩颜色以自生氧化色为主,呈砖红或红褐色(图2),与区域石千峰组早期干旱氧化为主的沉积环境一致。表现为中厚层块状,粉砂质含量较高,未见生物扰动或植物叶片化石,为典型的洪泛平原泥质沉积。局部泥岩呈浅灰绿色或杂色混积,暗示千5段沉积期局部干湿气候快速交替,沉积环境动荡加深的水体变化特点。

    图  2  神木地区石千峰组千5段砂岩与泥岩颜色发育特征
    发育3种类型岩石颜色组合:砖红色为主(a~c)、灰绿色为主(d~f)、混积色(g~i);a. 砖红色粉砂质泥岩,米160井,1 877.0 m;b. 浅褐灰色含细砾中粗砂岩,双56井,2 298.76 m; c. 浅褐色夹灰色泥质中粗砂岩,米35井,2 000.8 m;d. 浅绿灰色泥砾粗砂岩,米161井,2 298.05 m;e. 浅绿灰色中细砂岩,米44井,1 875.2 m;f. 灰绿色泥质细砂岩,米120井,2 120.8 m;g. 砖红色粉砂质泥岩,米160井,1 877.1 m;h. 浅褐灰色具平行层理粗砂岩,府2,1 728.1 m;i. 褐灰色向浅绿灰色粗砂岩过渡,米160井,1 872.5 m
    Figure  2.  Color characteristics of sandstone and mudstone in the Qian5 member of Shiqianfeng Formation in the Shenmu area

    随着油气勘探的逐步精细化,砂体发育规模评价成为开发井部署的重要基础工作,结合露头、测井以及经验公式对神木地区千5段砂体规模进行综合刻画分析,将有效降低开发井的部署风险。

    石千峰组露头多为断崖式特征,剖面实测分析难度大。以韩城遽水河石千峰组剖面为例(图3),露头呈EW向展布,垂高近百米,千5段厚层砂体直接覆盖于盒1段紫红色泥岩之上。千5段垂直厚度为66 m,上、下亚段为浅粉色或粉褐色厚层聚合河道砂体,中部中厚层洪泛平原紫红色泥岩。由于剖面出露情况限制,露头范围无法真实反映聚合河道砂体宽度发育规模,仅能对内部单河道砂体提供数据支持。千5下亚段聚合河道砂体中单河道砂体厚度为4~6 m,单期河道宽度主体分布多大于50 m;千5上亚段单砂体厚度为6~8 m,单期河道主体宽度大于100 m。

    图  3  韩城遽水河剖面石千峰组千5段露头聚合河道砂体刻画
    a. 韩城遽水河石千峰组聚合河道露头;b. 韩城遽水河石千峰组聚合河道露头河道砂体刻画
    Figure  3.  Characterization of the aggregate channel sand body in the Qian5 Member of the Shiqianfeng Formation of the Qushui river section in Hancheng

    经验公式法不受露头出露情况以及地貌特征限制,因此对于井下河道规模发育评价具有重要参考价值。在早期地质学曲流河宽度规模评价(Collinson, 1977)的基础上,辫状河聚合河道宽度以及单砂体宽度计算方式获得了广泛认可。主要包括4个参数:

    h=1.1L(Shanley, 2004);          (1)

    CWB=45.76h1.52(Bridge et al., 1993); (2)

    Wm=12.1h1.87(Robinson et al.,1997);  (3)

    F=W/h (Schumm, 1960)。         (4)

    式中:h为水深m(考虑10%的压实);L为河道单砂体最大厚度;CWB为辨状河河道带宽度;Wm为辫状河河道平均单砂体宽;F为单河道的宽深比。

    结合计算公式1~4,在测井曲线砂体分析的基础上进行沉积期水体深度以及河道宽度分析(表1)。千5段单砂体宽度主体分布区间为100~350 m;聚合河道带宽度主体分布区间为240~700 m,沉积水深为2 ~5 m。与露头单砂体厚度所反映的沉积水深基本一致。

    表  1  砂体宽度与聚合河道带计算数据表
    Table  1.  Calculation data for the width of single sand body and aggregate channel sand body
    单砂体厚度(m) 单砂体宽度(m) 聚合河道带宽度(m) 厚度频率(次)
    0~2 0~100 0~240 1 969
    2~4 100~350 240~700 2900
    4~6 350~750 700~1300 1776
    6~8 750~1250 1300~2 000 1037
    8~10 1250~1 900 2 000~2800 525
    >10 >1 900 2800 277
    下载: 导出CSV 
    | 显示表格

    神木气田早期油气勘探积累了大量的钻、测井资料,局部开发井密度大,井距小,为井下砂体规模评价提供了便利。在经验公式计算基础上,结合密井网解剖可更准确的分析砂体规模,为后续的开发提供详实的线索。以双44井区东西向开发井剖面为例(图4)(剖面位置见图1),近垂直河道砂体在上、下亚段中表现形式差异较大。千5下亚段主要为箱状下切堆叠型与离散堆叠型聚合河道为主,纵向厚度变化大,聚合河道宽度为700~3200 m;千5上亚段河道砂体相对孤立,聚合河道宽度延伸显著降低,主体分布区间为600~1000 m。结合多区域开发井井网砂体剖面刻画(图5),千5段上、下亚段单砂体厚度基本一致,主频范围为2~6 m。聚合河道砂体宽度变化大,千5上聚合河道砂体宽度以800~1200 m范围为主,千5下亚段主要分布区间为12001600 m。

    图  4  神木气田双44井区EW向开发井剖面砂体刻画
    Figure  4.  Sand body characterization of the east-west well profile in Shuang44 well area of Shenmu Gas Field
    图  5  神木气田石千峰组千5段密井网砂体刻画数据分布特征
    Figure  5.  Distribution characteristics of dense well network sand body characterization data in the Qian5 section of the Shiqianfeng Formation in Shenmu Gas Field

    对石千峰组千5段4个小层进行岩石学特征分析,砂岩类型以岩屑砂岩、长石岩屑砂岩和岩屑长石砂岩为主(图6)。石英平均含量为48.7%;长石平均含量为18%,最高达43%;岩屑含量整体偏高,10%~68%,平均为19%,以火山岩岩屑、变质砂岩、石英岩以及千枚岩为主,不同矿物成分含量在平面上差异较小。

    图  6  神木气田石千峰组千5段砂岩成分三角图
    Ⅰ.石英砂岩;Ⅱ.长石石英砂岩;Ⅲ.岩屑石英砂岩;Ⅳ.长石砂岩;Ⅴ.岩屑长石砂岩;Ⅵ.长石岩屑砂岩;Ⅶ:岩屑砂岩
    Figure  6.  Triangle diagram of sandstone composition in the Qian5 member of the Shiqianfeng Formation in Shenmu Gas Field

    千5段砂岩碎屑颗粒之间填隙物以硅质、钙质、以及黏土矿物为主,见少量浊沸石局部富集(图7)。黏土矿物平均含量约为8.7%,最高达30%(图7),主要为绿泥石和凝灰质杂基(图8),其次为高岭石和铁泥质,绿泥石多以绿泥石膜的形式存在,少量全充填原生粒间孔;铁泥质与凝灰质多全充填原生粒间孔。硅质胶结物平均含量为2.4%,最高约为9.8%,半充填原生粒间孔;钙质呈镶嵌状胶结全充填孔隙的特点,平均含量为2.6%,最高为16%。浊沸石含量少,仅局部富集,因此较难进行统计分析。

    图  7  神木地区石千峰千5段填隙物含量特征
    Figure  7.  Characteristics of interstitial material content in Shiqianfeng Qian5 member of Shenmu area

    高压压汞数据分析表明千5段砂岩最大孔隙度达16.8%,平均孔隙度为10.6%,平均渗透率为1.42 mD,与神木地区其余砂岩储集层位对比,具备较好的物性条件(图9)。千5段高物性条件储层多集中分布于低可容纳空间聚合河道砂体底部,即箱状和钟状测井曲线底部,向旋回顶部泥质成分逐渐增多,物性逐渐降低。神木地区受晋西挠褶带附近断裂构造影响,千5段砂岩渗透率高值较为突出。

    图  9  神木地区主要储集层段砂岩物性特征对比
    a.孔隙度箱状图,箱体为25%~75%孔隙度分布区间,标注数字为孔隙度均值;b.渗透率箱状图,菱形箱体为25%~75%渗透率分布区间,标注数字为孔隙度均值和中位值
    Figure  9.  Characteristics of sandstone porosity and permeability in the main reservoir sections of the Shenmu area

    千5段砂岩以原生粒间孔为主要的储集空间(图8a),多为未充填原生孔隙,少量半充填孔;黏土矿物晶间孔含量少,以绿泥石晶间孔为主,其次为少量高岭石晶间孔,部分黏土矿物孔隙疑似为早期矿物颗粒溶孔(图8c)。溶蚀孔隙发育含量较少,主要为长石颗粒溶孔(图8c),少量胶结物溶孔(图8k),溶蚀程度均较弱。结合核磁共振对系列储层进行孔隙大小分析,千5段砂岩孔隙以微米孔隙(1~40 μm)和纳米孔隙(1 μm~100 nm)为主(图10图11)。渗透率低于0.1 mD时,以纳米孔为主,大于0.1 mD时,微米孔隙含量增加,孔隙度大于9%时,以微米孔隙为主,含少量纳米孔隙。结合压汞数据将神木地区千5段砂岩储层细分为4类(图10):Ⅰ类储层,裂缝–孔隙型储层,微米级孔隙,孔隙度大于10%,排驱压力小于0.1 MPa,最大进汞饱和度大于85%;Ⅱ类储层,微米–亚微米级孔隙,平均孔隙度大于9%,最大进汞饱和度大于70%;Ⅲ类储层,亚微米–微米级孔隙,平均孔隙度大于8%,最大进汞饱和度为60%~70%;Ⅳ类储层,以亚微米级孔隙为主,孔隙度大于6%,最大进汞饱和度小于60%。

    图  8  神木地区千5段砂岩孔隙充填特征
    a.未充填原生粒间孔,1 871.4 m,米44井(扫描电镜);b.黏土矿物晶间孔和疑似颗粒溶孔,2 032.6 m,双118井(扫描电镜);c.长石颗粒溶孔,1 993.5 m,榆88井(扫描电镜);d.绿泥石膜与硅质胶结物全充填原生粒间孔,米161井,1 737.3 m(单偏光);e.绿泥石完全充填原生粒间孔,双118井,2 035.6 m(单偏光);f.原生粒间孔被铁泥质全充填,米44井,1 874.1 m(单偏光);g.高岭石半充填长石溶孔,米161井,1 742.7 m(单偏光);h.接触式硅质胶结作用,残留部分原生粒间孔,米44井,1 866.4 m(单偏光);i.镶嵌式钙质胶结物全充填原生粒间孔,米165井,2 267 m(单偏光); j.长石颗粒溶孔被方解石胶结物充填,神118井,2 037.2 m(单偏光);k.沸石胶结物半充填原生粒间孔,发育沸石溶孔,府2井,1 527 m(单偏光);l.浊沸石胶结原生粒间孔,发育少量沸石溶孔,府2井,1 530 m(单偏光)
    Figure  8.  Pore filling characteristics of sandstone in the Qian5 member of the Shenmu area
    图  10  神木地区石千峰组千5段砂岩储层孔隙大小分布特征
    Figure  10.  Pore size distribution characteristics of sandstone reservoirs in the Qian5 member of the Shiqianfeng Formation in the Shenmu area
    图  11  神木地区石千峰组千5段压汞储层分类特征
    Ⅰ类样品:米44井,1 872.8 m;Ⅱ类样品:榆88井-1,1 994.2 m;Ⅲ类样品:府2井-4,1 527.8 m;Ⅳ类样品:米44井-10,1 875.3 m
    Figure  11.  Classification characteristics of mercury injection reservoirs in the Qian5 member of the Shiqianfeng Formation in the Shenmu area

    在成分分析以及成岩作用分析基础上,对研究区9个中-粗砂岩样品的孔隙度变化进行定量计算。①原始孔隙度φ1(%)(Beard et al., 1973; Scherer, 1987),φ1=20.91+22.9/SO。SO为分选系数,SO=$\sqrt {D25/D75} $。②压实后剩余孔隙度φ2=C+φori×φavepor, C为胶结物含量(%),φori为现今粒间孔面孔率。③压实作用损失孔隙度φ312张兴良等, 2014)。④胶结作用损失孔隙度:φ4=黏土矿物百分含量+C。⑤溶蚀作用增加孔隙度:φ5diss×φavepor, φdiss为溶蚀孔面孔率,φave为平均测试总孔隙度,φpor为总面孔率。⑥自生晶间孔增加量:φ6i-c×φavepor,φi-c为现今成岩晶间孔面孔率。数据结果显示,千5段砂岩未固结平均原始孔隙度φ1=30.6%,压实作用平均损失孔隙度φ3=16.1%,胶结作用平均损失孔隙度φ4=9%,其中钙质胶结作用平均损失孔隙度约为2.1%,硅质胶结作用损失孔隙度约为2.4%,黏土矿物充填胶结损失约4.5%,溶蚀作用平均增加孔隙度φ5=3.5%,现今平均剩余孔隙度为9.8%。

    成岩作用对砂岩储集物性具有直接的控制作用,多种成岩作用共存是砂岩成岩演化过程中的普遍现象,对其类型以及作用方式的准确分析解读是成岩演化分析的必要手段。千5段砂岩相较于二叠系中下部主要砂岩储集层(Wu et al., 2021)无论是成岩作用类型还是成岩作用期次均存在明显差异。

    神木地区千5段砂岩碎屑颗粒表现为点接触为主(图7),少量线接触,压实作用程度中-弱。胶结作用除了常见的硅质与钙质胶结之外,浊沸石胶结作用呈现局部富集的特点。这与千5段高火山岩碎屑含量与高凝灰质杂基含量具有直接的联系(Levy, 1984; Chipera et al., 2008; 朱世发等, 2011; 李振华等, 2014; 吴和源等, 2017, 2018)。硅质胶结晚于自生绿泥石膜,表现为接触式胶结的特点,全充填(图8d)或半充填原生粒间孔(图8h),未见多期次石英次生加大。钙质胶结作用呈镶嵌状胶结,全充填原生粒间孔(图8i)与长石颗粒溶孔(图8j),方解石胶结作用基本不见自生黏土矿物伴生。浊沸石为镶嵌状胶结,局部与少量硅质胶结物伴生,暗示两种胶结作用形成时间基本一致。千5段砂岩胶结物含量偏低,填隙物以黏土矿物充填为主,凝灰质、铁泥质、绿泥石含量较高,少量高岭石、伊利石以及伊\蒙混层矿物。凝灰质与铁泥质以杂基形式充填粒间孔,多表现为致密状,绿泥石化明显。自生绿泥石以绿泥石膜形式存在,形成于早成岩A期,抑制了局部硅质胶结作用的持续形成,因此多呈现高原生粒间孔的特点。高岭石呈书页状半充填粒间孔,含量较少。

    溶蚀作用作为砂岩储层形成过程中重要的建设性作用,在神木地区千5段砂岩中发育差。长石碎屑颗粒溶蚀程度较弱,显微薄片与扫描电镜分析仅见少量长石溶孔。浊沸石溶蚀显著,多呈半溶蚀状,但由于其局部富集的特点,很难对整体储集空间形成巨大贡献。综合分析认为,千5段砂岩成藏期不存在广泛的有机酸溶蚀作用。

    结合成岩作用发育特征,将神木地区千5段砂岩成岩演化细分为3个阶段(图12):早成岩A期:碎屑沉积压实阶段,该阶段主要发育硅质胶结(浊沸石胶结)作用,黏土矿物充填粒间孔,阶段孔隙类型为残余粒间孔;早成岩B期:持续压实减孔阶段,少量方解石胶结原生粒间孔,阶段孔隙类型主要为残余粒间孔、绿泥石、高岭石晶间孔隙;中成岩阶段:天然气成藏及黏土矿物转化阶段,结合包裹体测试数据分析认为,千5段包裹体测温数据主要分布区间为130~150 ℃,结合埋藏演化史认为其主成藏期位于160~130 Ma,期间天然气依靠断裂以及扩散作用聚集成藏,同时凝灰质以及铁泥质杂基向绿泥石以及伊利石转化,阶段孔隙类型为残余原生粒间孔以及黏土矿物晶间孔。

    图  12  神木地区千5段砂岩埋藏演化史及成岩作用发育特征
    Figure  12.  Burial evolution history and diagenetic development characteristics of sandstone in the Qian5 section of the Shenmu area

    (1)鄂尔多斯盆地神木地区石千峰组千5段由4个中期旋回纵向叠置而成,对应2个亚段4个小层,为辫状河三角洲平原沉积,表现为浅水宽河道的沉积特点,辫状河道平均水深为5~6 m,聚合河道宽度分布范围为800~1200 m。

    (2)千5段砂岩以厚层岩屑砂岩、长石岩屑砂岩和岩屑长石砂岩为主,具有高岩屑含量、高原生粒间孔的特点,形成以微米到纳米孔隙为主的4类砂岩储层:Ⅰ类微米级裂缝孔隙型;Ⅱ类微米–纳米级连通孔隙型;Ⅲ类纳米–微米级连通–孤立孔隙型;Ⅳ类纳米级孤立孔隙型。

    (3)千5段高火山岩碎屑与高凝灰质杂基砂岩中发育浊沸石胶结作用,呈现浊沸石胶结物局部富集的特点,由于沸石胶结物的易溶蚀性,区域范围内可能存在高孔渗浊沸石胶结砂砾岩储层。

    (4)神木地区千5段砂岩具胶结物含量低、成岩胶结作用期次少、平均黏土矿物含量高的特点,除压实减孔之外,黏土矿物充填是原始孔隙结构破坏的主要原因。

  • 图  1   神木气田区域位置图(据赵龙梅等,2023修改)与千5段综合柱状图

    Figure  1.   Location map of Shenmu las field and comprehensive histogram of Qian5 section

    图  2   神木地区石千峰组千5段砂岩与泥岩颜色发育特征

    发育3种类型岩石颜色组合:砖红色为主(a~c)、灰绿色为主(d~f)、混积色(g~i);a. 砖红色粉砂质泥岩,米160井,1 877.0 m;b. 浅褐灰色含细砾中粗砂岩,双56井,2 298.76 m; c. 浅褐色夹灰色泥质中粗砂岩,米35井,2 000.8 m;d. 浅绿灰色泥砾粗砂岩,米161井,2 298.05 m;e. 浅绿灰色中细砂岩,米44井,1 875.2 m;f. 灰绿色泥质细砂岩,米120井,2 120.8 m;g. 砖红色粉砂质泥岩,米160井,1 877.1 m;h. 浅褐灰色具平行层理粗砂岩,府2,1 728.1 m;i. 褐灰色向浅绿灰色粗砂岩过渡,米160井,1 872.5 m

    Figure  2.   Color characteristics of sandstone and mudstone in the Qian5 member of Shiqianfeng Formation in the Shenmu area

    图  3   韩城遽水河剖面石千峰组千5段露头聚合河道砂体刻画

    a. 韩城遽水河石千峰组聚合河道露头;b. 韩城遽水河石千峰组聚合河道露头河道砂体刻画

    Figure  3.   Characterization of the aggregate channel sand body in the Qian5 Member of the Shiqianfeng Formation of the Qushui river section in Hancheng

    图  4   神木气田双44井区EW向开发井剖面砂体刻画

    Figure  4.   Sand body characterization of the east-west well profile in Shuang44 well area of Shenmu Gas Field

    图  5   神木气田石千峰组千5段密井网砂体刻画数据分布特征

    Figure  5.   Distribution characteristics of dense well network sand body characterization data in the Qian5 section of the Shiqianfeng Formation in Shenmu Gas Field

    图  6   神木气田石千峰组千5段砂岩成分三角图

    Ⅰ.石英砂岩;Ⅱ.长石石英砂岩;Ⅲ.岩屑石英砂岩;Ⅳ.长石砂岩;Ⅴ.岩屑长石砂岩;Ⅵ.长石岩屑砂岩;Ⅶ:岩屑砂岩

    Figure  6.   Triangle diagram of sandstone composition in the Qian5 member of the Shiqianfeng Formation in Shenmu Gas Field

    图  7   神木地区石千峰千5段填隙物含量特征

    Figure  7.   Characteristics of interstitial material content in Shiqianfeng Qian5 member of Shenmu area

    图  9   神木地区主要储集层段砂岩物性特征对比

    a.孔隙度箱状图,箱体为25%~75%孔隙度分布区间,标注数字为孔隙度均值;b.渗透率箱状图,菱形箱体为25%~75%渗透率分布区间,标注数字为孔隙度均值和中位值

    Figure  9.   Characteristics of sandstone porosity and permeability in the main reservoir sections of the Shenmu area

    图  8   神木地区千5段砂岩孔隙充填特征

    a.未充填原生粒间孔,1 871.4 m,米44井(扫描电镜);b.黏土矿物晶间孔和疑似颗粒溶孔,2 032.6 m,双118井(扫描电镜);c.长石颗粒溶孔,1 993.5 m,榆88井(扫描电镜);d.绿泥石膜与硅质胶结物全充填原生粒间孔,米161井,1 737.3 m(单偏光);e.绿泥石完全充填原生粒间孔,双118井,2 035.6 m(单偏光);f.原生粒间孔被铁泥质全充填,米44井,1 874.1 m(单偏光);g.高岭石半充填长石溶孔,米161井,1 742.7 m(单偏光);h.接触式硅质胶结作用,残留部分原生粒间孔,米44井,1 866.4 m(单偏光);i.镶嵌式钙质胶结物全充填原生粒间孔,米165井,2 267 m(单偏光); j.长石颗粒溶孔被方解石胶结物充填,神118井,2 037.2 m(单偏光);k.沸石胶结物半充填原生粒间孔,发育沸石溶孔,府2井,1 527 m(单偏光);l.浊沸石胶结原生粒间孔,发育少量沸石溶孔,府2井,1 530 m(单偏光)

    Figure  8.   Pore filling characteristics of sandstone in the Qian5 member of the Shenmu area

    图  10   神木地区石千峰组千5段砂岩储层孔隙大小分布特征

    Figure  10.   Pore size distribution characteristics of sandstone reservoirs in the Qian5 member of the Shiqianfeng Formation in the Shenmu area

    图  11   神木地区石千峰组千5段压汞储层分类特征

    Ⅰ类样品:米44井,1 872.8 m;Ⅱ类样品:榆88井-1,1 994.2 m;Ⅲ类样品:府2井-4,1 527.8 m;Ⅳ类样品:米44井-10,1 875.3 m

    Figure  11.   Classification characteristics of mercury injection reservoirs in the Qian5 member of the Shiqianfeng Formation in the Shenmu area

    图  12   神木地区千5段砂岩埋藏演化史及成岩作用发育特征

    Figure  12.   Burial evolution history and diagenetic development characteristics of sandstone in the Qian5 section of the Shenmu area

    表  1   砂体宽度与聚合河道带计算数据表

    Table  1   Calculation data for the width of single sand body and aggregate channel sand body

    单砂体厚度(m) 单砂体宽度(m) 聚合河道带宽度(m) 厚度频率(次)
    0~2 0~100 0~240 1 969
    2~4 100~350 240~700 2900
    4~6 350~750 700~1300 1776
    6~8 750~1250 1300~2 000 1037
    8~10 1250~1 900 2 000~2800 525
    >10 >1 900 2800 277
    下载: 导出CSV
  • 兰朝利, 张永忠, 张君峰, 等. 神木气田太原组储层特征及其控制因素[J]. 西安石油大学学报(自然科学版), 2010, 25(1): 7−11.

    LAN Chaoli, ZHANG Yongzhong, ZHANG Junfeng, et al. Reservoir characteristics of Upper Carboniferous Taiyuan Formation in Shenmu Gas field and their controlling factors[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2010,25(1):7−11.

    李振华, 邱隆伟, 师政, 等. 准噶尔盆地中拐地区佳二段沸石类矿物成岩作用及其对油气成藏的意义[J]. 中国石油大学学报: 自然科学版, 2014, 38(1): 1−7.

    LI Zhenhua, QIU Longwei, SHI Zheng, et al. Diagenesis of zeolite minerals and its significance for hydrocarbon accumulation in the second member of Jiamuhe formation of Zhongguai area, Junggar Basin[J]. Journal of China University of Petroleum,2014,38(1):1−7.

    李君文, 陈洪德, 田景春. 鄂尔多斯盆地石千峰组高分辨率层序地层学特征[J]. 大庆石油地质与开发, 2007, 26(1): 45−49+91. doi: 10.3969/j.issn.1000-3754.2007.01.011

    LI Junwen, CHEN Hongde, TIAN Jingcun. High resolution sequence stratigraphy characteristics of Shiqianfeng Formation in Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqin,2007,26(1):45−49+91. doi: 10.3969/j.issn.1000-3754.2007.01.011

    李振宏, 王欣. 鄂尔多斯盆地东部石千峰组天然气成藏机理初探[J]. 天然气地球科学, 2005, 16(3): 314−318.

    LI Zhenhong, WANG Xin. The elementary analysis of reservoir mechanism in the Shiqianfeng Formation of the eastern Ordos Basin[J]. Natural Gas Geoscience,2005,16(3):314−318.

    牛艳伟, 吴鹏. 神木地区解家堡区块山西组储层“四性”关系及有效储层下限[J]. 成都理工大学学报(自然科学版), 2023, 50(5): 513−524+550.

    NIU Yanwei, WU Peng. Four property relation and lower limit of effective reservoir of Shanxi Formation in Jiejiapu Block, Shenmu area, OrdosBasin[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(5):513−524+550.

    欧阳明华, 史建南, 赵地, 等. 鄂尔多斯盆地苏里格气田苏5区块盒8段-山1段波形约束建模反演及模拟[J]. 成都理工大学学报(自然科学版), 2023, 50(5): 560−568+587.

    OUYANG Minghua, SHI Jiannan, ZHAO Di, et al. Waveform constrained modeling inversion and simulation of He-8 and Shan-1 Members in Su-5 Block, Sulige Gas Field, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(5):560−568+587.

    唐玮玮, 吴晓明, 王为林, 等. 鄂尔多斯盆地环县北地区延长组长72亚段重力流特征及油气地质意义[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 561−569+585.

    TANG, Weiwei, WU Xiaoming, WANG Weilin, et al. Gravity flow characteristics and geological significance of oil and gas of the Chang 72 sub-member of the Yanchang Formation in the northern Huanxian area, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(5):561−569+585.

    王震亮, 张立宽, 孙明亮, 等. 鄂尔多斯盆地神木—榆林地区上石盒子组石千峰组天然气成藏机理[J]. 石油学报, 2004, 25(3): 37−43. doi: 10.3321/j.issn:0253-2697.2004.03.007

    WANG Zhenliang, ZHANG Likuan, SUN Mingliang, et al. Natural gas accumulation mechanism in Upper Shihezi and Shiqianfeng Formations of Shenmu-Yulin district in northeastern Ordos Basin[J]. Acta Petrolei Sinica,2004,25(3):37−43. doi: 10.3321/j.issn:0253-2697.2004.03.007

    吴和源, 唐勇, 常秋生. 准噶尔盆地中拐凸起佳木河组沸石类胶结砂砾岩储集层成因机理[J]. 新疆石油地质, 2017, 38(3): 281−288.

    WU Heyuan, TANG Yong, CHANG Qiusheng. Genesis of Sandy Conglomerate Reservoirs Cemented by Zeolites in Jiamuhe Formation of Zhongguai Swell, Junggar Basin[J]. Xinjiang Petroleum Geology,2017,38(3):281−288.

    吴和源, 唐勇, 孙玮, 等. 准噶尔盆地中拐凸起二叠系佳木河组砂砾岩沸石胶结特征及其成岩机制分析[J]. 岩石矿物学杂志, 2018, 37(1): 75−86. doi: 10.3969/j.issn.1000-6524.2018.01.007

    WU Heyuan, TANG Yong, SUN Wei, et al. An analysis of the zeolite cement in sand-conglomerate and the diagenetic mechanism of Jiamuhe Formation, Zhongguai area, Junggar Basin[J]. Acta Petrologica Et Mineralogica,2018,37(1):75−86. doi: 10.3969/j.issn.1000-6524.2018.01.007

    吴颖, 孙磊, 冯敏, 等. 天环坳陷南北部盒8段地层水地化特征差异性分析[J]. 西北地质, 2024, 57(2): 244−253.

    WU Ying,SUN Lei,FENG Min,et al. Analysis on Geochemical Characteristics and Difference of Formation Water in He 8th Member in Northern and Southern Tianhuan Depression[J]. Northwestern Geology,2024,57(2):244−253.

    肖玲, 胡榕, 韩永林, 等. 鄂尔多斯盆地新安边地区长7页岩油储层孔隙结构特征[J]. 成都理工大学学报(自然科学版), 2022, 49(3): 284−293.

    XIAO Lin, HU Rong, HANG Yonglin, et al. Characteristics of pore throat structure of Chang 7 shale oil sandstone reservoir in the western Xin'anbian area, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(3):284−293.

    闫小雄, 胡喜峰, 黄建松, 等. 鄂尔多斯盆地东部石千峰组浅层气藏成藏机理探讨[J]. 天然气地球科学, 2005, 16(6): 736−740.

    YAN Xiaoxiong, HU Xifeng, HANG Jiansong, et al. Discussion on forming mechanism of the Shiqianfeng Formation flower gas pool in eastern Ordos Basin[J]. Natural Gas Geoscience,2005,16(6):736−740.

    杨华, 姬红, 李振宏, 等. 鄂尔多斯盆地东部上古生界石千峰组低压气藏特征[J]. 地球科学(中国地质大学学报), 2004, 29(4): 413−419.

    YANG Hua, JI Hong, LI Zhenhong, et al. Characteristics of Underpressured Gas Pool in Upper Paleozoic Shiqianfeng Formation of Eastern Ordos Basin[J]. Earth Science-Journal of China University of Geosciences,2004,29(4):413−419.

    杨华, 刘新社, 闫小雄, 等. 鄂尔多斯盆地神木气田的发现与天然气成藏地质特征[J]. 天然气工业, 2015, 35(6): 1−13.

    YANG Hua, LIU Xinshe, YAN Xiaoxiong, et al. The Shenmu Gas Field in the Ordos Basin: Its discovery and reservoir- forming geological characteristics[J]. Natural Gas Industry,2015,35(6):1−13.

    杨华, 刘新社, 黄道军, 等. 长庆油田天然气勘探开发进展与“十三五”发展方向[J]. 天然气工业, 2016, 36(5): 1−14. doi: 10.3787/j.issn.1000-0976.2016.05.001

    YANG Hua, LIU Xinshe, HUANG Daojun, et al. Natural gas exploration and development in the PetroChina Changqing and its prospect in the 13th Five-Year Plan[J]. Natural Gas Industry,2016,36(5):1−14. doi: 10.3787/j.issn.1000-0976.2016.05.001

    张清, 孙六一, 黄道军, 等. 鄂尔多斯盆地东部石千峰组浅层气成藏机制[J]. 天然气工业, 2005, 25(4): 12−13. doi: 10.3321/j.issn:1000-0976.2005.04.004

    ZHANG Qing, SUN Liuyi, HUANG Daojun, et al. Reservoir origin mechanism of Shiqianfeng Formation on shallow gas in east Ordos Basin[J]. Natural Gas Industry,2005,25(4):12−13. doi: 10.3321/j.issn:1000-0976.2005.04.004

    张翔, 田景春, 陈洪德, 等. 鄂尔多斯盆地上二叠统石千峰组岩相古地理及时空演化[J]. 成都理工大学学报(自然科学版), 2009, 36(2): 165−171.

    ZHANG Xiang, TIAN Jingchun, CHEN Hongde, et al. The lithofacies-paleogeographic and spatiotemporal evolution of Upper Permian Shiqianfeng Formation in Ordos Basin‚China[J]. Journal of Chendu University of Technology (Science& Technology Edition),2009,36(2):165−171.

    张翔, 田景春, 陈洪德, 等. 鄂尔多斯盆地西部上二叠统石千峰组沉积环境地球化学表征[J]. 地球科学与环境学报, 2008, 32(4): 418−425.

    ZHANG Xiang,TIAN Jingcun,CHEN Hongde,et al. The sedimentary character and sedimentation-sequence model of the Shiqianfeng Formation in Northwestern Ordos Basin[J]. Journal of Stratigraphy,2008,32(4):418−425.

    张兴良, 田景春, 王峰, 等. 致密砂岩储层成岩作用特征与孔隙演化定量评价——以鄂尔多斯盆地高桥地区二叠系下石盒子组盒8段为例[J]. 石油与天然气地质, 2014, 35(2): 212−217.

    ZHANG Xinliang, TIAN Jingchun, WANG Feng, et al. Diagenetic characteristics and quantitative porosity estimation of tight sandstone reservoirs: a case from the 8th Member of Permian Xiashihezi Formation in the Gaoqiao region, Ordos Basin[J]. Oil & Gas Geology,2014,35(2):212−217.

    张瑶瑶, 杨水胜, 刘宇琪, 等. 鄂尔多斯盆地靖边油田沙洼沟地区延安组延9油藏富集规律[J]. 西北地质, 2023, 56(2): 213−224.

    ZHANG Yaoyao, YANG Shuisheng, LIU Yuqi, et al. Enrichment Enrichment Regularity of Y–9 Reservoir of Yan’an Formation in Shawagou Area of Jingbian Oilfield, Ordos Basin[J]. Northwestern Geology,2023,56(2):213−224.

    朱世发, 朱筱敏, 王绪龙, 等. 准噶尔盆地西北缘二叠系沸石矿物成岩作用及对油气的意义[J]. 中国科学: 地球科学, 2011, 41(11): 1602−1612.

    ZHU Shifa, ZHU Xiaomin, WANG Xulong, et al. Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of Junggar Basin, China[J]. Science China: Earth Sciences ,2011,41(11):1602−1612.

    赵龙梅, 吴和源, 黄力, 等. 鄂尔多斯盆地东缘大宁–吉县区块及邻区山西组山2段物源分析[J]. 西北地质, 2023, 56(5): 322−331.

    ZHAO Longmei, WU Heyuan, HUANG Li, et al. Material Source Analysis of Daning−Jixian Exploration Area and Its Adjacent Shan–2 Member in the Eastern Margin of Ordos Basin[J]. Northwestern Geology,2023,56(5):322−331.

    郑萌, 梁积伟, 冯振伟, 等. 鄂尔多斯盆地中部寒武纪岩相古地理研究[J]. 西北地质, 2023, 56(6): 352−368.

    ZHENG Meng, LIANG Jiwei, FENG Zhenwei, et al. Lithofacies Paleogeography of the Cambrian in the Central Ordos Basin[J]. Northwestern Geology,2023,56(6):352−368.

    Beard D C, Weyl P K. Influence of Texture on Porosity and Permeability of Unconsolidated Sand[J]. AAPG Bulletin,1973,57(2):349−369.

    Bridge J S, Mackey S D. A revised alluvial stratigraphy model[J]. Alluvial Sedimentation, 1993: 317−336.

    Chipera S J, Goff F, Goff C J, et al. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles caldera, New Mexico, USA[J]. Journal of Volcanology & Geothermal Research,2008,178(2):317−330.

    Collinson J D. Vertical sequence and sand body shape in alluvial sequences[J]. AAPG, 1977: 577−586.

    Levy S S. Petrology of samples from drill holes USW H-3, H-4, and H-5, Yucca Mountain[J]. Nevada, 1984.

    Robinson J W, Mccabe P J. Sandstone-body and shale-body dimensions in a braided fluvial system; Salt Wash Sandstone Member (Morrison Formation), Garfield County, Utah[J]. AAPG Bulletin, 1997.

    Scherer M. Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction: ERRATUM[J]. AAPG Bulletin,1987,71(5):485−491.

    Schumm S A. The effect of sediment type on the shape and stratification of some modern fluvial deposits[J]. American Journal of Science,1960,3(258):177−184.

    Shanley K W. Fluvial reservoir description for a giant, low-permeability gas field: Jonah field, Green River Basin[J]. Wyoming, U. S. A. 2004.

    Wu H, Guo M, Zhao J, et al. Densification mechanisms of tight sandstones in closed to semi-closed systems: typical example from the Upper Paleozoic in the Linxing area, Ordos Basin[J]. Arabian Journal of Geosciences,2021,14(12):1−18.

图(12)  /  表(1)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  4
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-10
  • 修回日期:  2024-03-14
  • 录用日期:  2024-08-25
  • 网络出版日期:  2024-10-08
  • 刊出日期:  2024-12-19

目录

/

返回文章
返回