Early Identification of Potential Dangers of Loess Landslide Based on Multi-Source and Time Series InSAR
-
摘要:
中国山区滑坡灾害频发且分布广泛,尤其是地处高位的隐蔽型灾害及隐患,传统的技术对其识别监测效果较差。InSAR技术作为一种基于广域面范围的对地观测技术,可以快速获取地表大范围的微小缓慢形变,相对于点监测技术来说,具有先天的优势,在滑坡隐患识别工作中起到了重要的作用。笔者以新疆叶城为研究区,收集10景ALOS-2数据和98景Sentinel-1数据,基于SBAS-InSAR技术对滑坡地质灾害及隐患进行识别与监测。基于形变结果,结合光学遥感影像,建立遥感解译标准,共解译出22处有形变特征的滑坡隐患,进行了野外验证,确定滑坡隐患点20处,识别准确率达91%。基于形变特征和野外验证结果对两处典型隐患点的时间序列形变情况及形变原因进行了详细的分析。结果显示,两处滑坡整体呈现缓慢蠕变的状态,但遇降雨或融雪可能会发生加速变形。研究表明,多源InSAR技术可以有效的识别叶城地区的滑坡隐患,为后续的滑坡灾害防治提供了可靠的数据支撑。
-
关键词:
- 滑坡 /
- SBAS-InSAR /
- 早期识别 /
- 野外验证 /
- 新疆叶城
Abstract:Landslide disasters are frequent and widespread in mountainous areas of China, especially those potential disasters and dangers at high altitudes, where traditional technologies are less effective in identification and monitoring. Interferometric Synthetic Aperture Radar (InSAR) technology, as a ground observation technique based on a wide-area surface, can rapidly acquire minor and slow ground deformations over large areas, offering innate advantages over point monitoring techniques and playing a significant role in the identification of landslide risks. This study focuses on the Yecheng area of Xinjiang, utilizing 10 scenes of ALOS-2 data and 98 scenes of Sentinel-1 data. Based on the SBAS-InSAR method, identification and monitoring of geological hazards and potential landslide risks were conducted. By interpreting the deformation results in conjunction with optical remote sensing images, a remote sensing interpretation standard was established, revealing 22 potential landslide sites with deformation characteristics. Field verification confirmed 20 of these sites, achieving an identification accuracy rate of 91%. Detailed analysis of the time series deformation and causes at two typical risk sites based on deformation characteristics and field verification results showed a general trend of slow creep, with the potential for accelerated deformation in the event of rainfall or snowmelt. The results indicate that multi-source InSAR technology effectively identifies potential landslide risks in the Yecheng area, providing reliable data support for subsequent landslide disaster prevention and control measures.
-
Keywords:
- landslide /
- SBAS-InSAR /
- early identification /
- field verification /
- Yecheng of Xinjiang
-
-
表 1 ALOS-2和Sentinel-1数据基本参数表
Table 1 Basic parameters table of ALOS-2 and Sentinel-1A data
数据源 波段 轨道方向 入射角(°) 航向角(°) 分辨率(m) 影像数量(个) ALOS-2 L 升轨 33.4 −12.8 6 10 Sentinel-1 C 升轨 39.7 −13.2 25 98 表 2 形变程度划分
Table 2 Deformation level division
类别 年平均形变速率绝对值(mm/a) 4~10 10~20 20~30 30~50 >50 形变程度 微小 小 明显 很明显 极明显 表 3 滑坡隐患野外验证
Table 3 Field verification table of landslide potential danger
编号 经度 纬度 规模 位置 是否在册点 滑坡类型 威胁对象 H1 E 76°42′56.424″ N 36°58′57.201″ 小型 2村 否 黄土滑坡 草场、河道 H2 E 76°39′4.603″ N 36°57′8.427″ 中型 2村 是 黄土滑坡 房屋、羊圈、牧道、草场 H3 E 76°32′0.010″ N 37°1′43.857″ 小型 2村 否 黄土滑坡 无威胁对象 H4 E 76°32′40.881″ N 37°0′58.652″ 小型 2村 否 黄土滑坡 草场、牧道 H5 E 76°33′47.075″ N 37°9′3.708″ 中型 4村 否 黄土滑坡 房屋、羊圈、草场、牧道 H6 E 76°33′38.630″ N 37°0′3.964″ 小型 2村 否 黄土滑坡 居民地、道路、草场 H7 E 76°34′29.319″ N 37°3′57.313″ 小型 3村 否 黄土滑坡 草场、林场、道路 H8 E 76°36′44.062″ N 37°0′48.035″ 小型 3村 否 黄土滑坡 房屋、草场、牧道、羊圈 H9 E 76°40′5.238″ N 36°57′20.338″ 中型 2村 否 黄土滑坡 居民地、牧道、草场 H10 E 76°41′23.271″ N 36°58′31.672″ 中型 2村 否 黄土滑坡 房屋、公路、草场、羊圈 H11 E 76°41′33.202″ N 36°58′29.882″ 小型 2村 否 黄土滑坡 牧道、草场 H12 E 76°41′35.577″ N 36°58′38.621″ 小型 2村 否 黄土滑坡 牧道、草场 H13 E 76°42′11.812″ N 37°1′27.407″ 小型 2村 否 黄土滑坡 牧道、草场、羊圈、房屋 H14 E 76°42′19.082″ N 37°1′30.652 小型 3村 否 黄土滑坡 草场、羊圈 H15 E 76°42′45.054″ N 36°58′44.400″ 小型 2村 否 黄土滑坡 无威胁对象 H16 E 76°43′0.560″ N 37°0′57.006″ 小型 2村 否 黄土滑坡 草场、548县道、羊圈 H17 E 76°43′36.918″ N 36°58′40.910″ 小型 2村 否 黄土滑坡 草场、548县道 H18 E 76°43′47.959″ N 37°1′27.517″ 小型 3村 否 黄土滑坡 草场、林场、道路 H19 E 76°44′14.263″ N 37°0′12.923″ 小型 2村 否 黄土滑坡 草场、548县道 H20 E 76°44′31.332″ N 37°0′16.100″ 小型 2村 否 黄土滑坡 548县道、草场 H21 E 76°44′52.247″ N 37°0′14.915″ 小型 2村 否 黄土滑坡 羊圈、草场 H22 E 76°45′1.308″ N 37°0′28.603″ 小型 2村 否 黄土滑坡 草场、河道 -
黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433−454. HUANG Runqiu. Large-scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433−454.
廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014. LIAO Mingsheng, WANG Teng. Time Series InSAR Technology and Applications[M]. Beijing: Science Press, 2014.
栗明明, 王艳利. 基于时序InSAR技术的地表形变监测技术研究[J]. 工程勘察, 2021, 49(7): 60−67. LI Mingming, WANG Yanli. Research on Ground Deformation Monitoring Based on Time Series InSAR[J]. Geotechnical Investigation & Surveying,2021,49(7):60−67.
李万林, 周英帅. 基于D-InSAR技术的地质灾害和监测预警[J]. 测绘工程, 2021, 30(1): 66−70. LI Wanlin, ZHOU Yingshuai. Early Warning and Monitoring of Geohazards Based on D-InSAR Technology[J]. Engineering of Surveying and Mapping,2021,30(1):66−70.
李晓恩, 周亮, 苏奋振, 等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 2021, 25(2): 614−629. doi: 10.11834/jrs.20209297 LI Xiao’en, ZHOU Liang, SU Fenzhen, et al. Application of InSAR Technology in Landslide Hazard: Progress and Prospects[J]. National Remote Sensing Bulletin,2021,25(2):614−629. doi: 10.11834/jrs.20209297
孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(3): 96−107. SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Progress in Geological Hazard Investigation and Research in Loess Regions of Western China[J]. Northwestern Geology,2022,55(3):96−107.
许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 957−966. XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warining System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957−966.
许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534−1551. XU Qiang, ZHENG Guang, LI Weile, et al. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology,2018,26(6):1534−1551.
杨迁, 王雁林, 马园园. 2001~2019年中国地质灾害分布规律及引发因素分析[J]. 地质灾害与环境保护, 2020, 31(4): 43−48. YANG Qian, WANG Yanlin, MA Yuanyuan. Distribution Rule and Influencing Factors of Geological Disasters from 2001 to 2019 in China[J]. Geological Hazards and Environmental Protection,2020,31(4):43−48.
杨成生, 李晓阳, 张勤, 等. 基于InSAR技术的尼泊尔辛杜帕尔乔克区震后滑坡监测与分析[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1684−1696. YANG Chengsheng, LI Xiaoyang, ZHANG Qin, et al. Monitoring and Analysis of Post-Earthquake Landslide in Sindhu-palchowk District, Nepal Based on InSAR Technology[J]. Geomatics and Information Science of Wuhan University,2023,48(10):1684−1696.
杨明远, 李鑫, 徐登峰. 新疆叶城县西合休乡西合休村崩塌泥石流地质灾害特征[J]. 中国金属通报, 2021, (5): 212−213. YANG Mingyuan, LI Xin, XU Dengfeng. Geological Disaster Characteristics of Collapse and Debris Flow in Xihexiu Village, Xihexiu Township, Yecheng Country, Xinjiang[J]. China Metal Bulletin,2021(9):212−213.
张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别-以四川丹巴为例[J]. 武汉大学学报: 信息科学版, 2018, 43(12): 2039−2049. ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early Identification of Landslide Hazards in Western Mountainous Areas Based on Time Series InSAR Analysis: A case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University,2018,43(12):2039−2049.
朱建军, 胡俊, 李志伟, 等. InSAR滑坡监测研究进展[J]. 测绘学报, 2022, 51(10): 2001−2019. ZHU Jianjun, HU Jun, LI Zhiwei, et al. Recent Progress in Landslide Monitoring with InSAR[J]. Acta Geodaetica et Cartographica Sinica,2022,51(10):2001−2019.
Berardino P, Fornaro G, Lanari R. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferometry[J]. IEEE Transaction on Geoscience and Remote Sensing,2002,11(40):2375−2383.
Feng G C, Hetland E A, Ding X L, et al. Coseismic fault slip of the 2008 Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements[J]. Geophysical Research Letters, 2010, 37(1).
Zebker H A, Rosen P A, Goldstein R M, et al. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake[J]. Journal of Geophysical Research Solid Earth,2002,99(B10):19617−19634.