ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    基于改进的水位昼夜波动法的小时尺度潜水蒸散发研究

    贾伍慧, 尹立河, 刘凯, 余堃, 杨海博, 董佳秋, 张俊

    贾伍慧,尹立河,刘凯,等. 基于改进的水位昼夜波动法的小时尺度潜水蒸散发研究[J]. 西北地质,2025,XX(XX):1−11. doi: 10.12401/j.nwg.2024087
    引用本文: 贾伍慧,尹立河,刘凯,等. 基于改进的水位昼夜波动法的小时尺度潜水蒸散发研究[J]. 西北地质,2025,XX(XX):1−11. doi: 10.12401/j.nwg.2024087
    JIA Wuhui,YIN Lihe,LIU Kai,et al. Research on Hour-scale Groundwater Evapotranspiration Based on Modified Method of Diurnal Water Table Fluctuation[J]. Northwestern Geology,2025,XX(XX):1−11. doi: 10.12401/j.nwg.2024087
    Citation: JIA Wuhui,YIN Lihe,LIU Kai,et al. Research on Hour-scale Groundwater Evapotranspiration Based on Modified Method of Diurnal Water Table Fluctuation[J]. Northwestern Geology,2025,XX(XX):1−11. doi: 10.12401/j.nwg.2024087

    基于改进的水位昼夜波动法的小时尺度潜水蒸散发研究

    基金项目: 中国地质科学院基本科研业务费专项“滨海城市地下空间适宜性敏感因素与评价体系研究”(JKY202404),陕西省重点研发计划“黄河流域(陕西段)生态安全格局构建、评价与风险管控关键技术研究”(2021ZDLSF05-01),国家自然科学基金“旱区河岸带依赖地下水的胡杨夜间用水的驱动力、水分来源及其作用机制研究”(42302301),陕西省自然科学基础研究计划“深层黏性土三维微观结构及渗流特性对应力变化的响应”(2022JQ-238)联合资助。
    详细信息
      作者简介:

      贾伍慧(1992−),男,工程师,主要从事水文地质方向。E−mail:jiawh@cags.ac.cn

      通讯作者:

      尹立河(1977−),男,博士,主要从事水文地质方向。E−mail:ylihe@cgs.cn

    • 中图分类号: P641.2

    Research on Hour-scale Groundwater Evapotranspiration Based on Modified Method of Diurnal Water Table Fluctuation

    • 摘要:

      基于水位昼夜波动计算潜水蒸散发(ETG)的方法应用广泛,但已有的水位昼夜波动法忽略了夜间地下水对毛细水的补给,低估了地下水侧向补给量,从而低估了ETG。本次研究提出考虑夜间毛细水恢复速率的改进方法,并结合一维饱和非饱和水流模型(HYDRUS-1D)和野外实测数据对改进方法进行了验证。结果显示:基于模型的不同土质条件下,Loheide方法的相对误差均大于45%,且误差随实际ETG与水位埋深的增大而增大;而改进方法的计算精度明显提高,相对误差均小于4%。结合实测数据的验证中,改进方法计算的小时尺度ETG与潜在蒸散发具有更好的相关性。上述结果表明,改进方法显著提升了小时尺度ETG的计算精度,可有效应用于半干旱地区小时尺度潜水蒸散发计算,为定量研究地下水与植物生态的相互关系提供了技术支撑。

      Abstract:

      Groundwater evapotranspiration (ETG) is widely estimated using methods based on diurnal water table fluctuations. However, these methods fail to account for the recharge of capillary water by groundwater at night, which results in an underestimation of ETG due to the underestimated lateral recharge of groundwater. This study proposes a modified method that takes into account the capillary water recovery rate at night. HYDRUS-1D, a one-dimensional saturated unsaturated flow model, and field measurements are used to evaluate the modified method. Results demonstrate that the relative errors of the Loheide method are all larger than 45% under various soil conditions based on the model. The errors rise as the water table depth and real ETG both rise. The modified method significantly improves estimation accuracy, with an error of less than 4%. The hour-scale ETG estimated by the modified method shows a stronger association with potential evapotranspiration in the validation of the measured data. According to the above results, the modified method considerably raises the hour-scale ETG calculation accuracy. It can also be applied successfully to hour-scale ETG calculations in semi-arid areas, offering technical support for quantitative studies on the connection between groundwater and plant ecology.

    • 图  1   概念模型示意图(a),模型中小时尺度潜在蒸散发(ETP)(b)和模型根系垂向分布率(c)

      Figure  1.   A schematic of the conceptual model (a), the hourly variations of potential ET (ETp) (b) and the vertical root distributions in the model (c)

      图  2   模型中不同土质的水位埋深变化(a)和模型中砂质壤土剖面不同深度的土壤含水率变化(b)

      Figure  2.   Water table hydrographs in different soil textures (a) and soil moisture at various depths for sandy loam in the model (b)

      图  3   砂质壤土中25~29天不同方法计算的地下水恢复速率(a)和毛细水亏缺量变化速率与地下水恢复速率的低估值(Er)(b)

      Figure  3.   The groundwater recovery rate estimated by different methods (a) and the variation rate of capillary water deficit and Er during days 25-29 for sandy loam (b)

      图  4   砂质壤土中第28~30天不同方法计算结果与实际蒸散发的对比(a)和不同方法计算结果的日平均误差随水位埋深的变化(b)

      Figure  4.   Comparison of actual ETG and the ETG estimated by different methods during days 28-30 (a) and the variation of the daily mean error with the DWT estimated by different methods for sandy loam (b)

      图  5   研究区地质简图

      Figure  5.   Geological sketch map of the study area

      图  6   实测水位埋深与不同深度的土壤含水率(a),毛细水亏缺量恢复速率与地下水恢复速率的低估值(Er)(b),气温与露点(c)和Loheide方法、改进方法的ETG与ETP的对比(d)

      Figure  6.   Measured DWT and soil moistures (a); the variation rate of capillary water deficit and Er (b); air temperature and dew point (c); Comparison of potential ET and the ETG estimated by the Loheide method and modified method (d)

      图  7   Loheide方法、改进方法的计算结果分别与潜在蒸散发的相关性分析

      Figure  7.   The correlation between potential ET and the ETG estimated by the Loheide method and modified method, respectively

      表  1   模型中各类土质的水力参数

      Table  1   Hydraulic parameters of each soil used in the model

      土质类型 $ {\mathrm{\theta }}_{\mathrm{s}} $ $ {\mathrm{\theta }}_{\mathrm{r}} $ $ \mathrm{\Phi } $ (1/cm) n Ks (cm/h)
      砂土 0.43 0.045 0.145 2.68 29.70
      壤质砂土 0.41 0.057 0.124 2.28 14.59
      砂质壤土 0.41 0.065 0.075 1.89 4.42
      壤土 0.43 0.078 0.036 1.56 1.04
      粉质黏土 0.36 0.07 0.005 1.09 0.02
      下载: 导出CSV

      表  2   不同方法计算结果与实际值的均方根误差(RMSE)和纳什系数(NSE)

      Table  2   The RMSE and NSE of ETG-A and ETG-L estimated by different methods for each soil

      ETG-L与ETG-A ETG-M与ETG-A
      RMSE (mm/h) NSE RMSE (mm/h) NSE
      砂土 0.05 0.56 0.02 0.93
      壤质砂土 0.08 0.46 0.01 0.98
      砂质壤土 0.16 0.17 0.02 0.99
      壤土 0.28 −0.14 0.04 0.98
      下载: 导出CSV

      表  3   研究场地平均土壤水力参数

      Table  3   Hydraulic parameters of the soil in the field site

      $ {\theta }_{s} $$ {\theta }_{r} $$ \Phi $ (1/cm)nKs (cm/h)
      0.3600.0540.0282.6829.4
      下载: 导出CSV
    • 阿拉木萨, 蒋德明, 骆永明. 植物根系水力提升作用研究进展综述[J]. 干旱区研究, 2008 (02): 236-241.

      A Lamusa, JIANG Deming, LUO Yongming. Review on Study Progress of Hydraulic Lift in Plant Roots[J]. Arid Zone Research, 2018, (2): 236-241.

      陈伟涛, 孙自永, 王焰新, 等. 论内陆干旱区依赖地下水的植被生态需水量研究关键科学问题[J]. 地球科学(中国地质大学学报), 2014, 39(9): 1340−1348.

      CHEN Weitao, SUN Ziyong, WANG Yanxin, et al. Major Scientific Issues on Water Demand Studying for Groundwater- Dependent Vegetation Ecosystems in Inland Arid Regions[J]. Earth Science (Journal of China University of Geosciences),2014,39(9):1340−1348.

      党学亚, 张俊, 常亮, 等. 西北地区水文地质调查与水资源安全[J]. 西北地质, 2022, 55(03): 81−95.

      DANG Xueya, ZHANG Jun, CHANG Liang, et al. Hydrogeological Survey and Water Resources Security in Northwest China[J]. Northwestern Geology,2022,55(03):81−95.

      郭雯, 卢玉东, 卢阳春, 等. 基于Hydrus-1d模型的干旱区绿洲灌溉入渗研究[J]. 水电能源科学, 2020, 38(08): 129−132+90.

      GUO Wen, LU Yudong, LU Yangchun, et al. Simulation of irrigation infiltration in arid oasis based on Hydrus-1d model[J]. Water Resources and Power,2020,38(08):129−132+90.

      李洪波, 侯光才, 尹立河, 等. 基于改进White方法的地下水蒸散发研究[J]. 地质通报, 2012, 31(6): 989−993.

      LI Hongbo, HOU Guangcai, YIN Lihe, et al. Using the improved White method to quantify groundwater evapotranspiration[J]. Geological Bulletin Of China,2012,31(6):989−993.

      李文鹏, 王龙凤, 杨会峰, 等. 华北平原地下水超采状况与治理对策建议[J]. 中国水利, 2020(13): 26−30.

      LI Wenpeng, WANG Longfeng, YANG Huifeng, et al. The groundwater overexploitation status and countermeasure suggestions of the North China Plain[J]. China Water Resources,2020(13):26−30.

      宁世雄, 田华, 黄金廷, 等. 基于改进的White方法计算地下水蒸散发[J]. 河南科技, 2018(32): 62−64.

      NING Shixiong, TIAN Hua, HUANG Jinting, et al. Estimation of groundwater evapotranspiration based on improved White method[J]. Henan Science and Technology,2018(32):62−64.

      孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别: 研究进展、面临挑战及未来研究展望[J]. 地质科技通报, 2020, 39(1): 11−20.

      SUN Ziyong, WANG Junyou, GE Mengyan, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation: Pro-gress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology,2020,39(1):11−20.

      王平, 张学静, 王田野, 等. 计算干旱区地下水依赖型植物蒸散发的White法评述[J]. 地理科学进展, 2018, 37(9): 1159−1170. doi: 10.18306/dlkxjz.2018.09.001

      WANG Ping, ZHANG Xuejing, WANG Tianye, et al. A review of the White method for the estimation of evapotranspiration from phreatophytes in arid areas[J]. Progress in Geography,2018,37(9):1159−1170. doi: 10.18306/dlkxjz.2018.09.001

      王韦娜, 张翔, 张立锋, 等. 蒸渗仪法和涡度相关法测定蒸散的比较[J]. 生态学杂志, 2019, 38(11): 3551−3559.

      WANG Weina, ZHANG Xiang, ZHANG Lifeng, et al. A comparison study of the evapotranspiration measured by lysimeter and eddy covariance[J]. Chinese Journal of Ecology,2019,38(11):3551−3559.

      王晓勇, 尹立河, 戴泽兵, 等. 鄂尔多斯盆地海流兔河流域地表蒸散发研究[J]. 西北地质, 2014, 47(01): 244−248.

      WANG Xiaoyong, YIN Lihe, DAI Zebing, et al. A Study of Evapotranspiration in Hailiutu River Basin, Ordos[J]. Northwestern Geology,2014,47(01):244−248.

      王旭升, 尹立河, 方坤, 等. 鄂尔多斯浩勒报吉水源地开采地下水的环境影响分析[J]. 水文地质工程地质, 2019, 46(02): 5−12.

      WANG Xusheng, YIN Lihe, FANG Kun, et al. Inspection and assessment of the environmental impacts of groundwater exploitation at the Haolebaoji wellfield in Inner Mongolia[J]. Hydrogeology and Engineering Geology,2019,46(02):5−12.

      王宇祥, 刘廷玺, 段利民, 等. 基于Hydrus-1D模型的科尔沁沙地沙丘-草甸相间区土壤水分动态模拟[J]. 中国沙漠, 2020, 40(02): 195−205.

      WANG Yuxiang, LIU Tingxi, DUAN Limin, et al. Dynamic law of soil moisture in Horqin Sand Dune-Meadow Area based on Hydrus-1D Model and its applicability evaluation[J]. Journal of Desert Research,2020,40(02):195−205.

      魏晓妹, 降亚楠. 西北灌区地下水资源开发利用研究进展及发展趋势[J]. 水利与建筑工程学报, 2019, 17(06): 1−10.

      WEI Xiaomei, JIANG Yanan. Recent progress in the development and utilization of groundwaterresources in northwestern irrigation districts[J]. Journal of Water Resources and Architectural Engineering,2019,17(06):1−10.

      张平, 吴昊, 殷洪建, 等. 土层结构对毛细水上升高度和地下水蒸发影响的研究[J]. 节水灌溉, 2011(03): 6−8.

      ZHANG Ping, WU Hao, YIN Hongjian, et al. Research on influence of construction of soil layer on height of capillary water upward movement and evaporation of groundwater[J]. Water Saving Irrigation,2011(03):6−8.

      张瑞文, 赵成义, 王丹丹, 等. 极端干旱区不同水分条件下胡杨林生态耗水特征[J]. 水土保持学报, 2019, 33(04): 270−278.

      ZHANG Ruiwen, ZHAO Chengyi, WANG Dandan, et al. Ecological water consumption characteristics of populus euphratica forest under different water conditions in extremely arid area[J]. Journal of Soil and Water Conservation,2019,33(04):270−278.

      赵亚迪, 刘永和, 李建林, 等. 1960-2013年中国地表潜在蒸散发时空变化及其对气象因子的敏感性[J]. 沙漠与绿洲气象, 2018, 12(03): 1−9.

      ZHAO Yadi, LIU Yonghe, LI Jianlin, et al. Spatial and Temporal Variation of Potential Evapotranspiration and Its Sensitivity to Meteorological Factors in China from 1960 to 2013[J]. Desert and Oasis Meteorology,2018,12(03):1−9.

      冯嘉兴, 蒙琪, 王茜. 黑河干流中游地区近40年来地下水环境变化特征及其成因[J]. 西北地质, 2023, 56(04): 243−253.

      FENG Jiaxing, MENG Qi, WANG Xi. Characteristics and Causes of Groundwater Environment Changes in the Middle Reaches of the Mainstream of the Heihe River in Recent 40 Years[J]. Northwestern Geology,2023,56(04):243−253.

      Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M]. Rome: FAO Irrigation and Drainage Paper 56. 1998.

      Chatzithomas C D, Alexandris S G. Solar radiation and relative humidity based, empirical method, to estimate hourly reference evapotranspiration[J]. Agricultural Water Management,2015,152:188−197. doi: 10.1016/j.agwat.2015.01.019

      Cheng D, Duan J, Qian K, et al. Groundwater evapotranspiration under psammophilous vegetation covers in the Mu Us Sandy Land, northern China[J]. Journal of Arid Land,2017,9(1):98−108. doi: 10.1007/s40333-016-0095-7

      Csafordi P, Szabo A, Balog K, et al. Factors controlling the daily change in groundwater level during the growing season on the Great Hungarian Plain: a statistical approach[J]. Environmental Earth Sciences,2017,76(20):675. doi: 10.1007/s12665-017-7002-1

      Duke H R. Capillary properties of soils-influence upon specific yield[J]. Transactions of the ASAE,1972,15(4):688−691. doi: 10.13031/2013.37986

      Glanville K, Sheldon F, Butler D, et al. Effects and significance of groundwater for vegetation: A systematic review[J]. Science of the Total Environment,2023,875:162577. doi: 10.1016/j.scitotenv.2023.162577

      Gribovszki Z. Diurnal method for evapotranspiration estimation from soil moisture profile[J]. Acta Silvatica et Lignaria Hungarica,2014,10(1):67−75. doi: 10.2478/aslh-2014-0005

      Gribovszki Z, Kalicz P, Szilágyi J, et al. Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations[J]. Journal of Hydrology,2008,349(1-2):6−17. doi: 10.1016/j.jhydrol.2007.10.049

      Huang J, Wang J, Zhou Y, et al. A dynamic harmonic regression approach to estimating groundwater evapotranspiration based on diurnal groundwater-level fluctuations[J]. Hydrogeology Journal, 2023.

      Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia,1996,108(3):389−411. doi: 10.1007/BF00333714

      Jia W, Yin L, Zhang M, et al. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations[J]. Journal of Arid Land, 2021.

      Lautz L K. Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone[J]. Hydrogeology Journal,2008,16(3):483−497. doi: 10.1007/s10040-007-0239-0

      Loheide S P. A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations[J]. Ecohydrology,2008,1(1):59−66. doi: 10.1002/eco.7

      Loheide S P, Butler J J, Gorelick S M. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment[J]. Water Resources Research,2005,41(7):1−14.

      Nachabe M, Shah N, Ross M, et al. Evapotranspiration of two vegetation covers in a shallow water table environment[J]. Soil Science Society of America Journal,2005,69(2):492−499. doi: 10.2136/sssaj2005.0492

      Riley J W, Pangle L A, Aulenbach B T. Evaluating the spatial and temporal variability of groundwater uptake by riparian vegetation in a humid southeastern US catchment[J]. Ecohydrology,2023,16(3):e2520. doi: 10.1002/eco.2520

      Scott M L, Lines G C, Auble G T. Channel incision and patterns of cottonwood stress and mortality along the Mojave River, California[J]. Journal of Arid Environments,2000,44(4):399−414. doi: 10.1006/jare.1999.0614

      Shah N, Nachabe M, Ross M. Extinction depth and evapotranspiration from ground water under selected land covers[J]. Ground Water,2007,45(3):329−338. doi: 10.1111/j.1745-6584.2007.00302.x

      Šimůnek J, Genuchten M T, Šejna M. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal,2008,7(2):586−600.

      Snyder K A, Williams D G. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona[J]. Agricultural and Forest Meteorology,2000,105(1):227−240.

      van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892−898. doi: 10.2136/sssaj1980.03615995004400050002x

      Wang P, Pozdniakov S P. A statistical approach to estimating evapotranspiration from diurnal groundwater level fluctuations[J]. Water Resources Research,2014,50(3):2276−2292. doi: 10.1002/2013WR014251

      Wang T, Yu J, Wang P, et al. Estimating groundwater evapotranspiration by phreatophytes using combined water level and soil moisture observations[J]. Ecohydrology,2019,12(5):e2092. doi: 10.1002/eco.2092

      White W N. A Method of Estimating Ground-water Supplies based on Discharge by Plants and Evaporation from Soil: Results of Investigations in Escalante Valley, Utah[M]. U. S. Geol. Surv. Water Supply Pap. 659-A. Washington D. C., U. S.: United States Government Printing Office, 1932.

      Yin L, Zhou Y, Ge S, et al. Comparison and modification of methods for estimating evapotranspiration using diurnal groundwater level fluctuations in arid and semiarid regions[J]. Journal of Hydrology,2013,496:9−16. doi: 10.1016/j.jhydrol.2013.05.016

      Yue W, Wang T, Franz T E, et al. Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by riparian vegetation in a semiarid area[J]. Water Resources Research,2016,52(3):1948−1960. doi: 10.1002/2015WR017546

    图(7)  /  表(3)
    计量
    • 文章访问数:  37
    • HTML全文浏览量:  6
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-10
    • 修回日期:  2024-03-26
    • 录用日期:  2024-09-09
    • 网络出版日期:  2024-09-22

    目录

      /

      返回文章
      返回