ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义

查显锋, 黄博涛, 罗克勇, 孙吉明, 关冲, 王欣

查显锋,黄博涛,罗克勇,等. 北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义[J]. 西北地质,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
引用本文: 查显锋,黄博涛,罗克勇,等. 北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义[J]. 西北地质,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
ZHA Xianfeng,HUANG Botao,LUO Keyong,et al. Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
Citation: ZHA Xianfeng,HUANG Botao,LUO Keyong,et al. Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091

北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义

基金项目: 中国地质调查局项目“东天山–北山成矿带区域地质调查”(DD20240029),“东天山–北山造山带区域地质调查”(DD20221636-1)和陕西省自然科学基金项目(2023-JC-YB-249)联合资助。
详细信息
    作者简介:

    查显锋(1984−),博士,高级工程师,主要从事构造地质和区域地质调查工作。E−mail:zha_xianfeng@126.com

  • 中图分类号: P581

Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt

  • 摘要:

    北山造山带位于中亚造山带南缘,对该带内原先划定的“前寒武系”的准确厘定或解体对理解造山带属性和构造演化过程认识具有重要意义。笔者对瓜州潘家井子一带原划定的敦煌岩群开展区域地质调查,表明其为变粒岩、浅粒岩、变质砾岩及少量斜长角闪岩和黑云石英片岩等组成的一套具有强变形、低级变质的变火山–碎屑岩。获得灰白色变粒岩、云母石英片岩和浅粒岩的锆石U-Pb年龄为294~285 Ma,同时还获得变质砾岩中花岗质砾石中锆石的最小U-Pb年龄为(272±6)Ma,未发现古老年代学信息,表明该套变质火山–碎屑岩形成时代不早于中二叠世。变质基性火山岩具有拉斑玄武岩地球化学特征,呈略微右倾的稀土元素配分模式,显示出高TiO2、Na2O含量,明显的Nb-Ta亏损特征,类似于弧玄武岩特征。结合本次研究成果和区域地质特征认为,潘家井子一带原划定的“敦煌岩群”应厘定为二叠纪变火山碎屑岩,形成于早—中二叠世俯冲作用相关的局部伸展构造环境。

    Abstract:

    The Beishan Orogenic Belt, located at the southern margin of the Central Asian Orogenic Belt, is important for understanding the tectonic affinity and evolutionary history, in terms of the accurate determination or disintegration of the namely Precambrian basement rocks. The originally defined Dunhuang Group in Panjiajingzi area is composed mainly of leptynite, leptite, meta-conglomerate, minor amphibolite, and mica quartz schist, and is characterized by strong deformation and low-grade metamorphosed pyroclastic rocks, based on regional geological investigation. Zircon U-Pb ages of 294~285 Ma for leptynite, mica quartz schist, and leptite samples, as well as the minimum age of (272±6) Ma for gravel sample from meta-conglomerate have been obtained with no ancient geochronological information. All these dating data indicate that these mata pyroclastic rocks were deposited later than Middle Permian. In addition, the meta basic volcanic samples have high TiO2 and Na2O contents with obvious Nb-Ta trough, and display right-sloping chondrite-nomalized REE patterns, resembling that of the arc basalts. Combining our data and regional geology, it is reasonable to believe that these meta pyroclastic rocks were formed in a local extension setting during the subduction process during Early to Middle Permian, and thus these rocks should be disintegrated from the Dunhuang Group.

  • 煤炭是中国最主要能源之一,预计至2030年,其生产及消费总量将占据中国能源总量一半以上(郭贤才,1990全国煤化工信息站,2014“能源领域咨询研究”课题组,2015Xie,2022)。陕西省煤炭矿产资源丰富,含煤面积5.7×104 km2,探明储量1700×108 t,其中榆神府矿区探明的煤炭资源量高达2236亿t,所占比例约为全国探明煤炭资源量的30%(唐涛,2011曹虎麒,2015Liu et al,2022)。近年来,随着煤炭资源的开发强度增加,地层形变产生导水裂隙带、冒落带,破坏含(隔)水层,诱发上覆含水层地下水下渗至矿井,产生矿井突(涌)水风险(侯恩科等,1994伊茂森,2008申涛等,2011Xu et al.,2020杜臻等,2023)。因此,预测分析矿井涌水量,对煤炭安全生产具有重要的现实意义。

    煤层开采产生的冒落带、裂隙带和弯曲变形带,会直接或间接影响上覆含(隔)水层,威胁煤矿安全生产(冯立等,2023)。当煤层上覆多个含(隔)水层时,准确识别矿井涌水的来源,对煤矿制定合理的防治水对策,具有重要的参考意义。目前,矿井涌水量预测包括大井法、比拟法、数值模拟法等。其中,数值模拟方法基于求解地下水运动的动力学方程,具有明确的物理含义,在矿井涌水量预测中得到广泛应用。例如,冯更辰等(2011)利用Visual Modflow对白涧铁矿区进行矿井涌水量预测研究,结果表明该矿区主要受到奥灰含水层岩溶水的影响。冯书顺等(2016)对比数值模拟与大井法预测三江平原某矿井涌水量,发现数值法能够再现实际观测的涌水量。杨彦利等(2018)利用Visual Modflow模拟邯郸陶二煤矿伏青灰岩含水层对该矿2#煤层的涌水量并进行有效的预测。张保建(2015)利用数值法同时考虑白垩系孔隙裂隙含水层、直罗组裂隙承压含水层对矿井涌水的影响,预测分析了东胜煤田田台格庙勘查区矿井涌水量。众多学者采用数值法对涌水量预测研究进行了有益的探索,但是所建立的模型范围多局限于矿井周围,这使得模型边界条件概化及矿井内含水层与外侧水量交换具有很大的不确定性。基于此,笔者以神南矿区3个相邻的柠条塔煤矿、红柳林煤矿和张家峁煤矿(红柠张煤矿)作为研究区,综合考虑到区域水文地质条件,采用数值法预测分析其矿井涌水量,解决模型边界条件概化及矿井内含水层与外侧水量交换不够确定的问题,以期为煤炭开采的矿井涌水防控提供科学依据。

    神南矿区位于陕北侏罗纪煤田神木北部矿区的南部,总面积约为440 km2,煤炭总资源量约为67亿t,由3个相邻的各持有独立矿权的煤矿组成,分别为柠条塔煤矿、张家峁煤矿和红柳林煤矿。矿区西部为榆神府勘查区,北部与朱盖塔井田相邻,东北部与孙家岔、张家沟井田相邻,东南部隔乌兰木伦河与新民普查区相望,南部与榆神矿区的锦界井田和凉水井井田相邻。

    研究区地层由老至新分别为侏罗系中统延安组(J2y)、直罗组(J2z)、安定组(J2a)、新近系保德组(N2b)、第四系中更新统离石组(Qpl)、上更新统萨拉乌苏组(Qps)、马兰组(Qpm)、全新统冲积层(Qhal)和风积沙(Qheol)地层。

    按地下水赋存条件,研究区含水层分为新生界松散层孔隙潜水和中生界碎屑岩裂隙潜水及基岩裂隙承压水两大类。新生界松散层孔隙水包括冲积层孔隙潜水、马兰黄土孔隙裂隙潜水、萨拉乌苏组冲积湖积孔隙潜水、离石黄土孔隙裂隙潜水。中生界基岩裂隙承压含水层包括安定组基岩裂隙水、直罗组砂岩裂隙水、延安组基岩裂隙潜水和承压水。除以上两大类含水层外,还有烧变岩裂隙孔洞潜水含水层,其分布于乌伦木兰河、勃牛川、考考乌素沟及较大的支沟沟谷两岸厚煤层露头区。区内新近系上新统保德组黏土为隔水层,分布不连续。

    地下水主要接受大气降水入渗补给,补给量受降水量、降水强度、降水形式、地形地貌、含水层岩性等多种因素制约。区内多年来年平均降水量为434.10 mm,集中于7~9月。沙漠滩地区地形平缓,透水性好,有利于入渗补给,入渗系数为0.20~0.30,黄土丘陵区,地形破碎,沟谷坡度大,入渗系数一般小于0.10,侏罗系烧变岩带岩石破碎,孔隙裂隙发育,接受降水补给条件较好。区内地表分水岭与地下分水岭基本一致,地下水接受入渗补给之后向河谷区和洼地区运移。径流速度取决于含水层岩性及水力坡度(5‰~10‰)。沙漠区地下水汇流相对集中平缓,黄土沟谷梁峁区地下水流向分散,基岩承压水以区域侧向补给为主。河流基流排泄和潜水蒸发为地下水的主要排泄方式。

    研究区东以窟野河和乌兰木伦河为界,西为秃尾河与榆溪河流域分水岭,南部为垂直等水位线边界,北部取陕蒙行政分界线,南北长,东西宽,面积为8995 km2。研究区南部垂直地下水流线,西部为榆溪河和秃尾河分水岭,概化为零流量边界;北边界有来自东北方向的地下水侧向径流补给,概化流量边界;东边界取乌兰木伦河和窟野河,概化为水头边界;模型区的顶面为潜水面,在该面上发生着降水入渗、潜水蒸发等垂向水交换作用,概化为潜水面边界;模拟区底面为侏罗系延安组泥岩,概化为隔水边界(图1)。

    图  1  研究区边界示意图
    Figure  1.  Map showing the model boundary

    根据含隔水层及煤矿开采情况,将模拟区概化为7层,由上至下分别为第四系含水岩组、保德组红黏土隔水层、洛河组砂岩含水岩组、侏罗系中统安定组弱透水层、直罗组碎屑岩风化裂隙含水层、侏罗系中统延安组弱透水层及煤层。模拟范围内各含水岩组在平面上有不同程度的缺失,数值模型中要求每个模型层应延伸至边界,当其对应的实际地层在某个位置缺失时,根据缺失情况从相邻地层中分割出相应部分使得该模型层在该位置连续分布。

    白垩系含水层和直罗组含水层侧向流补给量按达西定律计算$ \left( { \mathrm{Q}=\mathrm{K}\dfrac{\mathrm{\Delta }\mathrm{H}}{\mathrm{\Delta }\mathrm{L}} } \right) $,其中,水位来自与相应含水层的地下水动态观测孔。计算得到白垩系和直罗组含水层边界流速分为0.0003995 m/d和0.0000935 m/d。渗流面积按结构模型直罗组厚度确定。

    降水入渗是研究区潜水含水层主要补给来源(韩朝辉等,2023),但其入渗量不仅与降雨量有关,还与研究区地形地貌、岩性、潜水埋深、包气带含水量等因素有关。研究区属于干旱–半干旱气候,年降雨量较小,入渗主要受地形及岩性影响。根据数值模拟区的包气带岩性结构,结合降水入渗系数的经验值,将模拟区降水入渗系数分为4个区(图2),对每个区进行赋值,最终每个区入渗系数和补给强度如表1所示。

    图  2  降水入渗补给系数分区图
    Figure  2.  Distribution of recharge coefficient
    表  1  包气带岩性、入渗系数及入渗补给强度表
    Table  1.  Lithologic character of unsaturated zone, recharge coefficient and recharge intensity
    包气带岩性类型入渗系数降水入渗强度(mm/year)
    风积沙0.23108.4
    萨拉乌苏组沙0.1570.7
    黄土0.1047.2
    基岩0.014.7
    下载: 导出CSV 
    | 显示表格

    根据概化的水文地质概念模型,地下水流系统的数学模型描述为:

    $$ \left\{\begin{array}{l}{S}_{s}\dfrac{\partial H}{\partial t}=\dfrac{\partial }{\partial x}\left(K\dfrac{\partial H}{\partial x}\right)+\dfrac{\partial }{\partial y}\left(K\dfrac{\partial H}{\partial y}\right)+\dfrac{\partial }{\partial z}\left(K\dfrac{\partial H}{\partial z}\right)-{q}_{i}{\delta }_{i} \qquad \qquad \left(x,y,z\right)\in D,t > 0\\ H\left(x,y,z,0\right)={H}_{0}\left(x,y,z\right) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\;\; \left(x,y,z\right)\in D\\ K\dfrac{\partial H}{\partial n}{|}_{{\mathrm{\Gamma }}_{j}}={q}_{j}\left(x,y,z,t\right) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left(x,y,z\right)\in {\mathrm{\Gamma }}_{j},t > 0,j=\mathrm{2,3},4\\ H\left(x,y,z\right){|}_{{\mathrm{\Gamma }}_{1}}=H\left(x,y,z\right) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left(x,y,z\right)\in {\mathrm{\Gamma }}_{1}\\ \left\{\begin{array}{l}H=z\\ \mu \dfrac{\partial H}{\partial t}=K{\left(\dfrac{\partial H}{\partial x}\right)}^{2}+K{\left(\dfrac{\partial H}{\partial y}\right)}^{2}+{\left(\dfrac{\partial H}{\partial z}\right)}^{2}-\left(K+W\right)\dfrac{\partial H}{\partial z}+W\end{array}\right. \qquad 潜水面t > 0\end{array}\right. $$

    式中:$ D $为渗流区域;$ H $为含水层水位标高(m);$ K $为含水层的渗透系数(m/d);$ {S}_{s} $为自由水面以下含水层储水率(1/m);­$ \mu $为潜水含水层在潜水面上的重力给水度;$ W $为潜水面的降水补给量、蒸发排泄量等强度的综合(补给为正,排泄为负)(m/d);$ {H}_{0}\left(x,y,z\right) $为含水层的初始水位(m);$ {\mathrm{\Gamma }}_{1} $为研究区东边界(第一类边界);$ {\mathrm{\Gamma }}_{j} $为研究区南、西、北部边界(第二类边界),j=2,3,4;$ {q}_{j}\left(x,y,z,t\right) $为二类边界的单宽流量(m/d),j=2,3,4;$ n $为渗流区东部、西部、北部边界的法线方向;$ {q}_{i} $为第$ i $个单元的开采强度(1/d);$ {\delta }_{i} $为第$ i $个单元的狄拉克函数。上述数学模型采用地下水数值模拟软件Visual Modflow求解。

    经Visual Modflow计算,J5、J10、J16等各个观测孔计算值与实测值拟合结果见图3。实测水位与模拟水位拟合满足收敛条件,拟合点总体相对误差较小,拟合效果较好,水位误差范围一般在1~2 m。

    图  3  观测孔水位计算值与实测值拟合图
    Figure  3.  Comparison between calculated and observed groundwater level in observation wells

    经Visual Modflow将潜水流场末时刻(图4a)和直罗组流场末时刻的计算值和实测值进行拟合(图4b)。可见,识别期结束时,计算值与实测值拟合整体吻合较好,地下水流动方向一致,符合水动力场特征:总体上由西北部向西南、东北、南3个方向径流。

    图  4  潜水流场(a) 与直罗组流场末时刻拟合图(b)
    Figure  4.  Observation and simulation groundwater flow field of (a) phreatic aquifer and (b) confined aquifer

    红柳林、柠条塔、张家峁矿井涌水量计算结果与实际观测值分别见图5a~图5d所示,各个矿井涌水量的计算值与实测值总体趋势一致,模型识别的总体效果较好。

    图  5  实测与计算矿井涌水量对比图
    a. 柠条塔南翼煤矿2-2煤开采工作面;b. 柠条塔北翼煤矿2-2煤开采工作面;c. 红柳林煤矿4-2煤开采工作面;d. 张家峁煤矿2-2煤开采工作面
    Figure  5.  Observed and calculated mining water

    从拟合情况可以看出,模型经过调试,浅层和深层地下水流场、地下水长观孔动态过程、矿井涌水量的计算等达到了较好的拟合,数值模型可以代表该地区煤矿开采条件下地下水状态与地下水动态过程。对于深部直罗组含水层,虽所模拟的水位个别观测孔差别较大,但宏观趋势与空间分布规律是正确的。因此,本数值模型进行预测分析可行。

    煤矿开采导致地层应力发生变化,会产生冒落带、裂隙带和弯曲变形带,其中冒落带与裂隙带(两带)将对含隔水层渗透系数产生较大的影响。如果“两带”穿透红黏土隔水层,会导致上覆第四系和白垩系含水层地下水下渗,对煤矿安全生产造成影响。因此,预测矿井涌水量,首先预判导水裂隙带的发育规律。根据煤矿实测值确定导水裂隙带高度(表3),预测规划工作面导高(表4)。柠条塔井田导高贯穿直罗组水层,未到达地表,隔水土层未受到破坏(表4)。根据神南矿区柠条塔煤矿、张家峁煤矿和红柳林煤矿的未来3年短期开采规划,红柳林煤矿开采工作面在矿区东部,未影响到直罗组含水层,张家峁煤矿开采也未影响到直罗组含水层。因此,本次仅预测柠条塔煤矿开采对直罗组含水层的影响。根据已有研究结果(陈佩,2016杨志,2019),因煤矿采动,砂岩及粉砂岩的渗透性将增加至原有渗透系数的7.65~15.70倍。考虑柠条塔导水裂隙带高度预测值,本次预测煤矿采掘工作面采用渗透系数增加值的平均值,即柠条塔井田所在区域渗透系数按模型校验结果的11.65倍计算,其他区域渗透系数仍按模型的识别结果。

    表  3  煤矿导水裂隙带高度实测值表
    Table  3.  Measured height of fracture at two mines
    井田工作面主采煤层钻孔号采厚(m)实测导高(m)实测裂采比
    张家峁N152035−2孔85.60165.1129.48
    N152035−2孔95.60165.9029.63
    柠条塔N11122−2孔44.80149.2831.10
    N11142−2孔64.80145.2330.26
    下载: 导出CSV 
    | 显示表格
    表  4  规划工作面导高预测表
    Table  4.  Predicted height of fracture in planning working face
    井田平均采厚(m)发育高度(m)导高顶界埋深(m)导高顶界到达层位
    4−25−24−25−24−25−24−25−2
    柠条塔2.654.4371.55119.61167.84185.96直罗组直罗组
    张家峁3.516.1094.77164.791.6587.90第四系第四系
    红柳林3.34.9389.1133.11119.56141.72安定组直罗组
    下载: 导出CSV 
    | 显示表格

    预测期水均衡结果见表5。预测期地下水总补给量为6.82×105 m3/d,其中降水入渗补给为主要的补给来源;总排泄量为3.09×105 m3/d,河流排泄为主要排泄项。均衡差为5.94×105 m3/d,为正均衡。对比模型识别校验期,水均衡为正均衡缘于矿区水位降至煤层底板,地下水主要向矿区内排泄,河水排泄量大幅衰减。

    表  5  预测期水均衡表
    Table  5.  Water balance in the predicted period
    项 目均衡项均衡量(m3/d)占比
    补给项河流补给3.06×1044.48%
    侧向补给4.79×1030.70%
    降水入渗补给6.47×10594.82%
    总补给量6.82×105100.00%
    排泄项河流排泄3.09×10434.92%
    矿井涌水2.1×1032.37%
    河沟排泄2.82×10431.86%
    蒸散发排泄2.73×10430.85%
    总排泄量3.09×105100.00%
    均衡差 5.94×105 
    下载: 导出CSV 
    | 显示表格

    2023年4月30日直罗组含水层地下水流场预测结果见图6。与模型识别期流场对比发现,预测期煤矿开采并未改变区域地下水水动力条件,即流场总体流向没有明显变化。但由于煤矿开采,在红柳林、张家峁和柠条塔井田边界水力坡度急剧增大,表明直罗组的地下水将向煤矿井田内排泄。

    图  6  预测期直罗组含水层地下水流场图
    Figure  6.  Groundwater contour lines of Zhiluo aquifer groundwater

    矿井涌水量预测结果显示(图7),3个煤矿的涌水量趋势均与拟合数据趋势保持一致,且逐渐减小,这与工作面开采形成采空区后导致含水层的水慢慢疏干后的现象保持一致。

    图  7  矿井涌水量预测结果图
    Figure  7.  Results of predicted mine water inflow in three mines

    在预测模拟模型内建立不同层柠条塔井田的水均衡区,统计柠条塔井田水均衡量(表6),确定矿井涌水量。根据柠条塔井田水均衡统计结果可以看出,柠条塔井田主要以侧向流为主,侧向流入量占总流入量的75.67%,侧向流出量占总流出量的95.18%。由于柠条塔井田直罗组含水层无其他源汇项,水量损失全部为煤矿开采所致的矿井排水,由此确定未来矿井涌水量为117 743.52 m3/d(4905.98 m3/h),其中直罗组砂岩贡献94.82%,2−2煤上覆延安组砂岩贡献2.79%。

    表  6  柠条塔井田水均衡统计表
    Table  6.  Water balance of Ningtiaota coal Mine
    流入项侧向流入量 (m3/d)8758.7975.67%
    下层流入量 (m3/d)2815.7824.33%
    合计 (m3/d)11574.57
    流出项侧向流出量 (m3/d)120404.3895.18%
    流出下层量 (m3/d)6097.924.82%
    合计 (m3/d)126502.30
    均衡差侧向流差值 (m3/d)−111645.6094.82%
    垂向流差值 (m3/d)−3282.142.79%
    合计 (m3/d)−117743.52
    下载: 导出CSV 
    | 显示表格

    (1)笔者采用数值模拟方法,综合考虑了区域水文地质条件,分析并预测了柠条塔煤矿、红柳林煤矿和张家峁煤矿(红柠张煤矿)矿井涌水量,对解决模型边界条件概化及矿井内含水层与外侧水量交换不够确定的问题进行了探讨。

    (2)神府南矿区地下水主要补给来源为大气降水入渗补给,主要排泄项为河流基流排泄。

    (3)根据现有煤矿裂采比监测结果,神府南矿区3个矿井煤矿采动的裂隙发育不会影响至上覆红黏土隔水层,不会对上覆第四系含水层产生直接影响。

    (4)柠条塔煤矿开采直接影响直罗组含水层,贡献达94.82%。

  • 图  1   北山造山带大地构造位置(a) (Şengör et al., 1993) 及区域构造单元划分(b) (据He et al., 2018; Huang et al.,2022修改)

    Ⅰ. 石板山单元;Ⅱ. 双鹰山单元;Ⅲ. 马鬃山单元;Ⅳ. 旱山单元;F1. 柳园蛇绿混杂岩带;F2. 红柳河–洗肠井蛇绿混杂岩带;F3. 石板井–小黄山蛇绿混杂岩带;F4. 红石山蛇绿混杂岩带;1. 新生界;2. 中生界;3. 古生界;4. 花岗岩;5. 蛇绿岩;6. 北山前寒武系;7. 敦煌地块前寒武系;8. 天山前寒武系;9. 阿拉善前寒武系;10. 榴辉岩;11. 断层

    Figure  1.   (a) Tectonic sketch map of the Central Asian Orogenic Belt and (b) simplified outline map of the Beishan Orogenic belt

    图  2   北山造山带南缘潘家井子一带地质图

    1.新近系—第四系;2.二叠纪方山口组晶屑凝灰岩、角砾凝灰岩;3.花岗闪长岩;4.辉长–闪长岩脉;5.变质砾岩;6.二云石英片岩;7.黑云斜长变粒岩;8.灰白色二长浅粒岩;9.灰白色细粒变粒岩;10.斜长角闪岩;11.断层;12.岩相界线;13.低角度构造面理(<30°);14.中角度构造面理(31~60°);15.高角度构造面理(>60°);16.构造线走向及倾向;17.矿物拉伸线理;18.褶皱枢纽;19.变质砾石拉伸线理;20.孢粉化石位置(甘肃省地质矿产局酒泉地质矿产调查队,1993);21.本次研究采样位置

    Figure  2.   Detailed geologic map of the Panjiajingzi area in the south margin of Beishan Orogeny

    图  3   潘家井子一带灰白色变粒岩(a、b)、云母石英片岩(c、d)和灰白色浅粒岩(e、f)的野外露头及显微特征

    Figure  3.   (a, b) Photographs showing the outcrops and mineral assemblages of the gray laptynite, (c, d) mica quartz schist, and (e, f) white-gray leptite

    图  4   潘家井子一带变质火山–碎屑岩变形特征

    a. 岩石成分层(S0)中常褶皱转折端,枢纽近水平;b. 岩石成分层(S0)近水平;c. S1发育不对称褶皱指示右行剪切变形;d. 变质砾岩中砾石定向排列,指示右行走滑构造

    Figure  4.   The deformation characteristics of the mata-volcaniclastic rocks in Panjiajingzi area

    图  5   北山造山带南缘潘家井子一带灰白色变粒岩(a)、云母石英片岩(b)、变火山碎屑岩(c)和花岗质砾石(d)的锆石阴极发光照片

    Figure  5.   Cathodoluminescence (CL) images of representative zircon grains from (a) gray laptynite, (b) mica quartz schist, (c) white-gray leptite, and (d) gravel samples from meta-conglomerate

    图  6   北山造山带南缘潘家井子一带灰白色变粒岩(a)、云母石英片岩(b)、变火山碎屑岩(c)和花岗质砾石(d)的锆石U-Pb年龄谐和图和加权平均年龄(或频率分布图)

    Figure  6.   Zircon U-Pb concordia diagrams and weighted mean ages (or probability density plot) for (a) gray laptynite, (b) mica quartz schist, (c) white-gray leptite, and (d) gravel samples from meta-conglomerate

    图  7   北山造山带南缘潘家井子一带斜长角闪岩和白色变粒岩岩石分类图解

    a. Nb/Y-Zr/TiO2图(Winchester et al., 1977);b. SiO2-FeOT/MgO图(Miyashiro, 1974);柳园杂岩中玄武岩数据来自Santos等(2022)

    Figure  7.   Classification diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

    图  8   北山造山带南缘潘家井子一带斜长角闪岩和白色变粒岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

    原始地幔数值来自Sun等(1989);Cascades弧玄武岩数据来自Schmidt等(2017)

    Figure  8.   (a) Chondrite-normalized REE patterns and (b) primitive mantle normalized trace element spider diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

    图  9   北山造山带南缘潘家井子一带斜长角闪岩的构造环境判别图

    a. Nb/Yb-Th/Yb图解(Smithies et al., 2018);b. Ta/Hf-Th/Hf构造环境判别图(汪云亮等,2001);c. Zr-Th-Nb图解;d. Nb-Zr-Y图解(Meschede, 1986);柳园杂岩中玄武岩数据来自Santos等(2022)

    Figure  9.   Discrimination diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

    表  1   灰白色变粒岩锆石U-Pb年龄数据表

    Table  1   Zircon U-Pb age of grayish-white granulite

    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-7,01 0.05511 0.00349 0.34026 0.02114 0.04480 0.00108 0.01566 0.00058 416 136 297 16 283 7 314 11 2179 3674 0.59
    P1-7,02 0.05338 0.00355 0.33860 0.02208 0.04602 0.00112 0.01413 0.00065 345 143 296 17 290 7 284 13 1621 4160 0.39
    P1-7,03 0.05229 0.00409 0.33106 0.02540 0.04593 0.00120 0.01179 0.00066 298 169 290 19 290 7 237 13 1999 4023 0.50
    P1-7,04 0.05177 0.00436 0.33908 0.02800 0.04752 0.00126 0.01534 0.00071 275 182 297 21 299 8 308 14 2218 3536 0.63
    P1-7,05 0.05072 0.00371 0.32011 0.02303 0.04578 0.00113 0.01640 0.00062 228 161 282 18 289 7 329 12 2543 3869 0.66
    P1-7,06 0.05118 0.00320 0.32132 0.01972 0.04554 0.00108 0.01698 0.00058 249 138 283 15 287 7 340 11 2779 3980 0.70
    P1-7,08 0.05140 0.00296 0.31814 0.01803 0.04490 0.00104 0.01401 0.00049 259 127 281 14 283 6 281 10 2769 4442 0.62
    P1-7,09 0.05153 0.00331 0.31617 0.01993 0.04451 0.00107 0.01520 0.00064 265 141 279 15 281 7 305 13 1476 3523 0.42
    P1-7,10 0.05258 0.00297 0.32363 0.01797 0.04465 0.00103 0.01491 0.00053 311 123 285 14 282 6 299 10 2240 4164 0.54
    P1-7,11 0.05011 0.00411 0.31494 0.02537 0.04559 0.00117 0.01483 0.00064 200 180 278 20 287 7 298 13 1279 2201 0.58
    P1-7,12 0.05159 0.00189 0.32440 0.01174 0.04561 0.00096 0.01504 0.00038 267 82 285 9 288 6 302 7 12006 12518 0.96
    P1-7,13 0.05142 0.00231 0.32398 0.01433 0.04570 0.00100 0.01518 0.00047 260 100 285 11 288 6 305 9 3722 7290 0.51
    P1-7,14 0.05159 0.00239 0.32600 0.01483 0.04584 0.00101 0.01598 0.00051 267 103 287 11 289 6 320 10 2926 6472 0.45
    P1-7,15 0.05087 0.00261 0.31563 0.01594 0.04501 0.00101 0.01451 0.00050 235 114 279 12 284 6 291 10 2906 5935 0.49
    P1-7,16 0.05032 0.00403 0.31594 0.02485 0.04554 0.00118 0.01393 0.00084 210 176 279 19 287 7 280 17 740 2463 0.30
    P1-7,17 0.05153 0.00253 0.32393 0.01561 0.04560 0.00102 0.01537 0.00047 265 109 285 12 287 6 308 9 4122 5959 0.69
    P1-7,18 0.04747 0.00744 0.30427 0.04686 0.04650 0.00168 0.01513 0.00131 72 336 270 36 293 10 304 26 268 629 0.43
    P1-7,19 0.05224 0.00336 0.32335 0.02037 0.04489 0.00108 0.01418 0.00050 296 140 285 16 283 7 285 10 3717 4518 0.82
    P1-7,20 0.05202 0.00338 0.32851 0.02093 0.04581 0.00110 0.01536 0.00060 286 142 288 16 289 7 308 12 2284 4142 0.55
    P1-7,21 0.05650 0.00577 0.35412 0.03537 0.04546 0.00137 0.01717 0.00104 471 212 308 27 287 8 344 21 659 1447 0.46
    P1-7,22 0.05155 0.00350 0.31198 0.02077 0.04389 0.00107 0.01473 0.00051 266 149 276 16 277 7 296 10 3213 3576 0.90
    P1-7,24 0.05755 0.00303 0.36486 0.01884 0.04598 0.00105 0.01793 0.00056 512 112 316 14 290 6 359 11 3553 5181 0.69
    P1-7,25 0.05427 0.00275 0.33646 0.01674 0.04496 0.00101 0.01714 0.00051 382 110 295 13 284 6 344 10 4855 6345 0.77
    P1-7,26 0.05034 0.00392 0.31461 0.02403 0.04532 0.00117 0.01586 0.00078 211 171 278 19 286 7 318 16 1373 2780 0.49
    P1-7,27 0.05343 0.00232 0.33426 0.01426 0.04537 0.00098 0.01623 0.00045 347 95 293 11 286 6 325 9 7294 8820 0.83
    P1-7,28 0.05012 0.00265 0.31793 0.01654 0.04600 0.00104 0.01663 0.00050 201 119 280 13 290 6 333 10 5452 6678 0.82
    P1-7,29 0.05283 0.00318 0.33541 0.01977 0.04604 0.00108 0.01669 0.00063 322 131 294 15 290 7 335 13 2661 5312 0.50
    P1-7,30 0.05180 0.00248 0.31805 0.01497 0.04453 0.00098 0.01578 0.00049 276 106 280 12 281 6 316 10 4687 8088 0.58
    P1-7,32 0.05851 0.00463 0.37709 0.02918 0.04673 0.00124 0.01523 0.00078 549 164 325 22 294 8 306 16 1146 2326 0.49
    P1-7,33 0.05406 0.00986 0.34064 0.06106 0.04569 0.00184 0.01507 0.00117 373 366 298 46 288 11 302 23 493 518 0.95
    P1-7,34 0.05322 0.00213 0.32288 0.01269 0.04399 0.00094 0.01585 0.00042 338 88 284 10 278 6 318 8 11053 12373 0.89
    P1-7,36 0.05147 0.00235 0.31350 0.01408 0.04416 0.00096 0.01492 0.00045 262 102 277 11 279 6 299 9 5778 8519 0.68
    P1-7,37 0.05078 0.00227 0.31596 0.01388 0.04511 0.00098 0.01866 0.00058 231 100 279 11 284 6 374 12 3494 8375 0.42
    P1-7,38 0.05194 0.00244 0.32075 0.01480 0.04477 0.00098 0.01452 0.00041 283 104 283 11 282 6 291 8 7864 7327 1.07
    P1-7,39 0.05203 0.00250 0.32083 0.01511 0.04470 0.00098 0.01578 0.00043 287 106 283 12 282 6 317 9 8145 6810 1.20
    P1-7,40 0.05169 0.00236 0.31645 0.01415 0.04438 0.00096 0.01482 0.00043 272 101 279 11 280 6 297 9 7014 9028 0.78
    P1-7,41 0.06391 0.00294 0.40709 0.01829 0.04618 0.00102 0.01844 0.00061 739 94 347 13 291 6 369 12 3459 7079 0.49
    P1-7,42 0.05210 0.00332 0.32088 0.02003 0.04465 0.00106 0.01562 0.00059 290 139 283 15 282 7 313 12 2509 4130 0.61
    P1-7,43 0.05660 0.00293 0.35966 0.01822 0.04606 0.00104 0.01522 0.00042 475 111 312 14 290 6 305 8 9165 5464 1.68
    P1-7,44 0.05156 0.00307 0.32164 0.01874 0.04522 0.00105 0.01805 0.00065 266 131 283 14 285 6 362 13 2241 4229 0.53
    P1-7,45 0.05355 0.00305 0.33214 0.01853 0.04495 0.00104 0.01631 0.00064 352 123 291 14 284 6 327 13 2311 5079 0.45
    P1-7,46 0.05391 0.00272 0.34290 0.01692 0.04610 0.00103 0.01674 0.00053 367 109 299 13 291 6 336 11 3909 5859 0.67
    P1-7,47 0.05171 0.00253 0.32288 0.01550 0.04525 0.00100 0.01601 0.00044 273 108 284 12 285 6 321 9 8784 6577 1.34
    P1-7,48 0.04928 0.00322 0.30789 0.01973 0.04528 0.00107 0.01600 0.00058 161 146 273 15 286 7 321 11 2651 3793 0.70
    P1-7,49 0.05077 0.00292 0.31240 0.01759 0.04459 0.00102 0.01522 0.00051 230 127 276 14 281 6 305 10 3595 4836 0.74
    P1-7,50 0.05290 0.00617 0.32823 0.03749 0.04497 0.00142 0.01564 0.00087 324 245 288 29 284 9 314 17 997 1325 0.75
    P1-7,51 0.05239 0.00522 0.31956 0.03115 0.04420 0.00128 0.01332 0.00051 302 212 282 24 279 8 268 10 2811 1552 1.81
    P1-7,52 0.05100 0.00337 0.31367 0.02027 0.04456 0.00107 0.01391 0.00065 241 145 277 16 281 7 279 13 1376 3467 0.40
    P1-7,53 0.05037 0.00328 0.31083 0.01984 0.04471 0.00106 0.01538 0.00056 212 144 275 15 282 7 308 11 3160 4148 0.76
    P1-7,54 0.05274 0.00302 0.32534 0.01821 0.04469 0.00103 0.01612 0.00063 318 125 286 14 282 6 323 13 2122 4849 0.44
    P1-7,56 0.05199 0.00289 0.31811 0.01730 0.04433 0.00101 0.01541 0.00051 285 122 280 13 280 6 309 10 3693 4946 0.75
    P1-7,57 0.05023 0.00296 0.31358 0.01811 0.04523 0.00104 0.01504 0.00054 205 131 277 14 285 6 302 11 2923 4358 0.67
    P1-7,58 0.05337 0.00230 0.32096 0.01353 0.04357 0.00093 0.01602 0.00044 345 94 283 10 275 6 321 9 8734 8736 1.00
    P1-7,59 0.05649 0.00280 0.35957 0.01739 0.04611 0.00102 0.01666 0.00049 471 107 312 13 291 6 334 10 6026 5992 1.01
    P1-7,60 0.05168 0.00199 0.33001 0.01243 0.04626 0.00097 0.01706 0.00046 271 86 290 9 292 6 342 9 10769 13004 0.83
    下载: 导出CSV

    表  2   云母石英片岩锆石U-Pb年龄数据表

    Table  2   Zircon U-Pb ages of mica quartz schist

    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-21,03 0.05796 0.00528 0.35597 0.03183 0.04453 0.00127 0.01159 0.00055 528 188 309 24 281 8 233 11 1557 1861 0.84
    P1-21,04 0.05133 0.00357 0.31829 0.02185 0.04496 0.00113 0.01184 0.00049 256 153 281 17 284 7 238 10 1528 2726 0.56
    P1-21,05 0.05728 0.00476 0.36535 0.02979 0.04625 0.00127 0.01325 0.00060 502 174 316 22 291 8 266 12 1352 1925 0.70
    P1-21,06 0.05218 0.00505 0.32843 0.03130 0.04564 0.00128 0.01351 0.00064 293 207 288 24 288 8 271 13 1152 1699 0.68
    P1-21,08 0.05353 0.00377 0.33787 0.02344 0.04577 0.00115 0.01295 0.00051 351 151 296 18 289 7 260 10 2592 3689 0.70
    P1-21,10 0.04943 0.00356 0.32441 0.02306 0.04760 0.00119 0.01422 0.00052 168 160 285 18 300 7 285 10 2313 3170 0.73
    P1-21,11 0.05866 0.00399 0.38201 0.02557 0.04723 0.00119 0.01464 0.00058 554 142 329 19 298 7 294 12 1923 3238 0.59
    P1-21,12 0.05444 0.00487 0.35054 0.03082 0.04670 0.00130 0.01336 0.00071 389 189 305 23 294 8 268 14 1054 1879 0.56
    P1-21,14 0.05380 0.00360 0.33035 0.02179 0.04454 0.00110 0.01300 0.00051 362 144 290 17 281 7 261 10 2487 4269 0.58
    P1-21,15 0.04916 0.00461 0.31076 0.02869 0.04585 0.00127 0.01460 0.00071 156 206 275 22 289 8 293 14 1152 2075 0.56
    P1-21,16 0.05221 0.00433 0.32084 0.02616 0.04457 0.00120 0.01252 0.00060 295 178 283 20 281 7 252 12 1493 2671 0.56
    P1-21,17 0.05258 0.00308 0.33040 0.01911 0.04558 0.00108 0.01284 0.00044 311 128 290 15 287 7 258 9 3524 4948 0.71
    P1-21,18 0.05405 0.00379 0.34550 0.02389 0.04636 0.00116 0.01341 0.00052 373 151 301 18 292 7 269 10 2168 3352 0.65
    P1-21,20 0.05095 0.00790 0.31830 0.04851 0.04531 0.00168 0.01480 0.00115 239 323 281 37 286 10 297 23 443 860 0.52
    P1-21,21 0.05447 0.00259 0.34030 0.01604 0.04532 0.00102 0.01432 0.00042 391 103 297 12 286 6 288 8 5966 9491 0.63
    P1-21,22 0.05632 0.00441 0.36122 0.02778 0.04653 0.00124 0.01442 0.00065 464 166 313 21 293 8 289 13 1701 2957 0.58
    P1-21,23 0.05082 0.00380 0.31441 0.02313 0.04488 0.00115 0.01462 0.00055 232 164 278 18 283 7 293 11 2390 3204 0.75
    P1-21,24 0.05572 0.00742 0.33900 0.04425 0.04413 0.00154 0.01492 0.00092 441 272 296 34 278 10 299 18 820 1146 0.72
    P1-21,25 0.05178 0.00434 0.31713 0.02611 0.04443 0.00119 0.01348 0.00063 276 181 280 20 280 7 271 12 1845 3185 0.58
    P1-21,26 0.05270 0.00461 0.33574 0.02883 0.04621 0.00127 0.01379 0.00065 316 187 294 22 291 8 277 13 1758 2461 0.71
    P1-21,27 0.05849 0.00627 0.36278 0.03814 0.04500 0.00139 0.01242 0.00073 548 219 314 28 284 9 249 15 1193 1822 0.66
    P1-21,28 0.05641 0.00412 0.35908 0.02577 0.04618 0.00118 0.01399 0.00055 468 155 312 19 291 7 281 11 2209 3089 0.72
    P1-21,29 0.05564 0.00493 0.35002 0.03044 0.04564 0.00128 0.01158 0.00061 438 186 305 23 288 8 233 12 1315 1958 0.67
    P1-21,30 0.05242 0.00409 0.32669 0.02505 0.04521 0.00117 0.01494 0.00065 304 168 287 19 285 7 300 13 1999 3687 0.54
    P1-21,32 0.05399 0.00547 0.33688 0.03348 0.04527 0.00133 0.01579 0.00080 370 213 295 25 285 8 317 16 1404 2115 0.66
    P1-21,33 0.05917 0.00481 0.36627 0.02925 0.04491 0.00120 0.01358 0.00059 573 168 317 22 283 7 273 12 1937 2852 0.68
    P1-21,35 0.04629 0.00540 0.28849 0.03306 0.04521 0.00139 0.01106 0.00101 13 259 257 26 285 9 222 20 785 2075 0.38
    P1-21,36 0.05480 0.00480 0.33728 0.02903 0.04465 0.00122 0.01319 0.00062 404 185 295 22 282 8 265 12 1904 2903 0.66
    P1-21,37 0.05584 0.00609 0.34812 0.03725 0.04523 0.00138 0.01562 0.00082 446 226 303 28 285 9 313 16 1304 1982 0.66
    P1-21,38 0.04965 0.00428 0.31379 0.02662 0.04585 0.00122 0.01543 0.00072 179 189 277 21 289 8 310 14 1594 3065 0.52
    P1-21,39 0.05838 0.00577 0.37144 0.03598 0.04616 0.00136 0.01563 0.00083 544 203 321 27 291 8 314 16 1225 2068 0.59
    P1-21,40 0.05393 0.00462 0.32533 0.02739 0.04377 0.00118 0.01258 0.00073 368 183 286 21 276 7 253 15 1523 3435 0.44
    P1-21,41 0.05782 0.00806 0.34567 0.04726 0.04338 0.00154 0.01368 0.00105 523 280 302 36 274 10 275 21 709 1376 0.52
    P1-21,42 0.04754 0.00431 0.29931 0.02676 0.04568 0.00121 0.01409 0.00062 76 203 266 21 288 7 283 12 2124 3157 0.67
    P1-21,43 0.04968 0.00368 0.30637 0.02232 0.04474 0.00112 0.01387 0.00058 180 164 271 17 282 7 279 11 2855 4907 0.58
    P1-21,44 0.05680 0.00465 0.34817 0.02794 0.04447 0.00119 0.01341 0.00072 483 172 303 21 281 7 269 14 1812 3654 0.50
    P1-21,45 0.05066 0.00366 0.31626 0.02246 0.04529 0.00113 0.01501 0.00057 226 159 279 17 286 7 301 11 2822 4149 0.68
    P1-21,46 0.05052 0.00708 0.32152 0.04427 0.04618 0.00160 0.01111 0.00086 219 295 283 34 291 10 223 17 714 1171 0.61
    P1-21,47 0.05305 0.00471 0.33459 0.02914 0.04576 0.00125 0.01828 0.00089 331 189 293 22 288 8 366 18 1773 3605 0.49
    P1-21,48 0.05584 0.00521 0.33884 0.03096 0.04402 0.00126 0.01518 0.00072 446 195 296 23 278 8 305 14 2494 3618 0.69
    P1-21,50 0.05615 0.00799 0.34317 0.04773 0.04434 0.00167 0.01802 0.00137 458 288 300 36 280 10 361 27 591 1019 0.58
    P1-21,51 0.05960 0.00507 0.37392 0.03113 0.04552 0.00126 0.01502 0.00073 589 175 323 23 287 8 301 15 2012 3184 0.63
    P1-21,52 0.05150 0.00537 0.32448 0.03320 0.04571 0.00135 0.01495 0.00086 263 223 285 25 288 8 300 17 1310 2541 0.52
    P1-21,53 0.05517 0.00516 0.34904 0.03204 0.04591 0.00130 0.01598 0.00088 419 197 304 24 289 8 320 17 1486 2926 0.51
    P1-21,54 0.04759 0.00576 0.30852 0.03680 0.04704 0.00142 0.01487 0.00091 78 266 273 29 296 9 298 18 1023 1994 0.51
    P1-21,55 0.05538 0.00491 0.34013 0.02953 0.04456 0.00124 0.01476 0.00071 427 187 297 22 281 8 296 14 2092 3366 0.62
    P1-21,56 0.05136 0.00441 0.31346 0.02641 0.04428 0.00119 0.01489 0.00067 257 186 277 20 279 7 299 13 2133 3402 0.63
    P1-21,57 0.05305 0.00711 0.31852 0.04189 0.04356 0.00146 0.01123 0.00088 331 278 281 32 275 9 226 18 713 1390 0.51
    P1-21,58 0.05453 0.00438 0.33748 0.02660 0.04490 0.00118 0.01573 0.00066 393 171 295 20 283 7 315 13 2448 3664 0.67
    P1-21,59 0.05082 0.00429 0.31373 0.02598 0.04479 0.00119 0.01401 0.00069 233 184 277 20 283 7 281 14 1468 2832 0.52
    下载: 导出CSV

    表  3   变火山碎屑岩锆石U-Pb年龄数据表

    Table  3   Zircon U-Pb ages of metamorphic pyroclastic rocks

    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-96,01 0.05337 0.00394 0.33172 0.02395 0.04510 0.00109 0.01489 0.00065 344 158 291 18 284 7 299 13 1148 2581 0.45
    P1-96,02 0.05366 0.00338 0.33203 0.02043 0.04489 0.00103 0.01421 0.00044 357 136 291 16 283 6 285 9 3445 3912 0.88
    P1-96,03 0.05590 0.00354 0.34542 0.02136 0.04483 0.00103 0.01358 0.00047 448 135 301 16 283 6 273 9 2521 3520 0.72
    P1-96,04 0.05522 0.00357 0.33331 0.02103 0.04378 0.00102 0.01399 0.00049 421 138 292 16 276 6 281 10 2692 4024 0.67
    P1-96,05 0.04977 0.00775 0.30398 0.04668 0.04431 0.00146 0.01680 0.00108 184 327 270 36 280 9 337 22 529 969 0.55
    P1-96,06 0.05161 0.00744 0.31333 0.04446 0.04403 0.00142 0.01413 0.00113 268 301 277 34 278 9 284 22 537 1095 0.49
    P1-96,07 0.05873 0.00652 0.34093 0.03699 0.04210 0.00130 0.01215 0.00075 557 225 298 28 266 8 244 15 1716 2674 0.64
    P1-96,08 0.05626 0.00531 0.36568 0.03377 0.04714 0.00130 0.01387 0.00075 462 197 316 25 297 8 278 15 921 1670 0.55
    P1-96,09 0.05190 0.00281 0.32026 0.01698 0.04475 0.00098 0.01355 0.00044 281 119 282 13 282 6 272 9 3807 6637 0.57
    P1-96,10 0.05306 0.00297 0.32456 0.01776 0.04436 0.00098 0.01504 0.00050 331 122 285 14 280 6 302 10 3315 6312 0.53
    P1-96,11 0.05317 0.00375 0.32998 0.02279 0.04499 0.00108 0.01376 0.00057 336 152 290 17 284 7 276 11 2027 3554 0.57
    P1-96,12 0.05554 0.00658 0.34206 0.03971 0.04464 0.00139 0.01510 0.00089 434 245 299 30 282 9 303 18 993 1641 0.61
    P1-96,13 0.05302 0.00433 0.32419 0.02596 0.04432 0.00113 0.01222 0.00063 330 175 285 20 280 7 246 13 1389 2777 0.50
    P1-96,14 0.05249 0.00678 0.32643 0.04136 0.04508 0.00145 0.01585 0.00098 307 270 287 32 284 9 318 20 823 1403 0.59
    P1-96,16 0.05325 0.00601 0.33107 0.03664 0.04506 0.00133 0.01399 0.00080 340 237 290 28 284 8 281 16 810 1344 0.60
    P1-96,17 0.06160 0.00478 0.39526 0.02993 0.04651 0.00121 0.01508 0.00068 660 158 338 22 293 7 303 14 1584 2662 0.60
    P1-96,18 0.05318 0.00539 0.33636 0.03344 0.04583 0.00129 0.01499 0.00073 337 215 294 25 289 8 301 14 1830 2648 0.69
    P1-96,19 0.05352 0.00464 0.34021 0.02889 0.04606 0.00121 0.01545 0.00077 351 184 297 22 290 7 310 15 1593 3268 0.49
    P1-96,20 0.05377 0.00561 0.33424 0.03423 0.04504 0.00128 0.01440 0.00087 361 220 293 26 284 8 289 17 934 1886 0.50
    P1-96,21 0.04994 0.00427 0.33454 0.02809 0.04854 0.00125 0.01567 0.00074 192 187 293 21 306 8 314 15 1670 3208 0.52
    P1-96,22 0.05682 0.00550 0.38403 0.03638 0.04897 0.00140 0.01729 0.00090 484 201 330 27 308 9 347 18 1612 2640 0.61
    P1-96,23 0.05393 0.00506 0.35124 0.03227 0.04718 0.00132 0.01353 0.00082 368 199 306 24 297 8 272 16 1302 2637 0.49
    P1-96,24 0.04822 0.00941 0.30333 0.05841 0.04558 0.00176 0.01320 0.00138 110 405 269 46 287 11 265 28 407 822 0.50
    P1-96,25 0.05891 0.00964 0.39218 0.06283 0.04823 0.00191 0.01676 0.00140 564 321 336 46 304 12 336 28 514 944 0.54
    P1-96,27 0.05541 0.00518 0.36152 0.03315 0.04727 0.00130 0.01591 0.00081 429 196 313 25 298 8 319 16 1403 2546 0.55
    P1-96,28 0.05359 0.00854 0.35795 0.05619 0.04839 0.00169 0.01281 0.00125 354 325 311 42 305 10 257 25 489 1060 0.46
    P1-96,29 0.05286 0.00533 0.33930 0.03355 0.04650 0.00135 0.01328 0.00074 323 214 297 25 293 8 267 15 1588 2512 0.63
    P1-96,32 0.05478 0.00383 0.36200 0.02480 0.04787 0.00118 0.01607 0.00065 403 149 314 18 302 7 322 13 2809 4956 0.57
    P1-96,33 0.05327 0.00410 0.33202 0.02509 0.04516 0.00115 0.01452 0.00063 340 165 291 19 285 7 291 13 2260 3891 0.58
    P1-96,34 0.05384 0.00589 0.35687 0.03820 0.04802 0.00148 0.01953 0.00102 364 230 310 29 302 9 391 20 1243 1770 0.70
    P1-96,35 0.05060 0.00455 0.33832 0.02985 0.04844 0.00130 0.01821 0.00089 223 195 296 23 305 8 365 18 1800 3753 0.48
    P1-96,36 0.04932 0.00347 0.32204 0.02226 0.04731 0.00115 0.01537 0.00066 163 157 284 17 298 7 308 13 2070 4462 0.46
    P1-96,37 0.05489 0.00510 0.33466 0.03047 0.04418 0.00123 0.01936 0.00137 408 195 293 23 279 8 388 27 569 2832 0.20
    P1-96,38 0.04834 0.00643 0.34238 0.04471 0.05132 0.00172 0.02015 0.00156 116 287 299 34 323 11 403 31 1106 2689 0.41
    P1-96,39 0.04930 0.00622 0.31766 0.03928 0.04668 0.00153 0.01593 0.00113 162 271 280 30 294 9 320 22 1047 2244 0.47
    P1-96,40 0.05158 0.00408 0.34371 0.02665 0.04828 0.00125 0.01559 0.00069 267 172 300 20 304 8 313 14 2640 4314 0.61
    P1-96,41 0.05258 0.00425 0.35925 0.02851 0.04951 0.00130 0.01732 0.00069 311 174 312 21 312 8 347 14 3472 4412 0.79
    P1-96,42 0.05136 0.00396 0.35579 0.02694 0.05020 0.00129 0.01749 0.00072 257 168 309 20 316 8 351 14 3324 5181 0.64
    P1-96,43 0.05375 0.00470 0.34399 0.02948 0.04638 0.00128 0.01924 0.00095 360 186 300 22 292 8 385 19 2359 4959 0.48
    P1-96,44 0.04839 0.00550 0.33030 0.03691 0.04947 0.00147 0.01888 0.00110 118 248 290 28 311 9 378 22 1048 2229 0.47
    P1-96,45 0.05636 0.00926 0.36933 0.05942 0.04749 0.00192 0.01856 0.00172 466 328 319 44 299 12 372 34 399 938 0.43
    P1-96,47 0.05382 0.00422 0.34731 0.02671 0.04677 0.00122 0.01732 0.00082 363 167 303 20 295 8 347 16 1958 3913 0.50
    P1-96,49 0.04563 0.01092 0.31376 0.07401 0.04984 0.00235 0.01497 0.00194 0 473 277 57 314 14 300 39 352 891 0.39
    P1-96,50 0.05166 0.00410 0.34090 0.02653 0.04783 0.00125 0.01692 0.00074 270 172 298 20 301 8 339 15 2426 4129 0.59
    P1-96,51 0.05396 0.00588 0.37005 0.03952 0.04972 0.00153 0.02095 0.00126 369 229 320 29 313 9 419 25 1275 2750 0.46
    P1-96,52 0.05155 0.00428 0.35221 0.02868 0.04954 0.00133 0.01874 0.00079 266 180 306 22 312 8 375 16 3232 4829 0.67
    P1-96,53 0.05155 0.00581 0.34043 0.03763 0.04789 0.00150 0.01645 0.00094 266 239 298 29 302 9 330 19 1591 2508 0.63
    P1-96,54 0.04857 0.00805 0.33107 0.05393 0.04943 0.00192 0.01467 0.00153 127 349 290 41 311 12 294 31 660 1201 0.55
    P1-96,55 0.05281 0.00500 0.35815 0.03324 0.04919 0.00140 0.01856 0.00113 321 202 311 25 310 9 372 22 1750 4106 0.43
    P1-96,56 0.05375 0.00630 0.36397 0.04183 0.04912 0.00158 0.02083 0.00117 360 245 315 31 309 10 417 23 1294 2199 0.59
    P1-96,57 0.05379 0.00427 0.37677 0.02936 0.05081 0.00135 0.01700 0.00081 362 169 325 22 320 8 341 16 2950 5209 0.57
    P1-96,58 0.04874 0.00392 0.34924 0.02763 0.05198 0.00136 0.01809 0.00075 135 179 304 21 327 8 362 15 3513 5178 0.68
    P1-96,59 0.05532 0.00733 0.38234 0.04962 0.05014 0.00176 0.01896 0.00139 425 271 329 36 315 11 380 28 778 1594 0.49
    P1-96,60 0.05047 0.00480 0.33543 0.03137 0.04822 0.00136 0.01832 0.00102 217 206 294 24 304 8 367 20 1401 3019 0.46
    下载: 导出CSV

    表  4   花岗质砾石的锆石U-Pb年龄数据表

    Table  4   Zircon U-Pb ages of granitic gravel

    测试点 同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    D1052,1 0.05400 0.00234 0.32143 0.01357 0.04317 0.00090 0.01372 0.00040 371 94 283 10 272 6 275 8 4395 7940 0.55
    D1052,2 0.05811 0.00188 0.36685 0.01153 0.04579 0.00092 0.01671 0.00044 533 70 317 9 289 6 335 9 7166 21172 0.34
    D1052,3 0.05255 0.00235 0.31522 0.01374 0.04350 0.00091 0.01512 0.00049 310 99 278 11 275 6 303 10 3009 8739 0.34
    D1052,4 0.05424 0.00270 0.35151 0.01709 0.04701 0.00101 0.01602 0.00061 381 108 306 13 296 6 321 12 1893 6174 0.31
    D1052,6 0.05354 0.00252 0.32674 0.01501 0.04427 0.00094 0.01457 0.00049 352 103 287 11 279 6 292 10 3046 7791 0.39
    D1052,8 0.05594 0.00262 0.39012 0.01778 0.05058 0.00108 0.01815 0.00070 450 101 335 13 318 7 364 14 3913 17397 0.22
    D1052,9 0.05826 0.00273 0.37486 0.01712 0.04667 0.00100 0.02199 0.00073 539 100 323 13 294 6 440 15 3137 10819 0.29
    D1052,12 0.05107 0.00410 0.33786 0.02657 0.04799 0.00121 0.02222 0.00114 244 175 296 20 302 7 444 22 17334 63444 0.27
    D1052,13 0.05175 0.00361 0.36019 0.02459 0.05049 0.00120 0.02067 0.00099 274 152 312 18 318 7 413 20 2711 9584 0.28
    D1052,14 0.05282 0.00422 0.36614 0.02860 0.05028 0.00127 0.01914 0.00097 321 171 317 21 316 8 383 19 2660 7097 0.37
    D1052,16 0.05242 0.00549 0.41347 0.04236 0.05721 0.00168 0.02926 0.00198 304 222 351 30 359 10 583 39 1582 5886 0.27
    D1052,17 0.05767 0.00382 0.42986 0.02777 0.05407 0.00129 0.02924 0.00131 517 139 363 20 339 8 583 26 3030 11556 0.26
    D1052,18 0.05012 0.00626 0.34159 0.04175 0.04944 0.00160 0.02093 0.00166 201 266 298 32 311 10 419 33 1363 4545 0.30
    D1052,19 0.05087 0.00457 0.36628 0.03222 0.05223 0.00139 0.02466 0.00114 235 195 317 24 328 9 492 22 2541 5598 0.45
    D1052,20 0.04934 0.00516 0.33584 0.03442 0.04937 0.00141 0.01886 0.00127 164 228 294 26 311 9 378 25 1540 5063 0.30
    D1052,21 0.05467 0.00297 0.39698 0.02106 0.05267 0.00117 0.02549 0.00104 399 117 340 15 331 7 509 20 3824 18291 0.21
    D1052,23 0.05243 0.00341 0.37018 0.02354 0.05121 0.00119 0.01930 0.00089 304 142 320 17 322 7 386 18 2942 11049 0.27
    D1052,24 0.05313 0.00366 0.36805 0.02479 0.05025 0.00120 0.02019 0.00072 335 149 318 18 316 7 404 14 5753 9298 0.62
    D1052,25 0.06034 0.00314 0.47962 0.02429 0.05766 0.00128 0.02885 0.00104 616 109 398 17 361 8 575 20 6708 23529 0.29
    D1052,27 0.05743 0.00376 0.39242 0.02509 0.04957 0.00118 0.01910 0.00088 508 138 336 18 312 7 382 17 3441 10876 0.32
    D1052,28 0.05575 0.00428 0.38286 0.02872 0.04982 0.00125 0.02112 0.00099 442 163 329 21 313 8 422 20 24908 68272 0.36
    D1052,29 0.05540 0.00319 0.36743 0.02062 0.04811 0.00109 0.01886 0.00074 428 124 318 15 303 7 378 15 3263 9877 0.33
    D1052,30 0.05856 0.00345 0.41718 0.02393 0.05167 0.00118 0.02495 0.00100 551 124 354 17 325 7 498 20 2882 10137 0.28
    下载: 导出CSV

    表  5   斜长角闪岩和浅粒岩主量元素(%)与微量元素(10–6

    Table  5   Main (%) and trace (10–6) elements in plagioclase amphibolite and leptite

    送样号D1133-2-2hD1133-2-3hD1133-2-4hD0170-1-1HD0170-1-3HD0170-1-5H
    SiO249.2249.2149.2775.4180.8878.86
    TiO22.312.332.380.140.170.14
    Al2O316.6616.6716.8811.229.339.33
    Fe2O34.734.225.132.491.392.18
    FeO6.356.826.320.500.500.45
    MnO0.170.170.160.070.050.07
    MgO5.325.215.220.070.090.06
    CaO8.338.757.915.372.895.02
    Na2O4.094.154.691.232.301.74
    K2O0.670.370.232.811.801.23
    P2O50.350.360.350.020.020.02
    LOI0.890.800.630.500.410.73
    Total99.0999.0699.1799.8399.82899.82
    Li30.328.826.02.674.024.18
    Sc25.527.828.93.333.982.54
    V2552732707.784.809.10
    Cr10199.694.11.431.561.1
    Co39.241.740.80.5500.4500.500
    Ni76.978.471.82.104.522.16
    Cu12984.577.63.062.323.00
    Zn11711311822.330.415.8
    Ga21.921.522.133.920.925.0
    Rb25.810.36.2512374.852.4
    Sr341314398256141206
    Y38.238.841.358.055.047.2
    Zr266264283316318286
    Nb6.746.286.7313.113.611.6
    Cs2.271.940.671.120.8100.620
    Ba79.795.427.6624439384
    La16.716.817.643.741.638.0
    Ce44.343.845.994.493.381.2
    Pr6.256.416.7812.111.410.4
    Nd28.830.131.347.947.041.8
    Sm7.367.887.9310.810.79.22
    Eu2.212.332.371.631.661.44
    Gd8.118.378.8510.911.19.70
    Tb1.261.351.381.921.891.63
    Dy8.027.918.4111.110.89.67
    Ho1.541.641.712.262.272.02
    Er4.584.754.906.747.095.98
    Tm0.7900.8000.8101.221.181.06
    Yb4.334.534.676.556.575.92
    Lu0.7300.7500.7701.121.130.980
    Hf6.546.607.109.619.618.78
    Ta0.5000.4600.4801.091.050.960
    Pb9.298.1313.328.318.518.0
    Th3.933.483.7216.615.714.4
    U1.261.231.393.783.763.34
    下载: 导出CSV
  • 卜涛, 王国强, 黄博涛, 等. 北山北带新元古代A型花岗岩: Rodinia超大陆裂解早期的地质响应[J]. 岩石学报, 2022, 38(10): 2988–3002.

    BU Tao, WANG Guoqiang, HUANG Botao, et al. Neoproterozoic A type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break-up [J]. Acta Petrologica Sinica, 38(10): 2988–3002.

    陈言飞, 邵兆刚, 陈宣华, 等. 北山古堡泉地区榴辉岩变质作用P-T-t轨迹及构造意义[J]. 地球学报, 2022, 436): 895908.

    CHEN Yanfei, SHAO Zhaogang, CHEN Xuanhua, et al. P-T-t Path and Tectonic Implications of Gubaoquan Eclogite from Beishan Region[J]. Acta Geoscientica Sinica, 2022, 436): 895908.

    董云鹏, 周鼎武, 张国伟, 等. 中天山南缘乌瓦门蛇绿岩形成构造环境[J]. 岩石学报, 2005, 21(1): 37–44.

    DONG Yunpeng, ZHOU Dingwu, ZHANG Guowei, et al. Tectonic setting of the Wuwamen ophiolite at the southern margin of middle Tianshan Belt [J]. Acta Petologica Sinica, 21(1): 37–44.

    高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 2812): 18041816.

    GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 2009, 2812): 18041816.

    何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 354): 3040.

    HE Shiping, REN Bingchen, YAO Wenguang, et al. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwestern Geology, 2002, 354): 3040.

    贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb 定年和Hf 同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 604): 389399. doi: 10.1360/N972014-00898

    HE Zhenyu, SUN Lixin, MAO Lingjuan, et al. Zircon U-Pb and Hf sotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin, 2015, 604): 389399. doi: 10.1360/N972014-00898

    贺振宇, 宗克清, 姜洪颖, 等. 北山造山带南部早古生代构造演化: 来自花岗岩的约束[J]. 岩石学报, 2014, 308): 23242338.

    HE Zhen, ZONG Keqiong, JIANG Hongying, et al. Early Paleozoic tectonic evolution of the southern Beishan orogenic collage: Insights from the granitoids[J]. Acta Petrologica Sinica, 2014, 308): 23242338.

    计文化, 李荣社, 陈奋宁, 等. 中国西北地区南华纪—古生代构造重建及关键问题讨论[J]. 地质力学学报, 2020, 265): 634655.

    JI Wenhua, LI Rongshe, CHEN Fenning, et al. Tectonic reconstruction of northwest China in the Nanhua-Paleozoic and discussions on key issues[J]. Journal of Geomechanics, 2020, 265): 634655.

    姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb 定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949–3467.

    JIANG Hongying, HE Zhenyu, ZONG Keqiong, et al. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt [J]. Acta Petrologic Sinica, 2013, 29(11): 3949–3967.

    姜洪颖, 贺振宇. 北山造山带南部晚古生代花岗岩‒闪长岩的成因与构造意义[J]. 地球科学, 2022, 47(9): 3270–3284.

    JIANG Hongying, HE Zhenyu. Petrogenesis and Tectonic Implications of Late Paleozoic Granite-Diorite from the Southern Beishan Orogen [J]. Earth Science, 47(9): 3270–3284.

    李锦轶, 王克卓, 李亚萍, 等. 天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报, 2006, 25(8): 896–909.

    LI Jingyi, WANG Kezhuo, LI Yaping, et al., Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains [J]. Geological Bulletin of China, 2006, 25(8): 896–909.

    李炜, 陈隽璐, 董云鹏, 等. 早古生代古亚洲洋俯冲记录: 来自东天山卡拉塔格高镁安山岩的年代学、地球化学证据[J]. 岩石学报, 2016, 322): 505521.

    LI Wei, CHEN Junlu, DONG Yunpeng, et al. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological and geochemical evidence from the Kalatag high-Mg andesites, East Tianshan[J]. Acta Petrologica Sinica, 2016, 322): 505521.

    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 564): 274282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 564): 274282.

    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 8912): 24002418.

    LI Yanguang, WANG Shuangshuang, LIU Mingwu, et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica, 2015, 8912): 24002418.

    李沅柏, 李海泉, 周文孝, 等. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 2021, 407): 11171139.

    LI Yuanbo, LI Haiquan, ZHOU Wenxiao, et al. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 2021, 407): 11171139.

    李智佩, 吴亮, 颜玲丽. 中国西北地区蛇绿岩时空分布与构造演化[J]. 地质通报, 2020, 396): 783871.

    LI Zhipei, WU Liang, YAN Lingli. Saptial and temporal distribution of ophiolites and regional tectonic evolution in Northwest China[J]. Geological Bulletin of China, 2020, 396): 783871.

    牛文超, 辛后田, 段连峰, 等. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019, 465): 977994.

    NIU Wenchao, XIN Houtian, DUAN Lianfeng, et al. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia: New understanding based on the geological map of Qinghegou Sheet (1∶50000)[J]. Geology in China , 2019, 465): 977994.

    牛亚卓. 新甘蒙北山地区晚古生代古沉积面貌及构造属性[D]. 西安: 西北大学, 2019, 1–142.

    NIU Yazhuo. Late Paleozoic paleogeographic reconstruction and tectonic implication of the Beishan region, NW China [D]. Xi’an: Northwest University, 2019, 1–142.

    甘肃省地质矿产局酒泉地质矿产调查队. 1∶50000西涧泉幅(K47E019003)区域地质图[R]. 甘肃省地质矿产局酒泉地质矿产调查队, 1993.
    甘肃省地质调查院. 1∶25万红宝石幅区域地质调查报告[R]. 甘肃省地质调查院, 2005.
    甘肃省地质调查院. 1∶25万马鬃山幅区域地质调查报告[R]. 甘肃省地质调查院, 2001.
    汪云亮, 张成江, 修淑芝. 玄武岩形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413–421.

    WANG Yunliang, ZHANG Chengjiang, XIU Shuzhi. Th/Hf-Ta/Hf identification of tectonic setting of basalts [J]. Acta Petrological Sinica, 2001, 17(3): 413–421.

    王国强, 李向民, 徐学义, 等. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 401): 7181.

    WANG Guoqiang, LI Xiangmin, XU Xueyi, et al. Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 2021, 401): 7181.

    吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.

    WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 11−28.

    王洪亮, 徐学义, 何世平, 等. 1∶1000000中国天山及邻区地质图[M]. 北京: 地质出版社, 2007.

    WANG Hongliang, XU Xueyi, HE Shipping, et al. 1∶1000000 Geological Map of Chinese Tianshan and Adjacent Areas [M]. Beijing: Geological Publishing House, 2007.

    王文宝, 李卫星, 雷聪聪, 等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质, 2024, 57(3): 29−43.

    WANG Wenbao, LI Weixing, LEI Congcong, et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 29−43.

    徐学义, 李荣社, 陈隽璐, 等. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 2014, 30(6): 1521–1534.

    XU Xueyi, LI Rongshe, CHEN Junlu, et al., New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area [J]. Acta Petrologica Sinica, 2014, 30(6): 1521–1534.

    许伟, 徐学义, 牛亚卓, 等. 北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义[J]. 岩石学报, 2018, 3410): 30113022.

    XU Wei, XU Xueyi, NIU Yazhuo, et al. Geochronology, petrogenesis and tectonic implications of the Early Permian A-type rhyolite from southern Beishan orogen, NW China[J]. Acta Petrologica Sinica, 2018, 3410): 30113022.

    许伟. 北山南部晚古生代构造格局与演化: 来自古地磁与岩浆作用的制约[D]. 西安: 长安大学, 2019, 1–194.

    XU Wei. The Late Paleozoic tectonic framework and evolution in southern Beishan: constraints from paleomagnetism and magmatism [D]. Xi’an: Chan’an University, 2019, 1–194.

    杨高学, 刘晓宇, 朱钊, 等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 2024, 57(3): 1−10.

    YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 1−10.

    余吉远, 李向民, 王国强, 等. 北山地区辉铜山、帐房山蛇绿岩U-Pb年龄及其意义[J]. 地质通报, 2012, 31(12): 2038–2045.

    YU Jiyuan, LI Xiangmin, WANG Guoqiang, et al. Zircon U-Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu-Inner Mongolia border area and their significance [J]. Geological Bulletin of China, 2012, 31(12): 2038–2045.

    俞胜, 赵斌斌, 贾轩, 等. 北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 554): 267279.

    YU Sheng, ZHAO Binbin, JIA Xuan, et al. Geochemistry, geochronology characteristics and tectonic significance of Yitiaoshan diorite in the southern margin of Beishan Orogenic Belt[J]. Northwestern Geology, 2022, 554): 267279.

    袁禹. 北山造山带大陆地壳的形成与演化[D]. 武汉: 中国地质大学, 2019, 1–144.

    YUAN Yu. The continental crust formation and evolution of the Beishan Orogenic Belt [D]. Wuhan: China University of Geosciences, 2019, 1–144.

    张海迪, 陈博, 吕鹏瑞, 等. 东天山黄山西角闪辉长岩成因及其地质意义: 来自锆石U-Pb年代学及地球化学的证据[J]. 西北地质, 2021, 54: 5165.

    ZHANG Haidi, CHEN Bo, LÜ Pengrui, et al. The Petrogenesis and Geological Significance of the Hornblende Gabbro in Western Huangshan of East Tianshan: Evidence from Zircon U-Pb Chronology and Geochemistry[J]. Northwestern Geology, 2021, 54: 5165.

    张立飞, 艾永亮, 李强, 等. 新疆西南天山超高压变质带的形成与演化[J]. 岩石学报, 2005, 214): 10291038.

    ZHANG Lifei, AI Yongliang, LI Qiang, et al. The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2005, 214): 10291038.

    张招崇, 董书云. 大火成岩省是地幔柱作用引起的吗?[J]. 现代地质, 2007, 212): 247254.

    ZHANG Zhaochong, DONG Shuyun. Were large igneous provinces caused by mantle plumes?[J]. Geoscience, 2007, 212): 247254.

    赵泽辉, 郭召杰, 韩宝福, 等. 新疆东部-甘肃北山地区二叠纪玄武岩对比研究及其构造意义[J]. 岩石学报, 2006, 225): 12791293.

    ZHAO Zehui, GUO Zhaojie, HAN Baofu, et al. Comparative study on Permian basalts from eastern Xinjiang-Beishan area of Gansu province and its tectonic implications[J]. Acta Petrologica Sinica, 2006, 225): 12791293.

    左国朝, 何国琦. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990, 1–226.

    ZUO Guochao, HE Guoqi. Plate Tectonics and Metallogenic Regularities in Beishan Region [M]. Beijing: Peking University Press, 1990, 1–226.

    Ao S J, Xiao W J, Windley B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology [J]. Gondwana Research, 2015, 30: 224–235.

    He Z Y, Klemdb R, Yana L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt [J]. Earth-Science Reviews, 2018. 185: 1–14.

    He Z Y, Zhang Z M, Zong K Q, et al. Metamorphic P–T–t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction [J]. Lithos, 2014, 196–197: 1–13.

    Hong T, Santos G S, Van Staal C R, et al. Mapping uncovered a multi-phase arc-back-arc system in the southern Beishan during the Permian [J]. National Science Review, 2023, 10: nwac204.

    Huang B T, Wang G Q, Li X M, et al. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks [J]. Precambrian Research, 2022, 376: 106686.

    Kang W B, Li W, Kang L, et al. Metamorphism and geochronology of garnet amphibolite from the Beishan Orogen, southern Central Asian Orogenic Belt: Constraints from P-T path and zircon U-Pb dating[J]. Geoscience Frontiers, 2020, 11: 11891201.

    Li J, Wu C, Chen X H, et al. Tectonic evolution of the Beishan orogen in central Asia: Subduction, accretion, and continent-continent collision during the closure of the Paleo-Asian Ocean [J]. Geological Society of America Bulletin, 2023. doi: 10.1130/B36451.1.

    Li S, Wilde S A, Wang T. Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos, 2013, 179: 99119.

    Liu X C, Chen B L, Jahn B M, et al. Early Paleozoic (ca. 465 Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern central Asian orogenic belt [J]. Journal of Asian Earth Sciences, 2011, 42, 715–731.

    Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size [J]. Chinese Science Bulletin, 2007, 52(9), 1257–1264.

    Mao Q, Xiao W, Windley B F, et al. The Liuyuan complex in the Beishan, NW China: a Carboniferous-Permian ophioliteic fore-arc silver in the southern Altaids [J]. Geological Magazine, 2012, 149: 483–509.

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207218. doi: 10.1016/0009-2541(86)90004-5

    Miyashiro A. Volcanic rock series in island arcs and active continental margins [J]. American Journal of Science, 1974, 274: 321–355.

    Niu Y Z, Liu C Y, Shi G R, et al. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure [J]. Journal of Asian Earth Sciences, 2018, 167: 11–32.

    Niu Y Z, Shi G R, Wang J Q, et al. The closing of the southern branch of the Paleo-Asian Ocean: Constraints from sedimentary records in the southern Beishan region of the Central Asian Orogenic Belt, NW China [J]. Marine and Petroleum Geology, 2021, 124: 104791.

    Polat A, Hofmann A W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland [J] Precambrian Research, 2003, 126(3–4): 197–218.

    Qin K Z, Su B X, Sakyi P A, et al. SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Ma mantle plume[J]. American Journal of Science, 2011, 311: 237–260.

    Saktura W M, Buckman S, Nutman A P, et al. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China [J]. Litos, 2017, 294–295: 20–38.

    Santos G S, Hong T, Van Staal C R, et al. Permian back-arc basin formation and arc migration in the southern Central Asian Orogenic Belt, NW China [J]. Geological Journal, 2022. doi: 10.1002/gj.4609.

    Schmidt M W, Jagoutz O. The global systematics of primitive arc melts [J]. Geochemistry Geophysics Geosystems, 2017, 18: 2817–2854.

    Şengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia [J]. Nature, 1993, 364: 299–307.

    Şengör A M C, Sunal G, Natal'in B A, et al. The Altaids: A review of twenty-five years of knowledge accumulation [J]. Earth-Science Reviews, 2022. doi: org/10.1016/j.earscirev.2022.104013.

    Smithies R H, Jwanic T J, Lowrey J R, et al. Two distinct origins for Archean greenstone belts [J]. Earth and Planetary Science Letters, 2018, 487: 106–116.

    Song D F, Xiao W J, Han C M, et al. Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids [J]. International Geology Review, 2013, 55(14): 1705–1727.

    Su B X, Qin K Z, Sakyi P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 20(2–3): 516–531.

    Sun S S, Mc Donough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processed [J]. Magmatism in Ocean Basins, Geological Society of London Special Publication, 1989, 42: 313–345.

    Tian Z H, Xiao W J. An Andean-type arc transferred into a Japanese-type arc at final closure stage of the Palaeo-Asian Ocean in the southernmost of Altaids [J]. Geological Journal, 2020, 55: 1613–1619.

    Wang B, Yang X S, Li S C, et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt [J]. Precambrian Research, 2021, 352, 106016.

    Wang K, Xiao W J, Windley B F, et al. The Dashui subduction complex in the Eastern Tianshan Beishan Orogen (NW China): Long-Lasting subduction accretion terminated by unique Mid-Triassic strike-slip juxtaposition of arcs in the Southern Altaids [J]. Tectonics, 2022, 41, e2021TC007190.

    Winchester J A, and Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325343. doi: 10.1016/0009-2541(77)90057-2

    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age [J]. Chinese Science Bulletin, 2004, 49(15): 1554–1569.

    Xia L Q, Xia Z C, Xu X Y, et al. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China[J]. Journal of Asian Earth Sciences, 2008, 31(4–6): 357–378.

    Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia [J]. Journal of Asian Earth Sciences, 2008, 32(2–4): 102–117.

    Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage [J]. American Journal of Science, 2010, 310(10): 1553–1594.

    Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477–507.

    Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the south Beishan orogenic belt, southernmost central Asian orogenic belt [J]. Precambrian Research, 2015, 266, 409–424.

    Zhang Q W L, Chen Y C, Li Z M G, et al. Identification of continental fragments in orogen: an example from Dunhuang Orogenic Belt, NW China [J]. Science Bulletin, 2022, 67, 1549–1552.

    Zhang Y Y, Dostal J, Zhao Z H, et al. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust-mantle interaction[J]. Gondwana Research, 2011, 20(4): 816–830.

    Zhang Y Y, Yuan C, Sun M, et al. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere-lithosphere interaction in response to slab break-off[J]. Lithos, 2015, 233: 174–192.

    Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J]. Earth-Science Reviews, 2018, 186: 262–286.

    Zheng R G, Wu T R, Zhang W, et al. Geochronology and geochemistry of late Paleozoic magmatic rocks in the Yinwaxia area, Beishan: Implications for rift magmatism in the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2014, 91: 39–55.

    Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 2017, 290, 32–48.

    Zong K Q, Liu Y S, Zhang Z M, et al. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China [J]. Precambrian Research, 2013, 235(34): 251–263.

  • 期刊类型引用(2)

    1. 王玉伟,李永军,王盼龙,王韬,黄家瑄,张新远,郑孟林,张越迁. 克拉玛依克百断槽火山岩岩石组合、层位归属及地质意义:来自古66井的约束. 西北地质. 2024(05): 209-223 . 本站查看
    2. 张景,李永军,覃建华,李思远,阿克丹·斯坎迪尔,王盼龙,王鑫,黄家瑄,张新远. 气孔杏仁状玄武岩有利储层划分方案初探——以新疆乌尔禾地区哈拉阿拉特组第一岩性段为例. 地球科学与环境学报. 2023(05): 1210-1226 . 百度学术

    其他类型引用(0)

图(9)  /  表(5)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  35
  • PDF下载量:  52
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-08-26
  • 录用日期:  2024-10-07
  • 网络出版日期:  2024-10-20
  • 刊出日期:  2024-12-19

目录

/

返回文章
返回