ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    地质灾害风险精细化识别、核查及防控模式探讨

    Discussion on Refined Identification, Verification, Prevention and Control Models for Geo-hazards Risk

    • 摘要: 地质灾害精准识别是实现从注重灾后救助向注重灾前预防转变的关键,地质灾害精准防控是实现从减少灾害损失向减轻灾害风险转变的关键。笔者以陕西榆林地区黄土崩滑灾害隐患为例,通过地表形变识别、高陡易发坡段识别、危险坡段核查、野外实地核查验证、风险防控措施实施等方式,建立了一套地质灾害精细识别和风险防控技术方法体系。结果表明:①基于DEM数据共识别榆林地区高陡易发坡段493380处,基于InSAR技术识别地表变形区段635处;在此基础上,基于光学遥感数据,叠加承灾体信息,共识别和核查危险坡段(有威胁对象的易发坡段或地表变形区段)31988处,危险坡段数量占易发坡段和地表变形区段数量的6.48%,提高了识别精准性,实现地质灾害隐患识别“精准到坡”。②对遥感识别危险坡段、现场群众报险报灾点、在册地质灾害隐患点等逐一开展进村入户实地核查,以“村组+户主姓名”命名隐患点,根据坡体结构、变形迹象、威胁对象等进行风险分级,榆林地区共实地核查地质灾害隐患点37523处,精准摸清了地质灾害隐患风险底数,实现地质灾害隐患核查“精准到户”。③制定了不同风险级别地质灾害隐患预警响应方案和风险防控措施,形成市、县、乡镇、村组分级防控格局,实现地质灾害隐患风险“精准管控”。风险识别、核查和防控模式得到及时、成功应用,有效控制了榆林地区地质灾害隐患风险,为地质灾害隐患识别和核查提供了示范。

       

      Abstract: Accurate identification of geo-hazards is the key to achieving a shift from post disaster assistance to pre disaster prevention, and precise prevention and control of geo-hazards is the key to achieving a shift from reducing disaster losses to mitigating disaster risks. This paper takes the loess landslide and collapse disasters in Yulin area as an example. A set of geo-hazards fine identification and risk prevention technology method system has been established through surface deformation identification, identification of high and steep landslide-prone slopes, verification of dangerous slope sections, field verification, and implementation of risk prevention and control measures. The results show that: (1) A total of 493380 high and steep landslide-prone slopes were identified based on DEM data in Yulin area, and 635 surface deformation sections were identified using InSAR technology. On this basis, A total of 31988 dangerous slope sections (landslide-prone slopes or surface deformation sections with threatening objects) were identified and verified based on optical remote sensing data and elements at risk information. The number of dangerous slope sections accounts for 6.48% of the number of landslide-prone slopes and surface deformation sections. The accuracy of identification has been improved, and "Precise to Slope" of potential geo-hazards identification has been achieved. (2) We conducted field verification on dangerous slope sections identified by remote sensing, dangerous and disaster situations reported on-site by the masses, and registered geo-hazards by entering villages and households, and named the potential geo-hazards with "village group + household head name". Risk classification of potential geo-hazards based on slope structure, deformation signs, threat objects, etc. A total of 37523 potential geo-hazards were verified in the field in Yulin area. The risk base of potential geo-hazards has been accurately determined, and "Precise to Household" of potential geo-hazards verification has been achieved. (3) We have developed potential geo-hazards early warning response plans and risk prevention and control measures for different risk levels. The graded prevention and control pattern of potential geo-hazards in cities, counties, towns, and villages has been formed, and "Precise Control" of potential geo-hazards risk has been achieved. The timely and successful application of potential geo-hazards risk identification, verification, and prevention and control models has effectively controlled the geo-hazards risk in Yulin area, and provided a demonstration for potential geo-hazards identification and verification.

       

    /

    返回文章
    返回