ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

东濮凹陷沙四上-沙三段细粒沉积特征及控制因素分析

杨栋栋, 李胜玉, 李艳广, 袁波, 徐田武, 徐云龙, 蒋飞虎, 王亚明, 苏天丽

杨栋栋,李胜玉,李艳广,等. 东濮凹陷沙四上-沙三段细粒沉积特征及控制因素分析[J]. 西北地质,xxxx,x(x): x−xx. doi: 10.12401/j.nwg.2024096
引用本文: 杨栋栋,李胜玉,李艳广,等. 东濮凹陷沙四上-沙三段细粒沉积特征及控制因素分析[J]. 西北地质,xxxx,x(x): x−xx. doi: 10.12401/j.nwg.2024096
YANG Dongdong,LI Shengyu,LI Yanguang,et al. Sedimentary Characteristics and Controlling Factors of Es4U-Es3 Fine-grained Sedimentary Rock Lithofacies in Dongpu Depression[J]. Northwestern Geology,xxxx,x(x): x−xx. doi: 10.12401/j.nwg.2024096
Citation: YANG Dongdong,LI Shengyu,LI Yanguang,et al. Sedimentary Characteristics and Controlling Factors of Es4U-Es3 Fine-grained Sedimentary Rock Lithofacies in Dongpu Depression[J]. Northwestern Geology,xxxx,x(x): x−xx. doi: 10.12401/j.nwg.2024096

东濮凹陷沙四上-沙三段细粒沉积特征及控制因素分析

基金项目: 中石化科技部项目“东濮凹陷薄互层页岩油地质评价与关键技术”(P23227),中原油田科技部项目“页岩油探评建一体化领域”(QDLY2306),重庆市教育委员会科学技术研究项目“热液白云岩沉淀-成岩机理及其优质储层发育模式”(KJQN202301549),重庆市自然科学基金面上项目“基于多重成岩环境改造的次生溶孔演化定量研究:以渝西地区沙溪庙组致密砂岩储层为例”(CSTB2022NSCQ-MSX1402),重庆科技大学科研资助项目“白音查干凹陷腾格尔组陆相白云岩沉淀-成岩机理”(ckrc2021039)联合资助。
详细信息
    作者简介:

    杨栋栋(1986−),男,博士,主要从事非常规油气勘探和沉积储层研究。E−mail:yangdongdong4180@163.com

    通讯作者:

    李艳广(1984−),男,高级工程师,主要从事同位素地球化学和前寒武地质研究。E−mail:liyanguangok@126.com

  • 中图分类号: P618.12

Sedimentary Characteristics and Controlling Factors of Es4U-Es3 Fine-grained Sedimentary Rock Lithofacies in Dongpu Depression

  • 摘要:

    作为渤海湾盆地南缘的断陷咸化湖盆,东濮凹陷具有“满盆含砂、普遍偏细”的沉积充填特点,细粒沉积岩普遍发育。勘探实践表明在东濮凹陷北部濮卫次洼沙四上-沙三段的细粒沉积岩分布稳定,富含有机质。在泥页岩井段中均见到良好的油气显示,为东濮凹陷页岩油的潜在有利区。本次研究对区内沙四上-沙三段的细粒沉积岩进行详细岩相学分析,细分出12种细粒岩相类型。其中,纹层状富有机质黏土质碳酸盐岩和纹层状碳酸质混合岩为页岩油勘探的有利岩相。结合区域构造演化和古气候、古物源特征,利用岩心精细分析、薄片分析、全岩X衍射和微量元素分析等手段开展细粒沉积特征和主控因素研究。细粒岩相中矿物组分、微体古生物特征和微量元素含量变化指示在相对较短的周期内古气候波动频繁,古水深变化快。相应的岩相在纵横向上呈现规律性变化(纵向上砂-泥-碳酸质岩、碳酸盐岩-膏(质)岩-盐岩韵律互层),横向纹层状碳酸质岩相围绕盐湖沉积中心呈现环带分布,并据此建立了有利岩相发育模式。综合研究表明,东濮凹陷的细粒沉积岩沉积受构造、物源、气候三者控制,具有典型构造-气候-沉积耦合沉积的特征。

    Abstract:

    As a rift saline lacustrine basin in the southern Bohai Bay basin, the sedimentary filling characteristics of Dongpu Depression (DD) are “full of sand and generally fine”, and fine-grained sedimentary rocks are generally developed. Exploration practice shows that the fine-grained sedimentary rocks in the upper 4th member-later 3rd member of Shahejie Formation (Es4U-Es3L) of the Puwei sub-sag in the northern DD are stable and rich in organic matter. Good oil and gas shows exist in the shale well section, which is a potential favorable zone for shale oil. In this study, the fine-grained sedimentary rocks in the Es4U-Es3 were analyzed in detail and 12 types of fine-grained lithofacies were subdivided. Among them, lamellar organic-rich clayey carbonate rocks and lamellar carbonate mixed rocks are favorable lithofacies for shale oil exploration. Combined with the regional tectonic evolution, paleoclimate, ancient provenance characteristics, core analysis, thin section analysis, X-ray diffraction and trace element analysis, the characteristics and controlling factors of fine-grained sedimentation were studied. Changes in mineral composition, micro-paleontological characteristics and trace element content in fine-grained lithofacies indicated the frequent fluctuations in paleo-climate and paleo-water depth in a short cycle. The corresponding lithofacies showed regular changes in the longitudinal and transverse (longitudinal: Sand-mud-carbonate rock formed with carbonate rock-gypsum rock-saline rock rhythmic interbedded. Transverse: Lamellar carbonate lithofacies showed a ring distribution around the saline lake sedimentary center), and a favorable lithofacies development model was established. Results showed that the sedimentation of fine-grained sedimentary rocks in DD is controlled by tectonics, provenance and climate, characterized by typical tectonic-climate-sedimentary coupling sedimentation.

  • 近年来随着国内页岩油勘探的不断突破,以页岩油为代表的非常规勘探理论也取得飞速发展(邹才能等,2015孙焕泉等,2019朱如凯等,2019黎茂稳等,2020金之钧等,2021a2021b杨智等,2021),与页岩油紧密相关的细粒沉积岩已成为页岩油勘探不可或缺的一部分,细粒沉积岩的发育环境及岩相组合类型研究日渐深入(吴靖等,2017张顺等,2017Li et al.,2020孔祥鑫,2020刘惠民等,2020姜在兴等,2021赵贤正等,2021)。东濮凹陷作为渤海湾盆地南缘的一个断陷咸化湖盆,细粒沉积岩和盐岩普遍发育。盐间细粒沉积岩具有分布稳定,有机质含量高,油气显示良好的特点,具备页岩油勘探潜力(孙业峰,2014张晶等,2015李红磊等,2020彭君等,2021)。近十年来,东濮凹陷针对泥岩裂缝型、夹层型和基质型页岩油进行了勘探研究,先后完钻了9口页岩油专探井,获得一定产能,证实了盐区页岩油的资源潜力,也初步明确了东濮凹陷细粒沉积岩岩相与含油性关系及对页岩油勘探开发的影响(王金萍等,2018Ping et al.,2020Hu et al.,2021)。现有勘探实践认为东濮凹陷页岩油细粒沉积组合发育特征相较于国内已突破的页岩油岩相组合类型有所不同,具有岩层厚度薄、岩性变化快、含油性非均质性强的特征。受前期地质认识和实际取心资料影响,关于东濮凹陷细粒沉积物特点和形成机制尚未进行详细研究,严重制约了东濮页岩油勘探进程。因此,本文通过精细岩心观察、薄片分析、扫描电镜、全岩X衍射等分析手段对东濮凹陷濮卫次洼细粒沉积物发育类型进行了详细研究,结合区域构造演化和古气候、古物源特征,明确细粒沉积发育的控制因素,建立了有利岩相发育模式,支撑东濮凹陷页岩油风险勘探。

    东濮凹陷位于鲁、豫两省交界处,是渤海湾盆地南端的次一级构造单元,面积约5300 km2,呈NNE向展布,是一个以新生界地层为主的断陷型盐湖凹陷。盆地具有南宽北窄、东断西超、东西分带、南北分块、隆洼相间的构造格局(图1)。地层由古近系沙河街组(Es)、东营组(Ed)和新近系馆陶组(Ng)、明化镇组(Nm)以及第四系平原组(Qp)组成。沙河街组(Es)为主要油气勘探层系,自下而上分为沙四段(Es4)、沙三段(Es3)、沙二段(Es2)和沙一段(Es1)。

    图  1  东濮凹陷区域位置及构造地层格架图(据彭君等,2021修改)
    Figure  1.  The regional position and tectonic stratigraphic framework of Dongpu Sag

    东濮凹陷古近系盆地沉积充填厚度可达40006000 m,岩性以粉砂岩、砂岩和泥岩夹膏-盐岩为主,具有“满盆含砂、普遍偏细、砂泥岩薄互层、膏盐岩发育”的特点。受构造活动影响,盆地经历了从单一洼陷到多隆多洼的演化过程,纵向发育两个二级陆相层序,具有“脉冲式断陷、快进慢退、持续充填”沉积演化特点(图2)。盆地整体具有西高东低、西缓东陡的古地貌特征,具有“远源汇聚、高隆闭流”的“源-汇”体系(中原油田内部资料)。古近系沉积物分别来自东西两侧不同物源体系,西侧主要表现为远源长轴物源体系特征,母岩类型主要包括上古生界-中下三叠统的碎屑岩,古生界碳酸盐岩以及太古-元古界变质花岗岩基底;东侧为近源短轴、小而多的沟山体系,母岩主要为上古生界碳酸盐岩和中下三叠统的碎屑岩(中原油田内部资料)。在沙四上-沙三段为湖侵体系域晚期-高位体系域早期,多为半深湖-深湖沉积,广泛发育优质烃源岩(马小祥等,2019刘秀岩等,2020舒徐洁等,2022)。

    图  2  东濮凹陷古近系沉积演化及盐度变化图(据中原油田内部资料修改)
    Figure  2.  Sedimentary evolution and salinity variation of Paleogene in Dongpu Sag

    位于东濮凹陷北部的濮卫次洼是较为富集生烃洼陷,是濮城断层下降盘的一个半地堑式洼陷,整体东低西高,向南往文留构造抬升,向北过渡到陈营构造,勘探面积约120 km2。受东、西及北部物源的供给,濮卫次洼北翼砂岩较发育,南翼砂岩相对不发育,为细粒沉积岩主要发育区域。

    细粒沉积作为页岩油气的物质基础和储集载体,近年来已成为国内外沉积学研究的热点领域,自20世纪30年代由Krumbein提出概念以来备受关注。(Krumbein,1932Potter et al.,1980Camp et al.,2016操应长等,2023)受限于超微观实验分析技术,对粒度小、成分复杂的细粒沉积研究还相对滞后,尤其在细粒沉积分类命名、沉积演化等方面尚未形成统一方案和认识(Tucker,2001Macquaker et al.,2003姜在兴等,2013周立宏等,2016陈世悦等,2016张顺等,2017)。目前,国内在页岩油勘探过程针对细粒沉积岩多采用矿物成分加有机质丰度和沉积构造等分类方案,并根据不同盆地背景,形成了“逐盆逐建,逐次逐建”的细粒沉积岩划分方案。(姜在兴等,20132021张少敏等,2018黄小青等,2020白楠等,2021朱如凯等,2022赵贤正等,2023操应长等,2023)本次研究为加强与同类型盆地的对比性,在薄片分析、全岩X衍射分析及有机碳分析基础上,采用三要素三端元细粒岩分类方案进行岩相分类。

    在东濮细粒沉积岩研究中,通过对W410、WG4、V456、V457HF、P161等5口页岩油兼探取心井,共计386 m的岩心进行厘米级精细描述,按照取样规范分别对222块纹层状泥页岩样品、153块层状样品和165块块状样品进行了薄片分析、扫描电镜、全岩X衍射、有机碳分析,发现研究区细粒沉积岩整体表现为灰色、深灰色,具有块状、层状(层厚>1 mm)、纹层状(层厚<1 mm)沉积构造(图3),岩石组分为粉砂-细粉砂级石英和长石、碳酸盐、黏土矿物、有机碳以及黄铁矿,其中碳酸盐含量均值为37.5%(1%~85%),黏土矿物为33%(3.4%~64%),石英长石等陆源碎屑为22%(3.3%~64%)。脆性矿物含量高,均值为46.5%(13%~86%),主要为方解石纹层和白云石微晶颗粒。黏土矿物中主要为伊利石,约占74.7%(68%~82.5%)(图4)。有机碳含量非均质性强,0.5~3.58%不等,均值约1.1%,根据实测情况结合东濮地质特征,将TOC介于0.5~1%归位低有机质,1~1.5%为中有机质,大于1.5%为富有机质,参与分类命名。

    图  3  东濮凹陷典型细粒沉积岩宏观与微观特征
    A.W410井3550.74 m,块状构造;b.W410井3546.70 m,层状构造;c.V457HF井3676.47 m,纹层状构造;d. W410井3550.74 m,灰色含粉砂泥岩,微裂缝发育,10×5(单偏光)。e.V457HF井3701.50 m 深灰色层状碳酸盐质黏土岩,层状(>1 mm)方解石与泥岩互层,10×5(单偏光);f.V457HF井3675.00 m 深灰色纹层状黏土质灰岩,纹层状(<1 mm方解石与黏土层)10×5(单偏光);h.W410井3588.55 m,深灰色纹层状白云质泥岩,微裂缝发淡黄色荧光,TOC=2.8%,10×5(荧光);i.V457HF井3797.57 m,纹层状方解石与黏土层互层,484×(扫描电镜下);j. P161井3778.21 m,深灰色层状含粉砂泥岩中发育高岭石晶间孔,5533×(扫描电镜)
    Figure  3.  Macroscopic and microscopic characteristics of typical fine sedimentary rocks in Dongpu Sag
    图  4  东濮凹陷V457HF井细粒沉积单井综合柱状图
    Figure  4.  Comprehensive histogram of V457HF fine-grained sedimentary single well in Dongpu Sag

    依据濮卫洼陷5口井540块细粒沉积岩样品分析结果,分别以岩石组分、沉积构造和有机质三个因素为基础,按长英质矿物、碳酸盐矿物、黏土矿物含量为端元矿物进行岩相分类析,共划分出4个亚类,12种岩相类型,主要为深灰-灰黑色纹层/层状中有机质碳酸盐岩、富有机质碳酸盐质混合岩、黏土质混合岩,深灰-灰黑色纹层/层状富有机质黏土岩等(图5)。其中,纹层状富有机质含碳酸质黏土岩-纹层状富有机质黏土质碳酸盐岩,具有有机碳和脆性矿物含量双高、储集空间发育的特点,为最有利的页岩油勘探岩相。该类型细粒岩整体颜色较深,页理发育,TOC含量绝大多数大于1%(图6)。多发育碳酸盐纹层中晶间孔隙、黏土矿物间微孔、有机质孔等微孔隙和微裂缝(图3H, J),孔喉以宏孔-介孔为主,孔隙具有顺层发育的特征,储集性好。层状黏土质混合岩具有一定的有机质丰度,并且发育少量的层间缝,含油性中等,部分层段具有一定的页岩油勘探潜力;层状黏土岩岩石致密,有机质丰度低,微裂缝、溶蚀孔和有机孔不发育,含油性差。

    图  5  东濮凹陷沙三-沙四段细粒成分及类型频率图
    Figure  5.  Distribution of fine-grained rock frequency in Es3 – Es4 of Dongpu Sag
    图  6  部2井盐韵律特征
    Figure  6.  Characteristics of salt rhythm in well Bu 2

    根据岩心特征和厘米级纹层解剖,细粒沉积岩在纵向上表现出由长英质岩-长英质黏土岩-块状黏土岩-层状黏土岩-纹层状碳酸质混合岩-纹层状碳酸盐岩-含膏泥岩-膏盐岩的规律性变化(图6)。结合测井、录井数据,细粒沉积在横向上按盐湖沉积规律呈现有序分布。向湖心方向,随水深的加大,长英质细粒混合沉积岩及长英岩类减少,黏土质细粒混合沉积岩与黏土岩类增加,灰云质细粒混合沉积岩与碳酸盐岩增加。从物源区到湖中心盐岩发育区,受陆源碎屑沉积分异作用细粒沉积岩在湖区内呈环带状分布(图7)。

    图  7  东濮凹陷沙三下亚段细粒沉积岩相图
    Figure  7.  The fine-grained sedimentary lithofacies map of the lower third member of Shahejie Formation in Dongpu Sag

    针对东濮细粒沉积特征,本次研究依据非常规油气地质学理论结合国内油田在页岩油勘探领域的新认识(吴靖等,2017张建国,2017张文伟,2017刘可禹等,2019刘惠民等,2020滕建彬,2020彭军等,2022王鑫锐等,2023于乐丹等,2024),从盆地系统演化角度,结合古气候、古地貌、古物源等因素分析细粒沉积岩的形成机理,认为东濮凹陷细粒沉积受构造、物源、气候综合影响显著,是三者综合作用下的结果,具有典型构造-古气候-沉积耦合控制下事件性沉积特征。

    区域构造演化方面,米兰科维奇旋回分析表明东濮凹陷沙三段、沙四段的底界年龄分别为 44.21 Ma和51.00 Ma(刘秀岩等,2020),而在50 Ma的沙四段为太平洋板块俯冲转向,进一步加固了东濮“西缓东陡”的古地貌格局,同时研究表明东部陆相盆地在50~42 Ma时期处于古近纪古始新统PETM极热事件后的古气候恢复和生态系统重建的过程,广泛发育湖相咸化烃源岩(石巨业等,2019)。根据钻井取心资料显示,在沙四上与沙三下地层分界线见到含砾砂岩层分布,反映湖盆由沙四期兰聊断裂活动形成单洼到沙三期多条断裂强烈活动形成多洼的构造格局和古地貌特征,断层破折带发育浊积砂体,上升盘发育滩坝砂,近湖盆中心发育稳定细粒沉积。

    古物源和沉积体系方面,东濮凹陷古近系具有“远源汇聚、高隆闭流”的源-汇体系特征(中原油田内部报告),主要发育六大物源区,最远物源区可到达太行山西南麓,包括五种主要母岩类型:中生界碎屑岩和火山岩、古生界碳酸盐岩和碎屑岩、太古-元古界变质岩基底(靳亚勤等,2019)。其中三叠系钙质粉砂岩和上古生界碳酸盐岩的风化提供了黏土、碳酸盐及粉砂作为细粒沉积的物质基础,是造成东濮凹陷“粒度偏细、矿化度偏高、碳酸盐发育”的重要因素。近年来勘探实践及研究表明细粒沉积岩的形成与沉积相带有着密切关联(王勇等,2015金忠慧,2017吴靖等,2017刘惠民等,20202023何文军等,2023赵贤正等,2023),不同相带细粒岩类型不同。三角洲前缘区发育长英质黏土岩、长英质岩,层理构造以块状为主,浅湖相区发育黏土岩、黏土质混合岩,层理构造以层状为主,半深湖相区发育碳酸盐岩、黏土质碳酸盐岩,层理构造以纹层状为主;浊积区主要为块状黏土岩(表1)。

    表  1  东濮凹陷细粒岩相与沉积相分布关系
    Table  1.  Relationship between fine-grained lithofacies and sedimentary facies distribution in Dongpu Sag
    沉积亚相 颜色 沉积构造 岩相数量
    (个)
    主要岩相
    三角洲前缘 深灰、灰色、暗紫色 块状 8 深灰色长英质黏土岩、深灰色块状黏土质长英质岩、深灰色块状长英质岩
    浅湖 灰色、深灰色、灰黑色、浅灰色 层状、纹层状 31 深灰-灰黑色层状黏土岩、深灰-灰黑色层状黏土质混合岩、深灰-灰黑色纹层状碳酸盐岩、深灰-灰黑色层状
    长英质黏土岩
    半深湖 灰色、深灰色、灰黑色、深棕色 纹层状、层状 45 深灰-灰黑色纹层状碳酸盐岩、深灰-灰黑色纹层状黏土质碳酸盐、深灰-灰黑色纹层状黏土质混合岩、深灰-灰黑色纹层状黏土岩、深灰-灰黑色纹层状碳酸盐质黏土岩
    浊积区 浅灰色、灰色、棕灰色、深灰色 层状、块状 77 深灰-灰黑色块状黏土岩、深灰-灰黑色层状黏土岩、深灰-灰黑色块状黏土质混合岩、浅灰-灰色块状长英质黏土岩
    下载: 导出CSV 
    | 显示表格

    古气候及古水深方面,综合岩心、微量元素、有机质和矿物含量分析,细粒沉积岩纵向岩相组合受短周期古气候及其伴随的物源强弱和湖水深度变化控制(金忠慧,2017马义权,2017吴靖等,2017张文伟,2017杨万芹等,2018)。依据P161井岩心揭示深灰色纹层状碳酸盐质页岩与浅灰色含膏泥岩频繁交互,反映浅水环境的极细粒滩坝砂与深水浊积砂纵向叠置(图8)。在岩心组合纵向上主要表现为一套砂-泥-碳酸质岩、碳酸盐岩-膏(质)岩-盐岩等蒸发浓缩的沉积旋回。沉积构造上纹层状、层状、块状构造频繁交互,代表静水条件的纹层状沉积构造与反映快速沉积的块状构造呈互层发育,纹层状碳酸质泥页岩与层状细粒混合岩纵向叠置,反映了湖水频繁震荡过程。利用泥岩微量元素分析古气候条件及古水深变化,通过对P161井连续岩性微量元素分析发现反映古气候干湿条件的Sr/Cu指数和古水深Fe/Mn指数,呈现规律性变化。Fe/Mn指示浅水环境与Sr/Cu反映干旱气候相对应,发育浅湖滩坝砂岩和块状泥岩,有机碳含量低黏土矿物含量高。潮湿环境对应的深水期多发育纹层状泥岩、纹层状泥质碳酸盐岩,具有高有机质高碳酸盐含量特征。此外,通过孢粉、全岩矿物和有机碳综合分析中指出在短周期内古气候波动与有机质富集有明显的相关性,古气候的频繁波动对应了有机碳含量也纵向呈现较大非均质性。(马小祥等,2019舒徐洁等,2022

    图  8  东濮凹陷细粒沉积组合深水-浅水沉积相序剖面(据P161井)
    Figure  8.  Deepwater-shallow water sedimentary facies sequence section of fine-grained sedimentary assemblage in Dongpu sag(Based on P161)

    综合分析认为东濮凹陷沙四上-沙三段的细粒沉积岩是构造-古气候-沉积耦合控制下的产物,细粒沉积普遍发育在湖盆高位域至湖水蒸发浓缩成盐的低位域阶段。在旋回沉积初期受控盆断层兰聊正断层活动影响盆地内局部洼陷可容空间增大,上升盘隔档形成封闭湖盆,在潮湿环境下东西两侧母岩区的石炭二叠系—三叠系的钙质砂岩和碳酸盐岩作为沉积物源的大量注入,直至达到最大湖泛面的高位域,湖盆整体以碎屑沉积为主,洼陷中心发育块状泥岩-泥质粉砂岩-灰质泥岩岩相,湖水整体盐度相对偏低属于微咸水环境,湖相微生物开始繁盛,有机质逐渐聚集。随着短周期内气候趋于干旱,物源减弱,湖水注入量减少,蒸发浓缩作用增强,湖水矿化度升高,水体变浅,趋于微咸化-咸化阶段,化学沉积发育,环境季节性变化形成碳酸质-膏质纹层。洼陷内发育纹层状灰(云)质泥岩-纹层状泥灰(云)-混合岩岩相,该时期受季节性洪水影响显著,伴有浊积砂体等洪水重力流沉积。微生物周期性勃发,有机质大量富集为细粒沉积页岩油发育的优势期。在末期随着气候逐渐干旱,湖盆萎缩,物源不发育,湖水矿化度增加,湖水整体为咸化盐湖,发育膏盐-盐岩沉积。(图9

    图  9  东濮凹陷盐湖细粒沉积模式图
    Figure  9.  Fine grain sedimentary pattern map of salt lake in Dongpu Sag

    (1)东濮凹陷北部濮卫次洼在沙四上—沙三段广泛发育细粒沉积岩,纵向上表现为深灰色纹层状碳酸盐质页岩与浅灰色含膏泥岩频繁交互,块状、层状、纹层状沉积构造叠置发育。碎屑组分复杂以粉砂-细粉砂级石英和长石、碳酸盐类、黏土矿物为主。按三要素三端元细粒岩分类方案,共划分出12类细粒岩相,深灰-灰黑色纹层/层状碳酸盐岩、碳酸盐质混合岩为页岩油勘探的有利岩相。

    (2)细粒沉积岩岩石组构、沉积组合和微量元素特征揭示,东濮凹陷细粒沉积受构造、物源、气候综合影响显著,是三者综合作用下的结果,具有典型构造-气候-沉积耦合控制下事件性沉积特征。构造活动控制盆地可容空间,古气候干旱潮湿变化造成湖盆水体频繁波动,控制细粒沉积岩岩相组合,物源区碳酸质母岩影响湖水矿化度,为藻类生物勃发提供物质基础,控制有机质富集。

  • 图  1   东濮凹陷区域位置及构造地层格架图(据彭君等,2021修改)

    Figure  1.   The regional position and tectonic stratigraphic framework of Dongpu Sag

    图  2   东濮凹陷古近系沉积演化及盐度变化图(据中原油田内部资料修改)

    Figure  2.   Sedimentary evolution and salinity variation of Paleogene in Dongpu Sag

    图  3   东濮凹陷典型细粒沉积岩宏观与微观特征

    A.W410井3550.74 m,块状构造;b.W410井3546.70 m,层状构造;c.V457HF井3676.47 m,纹层状构造;d. W410井3550.74 m,灰色含粉砂泥岩,微裂缝发育,10×5(单偏光)。e.V457HF井3701.50 m 深灰色层状碳酸盐质黏土岩,层状(>1 mm)方解石与泥岩互层,10×5(单偏光);f.V457HF井3675.00 m 深灰色纹层状黏土质灰岩,纹层状(<1 mm方解石与黏土层)10×5(单偏光);h.W410井3588.55 m,深灰色纹层状白云质泥岩,微裂缝发淡黄色荧光,TOC=2.8%,10×5(荧光);i.V457HF井3797.57 m,纹层状方解石与黏土层互层,484×(扫描电镜下);j. P161井3778.21 m,深灰色层状含粉砂泥岩中发育高岭石晶间孔,5533×(扫描电镜)

    Figure  3.   Macroscopic and microscopic characteristics of typical fine sedimentary rocks in Dongpu Sag

    图  4   东濮凹陷V457HF井细粒沉积单井综合柱状图

    Figure  4.   Comprehensive histogram of V457HF fine-grained sedimentary single well in Dongpu Sag

    图  5   东濮凹陷沙三-沙四段细粒成分及类型频率图

    Figure  5.   Distribution of fine-grained rock frequency in Es3 – Es4 of Dongpu Sag

    图  6   部2井盐韵律特征

    Figure  6.   Characteristics of salt rhythm in well Bu 2

    图  7   东濮凹陷沙三下亚段细粒沉积岩相图

    Figure  7.   The fine-grained sedimentary lithofacies map of the lower third member of Shahejie Formation in Dongpu Sag

    图  8   东濮凹陷细粒沉积组合深水-浅水沉积相序剖面(据P161井)

    Figure  8.   Deepwater-shallow water sedimentary facies sequence section of fine-grained sedimentary assemblage in Dongpu sag(Based on P161)

    图  9   东濮凹陷盐湖细粒沉积模式图

    Figure  9.   Fine grain sedimentary pattern map of salt lake in Dongpu Sag

    表  1   东濮凹陷细粒岩相与沉积相分布关系

    Table  1   Relationship between fine-grained lithofacies and sedimentary facies distribution in Dongpu Sag

    沉积亚相 颜色 沉积构造 岩相数量
    (个)
    主要岩相
    三角洲前缘 深灰、灰色、暗紫色 块状 8 深灰色长英质黏土岩、深灰色块状黏土质长英质岩、深灰色块状长英质岩
    浅湖 灰色、深灰色、灰黑色、浅灰色 层状、纹层状 31 深灰-灰黑色层状黏土岩、深灰-灰黑色层状黏土质混合岩、深灰-灰黑色纹层状碳酸盐岩、深灰-灰黑色层状
    长英质黏土岩
    半深湖 灰色、深灰色、灰黑色、深棕色 纹层状、层状 45 深灰-灰黑色纹层状碳酸盐岩、深灰-灰黑色纹层状黏土质碳酸盐、深灰-灰黑色纹层状黏土质混合岩、深灰-灰黑色纹层状黏土岩、深灰-灰黑色纹层状碳酸盐质黏土岩
    浊积区 浅灰色、灰色、棕灰色、深灰色 层状、块状 77 深灰-灰黑色块状黏土岩、深灰-灰黑色层状黏土岩、深灰-灰黑色块状黏土质混合岩、浅灰-灰色块状长英质黏土岩
    下载: 导出CSV
  • 白楠, 徐尚, 王雨轩, 等. 柴北缘鱼卡地区大煤沟组七段页岩岩相特征及沉积演化模式[J]. 西北地质, 2021, 54(02): 74−85.

    BAI Nan, XU Shang, WANG Yuxuan, et al. Facies characteristics and sedimentary evolution model of the 7~(th) member of Dameigou formation in Yuqia Area, North Qaidam basin[J]. Northwestern Geology,2021,54(02):74−85.

    操应长, 梁超, 韩豫, 等. 基于物质来源及成因的细粒沉积岩分类方案探讨[J]. 古地理学报, 2023, 25(4): 729−741.

    CAO Yingchang, LIANG Chao, HAN Yu, et al. Discussions on classification scheme for fine-Grained Sedimentary Rocks based on sediments sources and genesis[J]. Journal of Palaeogeography,2023,25(4):729−741.

    陈世悦, 张顺, 王永诗, 等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发, 2016, 43(2): 198−208.

    CHEN Shiyue, ZHANG Shun, WANG Yongshi, et al. Lithofacies types and reservoirs of Paleogene Fine-Grained sedimentary rocks in Dongying Sag, Bohai bay basin[J]. Petroleum Exploration and Development,2016,43(2):198−208.

    何文军, 吴和源, 杨森, 等. 准噶尔盆地玛湖凹陷风城组页岩油储层岩相划分与类型评价[J]. 西北地质, 2023, 56(01): 217−231.

    HE Wenjun, WU Heyuan, YANG Sen, et al. Lithofacies division and type evaluation of shale oil reservoir in Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Northwestern Geology,2023,56(01):217−231.

    黄小青, 王建君, 韩永胜. 苏北盆地ZJ探区页岩油藏勘探评价实践与认识[J]. 西北地质, 2020, 53(03): 252−263.

    HUANG Xiaoqing, WANG Jianjun, HAN Yongsheng. The practice and understanding of the shale oil reservoir in ZJ exploration area of Subei basin[J]. Northwestern Geology,2020,53(03):252−263.

    姜在兴, 孔祥鑫, 杨叶芃, 等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发, 2021, 48(01): 26−37.

    JIANG Zaixing, KONG Xiangxin, YANG Yepeng, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development,2021,48(01):26−37.

    姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(06): 1031−1039.

    JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained Sedimentary Rocks[J]. Acta Petrolei Sinica,2013,34(06):1031−1039.

    金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021a, 42(07): 821−835.

    JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica,2021a,42(07):821−835.

    金之钧, 朱如凯, 梁新平, 等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021b, 48(06): 1276−1287.

    JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development,2021b,48(06):1276−1287.

    金忠慧. 东营凹陷古近系沙四上亚段细粒岩沉积环境研究[D]. 北京: 中国地质大学(北京), 2017.

    JIN Zhonghui. The Study on Sedimentary Environment of fine grained rocks of the upper fourth member of paleogene Shahejie Formation, Dongying Sag[D]: Beijing: Chinese Master's Theses Full-text Database, 2017.

    靳亚勤, 杨栋栋, 蒋飞虎, 等. 东濮凹陷碎屑岩沉积充填特征及变化对构造活动的响应[J]. 科学技术与工程, 2019, 19(29): 83−89.

    JIN Yaqin, YANG Dongdong, JIANG Feihu, et al. The sedimentary filling characteristics of clastic rocks and their responses to tectonic activities in Dongpu Depression[J]. Science Technology and Engineering,2019,19(29):83−89.

    孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京: 中国地质大学(北京), 2020.

    KONG Xiangxin. Sedimentary characteristics, origin and hydrocarbon accumulation of lacustrine carbonate-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2020.

    黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(04): 489−505.

    LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment,2020,42(04):489−505.

    李红磊, 张云献, 周勇水, 等. 东濮凹陷优质烃源岩生烃演化机理[J]. 断块油气田, 2020, 27(02): 143−148.

    LI Honglei, ZHANG Yunxian, ZHOU Yongshui, et al. Hydrocarbon evolution mechanism of high quality source rock in Dongpu Sag[J]. Fault-Block Oil & Gas Field,2020,27(02):143−148.

    刘惠民, 王勇, 杨永红, 等. 东营凹陷细粒混积岩发育环境及其岩相组合: 以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学, 2020, 45(10): 3543−3555.

    LIU Huimin, WANG Yong, YANG Yonghong, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es_4[J]. Earth Science,2020,45(10):3543−3555.

    刘惠民, 王勇, 李军亮, 等. 济阳坳陷始新统页岩岩相发育主控因素及分布特征[J]. 古地理学报, 2023, 25(04): 752−767.

    LIU Huimin, WANG Yong, LI Junliang, et al. Main controlling factors and distribution characteristics of shale lithofacies in the eocene of Jiyang Depression[J]. Journal of Palaeogeography (Chinese Edition),2023,25(04):752−767.

    刘可禹, 刘畅. “化学-沉积相”分析: 一种研究细粒沉积岩的有效方法[J]. 石油与天然气地质, 2019, 40(03): 491−503.

    LIU Keyu, LIU Chang. “Chemo-sedimentary facies” analysis: An effective method to study fine-grained sedimentary rocks[J]. Oil & Gas Geology,2019,40(03):491−503.

    刘秀岩, 陈红汉, 张洪安, 等. 多套烃源岩联合供烃下的原油成藏特征及其与压力的耦合关系: 以东濮凹陷濮城地区沙河街组为例[J]. 地球科学, 2020, 45(06): 2210−2220.

    LIU Xiuyan, CHEN Honghan, ZHANG Hong'an, et al. Characteristics of oil reservoiring and its relationship with pressure evolution of shahejie formation in Pucheng Area[J]. Earth Science,2020,45(06):2210−2220.

    马小祥, 姚素平, 张柏林, 等. 渤海湾盆地东濮凹陷古近系古湖盆氧化还原条件及其优质烃源岩的发育模式[J]. 高校地质学报, 2019, 25(06): 801−812.

    MA Xiaoxiang, YAO Suping, ZHANG Bolin, et al. Redox conditions of paleogene paleolake and development models of high-quality source rocks in the Dongpu Sag, Bohai Bay Basin[J]. Geological Journal of China Universities,2019,25(06):801−812.

    马义权. 济阳坳陷古近系沙河街组湖相页岩岩相学及古气候记录[D]. 中国地质大学, 2017.

    MA Yiquan. Lacustrine shale stratigraphy and eocene climate recorded in the Jiyang Depression in East China[D]. China University of Geosciences (Beijing), 2017.

    彭军, 杨一茗, 刘惠民, 等. 陆相湖盆细粒混积岩的沉积特征与成因机理——以东营凹陷南坡陈官庄地区沙河街组四段上亚段为例[J]. 石油学报, 2022, 43(10): 1409−1426.

    PENG Jun, YANG Yiming, LIU Huimin, et al. Sedimentary characteristics and genetic mechanism of fine-grained hybrid sedimentary rocks in continental lacustrine basin: A case study of the upper submember of member 4 of Shahejie Formation in Chenguanzhuang Area, southern slope of Dongying Sag[J]. Acta Petrolei Sinica,2022,43(10):1409−1426.

    彭君, 周勇水, 李红磊, 等. 渤海湾盆地东濮凹陷盐间细粒沉积岩岩相与含油性特征[J]. 断块油气田, 2021, 28(02): 212−218.

    PENG Jun, ZHOU Yongshui, LI Honglei, et al. Lithofacies and oil-bearing characteristics of fine-grained sedimentary rocks of salt-layers in Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field,2021,28(02):212−218.

    石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质, 2019, 40(06): 1205−1214.

    SHI Juye, JIN Zhijun, LIU Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch Theory[J]. Oil & Gas Geology,2019,40(06):1205−1214.

    舒徐洁, 杨栋栋, 程成, 等. 陆相断陷湖盆生烃潜力的古气候波动响应研究——以东濮凹陷古近系文古4井为例[J]. 岩石矿物学杂志, 2022, 41(01): 87−94.

    SHU Xujie, YANG Dongdong, CHENG Cheng, et al. Paleoclimate response of hydrocarbon generation potential for the lacustrine rift basin: a paleogene example from wengu 4 well in Dongpu Depression[J]. Acta Petrologica et Mineralogica,2022,41(01):87−94.

    孙焕泉, 蔡勋育, 周德华, 等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探, 2019, 24(05): 569−575.

    SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration,2019,24(05):569−575.

    孙业峰. 东濮凹陷沙河街组页岩油资源潜力评价[D]. 大庆: 东北石油大学, 2014.

    SUN Yefeng. Resource potential evaluation of shale oil in Shahejie Formation, Dongpu Depression[D]: Daqing: Northeast Petroleum University, 2014.

    滕建彬. 东营凹陷页岩油储层中方解石的成因及证据[J]. 油气地质与采收率, 2020, 27(02): 18−25.

    TENG Jianbin. origin and evidence of calcite in shale oil reservoir of Dongying Sag[J]. Petroleum Geology and Recovery Efficiency,2020,27(02):18−25.

    王金萍, 黄泽贵, 张云献, 等. 东濮凹陷优质烃源岩的岩性特征及宏观展布规律[J]. 断块油气田, 2018, 25(05): 549−554.

    WANG Jinping, HUANG Zegui, ZHANG Yunxian, et al. Lithological characteristics and macroscopic distribution rule of high-quality hydrocarbon source rocks in Dongpu Depression[J]. Fault-Block Oil & Gas Field,2018,25(05):549−554.

    王鑫锐, 孙雨, 刘如昊, 等. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报, 2023, 41(02): 349−377.

    WANG XinRui, SUN Yu, LIU RuHao, et al. Research progress into fine-grained sedimentary rock characteristics and formation in a continental lake basin[J]. Acta Sedimentologica Sinica,2023,41(02):349−377.

    王勇, 宋国奇, 刘惠民, 等. 济阳坳陷细粒沉积岩形成环境及沉积构造[J]. 东北石油大学学报, 2015, 39(03): 7−14.

    WANG Yong, SONG Guoqi, LIU Huimin, et al. Formation environment and sedimentary structures of fine-grained sedimentary rock in Jiyang Depression[J]. Journal of Northeast Petroleum University,2015,39(03):7−14.

    吴靖, 姜在兴, 梁超. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系[J]. 石油学报, 2017, 38(10): 1110−1122.

    WU Jing, JIANG Zaixing, LIANG Chao, et al. Lithofacies characteristics of fine-grained sedimentary rocks in the upper submember of member 4 of Shahejie Formation, Dongying Sag and their relationship with sedimentary environment[J]. Acta Petrolei Sinica,2017,38(10):1110−1122.

    杨万芹, 王学军, 蒋有录, 等. 湖泊古气候的量化恢复及其对细粒沉积的影响——以东营凹陷沙四段上亚段——沙三段下亚段为例[J]. 油气地质与采收率, 2018, 25(02): 29−36.

    YANG Wanqin, WANG Xuejun, JIANG Youlu, et al. Quantitative reconstruction of paleoclimate and its effects on fine-grained lacustrine sediments: a case study of the Upper Es_4 and lower Es_3 in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency,2018,25(02):29−36.

    杨智, 邹才能, 陈建军, 等. “进(近)源找油”: 油气地质理论创新与重点领域勘探思考[J]. 石油学报, 2021, 42(10): 1310−1324.

    YANG Zhi, ZOU Caineng, CHEN Jianjun, et al. “Exploring petroleum inside or near the source kitchen”: innovations in petroleum geology theory and reflections on hydrocarbon exploration in key fields[J]. Acta Petrolei Sinica,2021,42(10):1310−1324.

    于乐丹, 彭军, 许天宇, 等. 陆相断陷咸化湖盆细粒沉积地层有机质富集特征及控制因素分析——以东营凹陷沙河街组第四段上亚段纯上次亚段为例[J]. 沉积学报, 2024, 42(02): 1−31.

    YU LeDan, PENG Jun, XU TianYu, et al. Analysis of organic matter enrichment and influences in fine-grained sedimentary strata in saline lacustrine basins of continental fault depressions: case study of the upper sub-segment of the upper 4th member of the Shahejie Formation in the Dongying Depr[J]. Acta Sedimentologica Sinica,2024,42(02):1−31.

    张建国. 济阳坳陷始新统沙三下亚段湖相细粒沉积岩成因机制研究[D]. 北京: 中国地质大学(北京), 2017.

    ZHANG Jianguo. The formation mechanisms of lacustrine fine-grained sedimentary rocks in the eocene lower es_3 strata, the Jiyang Depression[D]. Beijing: China University of Geosciences (Beijing), 2017.

    张晶, 鹿坤, 蒋飞虎, 等. 东濮凹陷页岩油气富集条件[J]. 断块油气田, 2015, 22(02): 184−188.

    ZHANG Jing, LU Kun, JIANG Feihu, et al. Enrichment Condition of Shale Oil and Gas in Dongpu Depression[J]. Fault-Block Oil & Gas Field,2015,22(02):184−188.

    张少敏, 操应长, 朱如凯, 等. 湖相细粒混合沉积岩岩石类型划分: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘, 2018, 25(4): 198−209.

    ZHANG Shaomin, CAO Yingchang, ZHU Rukai, et al. Lithofacies Classification of Fine-grained Mixed Sedimentary Rocks in the Permian Lucaogou Formation, Jimsar Sag Junggar Basin[J]. Earth Science Frontiers,2018,25(4):198−209.

    张顺, 刘惠民, 陈世悦, 等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报, 2017, 91(05): 1108−1119.

    ZHANG Shun, LIU Huimin, CHEN Shiyue, et al. Classification Scheme for Lithofacies of Fine-Grained Sedimentary Rocks in Faulted Basins of Eastern China: Insights from the Fine-Grained Sedimentary Rocks in Paleogene, Southern Bohai Bay Basin[J]. Acta Geologica Sinica,2017,91(05):1108−1119.

    张文伟. 基于主(微)量元素分析法的细粒沉积岩沉积环境判别——以大民屯凹陷安福屯地区沈352井沙四下亚段为例[J]. 东北石油大学学报, 2017, 41(04): 99−106. doi: 10.3969/j.issn.2095-4107.2017.04.011

    ZHANG Wenwei. Identification of sedimentary environment of fine-grained sedimentary rock based on major(trace)elements analysis: taking the lower fourth member of Shahejie Formation in the well of shen 352 of anfutun area of Damintun Depression for example[J]. Journal of Northeast Petroleum University,2017,41(04):99−106. doi: 10.3969/j.issn.2095-4107.2017.04.011

    赵贤正, 蒲秀刚, 金凤鸣, 等. 黄骅坳陷页岩型页岩油富集规律及勘探有利区[J]. 石油学报, 2023, 44(01): 158−175.

    ZHAO Xianzheng, PU Xiugang, JIN Fengming, et al. Enrichment law and favorable exploration area of shale-type shale oil in Huanghua Depression[J]. Acta Petrolei Sinica,2023,44(01):158−175.

    赵贤正, 蒲秀刚, 周立宏, 等. 深盆湖相区页岩油富集理论、勘探技术及前景——以渤海湾盆地黄骅坳陷古近系为例[J]. 石油学报, 2021, 42(02): 143−162.

    ZHAO Xianzheng, PU Xiugang, ZHOU Lihong, et al. Enrichment Theory, Exploration technology and prospects of shale oil in lacustrine facies zone of deep basin: a case study of the paleogene in Huanghua Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica,2021,42(02):143−162.

    周立宏, 蒲秀刚, 邓远, 等. 细粒沉积岩研究中几个值得关注的问题[J]. 岩性油气藏, 2016, 28(01): 6−15.

    ZHOU Lihong, PU Xiugang, DENG Yuan, et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs,2016,28(01):6−15.

    朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(06): 1168−1184.

    ZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology,2019,40(06):1168−1184.

    朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251−264. doi: 10.11743/ogg20220201

    ZHU Rukai, LI Mingying, YANG Jjingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology,2022,43(2):251−264. doi: 10.11743/ogg20220201

    邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(06): 979−1007.

    ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica,2015,89(06):979−1007.

    Camp W K, Egenhoff S, Schieber J, Slatt R M. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks: diacussion[J]. Journal of Sedimentary Research,2016,86:1−5. doi: 10.2110/jsr.2015.100

    Hu Tao, Pang Xiongqi, Jiang Fujie, et al. Key factors controlling shale oil enrichment in saline lacustrine rift basin: implications from two shale oil wells in Dongpu Depression, Bohai Bay Basin[J]. Petroleum Science,2021,18(3):25.

    Krumbein W C. The mechanic analysis of fine-grained sediments[J]. Journal of Sedimentary Petrology,1932,2(3):140−149. doi: 10.2110/jsr.2.140

    Li Changrong, Pang Xiongqi, Wang Enze, et al. Organic geochemistry, hydrocarbon generation, and expulsion characteristics and their impact on tight oil: a case study of the third member of the upper palaeogene Shahejie Formation, Nanpu Sag, Bohai Bay Basin, NE China[J]. Geological Journal,2020,55:6878−6897. doi: 10.1002/gj.3846

    Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: an inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research,2003,73(5):735−744. doi: 10.1306/012203730735

    Ping Hongwei, Li Chunquan, Chen Honghan, et al. Overpressure release: fluid inclusion evidence for a new mechanism for the formation of heavy oil[J]. Geology,2020,48(8):803−807. doi: 10.1130/G47227.1

    Potter P E, Maynard J B, Pryor W A. Sedimentology of shale[M]. Springer, 1980.

    Tucker M E. Sedimentary Petrology[M]. Wiley-Blackwell, 2001.

图(9)  /  表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  3
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-07-23
  • 录用日期:  2024-08-20
  • 网络出版日期:  2024-11-11

目录

/

返回文章
返回