ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

柴北缘西段化石沟英云闪长岩锆石U-Pb测年、微量元素特征及其地质意义

景永康, 张龙, 刘明, 王元伟, 陈康, 邓楠, 张毅, 吴珺玮

景永康,张龙,刘明,等. 柴北缘西段化石沟英云闪长岩锆石U-Pb测年、微量元素特征及其地质意义[J]. 西北地质,2025,XX(XX):1−14. doi: 10.12401/j.nwg.2024097
引用本文: 景永康,张龙,刘明,等. 柴北缘西段化石沟英云闪长岩锆石U-Pb测年、微量元素特征及其地质意义[J]. 西北地质,2025,XX(XX):1−14. doi: 10.12401/j.nwg.2024097
JING Yongkang,ZHANG Long,LIU Ming,et al. Zircon U-Pb Dating, Trace Elements Characteristics and Geological Significance of Tonalite in the Huashigou Area, Northwestern Margin of Qaidam Basin[J]. Northwestern Geology,2025,XX(XX):1−14. doi: 10.12401/j.nwg.2024097
Citation: JING Yongkang,ZHANG Long,LIU Ming,et al. Zircon U-Pb Dating, Trace Elements Characteristics and Geological Significance of Tonalite in the Huashigou Area, Northwestern Margin of Qaidam Basin[J]. Northwestern Geology,2025,XX(XX):1−14. doi: 10.12401/j.nwg.2024097

柴北缘西段化石沟英云闪长岩锆石U-Pb测年、微量元素特征及其地质意义

基金项目: 陕西省自然科学基础研究计划“柴北缘西段NYF型富铌钽重稀土伟晶岩成因”(2023-JC-QN-0342);中国地质调查局项目“阿尔金伊里奇曼-红柳沟地区萤石、金铜矿产调查评价”(DD20211551);中国地质调查局自然资源综合调查指挥中心科技创新基金项目“阿尔金卡尔恰尔地区超大型萤石成矿带成矿流体性质研究”(KC20230011)联合资助。
详细信息
    作者简介:

    景永康(1986−),男,工程师,从事矿产地质调查评价工作。E−mail:jingyk0112@163.com

    通讯作者:

    张龙(1988−),男,工程师,从事矿产地质调查评价。E−mail:zhanglong242016@163.com

  • 中图分类号: P571;P597

Zircon U-Pb Dating, Trace Elements Characteristics and Geological Significance of Tonalite in the Huashigou Area, Northwestern Margin of Qaidam Basin

  • 摘要:

    本文以柴北缘全吉地块西段化石沟地区发育的英云闪长岩为研究对象,在详尽的野外观察基础上,对其中的原生锆石开展LA-ICP-MS同位素年代学和原位微区成分分析,探讨该区在泥盆纪这一重要构造转换时期的演化历史。化石沟英云闪长岩中原生锆石CL图像显示锆石晶体多呈长柱状或不规则状自形-半自形晶,发育清晰的震荡环带;LA-ICP-MS锆石U-Pb定年获得加权平均年龄(371.1±3.5)Ma,谐和年龄(370.9±1)Ma,Th/U值为0.42~0.83;原位微区成分分析表明其具有明显的Ce正异常,以及强烈的Eu负异常,轻稀土元素普遍亏损而重稀土元素强烈富集;锆石Ti温度计计算得到锆石结晶温度(tZr-Ti)为628~722 ℃,为典型的岩浆成因锆石。Pb-Th图解中,测点全部落入I型花岗岩锆石区域内,代表了原始岩浆为壳幔混合型岩浆。综合上述信息,推测化石沟英云闪长岩形成于碰撞造山后伸展环境下,代表了地幔物质上涌使地壳物质重熔所导致的岩浆事件。

    Abstract:

    This study focuses on the tonalite in the Huashigou in the western section of the Quanji massif, northwestern margin of the Qaidam basin. Based on detailed field investigations, LA-ICP-MS in-situ isotopic dating and elemental analyses were carried out on the primary zircons to explore the evolutionary history of this area during the important tectonic transition period of the Devonian. The CL images of zircons in Huashigou tonalite show that zircon crystals are mostly columnar or irregularly shaped, euhedral to subhedral grains with clear oscillatory zonations. Zircon U-Pb dating yields a weighted average age of 371.1±3.5 Ma, a concordant age of 370.9±1 Ma, and a Th/U ratio of 0.42~0.83. LA-ICP-MS in-situ elemental analysis shows obvious Ce positive anomalies, strong Eu negative anomalies, and relative enrichment in light rare earth elements (LREE) compared to heavy rare earth elements (HREE). Zircon Ti thermometer calculation reveals zircon crystallization temperatures (tZr-Ti) ranging from 628 to 722 ℃, indicating a typical magmatic origin. In the Pb-Th diagram, all zircon spots fall within the I-type granite zircon field, representing that the original magma is crust-mantle mixed. Based on the above information, it is inferred that Huashigou tonalite was formed in an extensional environment after the collision, representing a magmatic event caused by mantle upwelling and crustal reworking.

  • 近年来,随着计算机技术的不断发展,磁法勘探资料反演研究已由原始的手工计算发展到以计算机为主的算法研究,由单一反演方法发展到多方法的综合反演技术,由二维平面向三维立体发展。磁法三维反演解释技术是近年来国内外重磁研究的热点之一。磁性反演主要有两类,一类是将场源的边界形态作为反问题求解的形态反演;一类是将场源的物性参数作为反问题求解的物性反演。形态反演的模拟是通过任意多边体或多面体来模拟复杂地质体,它可以利用人的经验对反演进程加以引导,通过人机交互模式将反演结果反馈,根据反馈结果进行约束,进而提高反演效率和形态。磁法建模基于磁法形态反演的发展,经历了的人机交互建模技术、三维可视化技术等,对于真实地质体的模拟能力有了较大提升。

    通过各种地球物理观测数据建立地表以下地质模型,结合地球物理异常数据及地质剖面进行建模是了解地下深处构造单元的重要方法,B.R.Goleby等(2001)在澳大利亚Yilgarn东Norseman-Wiluna地区采用2.5D重力模拟,研究了该区绿岩的深度及与花岗岩之间的位置关系。Roy和Clowes(2000)利用反射地震、重磁2.5D和3D建模,对加拿大哥伦比亚省富含斑岩型铜钼矿的Guichon Cheek岩基进行了深部结构研究,建立了三维模型,岩基的边界、内部结构、岩浆通道清晰可见;Malehmir等(20062009)在瑞典北部Skellefte成矿带进行了的3D地质-地球物理建模,瑞典Upplasa大学在该成矿带西部的Kristineberg矿集区开展了高分辨率反射地震剖面和重、磁、震联合反演解释研究,建立了该地区3D地质-地球物理模型;向中林(2009)将三维地质建模及可视化用于矿床的成矿地质条件分析,应用于危机矿山找矿;吕庆田等(2010)在铜陵矿集区狮子山矿田利用反射地震成像及钻孔资料约束,进行重力3D反演,建立了3D地质模型,初步实现了狮子山-铜官山矿田地壳结构“透明化”;祁光等(2012)以安徽泥河铁矿为例开展先验地质信息约束的三维地质重磁建模研究;严加永等(2014)在安徽省沙溪铜矿进行三维重磁反演,通过反演磁化率体和密度体,识别了四种主要的岩体类型,为三维地质建模提供借鉴型;陈炳锦(2021)在陕西省龙王沟地区以磁测数据为基础建立了三维地质体模型,只管预测磁铁矿的空间分布和形态。王昊(2022)基于航磁数据开展位场分离获取重磁反演的异常数据,完成人机交互反演,通过剖面建立了朱溪矿矿区三维地质建模。随着信息化的发展,三维地质建模及可视化已呈现出较为明显的优势,也是对于开展深部找矿研究的必要手段。

    1984年,法国地质物理学家Morlet首次提出“小波分析”的概念,引入了被命名为“Morlet小波”的一种基函数,用于时间和频率的局域变化,进而在信号中提取信息,通过伸缩和平移等功能实现对信号的多尺度细化分析,解决了许多难题。1987年,信号分析专家Mallat将计算机的多尺度分析思想引入到小波分析中,提出了多分辨分析的概念,研究了小波变换的离散化情形,提出了著名的分解与重构快速算法,即“Mallat”算法。wickerhuaes(1991)、Beylkin(1990)、Coifman(1990)等人提出了“小波包”的概念,将Mallat进一步优化,提出了小波包算法,进过30多年的发展,小波理论不断完善,成熟,小波分析在信号处理,图像处理语音识别等众多非线性学科领域取得了重大成就。小波多尺度分析法可以将磁异常分解到不同的尺度空间中,并且尺度的大小决定了异常所反映的地质体的规模和埋深情况。侯尊泽(19951997)、杨文采(20012004)等人将小波变化应用于重力异常分析,李宗杰(1997)在位场数据处理中引入小波变换,将异常信号分解、滤波、重建,达到了提取区域异常和局部异常的目的。张恒磊(2009)研究了小波分析的磁测数据处理流程,

    宁津生(2010)等人利用连续小波变换进行了干扰源分离和场源深度确定的模拟,发现小波变换边缘分析可有效确定场元深度。刘芳(2013)等人通过二位小波多尺度分析,实现了不同场源深度密度体与重力异常分离的目的。刘天佑(2007)、张恒磊(2009)、王建复(2013)、尚世贵(2014)、宋小超(2016)、蒋勇平(2018)等人将小波多尺度分析用于重磁法数据处理,精细处理携带了多尺度地质信息的位场信号,使得小波多尺度分析方法在资料的位场分离领域得到了广泛的应用。

    根据频率与深度的对应关系可知:小波尺度代表高频信号,大尺度代表低频信号,低频部分反映的是浅层信息,高频部分反应深部信息,通过小波多尺度因子变化将异常信号进行分解到不同的细节。借助功率谱计算,来反映不同细节对应的异常源深度。功率谱可以借助重磁异常的径向对数功率谱分析,来定量的确定重磁异常的场源深度。Bhattacharyya(1966)给出了频率域内单个均匀磁化棱柱体的总磁场场强表达式,提出了一种矩谱法来直接计算磁性体界面深度;Spector和Grant(1970)提出了一种基于统计理论模型的“等效论”磁异常数据处理方法,侯重初(1985)等利用磁性体导数异常的对数功率谱直接计算磁性体下底深度推导出利用磁异常垂向一阶导数的对数功率谱计算二度板状体下底埋深的近似公式;申宁华(1985)提出先计算磁性体的顶深和质心深度,在“磁性体顶部距离质心与质心距离底部相等”的假设条件下,间接求出磁性体的底部埋深。张先(2007)等人研究了不同尺度磁性体的场源深度。

    党月辉(2008)研究了功率谱估算磁源深度的方法,给出了使用条件和范围。段瑞锋(2016)将功率谱计算用于银额盆地居延海坳陷磁测异常解释中笔者利用小波多尺度分解将陕西省略阳县金子山地区磁测数据分解为几个不同阶的细节,通过引用直立矩形棱柱体功率谱计算各阶细节异常的对应的场源深度。结合区域地质背景,地形地貌及打钻的钻孔信息,利用Voxler平台,在虚拟环境下实现二维小波多尺度分解数据的三维离散可视化,建立三维地质体模型。预测岩浆热液通道部位、岩体空间形态,并结合时间域激电测深,圈定矿体的赋存空间,提高地球物理勘探解释的准确性、可靠性,实现地质、物探和地表及深部信息的集成展示,服务于分析研究和决策支撑,为下一步钻孔设计提供依据。

    陕西勉(县)-略(阳)-阳(平关)三角区是重要的多(贵)金属矿集区,常见有中酸性沉积岩带和超基性—中基性—中酸性侵入岩及古生代碎屑岩和碳酸盐岩。整体上呈“东收西开”的扇骨形区域构造。南侧为汉江大断裂控制,北面为二里坝—铜厂-七里沟断裂,控制着区域内构造活动和岩浆活动。金子山金铜多金属矿即分布在二里坝—铜厂-七里沟断裂中段(图1)。

    图  1  勉略阳地区区域地质构造略图(据西北有色地质勘查局七一一总队,2015
    1.勉略康构造混杂岩带;2.震旦纪碎屑碳酸盐岩;3.太古界绿岩;4.中部火山岩浆岩带;5.中晚元古界中酸性火山岩;6.基性岩体;7.中下元古界基性火山岩;8.基底拼合主构造线;9.超基性岩;10.闪长岩;11.太古界鱼洞子岩群;12.中下元古界东沟坝组13.中下元古界何家岩岩群;14.金矿床;15.铜矿床;16.多金属矿床;17.镍矿床;18.铁矿床;19.古基底缝合带;20.地名;21.工作区
    Figure  1.  The Regional geological structure of Mianlveyang area

    工作区出露地层主要为郭家沟组第一亚层、震旦系断头崖组及第四系(图2)。郭家沟组第一亚层主要岩性为细碧岩。震旦系断头崖组主体分布在测区西北部,与下伏火山岩呈不整合接触。是一套以灰岩、白云质灰岩、含碳绢云母板岩、碳质板岩、板岩、凝灰质板岩构成的碎屑化学沉积变质岩。区内断裂构造发育,分为近EW向、NW向、近SN向和NE向4组。控矿断裂为NE向断裂,其余为破矿构造。区内侵入岩发育,超基性岩大面积分布,基性、中酸性岩体多呈岩墙、岩脉或岩株产出。超基性岩第一期主要为菱镁岩、滑镁岩,磁性较弱,据研究成果表明MgO含量明显偏高,CaO和Al2O3偏低,属深源浅成岩浆类型,据纯橄岩年龄测试Rb-Sr等时线年龄(927±49)Ma,属晋宁期产物;第二期主要为蛇纹岩,碎裂状蛇纹岩、纯橄榄蛇纹岩(原岩:橄榄石)、纤胶蛇纹岩、叶蛇纹岩、绢云母化蛇纹岩、斜辉绿橄岩、含磁铁矿蛇纹岩,磁性较强,与晋宁期超基性岩带同位产出,构成复合超基性岩带,同位素年龄328~540 Ma(K-Ar法),为加里东-海西期产物。根据定向标本的测定结果显示,二里坝-铜厂背斜发生于该期次岩体产出之后,最后在金子山地区出露剩磁方向较为凌乱的含磁铁矿角砾状蛇纹岩,为负异常,金子山的金铜矿出露于含磁铁矿角砾状蛇纹岩中。对前期施工的探槽钻探工程,结合民坑调研工作重新进行综合研究后,认为金子山金铜矿体是加里东-海西期产物,后被含磁铁矿角砾状蛇纹岩推覆至地表。

    图  2  工作区地质图
    1.灰岩;2.白云质灰岩;3.板岩;4.炭质板岩;5.凝灰质板岩;6.含炭绢云母板岩;7.斜长花岗岩;8.云英岩;9.闪长岩;10.辉绿岩;11.细碧岩;12.菱镁岩;13.石英菱镁岩;14.滑镁岩;15.蛇纹岩(原岩:橄榄石);16.蛇纹岩(原岩:斜辉石);17.含磁铁角砾状蛇纹岩;18.未见矿钻孔;19.见矿钻孔;20.断层
    Figure  2.  Geological map of working area

    根据测定的物性标本显示(表1),磁性最强的是磁铁矿和蛇纹岩,郭家沟组的细碧岩、震旦系的碎屑化学沉积变质岩、晋宁期的菱镁岩和滑镁岩、云英岩、斜长花岗岩磁性较弱。在本工作区蛇纹岩呈低阻低极化,滑镁岩呈高阻低极化特点,但是含磁铁角砾状蛇纹岩中含有大量的硫铁矿,呈低阻高极化特点。综上所述利用蛇纹岩与围岩的磁性、电性差异,预测浆热液通道部位、岩体空间形态是可行的。

    表  1  工区岩(矿)石标本磁参数测定统计表
    Table  1.  Area of Rock (Ore) specimen magnetic parameters measurement calculation table
    岩(矿)石名称 κ/(4π×10−6 SI) Mr /(10−3 A/m)
    变化范围 常见值 变化范围 常见值
    磁铁矿 34 1800063047 33480 2000~20000 12850
    含磁铁角砾状蛇纹岩 40 1414182764 40728 186327505 7546
    蛇纹岩 54 10003600 1900 400~2600 1100
    滑镁岩 39 100~800 433 150~600 226
    细碧岩 30 80~300 175 78~425 179
    斜长花岗岩 31 60~400 141 60~300 133
    云英岩 30 100~600 244 100~500 268
    下载: 导出CSV 
    | 显示表格

    金子山金铜矿前期勘查工作对成矿控制因素、矿化类型研究较少,致使勘查工程见矿不佳,对整个金子山地区的主攻矿化类型、主攻矿种缺少全面认识,进而在勘查靶区、靶位选取及工程布设方面存在一定的盲目性,造成进一步勘查工作难以深入,找矿无法取得突破。笔者主要对前期施工的探槽钻探工程结合民坑调研工作的重新进行综合研究后,认为金子山金铜矿为与加里东-海西期超基性岩有关的岩浆熔离型金铜镍多金属块状硫化物型,利用蛇纹岩与围岩的磁性、电性差异,确定蛇纹岩产生的异常与其对应三维空间的定量关系,把蛇纹岩产生的异常范围划分出来,从而约束反演结果,得到最优解。通过预测岩浆通道底部或者转折端位置,以期发现深部的盲矿体。

    根据小波多尺度分解塔式算法的低阶细节不变性,对略阳县金子山地区垂直磁异常(ΔZ)单位(nT)进行小波多尺度分解处理,根据小波多尺度因子的变化,将磁异常信号分解到不同阶的细节,不同阶的细节,代表了不同深度的局部场。

    利用Voxler三维可视化科学制图软件,对离散的垂直磁异常数据进行小波多尺度分解,分解为1~6阶细节和逼近(图3)。

    图  3  二维小波多尺度分解
    a.垂直磁异常;b.一阶细节;c.二阶细节;d.三阶细节;e.四阶细节;f.五阶细节;g.六阶细节;h.六阶逼近
    Figure  3.  2D Wavelet Multiscale Decomposition

    据党月辉(2008)通过对Bhattacharrya提出的功率谱表达式进行化及处理和求取平均径向功率谱后,推导出的有限延深直立矩形棱柱体平均径向功率谱表达式

    $$ \mathrm{I}\mathrm{n}\mathrm{ }\mathrm{E}\left(\gamma \right)=A-2{h}_{t}\gamma +2In(1-{e}^{-tr}) $$ (1)

    对公示中的r求极值,并取自然对数,得到:

    $$ r=\frac{In\left(1+\dfrac{h}{t}\right)}{t} $$ (2)

    其中A为常数,r为径向频率,t为棱柱体的延伸,h为埋深

    由上式可知r存在极大值拐点。当已知棱柱体埋深时,可以根据径向频率的峰值位置估计其延深t,$ 2In(1-{e}^{-tr}) $的结果,反过来可以对果断埋深进行延伸影响的改正。

    根据功率谱分析得出:1阶细节异常场源似深度为22 m;2阶细节异常场源似深度为61 m;3阶细节异常场源似深度为124 m;4阶细节异常场源似深度为238 m;5阶细节异常场源似深度为474 m;6阶细节异常场源似深度为860 m;6阶逼近场源似深度为1812 m。异常主要为大面积加里东-海西期磁性较强的蛇纹岩引起,磁性体较为简单,通过地形改正,用似深度代替真深度,将传统的二维小波多尺度分解数据整合为三维数据。(图4)。

    图  4  反演数据三维散点图
    Figure  4.  3D scatter diagram of inversion data

    借助VolRender(形体渲染)模块编制形体渲染图(图5),根据形体渲染图件色彩变化特征、区内地质及钻孔等先验信息,提取大于50 nT的磁异常区间,在Isosurface(等值面)模块下编制空间等值面图(图6)。

    图  5  反演数据体积渲染图
    Figure  5.  Volrender map of inversion data
    图  6  反演数据空间等值面图
    Figure  6.  Spatial isosurface of inversion data

    该等值面基本反映了金子山测区蛇纹岩的分布特征,代表了岩浆在金子山地区的侵入特征。从图中可以看出,金子山地区的超基性岩体仅为岩浆主通道的北侧的一部分,根部位于金子山地区的西南方向,岩浆主通道的北缘向北陡倾,按照同位产出的规律,金子山地区的含磁铁矿角砾状蛇纹岩为岩浆主通道的分支,推断向南陡倾,结果和时间域激电测深推断的产状一致(图7)。前期施工4个钻孔均未见矿(图8),ZK2501和ZK2502孔为交叉孔,钻孔岩性均为滑镁岩,未见矿原因分析认为矿体控制深度不够,均未穿透滑镁岩,达到含矿岩层。ZKA01和ZK2701孔未见矿,主要原因是未考虑控矿岩层的产状问题,从含矿岩层的背后和侧面穿过。

    图  7  激电测深剖面和磁性体分布关系图
    Figure  7.  Distribution relationship between IP sounding profile and magnetic body
    图  8  钻孔和磁性体分布关系图
    Figure  8.  Distribution relationship between boreholes and magnetic body

    通过对金子山金铜矿资料重新进行综合研究,结合岩浆通道的三维模型,推断在岩浆通道底部或者转折端位置存在与超基性岩有关的岩浆熔离型金铜矿体,施工了ZK2601孔(图8),在岩浆分支通道的底端,标高约1270 m处见金铜矿体,Au品位5.2×10−6,Cu品位0.11×10−2,厚1.0 m。

    (1)笔者通过对陕西省略阳县金子山地区磁异常数据进行小波多尺度分解,通过功率谱与磁异常深度对应关系计算出磁源似深度,依靠钻孔数据进行约束反演,借助Voxler平台建立三维磁性体模型,直观的反映了不同异常源对应的地质体和构造信息,提高了磁异常的垂向分辨率,有助于提高对深部异常及矿体赋存位置的认识,提高深部找矿的工作效率。

    (2)Voxler平台为磁法三维反演提供了良好的平台,其多个数据模块在实现交互式可视化三维地质建模重构中起到了较好的作用,通过平台的可视化重构,可以直观的预测了岩浆的通道位置,推断了岩浆通道底部或者转折端位置,大致圈定矿体的赋存空间,提高了地球物理勘探解释的准确性、可靠性。

    (3)在功率谱计算时引用了有限延深直立矩形棱柱体功率谱公式,仅考虑直立矩形条件下,且将少量钻孔资料信息作为地质建模约束条件,条件过于单一,针对复杂模型还需进一步研究。

  • 图  1   大地构造略图(a)(据刘永顺等,2009许志琴等,2011修改)及化石沟一带地质简图(b)

    1.第四系;2.石炭纪羊虎沟组;3.泥盆纪牦牛沟组;4.古元古代达肯大坂岩群;5.新元古代英云闪长岩;6.志留纪二长花岗岩;7.泥盆纪石英闪长岩;8.泥盆纪英云闪长岩;9.二叠纪二长花岗岩;10.二叠纪石英闪长岩;11.二叠纪闪长岩;12.逆断层;13.岩层产状;14.倒转岩层产状;15.样品采集位置及编号

    Figure  1.   (a) Geologic map of main tectonic units and (b) Geologic map of Huashigou area, Northwestern Margin of Qaidam Basin

    图  2   化石沟英云闪长岩野外及镜下特征

    a,b.化石沟英云闪长岩露头特征;c,d.英云闪长岩镜下特征(单偏光,正交光);e,f.英云闪长岩中金属矿化现象;Qtz.石英;Pl.斜长石;Ser.绢云母;Chl.绿泥石;Mal.孔雀石;Lm.褐铁矿;Ccp.黄铜矿;Py.黄铁矿

    Figure  2.   Field characteristics and Micrographs of tonalite in the Huashigou area

    图  3   化石沟英云闪长岩锆石CL图像(a)、U-Pb谐和图、加权平均年龄(b)和锆石球粒陨石标准化REE配分曲线图(c)
    (球粒陨石成分据Sun et al., 1989;I型花岗岩锆石成分区据Wang et al., 2012

    Figure  3.   (a) CL images of zircons, (b) U-Pb concordia diagram and weighted average age of zircons from tonalite in the Huashigou area, and (c) Chondrite-normalized REE patterns for zircons from the Huashigou

    图  4   岩浆锆石和热液锆石的EuN/EuN—REE图解(a)(据Li et al., 2018)和锆石Ti温度计计算结晶温度与Th/U值关系图(b)(据Hoskin et al., 2003Watson et al., 2006

    Figure  4.   (a) Diagrams of EuN/EuN - REE for discriminating magmatic and hydrothermal zircons and (b) a plot of the calculated crystallization temperatures of zircons using the Ti-thermometer against their Th/U ratios

    图  5   陆壳锆石和洋壳锆石判别图(a,b)和岩浆类型判别图(c)

    a. Hf–U/Yb图解(据Grimes et al., 2007); b. Y–Th/Yb图解(据Grimes et al., 2007);c. Pb-Th图解(据Yang et al., 2012

    Figure  5.   (a, b) Discrimination diagrams of zircons of continental and oceanic crust origins and (c) Discrimination diagrams of zircons from different tectonic background

    图  6   晚泥盆世柴北缘花岗岩球粒陨石标准化REE配分曲线图(a)(球粒陨石成分据文献Sun and McDonough, 1989),微量元素蛛网图(b)(原始地幔成分据文献Sun and McDonough, 1989),AR—SiO2碱度率图解(c)(据Wright, 1969)和Y+Nb—Rb构造环境判别图解据文献(d)(Pearce et al., 1984

    Figure  6.   (a) Chondrite-normalized REE patterns, (b) Primary mantle-normalized trace element spider diagram, (c) Diagram of A.R-SiO2, and (d) Diagram of Y+Nb-Rb for the granites of late Devonian from the northern margin of Qaidam basin.

    表  1   化石沟英云闪长岩LA-ICP-MS锆石U-Pb同位素分析结果

    Table  1   The LA-ICP-MS analytical results of U-Pb isotopes for zircons of tonalite in the Huashigou area

    测点(10−6Th/U同位素年龄U-Pb年龄(Ma)
    PbThU207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    HS0110.2286.7487.31.700.05440.00170.45960.01350.06120.00070.01900.0003388.766.6384.09.4383.14.1380.36.7
    HS027.1215.2315.61.470.05250.00180.43130.01450.05960.00070.01800.0003307.677.4364.110.3372.94.2360.06.7
    HS0312.3373.1445.11.190.05370.00170.44350.01320.05990.00070.01790.0003357.868.0372.79.3374.94.0358.25.7
    HS057.7216.5338.21.560.05260.00180.44110.01490.06070.00070.01920.0004313.277.7371.010.5380.14.3384.87.2
    HS065.4192.7276.01.430.05510.00210.44160.01610.05810.00070.01490.0003415.581.6371.411.3364.14.3298.66.5
    HS079.1260.9398.81.530.05250.00170.43120.01310.05950.00070.01860.0003307.469.9364.19.3372.74.0371.76.3
    HS0812.3361.8540.71.490.05320.00150.42990.01150.05850.00060.01810.0003339.262.1363.18.2366.63.7362.15.7
    HS0916.3472.8662.41.400.05290.00140.43600.01100.05970.00060.01830.0003324.458.8367.57.8374.03.7365.95.3
    HS104.6140.5314.12.240.05170.00200.42780.01640.06000.00070.01740.0004272.187.9361.611.6375.44.4348.08.5
    HS116.7203.1315.81.560.05270.00210.43130.01630.05930.00070.01740.0004314.785.4364.111.5371.54.4349.47.3
    HS123.8108.2227.92.110.05540.00290.45710.02360.05980.00090.01840.0006428.9114.4382.216.4374.25.5368.311.8
    HS136.3193.8314.31.620.05360.00220.43440.01730.05870.00070.01700.0004355.790.0366.312.2367.74.5340.67.7
    HS145.2156.3275.21.760.05460.00260.44800.02060.05950.00080.01720.0005394.8102.7375.914.5372.55.0344.19.3
    HS154.8139.9330.62.360.05390.00220.44140.01770.05930.00070.01750.0005367.490.6371.212.5371.54.5351.29.3
    HS168.6262.0495.81.890.05240.00180.42700.01370.05900.00070.01690.0003303.774.2361.09.8369.84.0338.96.7
    HS178.0234.9349.91.490.05290.00200.41590.01550.05700.00070.01750.0004323.885.4353.111.1357.34.1351.57.0
    HS186.8207.8319.11.540.05390.00220.42720.01690.05740.00070.01680.0004368.689.5361.212.1359.84.3337.67.3
    下载: 导出CSV

    表  2   化石沟英云闪长岩锆石微量元素分析测试结果(10−6

    Table  2   Analytical results of trace elements of zircons in tonalite in the Huashigou area

    测点 HS01 HS02 HS03 HS05 HS06 HS07 HS08 HS09 HS10 HS11 HS12 HS13 HS14 HS15 HS16 HS17 HS18
    La 0.179 0.025 0.054 4.160 1.855 0.211 1.556 0.022 0.004 0.018 3.550 0.017 1.417 0.009 0.019 0.019 0.008
    Ce 14.7 6.7 18.1 22.3 17.0 13.5 23.5 14.2 6.8 7.4 48.1 13.9 17.8 7.1 17.7 14.2 10.2
    Pr 0.166 0.041 0.123 0.979 0.551 0.172 0.499 0.072 0.074 0.134 2.417 0.063 0.421 0.036 0.030 0.060 0.181
    Nd 1.67 1.056 1.42 4.75 2.96 2.1 3.34 1.26 0.833 2.71 17.82 0.9 2.38 0.881 1.36 0.916 3.06
    Sm 3.17 2.12 2.48 2.74 2.86 3.7 2.9 2.76 1.96 5.56 11.35 2.37 1.98 1.074 2.32 1.89 4.64
    Eu 0.69 0.43 0.47 0.42 0.73 0.63 0.82 0.47 0.43 0.97 4.24 0.36 0.44 0.36 0.58 0.27 1.11
    Gd 18.7 9.7 13.4 10.9 11.2 18.7 15.4 15.6 10.5 28.4 34.4 12.7 10.9 8.8 14.2 11.9 24.8
    Tb 7.89 4.22 4.77 4.24 4.56 7.4 5.89 6.46 3.88 10.92 9.66 4.56 3.77 3.96 5.69 3.75 8.5
    Dy 102.5 51.8 63.7 59.7 63.9 99.2 84.5 84.2 53.9 135.9 91.9 67.6 55.1 52.3 82.4 57.2 108.7
    Ho 42.9 22.2 28.0 25.8 25.9 40.4 37.1 35.7 23.8 54.4 33.4 29.3 23.8 23.4 35.4 23.4 42.2
    Er 219.3 112.0 136.5 132.2 134.5 193.8 196.4 173.1 132.3 261.2 141.4 152.8 126.0 129.1 192.4 128.0 206.6
    Tm 49.8 26.0 32.1 32.2 31.5 43.8 44.4 39.3 31.0 56.5 31.4 36.0 30.1 30.8 44.1 28.9 44.2
    Yb 523.0 289.2 330.7 347.9 348.6 458.3 502.2 412.2 333.1 539.2 332.9 394.0 313.9 337.2 494.8 316.9 470.4
    Lu 113.3 62.6 71.1 75.6 74.0 93.0 108.2 85.1 74.2 108.7 69.5 86.2 70.2 76.4 108.0 66.0 94.6
    Y 1418 719 870 854 856 1228 1250 1127 803 1679 1087 953 768 802 1202 793 1361
    Hf 9154 8769 10307 10130 10173 9815 10383 10775 10260 8727 8578 10209 10550 10199 11209 10897 8867
    Pb 10.2 7.1 12.3 7.7 5.4 9.1 12.3 16.3 4.6 6.7 3.8 6.3 5.2 4.8 8.6 8.0 6.8
    Th 286.7 215.2 373.1 216.5 192.7 260.9 361.8 472.8 140.5 203.1 108.2 193.8 156.3 139.9 262.0 234.9 207.8
    U 487.3 315.6 445.1 338.2 276.0 398.8 540.7 662.4 314.1 315.8 227.9 314.3 275.2 330.6 495.8 349.9 319.1
    Nb 4.0 1.7 2.4 2.8 2.5 1.9 4.5 3.6 1.6 2.9 1.1 2.9 2.8 2.0 4.5 2.1 1.7
    Ta 1.28 0.57 0.934 0.935 0.802 0.772 1.434 1.188 0.747 0.843 0.524 1.193 0.976 0.915 1.628 0.916 0.653
    Ti 7.7 5.9 3.8 5.3 5.5 4.8 4.5 2.4 2.5 7.3 5.2 4.0 4.2 3.3 4.1 4.0 6.4
    Th/U 0.59 0.68 0.84 0.64 0.70 0.65 0.67 0.71 0.45 0.64 0.47 0.62 0.57 0.42 0.53 0.67 0.65
    ∑REE 1097.9 588.3 702.9 723.9 720.2 974.9 1026.6 870.5 672.9 1211.9 832.1 800.7 658.0 671.4 998.9 653.3 1019.3
    LREE 19.9 10.0 22.2 34.9 25.3 19.7 31.8 18.3 9.7 15.8 83.2 17.2 24.0 9.1 21.4 17.1 18.1
    HREE 1078.1 578.3 680.6 689.0 694.9 955.2 994.9 852.2 663.2 1196.1 748.9 783.5 634.0 662.3 977.5 636.2 1001.2
    LREE/HREE 0.018 0.017 0.033 0.051 0.036 0.021 0.032 0.021 0.015 0.013 0.111 0.022 0.038 0.014 0.022 0.027 0.018
    EuN/Eu*N 0.275 0.290 0.247 0.233 0.395 0.231 0.376 0.217 0.291 0.236 0.656 0.202 0.287 0.358 0.309 0.177 0.317
    CeN/Ce*N 20.9 51.3 54.7 2.7 4.1 17.4 6.5 88.5 100.9 36.4 4.0 105.4 5.6 97.8 179.7 103.7 65.7
    (Sm/La) N 27.4 130.8 71.5 1.0 2.4 27.2 2.9 198.9 820.6 468.1 5.0 222.5 2.2 189.1 187.2 154.1 898.4
    (Lu/Gd)N 49.0 27.1 43.0 56.1 53.3 67.1 56.9 44.8 57.2 31.0 19.8 55.0 44.8 70.0 61.6 37.6 30.8
    tZr-Ti(℃) 722.0 698.6 663.1 689.4 691.9 681.5 675.7 628.3 628.9 717.2 688.4 666.5 671.2 652.3 668.3 665.5 705.2
    △FMQ 4.98 3.93 5.90 5.97 5.51 5.23 6.19 5.87 4.67 3.91 7.23 5.43 5.78 4.48 5.80 5.48 4.55
    下载: 导出CSV

    表  3   晚泥盆世柴北缘花岗岩化学成分分析结果

    Table  3   The chemical composition analysis results for the late Devonian granites from the northern margin of the Qaidam basin

    岩体名称 嗷唠河岩体 巴嘎柴达木湖岩体 大头羊沟岩体 化石沟西岩体
    岩石名称 石英闪长岩 花岗岩 花岗闪长岩 英云闪长岩
    SiO2 55.83 51.95 70.86 63.35 64.86 67.46
    TiO2 0.95 0.96 0.37 0.52 0.61 0.48
    Al2O3 16.26 17.87 14.32 16.50 14.60 14.30
    Fe2O3 1.81 1.84 1.39 2.39 2.18 1.75
    FeO 4.63 5.53 1.42 2.03 4.20 2.85
    MnO 0.12 0.14 0.04 0.08 0.09 0.08
    MgO 5.90 5.68 0.65 2.04 4.05 1.69
    CaO 7.20 8.70 1.45 4.15 1.78 3.41
    Na2O 3.44 3.52 3.40 3.96 2.49 3.52
    K2O 1.11 1.31 5.08 2.72 1.86 2.67
    P2O5 0.20 0.15 0.07 0.23 0.06 0.13
    LOI 1.52 1.59 0.84 1.12 2.55 1.18
    δ 1.62 2.61 2.58 2.19 0.87 1.57
    AR 1.48 1.44 2.52 1.96 1.73 2.07
    NK 4.55 4.83 8.48 6.68 4.35 6.19
    NCK 11.8 13.5 9.93 10.8 6.13 9.60
    La 26.5 16.6 40.1 49.2 29.6 45.5
    Ce 52.5 41.8 84.9 98.2 50.3 76.8
    Pr 5.84 5.38 9.29 10.8 5.76 8.22
    Nd 22.9 23.1 34.2 39.3 20.7 27.9
    Sm 4.80 5.35 6.99 6.22 3.45 4.45
    Eu 1.20 1.35 1.03 1.54 1.27 1.09
    Gd 4.74 5.45 6.39 4.83 3.05 4.15
    Tb 0.77 0.91 0.98 0.58 0.48 0.72
    Dy 4.58 5.61 5.74 2.80 2.46 3.98
    Ho 0.92 1.11 1.09 0.50 0.46 0.78
    Er 2.72 3.36 3.40 1.56 1.35 2.33
    Tm 0.38 0.47 0.48 0.20 0.21 0.39
    Yb 2.45 3.01 3.10 1.30 1.44 2.36
    Lu 0.38 0.44 0.50 0.20 0.23 0.39
    Y 26.0 31.6 31.8 14.6 12.5 21.8
    Ga 18.4 20.1 18.5 19.8 19.2 17.3
    Hf 3.90 3.20 6.80 4.00 4.12 4.51
    Ta 0.40 0.50 1.06 0.60 0.54 0.97
    Rb 34.6 46.5 197 46.8 67.5 98.4
    Ba 280 247 675 1301 273 628
    Th 5.62 3.92 23.30 10.40 6.95 14.8
    Nb 8.00 6.20 9.33 8.14 6.95 13.0
    Sr 399 273 122 1006 125 199
    Zr 163 118 247 151 145 158
    Th 5.62 3.92 23.3 10.4 6.95 14.8
    U 0.92 0.56 3.07 1.29 0.9 1.68
     注:嗷唠河石英闪长岩数据(吴才来等, 2008);巴嘎柴达木湖花岗岩数据(吴才来等, 2007);大头羊沟花岗闪长岩数据(吴才来等, 2007);化石沟西英云闪长岩数据(董国强等, 2014);主量元素含量为%;微量元素和稀土元素含量为10−6
    下载: 导出CSV
  • 陈晔, 王方成, 蔡晓菊. 甘肃西部化石沟铜矿地质特征及其找矿标志[J]. 甘肃地质, 2012, 21(2): 42−49.

    CHEN Ye, WANG Fangcheng, CAI Xiaoju. Geological features of Huashigou copper deposit in western Gansu Province[J]. Gansu Geology,2012,21(2):42−49.

    陈晔, 张春宇. 化石沟铜矿地质地球物理特征及找矿模型[J]. 甘肃科技, 2011, 27(16): 40−41+12.

    CHEN Ye, ZHANG Chunning. Geophysical characteristics and prospecting model of Huashigou copper[J]. Gansu Science and Technology,2011,27(16):40−41+12.

    董国强, 褚广博, 吴义布, 等. 全吉地块金泉山—化石沟一带古生代花岗质岩体地球化学及其构造意义[J]. 甘肃地质, 2014, 23(1): 19−27.

    DONG Guoqiang, CHU Guangbo, WU Yibu, et al. Geochemistry of paleozoic Jinquanshan-Huashigou granitoids in Quanji massif and its tectonic significance[J]. Gansu Geology,2014,23(1):19−27.

    郝国杰, 陆松年, 王惠初, 等. 柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化[J]. 地学前缘, 2004(3): 115−122.

    HAO Guojie, LU Songnian, WANG Huichu, et al. The Pre-Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo-block[J]. Earth Science Frontiers,2004(3):115−122.

    胡万龙, 贾志磊, 王金荣, 等. 南祁连化石沟花岗岩年代学、地球化学特征及其构造意义[J]. 高校地质学报, 2016, 22(2): 242−253.

    HU Wanlong, JIA Zhilei, WANG Jinrong, et al. Geochronology and Geochemistry Characteristics of the Granites from the Huashigou Area, South Qilian and Their Tectonic Significance[J]. Geological Journal of China Universities,2016,22(2):242−253.

    李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 32(3): 161−174.

    LI Changmin. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons[J]. Geological Survy and Research,2009,32(3):161−174.

    李卫红, 王军, 李小强, 等. 阿尔金东段当金山口中酸性侵入体年代学、地球化学特征及构造意义[J]. 西北地质, 2020, 53: 34−50.

    LI Weihong, WANG Jun, LI Xiaoqiang, et al. Chronology, Geochemical Characteristics of the Intermediate Acid Intrusives in Dangjinshankou, Eastern Altun and Their Tectonic Significanc[J]. Northwestern Geology,2020,53:34−50.

    刘永顺, 于海峰, 辛后田, 等. 阿尔金山地区构造单元划分和前寒武纪重要地质事件[J]. 地质通报, 2009, 28(10): 1430−1438.

    LIU Yongshun, YU Haifeng, XIN Houtian, et al. Tectonic units division and Precambrian significant geological events in Altyn Tagh Mountain, China[J]. Geological Bulletin of China,2009,28(10):1430−1438.

    陆松年, 李怀坤, 王惠初, 等. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究[J]. 岩石学报, 2009, 25(9): 2195−2208.

    LU Songnian, LI Huaikun, WANG Huichu et al. Detrital zircon population of Proterozoic meta-sedimentary strata in the Qingling -Qilian-Kunlun Orogen[J]. Acta Petrologica Sinica,2009,25(9):2195−2208.

    潘美慧, 贾志磊, 侯鹏博. 南祁连化石沟铜矿区上石炭统克鲁克组大理岩C、O同位素特征[J]. 黄金科学技术, 2014, 22, (5): 39−44.

    PAN Meihui, JIA Zhilei, HOU Pengbo. Characteristics of C, O Isotopes in the Upper Carboniferous Keluke Formation in South Qilian Mountains[J]. Gold Science and Technology,2014,22(5):39−44.

    彭璇, 庄玉军, 辜平阳, 等. 柴北缘小赛什腾山片麻状花岗岩的成因: 来自地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 西北地质, 2022, 55: 221−239.

    PENG Xuan, ZHUANG Yujun, GU Pingyang et al. Petrogenesis of the Gneissic Granitein Xiaosaishiteng Mountain, Northern Qaidam: Constraint from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes[J]. Northwestern Geology,2022,55:221−239.

    任军虎. 柴达木盆地南、北缘南华—泥盆纪构造演化 [D]. 西北大学. 2010.

    REN Junhu. A study on tectonic evolution during the period of Nanhua to Devonian at the north and south of Qaidan Basin[D]. Northwest Universtity,2010.

    谭光裕, 彭起陆, 刘土改. 甘肃省阿克塞县化石沟斑岩型铜矿床特征研究[J]. 甘肃地质, 2011, 20(3): 51−59.

    TAN Guangyu, PENG Qilu, LIU Tugai. Features of Huashiguo prophyry type copper deposit, Akesai county in Gansu[J]. Gansu Geology,2011,20(3):51−59.

    王惠初, 陆松年, 袁桂邦, 等. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报, 2003(7): 487−493.

    WANG Hhuichu, LU Songnian, YUAN Guibang, et al. Tectonic setting and age of the "Tanjianshan Group" on the northern margin of the Qaidan basin[J]. Geological Bulletin of China,2003(7):487−493.

    吴才来, 郜源红, 吴锁平, 等. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报, 2007(8): 1861−1875.

    WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidan basin, NW China[J]. Acta Petrologica Sinica,2007(8):1861−1875.

    吴才来, 郜源红, 吴锁平等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学(D辑: 地球科学), 2008(8): 930−949.

    WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating and Geochemistry Characteristics of granites from northwest margin of Qaidan basin[J]. Science in China Press,2008(8):930−949.

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004(16): 1589−1604.

    WU Yuanbao, ZHENG Yongfei. Zircon genesis mineralogical studies and their constraints on U-Pb age interpretation[J]. Chinese Science Bulletin,2004(16):1589−1604.

    辛后田, 王惠初, 周世军. 柴北缘的大地构造演化及其地质事件群[J]. 地质调查与研究, 2006(4): 311−320.

    XIN Houtian, WANG Huichu, ZHOU Shijun. Geological events and tectonic evolution of the north margin of the Qaidam basin[J]. Geological Survey and Research,2006(4):311−320.

    许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1−22.

    XU Zhiqin, LI Sitian, ZHANG Jianxin, et al. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block[J]. Acta Petrologica Sinica,2011,27(1):1−22.

    许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999(3): 193−205.

    XU Zhiqin,YANG Jingsui,ZHANG Jianxin,et al. A comparison between the Tectonic Units on the two sides of the Altun sinistral strike-slip fault and the Mechanism of lithospheric shearing[J]. Acta Geologica Sinica,1999(3):193−205.

    闫义, 林舸, 李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学, 2003(2): 184−90.

    YAN Yi,LIN Ge,LI Zian. Provenance tracing of sediments by means of synthetic study of shape,composition and chronolgy of zircon[J]. Geotectonica et Metallogenia,2003(2):184−90.

    杨树清. 甘肃省化石沟铜矿矿床地质特征[J]. 甘肃科技, 2009, 25(17): 47−9+38.

    YANG Shuqing. Geological characteristics of fossil gou copper deposits in Gansu Province[J]. Gansu Science and Technology,2009,25(17):47−9+38.

    赵一鸣, 丰成友, 李大新. 中国矽卡岩矿床找矿新进展和时空分布规律[J]. 矿床地质, 2017, 36(3): 519−543.

    ZHAO Yiming, FENG Chengyou, LI Daxin. New progress in prospecting for skarn deposits and spatial-teporal distribution of skarn deposits in China[J]. Mineral Deposits,2017,36(3):519−543.

    赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267−286.

    ZHAO Zhenhua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers,2010,17(1):267−286.

    赵志丹, 刘栋, 王青, 等. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124−135.

    ZHAO Zhidan, LIU Dong, WANG Qing, et al. Zircon trace elements and their use in probing deep processes[J]. Earth Science Frontiers,2018,25(6):124−135.

    庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56: 63−80.

    ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology,2023,56:63−80.

    Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb[J]. Chemical Geology,2002,192:59−79.

    Andersen T. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation[J]. Chemical Geology,2005,216:249−270. doi: 10.1016/j.chemgeo.2004.11.013

    Belousova E, Griffin W L, O'reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002,143:602−622. doi: 10.1007/s00410-002-0364-7

    Cavosie A J, Valley J W, Wilde S A. Correlated microanalysis of zircon: Trace element, δ18O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3 900 Ma detrital grains[J]. Geochimica et Cosmochimica Acta,2006,70:5601−5616.

    El-bialy M Z, Ali K A. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian–Nubian Shield[J]. Chemical Geology,2013,360:54−73.

    Ewing T A, Hermann J, Rubatto D. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)[J]. Contributions to Mineralogy and Petrology,2013,165:757−779. doi: 10.1007/s00410-012-0834-5

    Ferry J, Watson E. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology,2007,154:429−437. doi: 10.1007/s00410-007-0201-0

    Fu B, Mernagh T P, Kita N T, et al. Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia[J]. Chemical Geology,2009,259:131−142. doi: 10.1016/j.chemgeo.2008.10.035

    Gehrels G, Kapp P, Decelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30.

    Grimes C B, John B E, Cheadle M J, et al. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere[J]. Contributions to Mineralogy and Petrology,2009,158:757−783. doi: 10.1007/s00410-009-0409-2

    Grimes C B, John B E, Kelemen P, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology,2007,35:643−646.

    Hawkesworth C, Kemp A. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology,2006,226:144−162.

    Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters,2007,258(3):561−568.

    Hoskin P W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta,2005,69:637−648.

    Hoskin P W, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 27-62.

    Kemp A, Wilde S, Hawkesworth C, et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons[J]. Earth and Planetary Science Letters,2010,296:45−56. doi: 10.1016/j.jpgl.2010.04.043

    Li H, Li J W, Algeo T J, et al. Zircon indicators of fluid sources and ore genesis in a multi-stage hydrothermal system: The Dongping Au deposit in North China[J]. Lithos,2018,314:463−478.

    Li H, Watanabe K, Yonezu K. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralization processes[J]. Ore Geology Reviews,2014,60:14−35.

    Li Y, Song S, Yang X, et al. Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: implications for Rodinia break-up[J]. International Geology Review,2023,65(7):1000−1016. doi: 10.1080/00206814.2020.1857851

    Moecher D, Mcdowell S, Samson S, et al. Ti-in-zircon thermometry and crystallization modeling support hot Grenville granite hypothesis[J]. Geology,2014,42:267−270.

    Möller A, O’brien P J, KennedY A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society, London, Special Publications,2003,220:65−81. doi: 10.1144/GSL.SP.2003.220.01.04

    Nardi L, Formoso M, Müller I, et al. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes[J]. Chemical Geology,2013,335:1−7. doi: 10.1016/j.chemgeo.2012.10.043

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25:956−983. doi: 10.1093/petrology/25.4.956

    Reimink J R, Chacko T, Stern R A, et al. Earth’s earliest evolved crust generated in an Iceland-like setting[J]. Nature Geoscience,2014,7:529−533.

    Rubatto D. Zircon: the metamorphic mineral[J]. Reviews in Mineralogy and Geochemistry,2017,83:261−295. doi: 10.2138/rmg.2017.83.9

    Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps[J]. Cathodoluminescence in Geosciences: 2000, 373-400.

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications,1989,42:313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    Wang Q, Zhu D C, Zhao Z D, et al. Magmatic zircons from I-, S-and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences,2012,53:59−66. doi: 10.1016/j.jseaes.2011.07.027

    Wark D A, Hildreth W, Spear F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology,2007,35(3):235−238. doi: 10.1130/G23316A.1

    Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters,1983,64:295−304. doi: 10.1016/0012-821X(83)90211-X

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest[J]. Earth. Science, 2005, 308 (5723): 841-844.

    Watson E, Wark D, Thomas J. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology,2006,151:413. doi: 10.1007/s00410-006-0068-5

    Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine,1969,106(4):370−384. doi: 10.1017/S0016756800058222

    Wu T, Xiao L, Ma C. U-Pb geochronology of detrital and inherited zircons in the Yidun arc belt, eastern Tibet Plateau and its tectonic implications[J]. Journal of Earth Science,2016,27:461−473. doi: 10.1007/s12583-016-0675-5

    Yang J, Cawood P A, Du Y, et al. Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China[J]. Sedimentary Geology,2012,261:120−131.

    Zhang X, Xiang H, Zhong Z, et al. U-Pb dating and trace elements composition of hydrothermal zircons from Jianfengling granite, Hainan: Restriction on the age of hydrothermal event and mineralization of Baolun gold deposit[J]. Earth Science—Journal of China University of Geosciences,2009,34:921−930. doi: 10.3799/dqkx.2009.105

图(6)  /  表(3)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  10
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2024-11-05
  • 录用日期:  2024-11-05
  • 网络出版日期:  2024-11-11

目录

/

返回文章
返回