ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

MT法和二维地震勘探在太康隆起西部地区地热资源调查评价中的应用

胥博文, 朱怀亮, 杨忠彦, 叶高峰, 张德森, 闻爽, 邵炳松, 郭充, 闫晋龙, 孙健

胥博文,朱怀亮,杨忠彦,等. MT法和二维地震勘探在太康隆起西部地区地热资源调查评价中的应用[J]. 西北地质,2025,58(3):131−142. doi: 10.12401/j.nwg.2024099
引用本文: 胥博文,朱怀亮,杨忠彦,等. MT法和二维地震勘探在太康隆起西部地区地热资源调查评价中的应用[J]. 西北地质,2025,58(3):131−142. doi: 10.12401/j.nwg.2024099
XU Bowen,ZHU Huailiang,YANG Zhongyan,et al. The Application of MT Method and 2D Seismic Exploration to Detect Geothermal Resources in Western Region of Taikang Uplift[J]. Northwestern Geology,2025,58(3):131−142. doi: 10.12401/j.nwg.2024099
Citation: XU Bowen,ZHU Huailiang,YANG Zhongyan,et al. The Application of MT Method and 2D Seismic Exploration to Detect Geothermal Resources in Western Region of Taikang Uplift[J]. Northwestern Geology,2025,58(3):131−142. doi: 10.12401/j.nwg.2024099

MT法和二维地震勘探在太康隆起西部地区地热资源调查评价中的应用

基金项目: 

河南省地质勘查基金项目(豫国土资发[2017]22号-40)资助。

详细信息
    作者简介:

    胥博文(1982−),男,正高级工程师,博士研究生,主要从事地球物理勘探工作。E−mail:15222699756@163.com

    通讯作者:

    朱怀亮(1986−),男,高级工程师,博士研究生,主要从事地热地质及地球物理勘探技术研究工作。E−mail:huailiang__1987@163.com

  • 中图分类号: P631.3+25

The Application of MT Method and 2D Seismic Exploration to Detect Geothermal Resources in Western Region of Taikang Uplift

  • 摘要:

    为探明南华北盆地太康隆起西部地区深部地层结构及隐伏断裂分布情况,在研究区布设了两条大地电测探测(MT)剖面和两条二维地震勘探测线,其中MT剖面共获得63个测深点,二维地震测线共布设16.24 km。MT数据和地震资料运用不同的数据处理和反演方法,分别得到了可靠的地下介质二维地电模型和较明显的反射波组。探测结果表明,本次勘探精细标定出了新近系热储层底板和奥陶系热储层顶板构造形态和埋深,解译断裂5条。结合研究区地质、地球物理以及钻孔勘探资料,绘制了研究区新近系底板埋深等值线图和奥陶系顶板埋深等值线图。WR-1井深3306.80 m,钻遇地层为第四系、新近系、三叠系、石炭系—二叠系和寒武系—奥陶系,钻探结果与物探预测较一致。通过对新近系馆陶组降压试验,其最大出水量为100.39 m3/h,出水温度为55℃,达到了本次勘查工作的目标,为后续地热勘探开发工作提供新的证据与信息。

    Abstract:

    In this paper the magnetotelluric sounding and 2D seismic exploration methods were applied to study the deep stratigraphic structure and concealed faults of in western region of Taikang uplift, Southern North China Basin. Seven MT profiles had been deployed which included 63 MT sites and 16.24 kilometres of two 2D seismic had been laid for in the study area. By using different advanced data processing and inversion algorithm, the reliable underground geoelectric models and multiplicity of reflection zone were obtained. The results show that the boundary of the base of the Neogene thermal reservoir and the top of the Ordovician thermal reservoir were finely calibrated. Five faults can be accurately interpreted with geophysical exploration. Based on the seven MT profiles and two the seismic profile interpretation as well as geological survey, geophysical exploration, the engineering geological drilling exploration, the boundary isograms of the base of the Neogene thermal reservoir and the top of the Ordovician thermal reservoir were delineated. The well WR-1 3306.80 meters deep, drilled formations are is Quaternary, Neogene, Triassic, Carboniferous-Permian, Cambrian-Ordovician. The drilling results are consisttent with the geophysical prediction. By the analysis of the steady pumping test data of Guantao Group of Neogene, maximum water output can reach 100.39 m3/h, maximum water temperature can reach 55℃. The purpose of the survey has been achieved, it is expected to provide a new evidence and information for subsequent geothermal exploration and development

  • 图  1   太康隆起西段构造单元划分

    Figure  1.   Division of tectonic units in west Taikang Uplifting

    图  2   研究区物探测线点位分布图

    Figure  2.   MT stations and seismic lin profiles in the survey area

    图  3   AA′ 测线物探成果图

    a. L1测线二维反演电性结构模型;b. DZ01测线二维地震反射时间剖面及解释

    Figure  3.   Geophysical prospecting results of AA′ line

    图  4   BB′ 测线物探成果图

    a-L2测线二维反演电性结构模型;b-DZ02测线二维地震反射时间剖面及解释

    Figure  4.   Geophysical prospecting results of BB′ line

    图  5   太康隆起西段新近系底板(a)和奥陶系顶板(b)埋深等值线图

    Figure  5.   (a) Neogene base depth isopleth map and (b) Ordovician top depth isopleth map in west Taikang Uplifting

    表  1   豫东地区地层物性特征统计表(据李文勇等,2004张加洪,2014

    Table  1   Statistical table of stratigraphic physical properties in East Henan Province

    地层 主要岩性 电阻率 地震反射层参数
    代号 井旁MT
    (Ω·m)
    测井
    (Ω·m)
    密度
    (kg/cm3
    波速
    (m/s)
    波阻抗
    (kPa/s)
    新生界 第四系 Q 黏土、砂质黏土 11.0~29.0 5~20 1.90 1800 34.2
    新近系 明化镇组 Nm 中细砂岩、泥岩 4.5~17.4 2~10 2.28 2000 45.6
    馆陶组 Ng 中粗砂岩、泥岩 3.5~6.2 2~15
    古近系 东营组、
    沙河街组
    Ed+Es 泥岩、砂质泥岩 2.5~5.5 2~8 2.37 3500 82.9
    孔店组 Ek 泥岩、粉砂岩 3.6~12.9 5~10
    中生界 侏罗系—白垩系 J-K 泥岩、砂岩 6.3~46.8 5~50 2.51 4300 107.9
    三叠系 T 粉砂岩、泥岩 20.5~61.6 20~100 2.54 4500 114.3
    古生界 石炭系—二叠系 C-P 中细砂岩、泥岩 17.7~37.2 30~300 2.52 4950 124.7
    寒武系—奥陶系 Є-O 白云质灰岩、
    泥质灰岩
    33.2~470 500~1200 2.67 6200 165.5
    元古界 Pt 石英岩、石英片岩 150~1162 500~2 000 —— —— ——
    太古界 Ar 片麻岩、变粒岩 1000~数万 2 000~数万 —— —— ——
    下载: 导出CSV

    表  2   尉参1井和通许2井地层埋深统计表

    Table  2   The depth of stratum by Well Weican-1 and Well Tongxu-2

    地层/钻孔编号 尉参1 通许2
    代号 层厚(m) 底深(m) 层厚(m) 底深(m)
    新生界 新近系+第四系 N+Q 1175.10 1175.10 1266 1266
    中生界 三叠系 T 504.42 1679.52 468 1734
    古生界 石炭系—二叠系 C-P 1141.71(未穿) 2821.23 993 2727
    奥陶系 O 149(未穿) 2876
    下载: 导出CSV

    表  3   二维地震勘探构造解译成果

    Table  3   Structure interpretation result of 2D seismic exploration

    断裂名称 上断点桩号(m) 断距(m) 断层性质 视倾向 倾角 可靠性 控制测线
    冯堂断裂 3540 700 m 正断层 58° 可靠 DZ01
    庄头断裂 6340/10710 200 m 正断层 62° 可靠 DZ01/DZ02
    明家断裂 8810 100 m 正断层 60° 可靠 DZ02
    雷家断裂 13440/4910 200 m 正断层 68° 可靠 DZ01/DZ02
    下载: 导出CSV

    表  4   WR-1地热井钻遇地层特征

    Table  4   Stratigraphic characteristics revealed by geothermal well WR-1

    地层 层厚(m) 底深(m) 主要岩性 划分依据
    第四系 354 354 分散状未成岩的砂质、黏土 沉积物结构疏松,胶结程度差
    新近系 明化镇组 366 720 棕红、棕黄色泥岩、粉砂质泥岩为主,与棕黄色中细砂岩、粗砂岩呈不等厚互层 钻遇明化镇组顶部棕红色泥岩
    馆陶组 430 1150 棕红色、黄褐色泥岩与棕褐色、棕黄色、灰白色中细砂岩、粗砂岩、砂砾岩互层 钻遇馆陶组顶部棕黄色泥岩
    三叠系 548 1698 棕色、棕紫色泥岩与棕红色、浅棕色粉砂岩、泥质粉砂岩等厚互层 钻遇三叠系顶部暗紫红色泥岩
    二叠系 石千峰组 524 2222 褐色、棕褐色、棕红色、灰绿色粉砂岩、粉砂质泥岩为主 底部灰白色中砂岩“平顶山砂岩”
    上石盒子组 302 2524 灰白色、灰绿色、青灰色中砂岩、泥质粉砂岩与棕褐色泥岩略等厚互层 底部浅灰色中砂岩“田家沟砂岩”
    下石盒子组 258 2782 青灰色、深灰色泥岩、粉砂质泥岩为主,夹灰色、灰白色细砂岩、粉砂岩 底部灰绿色细砂岩“砂锅窑砂岩”
    山西组 82 2864 深灰色、青灰色泥岩与灰色泥质粉砂岩、灰绿色、灰色细砂岩略等厚互层 太原组顶界深灰色灰岩
    太原组 80 2944 灰色灰岩与黄绿色细砂岩为主,夹灰黑色炭质泥岩、泥页岩 本溪组顶界灰色铝土质泥岩
    石炭系 本溪组 10 2954 浅灰色铝土质泥岩、灰黑色泥岩夹薄煤层 奥陶系顶界深灰色灰岩
    寒武系—奥陶系 352.8 3306.8 深灰色、灰黑色泥质灰岩为主,夹灰黑色灰质泥岩 未钻穿
    下载: 导出CSV

    表  5   馆陶组取水段测井解释成果表

    Table  5   The logging interpretation results of Guantao Group of Neogene

    序号 起止深度(m) 孔隙度(%) 渗透率(10−3 um2 泥质含量(%) 井温(℃) 厚度(m) 岩性名称
    1778.0~785.331.33855.4612.9146.107.30黄褐色中粒砂岩
    2823.6~832.728.79622.8116.2046.609.10棕褐色中粗粒砂岩
    3846.2~854.723.73348.3521.4346.908.50棕褐色中粒砂岩
    4881.9~888.027.85591.8312.1647.306.10黄褐色中粗粒砂岩
    5915.5~924.031.19893.909.4547.608.50灰白色中粗粒砂岩、
    砂砾岩
    6958.4~963.729.25714.5214.6548.305.30棕褐色中粒砂岩
    71052.91063.529.80761.9111.6449.6010.60黄褐色中粒砂岩
    81072.31078.926.64469.219.0449.806.60黄绿色中粗粒砂岩
    91108.01129.325.79452.6112.8650.2021.30黄绿色中粗粒砂岩、
    砾岩
    合计83.30
    下载: 导出CSV

    表  6   WR-1地热井滤水管下入井中位置

    Table  6   The filter tube into the WR-1 well position

    序号 起始深度(m) 终止深度(m) 长度(m) 类型
    1779.51785.425.91滤水管
    2820.29831.4711.18滤水管
    3843.09854.2411.15滤水管
    4883.74888.805.06滤水管
    5912.05923.1011.05滤水管
    6957.95963.225.27滤水管
    71050.831061.9611.13滤水管
    81073.591078.474.88滤水管
    91113.351128.4315.08滤水管
    合计80.71
    下载: 导出CSV

    表  7   寒武系—奥陶系测井解释成果表

    Table  7   The logging interpretation results of Cambrian-Ordovician

    序号 起止深度(m) 孔隙度(%) 渗透率(10−3 um2 泥质含量(%) 井温(℃) 厚度(m) 岩性名称
    12981.402983.602.750.209.00103.702.20深灰色白云岩
    23004.103006.606.502.676.07104.902.50深灰色灰质白云岩
    33017.903022.102.580.145.18105.604.20深灰色灰质白云岩
    43076.803079.402.140.104.11108.602.60灰色白云质灰岩
    53156.403163.102.590.101.10110.706.70灰色白云质灰岩
    合计18.20
    下载: 导出CSV
  • 陈乐寿. 大地电磁测深——探测地球深部电性和物质状态的一种有效手段[J]. 自然杂志, 2009, 31(1): 39−46. doi: 10.3969/j.issn.0253-9608.2009.01.008

    CHEN Leshou. Magnetotelluric Sounding: An Effective Approch to Survey Electrical Property and State of Matter in the Deep Earth[J]. Chinese Journal of Nature,2009,31(1):39−46. doi: 10.3969/j.issn.0253-9608.2009.01.008

    陈理, 秦其明, 王楠, 等. 大地电磁测深正演和反演研究综述[J]. 北京大学学报(自然科学版), 2014, 50(5): 979−984.

    CHEN Li, QIN Qiming, WANG Nan, et al. Review of the Forward Modeling and Inversion in Magnetotelluric Sounding Field[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(5):979−984.

    陈小斌. 大地电磁正反演新算法研究及资料处理与解释的可视化集成系统开发[D]. 北京: 中国地震局地质研究所, 2003.

    CHEN Xiaobin. New Forward and Inversion Algorithms and a Visual Integrated System for Mt Data[D]. Beijing: Institute of Geology, China Seismological Bureau, 2003.

    河南省地质矿产局. 河南省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 1-299.

    Bureau of Geology Mineral Resources of Henan Province. Stratigraphy (Lithostratic) of Henan Province[M]. Wuhan: China University of Geosciences Press, 1997: 1-299.

    李文勇, 夏斌, 路文芬. 河南省东部地球物理特征与找矿远景[J]. 物探与化探, 2004, 28(1): 26−31.

    LI Wenyong, XIA Bin, LU Wenfen. Geophysical Characteristics and Coal-Searching Prospects in East Henan Area[J]. Geophysical and Geochemical Exploration,2004,28(1):26−31.

    马小雷, 张晓凯, 韩宁, 等. 华北平原南部浅层含水组地下水化学特征及其影响因素分析[J]. 地质找矿论丛, 2025, 40(1): 100−108.

    MA Xiaolei, ZHANG Xiaokai, HAN Ning, et al. Chemical characteristics of ground water in shallow aquifer and influencing factors in south north China plain[J]. Contributions to Geology and Mineral Resources Research,2025,40(1):100−108.

    孙党生, 雷炜, 李洪涛, 等. 高分辨率地震勘探在地热资源勘查中的应用[J]. 勘察科学技术, 2002, 20(6): 55−59. doi: 10.3969/j.issn.1001-3946.2002.06.013

    SUN Dangsheng, LEI Wei, LI Hongtao, et al. Application of High Resolution Seismic Exploration Method to the Prospecting of Geothermal Resources[J]. Editorial Office of Site Investigation Science and Technology,2002,20(6):55−59. doi: 10.3969/j.issn.1001-3946.2002.06.013

    孙自明. 太康隆起构造演化史与勘探远景[J]. 石油勘探与开发, 1996, 23(5): 6−10.

    SUN Ziming. Tectonic Evolution and Petroleum Exploration Prospective of Taikang Uplift[J]. Petroleum Exploration and Development,1996,23(5):6−10.

    王丹, 魏水建, 贾跃玮, 等. 地热资源地震勘探方法综述[J]. 物探与化探, 2015, 39(2): 253−261.

    WANG Dan, WEI Shuijian, JIA Yuewei, et al. An Overview of Methods for Geothermal Seismic Exploration[J]. Geophysical and Geochemical Exploration,2015,39(2):253−261.

    王力斌, 肖洋阳, 任广智, 等. 二维地震在地热资源勘探中的应用[J]. 中国煤炭地质, 2015, 27(4): 63−67. doi: 10.3969/j.issn.1674-1803.2015.04.14

    WANG Libin, XIAO Yangyang, REN Guangzhi, et al. Application of 2D Seismic Prospecting in Geothermal Resource Exploration[J]. Coal Geology of China,2015,27(4):63−67. doi: 10.3969/j.issn.1674-1803.2015.04.14

    汪名鹏. 音频大地电磁测深法在深部地热构造勘查中的应用[J]. 西北地质, 2024, 57(4): 240−251. doi: 10.12401/j.nwg.2023024

    WANG Mingpeng. Application of Audio Magnetotelluric Sounding in Deep Geothermal Structure Exploration[J]. Northwestern Geology,2024,57(4):240−251. doi: 10.12401/j.nwg.2023024

    魏文博. 我国大地电磁测深新进展及瞻望[J]. 地球物理学进展, 2002, 17(2): 245−254. doi: 10.3969/j.issn.1004-2903.2002.02.009

    WEI Wenbo. New Advance and Prospect of Magnetotelluric Sounding (MT) in China[J]. Progress in Geophysics,2002,17(2):245−254. doi: 10.3969/j.issn.1004-2903.2002.02.009

    袁桂琴, 熊盛青, 孟庆敏, 等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11): 1744−1805.

    XUAN Guiqin, XIONG Shengqing, MENG Qingmin, et al. Application Research of Geophysical Prospecting Techniques[J]. Acta Geologica Sinica,2011,85(11):1744−1805.

    习肖伟, 贾金典, 韩艳军, 等. 综合物探方法在某抽水蓄能电站库址勘察中的应用对比[J]. 地质找矿论丛, 2025, 40(1): 129−134.

    XI Xiaowei, JIA Jindian, HAN Yanjun, et al. Application of Integrated Geophysical Exploration Method to a pumped storage power station[J]. Contributions to Geology and Mineral Resources Research,2025,40(1):129−134.

    胥博文, 朱怀亮, 石峰, 等. 太康隆起东段地热资源远景区调查评价与研究[J]. 物探化探计算技术, 2019, 41(4): 476−484. doi: 10.3969/j.issn.1001-1749.2019.04.06

    XU Bowen, ZHU Huailiang, SHI Feng, et al. Investigation and evaluation of the Geothernal Resources Prospective Areas in Eastern Region of Taikang Uplift[J]. Computing Techniques for Geophysical and Geochemical Exploration,2019,41(4):476−484. doi: 10.3969/j.issn.1001-1749.2019.04.06

    徐汉林, 赵宗举, 杨以宁, 等. 南华北盆地构造格局及构造样式[J]. 地球学报, 2003, 24(1): 27−33. doi: 10.3321/j.issn:1006-3021.2003.01.005

    XU Hanlin, ZHAO Zongju, YANG Yining, etal. Structural Pattern and Structural Style of the Southern North China Basin[J]. Acta Geoscientia Sinica,2003,24(1):27−33. doi: 10.3321/j.issn:1006-3021.2003.01.005

    许立青, 李三忠, 索艳慧, 等. 华北地块南部断裂体系新构造活动特征[J]. 地学前缘, 2013, 20(4): 75−87.

    XU Liqing, LI Sanzhong, SUO Yanhui, et al. Neotectonic activity and its kinematics of Fault System in the South of North China Block[J]. Earth Science Frontiers,2013,20(4):75−87.

    杨学明, 雷清, 聂冀强, 等. 太行拱断束地热资源调查评价—基于大地电磁测深结果的分析[J]. 西北地质, 2020, 53(4): 235−245.

    YANG Xueming, LEI Qing, NIE Jiqiang, et al. Investigation and Evaluation of Geothermal Resources of Taihang Arch Fault Cluster Based on the Magnetotelluric Exploration[J]. Northwestern Geology,2020,53(4):235−245.

    袁星芳, 邢立亭, 贾群龙, 等. 威海市七里汤地热田特征及其成因机制[J]. 西北地质, 2023, 56(6): 209−218. doi: 10.12401/j.nwg.2023050

    YUAN Xingfang, XING Liting, JIA Qunlong, et al. Characteristics and Genetic Mechanism of Qilitang Geothermal Field in Weihai[J]. Northweatern Geology,2023,56(6):209−218. doi: 10.12401/j.nwg.2023050

    张加洪. 渤海湾盆地献县凸起大地电磁测深及地热资源评价[D]. 北京: 中国地质大学(北京), 2014, 13−14.

    ZHANG Jiahong. MT Sounding and Geothermal Resource Assessment in Xianxian Convex of Bohai Bay Basin[D]. Beijing: China University of Geosciences (Beijing), 2014, 13−14.

    张交东, 曾秋楠, 周新桂, 等. 南华北盆地太康隆起西部新区上古生界天然气成藏条件与钻探发现[J]. 天然气地球科学, 2017, 28(11): 1637−1649.

    ZHANG Jiaodong, ZENG Qiunan, ZHOU Xingui, et al. Drilling Achievements and gas Accumulation in the Upper Paleozoic in Western New Area of Taikang Uplift, Southern North China Basin[J]. Natural Gas Geoscience,2017,28(11):1637−1649.

    张淑梅, 柴斌, 张国伟. 地热资源调查中的地震勘探技术研究[J]. 地质装备, 2014, 15(1): 28−29. doi: 10.3969/j.issn.1009-282X.2014.01.006

    ZHANG Shumei, CHAI Bin, ZHANG Guowei. Research of Seismic Exploration Technology for Geothermal Energy[J]. Equipment for Geotechnical Engineering,2014,15(1):28−29. doi: 10.3969/j.issn.1009-282X.2014.01.006

    周厚芳, 刘闯, 石昆法. 地热资源探测方法研究进展[J]. 地球物理学进展, 2003, 18(4): 656−661. doi: 10.3969/j.issn.1004-2903.2003.04.014

    ZHOU Houfang, LIU Chuang, SHI Kunfa. A Review of Study on Geothermal Resources Exploration[J]. Progress in Geophysics,2003,18(4):656−661. doi: 10.3969/j.issn.1004-2903.2003.04.014

    朱怀亮, 刘志龙, 曹学刚, 等. 银川盆地东缘地热资源勘探远景评价——基于大地电磁测深和钻探探测[J]. 地质与勘探, 2020, 56(6): 1287−1295. doi: 10.12134/j.dzykt.2020.06.018

    ZHU Huailiang, LIU Zhilong, CAO Xuegang, et al. Exploration Prospect of Geothermal Resources in the Eastern margin of Yinchuan Basin: Magnetotelluric sounding and drilling confirmation[J]. Geology and Exploration,2020,56(6):1287−1295. doi: 10.12134/j.dzykt.2020.06.018

    朱怀亮, 胥博文, 刘志龙, 等. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718−725.

    ZHU Huailiang, XU Bowen, LIU Zhilong, et al. The Application of Magnetotelluric Sounding to Geothermal Resources Assessment inYinchuan Basin[J]. Geophysical and Geochemical Exploration,2019,43(4):718−725.

    Cagniard L. Basic theory of the magneto-telluric method of geophysical prospecting[J]. Geophysics,1953,18(3):605−635.

    Tikhonov A N. On determining electrical characteristics of the deep layers of the Earths crust[J]. Doklady,1950,73(2):295−297.

图(5)  /  表(7)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  2
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-06
  • 修回日期:  2024-09-28
  • 网络出版日期:  2025-03-25
  • 刊出日期:  2025-06-19

目录

    /

    返回文章
    返回