ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    东天山红石岗南地区隐伏地质体磁异常特征及其找矿指示

    刘隆, 杜辉, 唐小平, 刘生荣, 王亚磊, 荆德龙, 李倩宇

    刘隆,杜辉,唐小平,等. 东天山红石岗南地区隐伏地质体磁异常特征及其找矿指示[J]. 西北地质,2025,58(3):97−107. doi: 10.12401/j.nwg.2024101
    引用本文: 刘隆,杜辉,唐小平,等. 东天山红石岗南地区隐伏地质体磁异常特征及其找矿指示[J]. 西北地质,2025,58(3):97−107. doi: 10.12401/j.nwg.2024101
    LIU Long,DU Hui,TANG Xiaoping,et al. Characteristics of Magnetic Anomalies and Geological Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China[J]. Northwestern Geology,2025,58(3):97−107. doi: 10.12401/j.nwg.2024101
    Citation: LIU Long,DU Hui,TANG Xiaoping,et al. Characteristics of Magnetic Anomalies and Geological Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China[J]. Northwestern Geology,2025,58(3):97−107. doi: 10.12401/j.nwg.2024101

    东天山红石岗南地区隐伏地质体磁异常特征及其找矿指示

    基金项目: 

    中国地质调查局项目“西北地区区域地球物理调查”(DD20243470)、“天山-北山成矿带战略性矿产调查”(DD20240074),陕西省自然科学青年基金“含起伏地表模型2.5D逆时偏移成像及其在渭河盆地氦气勘探中的应用”(2202JQ-241)联合资助。

    详细信息
      作者简介:

      刘隆(1996−),男,助理工程师,硕士,主要从事矿产地球物理研究。E−mail:liulongsio@163.com

      通讯作者:

      杜辉(1987−),男,高级工程师,主要从事重磁电等地球物理方法研究。E−mail:296772098@qq.com

    • 中图分类号: P631.2

    Characteristics of Magnetic Anomalies and Geological Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China

    • 摘要:

      近些年,金属矿产勘查重点逐渐向岩体未出露的覆盖区隐伏矿床转移,但是在前期的调查工作中,由于覆盖层较厚很难得到地下异常体信息。位于东天山铜镍成矿带的红石岗一带出露的镁铁–超镁铁质岩体显示了良好的找矿潜力,1∶5万航磁和重力资料显示其南部第四系覆盖区分布一高磁高重力套合异常,目前对该异常尚未开展调查研究。因此本研究在红石岗南调查区进行了高精度地面磁测工作,采用磁异常化极、垂向一阶导数、归一化总梯度法、二维剖面模拟和三维磁异常反演方法对该区域内隐伏异常体进行初步勘探研究,发现调查区内存在的5处显著磁异常,隐伏异常体的平均磁化率约6000 × 10−5 SI,埋深约200~300 m,存在5个主要的小异常体,走向为近SW–NE向,岩层向北侧倾斜。结合地质资料和岩石物性判断,该处异常体可能是镁铁–超镁铁质岩体,且磁化率较高。同时,利用磁异常指出与前人推断位置一致的近SW-NE向黄山–镜儿泉深大断层和调查区内的次级断裂,可为铜镍矿床提供有利的成矿环境。因此,红石岗南调查区的隐伏异常体存在较大的铜镍矿找矿潜力,同时本研究为后续在该区域所开展的勘探工作,提供了可信的地球物理资料。

      Abstract:

      In recent years, the emphasis of metal mineral exploration has gradually shifted to the hidden deposits in the covered areas where the rock mass is not exposed. However, it is difficult to obtain the information of underground abnormal bodies in the early investigation work because of the thick overlying layer. The Mafic and ultramafic rock mass outlying in the Hongshigang area of the Eastern Tianshan Cu-Ni metallogenic belt shows good prospecting potential. The 1∶50 000 aeromagnetic data and gravity data show that there is a high magnetic and high gravity coupling anomaly in the southern Quaternary covered area, which has not been investigated yet. Therefore, this study conducted high-precision ground magnetic survey work in the southern Hongshigang area and used magnetic anomaly reduced to the pole, vertical first derivative, normalized total gradient method, two-dimensional profile simulation, and three-dimensional magnetic anomaly inversion methods to conduct preliminary exploration and research on the underground anomalous bodies in the area. It was found that there are five significant magnetic anomalies in the investigation area, and the average magnetic susceptibility of the hidden anomalous bodies is about 6000 × 10−5 SI, with a depth of about 200-300 meters. There are five main small anomalous bodies, which strike nearly southwest-northeast and dip to the north. Combined with geological data and rock physical properties, the anomalous bodies in this area may be mafic and ultramafic rock bodies with high magnetic susceptibility. Magnetic anomalies are used to indicate the Huangshan-Jingerquan faults in the southwest-northeast direction which are consistent with the inferred position of predecessors and the secondary fault in the investigated area, which could provide a favorable metallogenic environment for copper-nickel deposits. Therefore, the underground anomalous bodies in the southern Hongshigang area have great prospecting potential for copper-nickel deposits, and this study provides reliable geophysical data for subsequent exploration work in the area.

    • 图  1   东天山地区主要铜镍矿床及镁铁-超镁铁岩体分布图(a) (据Mao et al., 2014修改); 东天山地区航磁异常图(b);红石岗南地区航磁异常图(c)和 红石岗南地区布格重力异常图(d)

      Figure  1.   (a) The distribution map of important copper-nickel deposits and mafic-ultramafic intrusion in the Eastern Tianshan Mountains; (b) Aeromagnetic anomaly map of the Eastern Tianshan Mountains; (c) Aeromagnetic anomaly map of the southern Hongshigang area; (d) Bouguer gravity anomaly map of the southern Hongshigang area

      图  2   岩矿石磁性能图

      a. 数据来自于王庆功(2021);b. 数据来自于王成(2018);c. 数据来自于邵行来(2012);d. 数据来自于惠卫东等(2011);e. 数据来自于乔天成(2016)

      Figure  2.   Magnetic properties of rock and ore

      图  3   数据处理过程和研究思路

      Figure  3.   Data processing process and research ideas

      图  4   调查区原始磁异常平面等值线图(a)、调查区磁异常化极平面等值线图(b)、调查区化极磁异常垂向一阶导数(c)和剖面A’-A和B’-B的磁异常归一化总梯度计算结果(d)

      Figure  4.   (a) Contour map of the RTP magnetic anomaly in the survey area、 (b) Contour map of the RTP magnetic anomaly in the survey area、 (c) The first vertical derivative of the RTP magnetic anomaly in the survey area and (d) Normalized total gradient of magnetic anomalies for profiles A’-A and B’-B

      图  5   剖面A’-A和B’-B的二维总磁强度模型

      Figure  5.   The two-dimensional total magnetic intensity model of profiles A-A' and B'-B

      图  6   三维反演恢复的磁异常(a)、三维反演磁化率模型200 m深度(海拔高度1180 m)切片(b)、三维反演磁化率模型264 m深度(海拔高度1116 m)切片(c)和红石岗南调查区隐伏异常体三维可视化图像,显示阈值0.06 SI(d)

      Figure  6.   (a) Prediction of magnetic anomalies、 (b) 200 m depth (Altitude 1180 m) slice of 3D inversion susceptibility model、 (c) 264 m depth (Altitude 1116 m) slice of 3D inversion susceptibility model and (d) Three-dimensional visualization image showed a threshold value of 0.06 SI of the underground anomalous body in the southern Hongshigang area

      表  1   区域岩矿石磁性范围统计表

      Table  1   Statistical table of magnetic range of rock and ore

      岩石类型 磁化率(10−5 SI) 剩磁(10−3 A/m) Q 备注
      区域变质岩 14~72 13~25 0.4~3.91 包括变粒岩、片岩等
      沉积岩 50~101 50~100 1.10~4.44 包括砂岩、粉砂岩
      花岗岩 19~50 10~50 1.15~2.22 图拉尔根、黄山东样品
      闪长岩 12~458 11~150 0.17~2.22 图拉尔根、图拉尔根钻孔、黄山东样品
      凝灰岩 40~290 11~50 0.15~2.22 图拉尔根、图拉尔根钻孔、黄山东样品
      辉长岩 91~165 14~150 0.29~2.02 图拉尔根钻孔、黄山东样品
      辉石岩 37~806 11~226 0.29~0.65 图拉尔根钻孔样品
      橄榄岩 21603610 196~792 0.20~0.45 黄山东、图拉尔根岩心、土墩井中、黄山井中样品
      矿化橄榄岩 747017800 129012200 0.13~1.91 黄山东、土墩井中、黄山井中样品
      铜镍矿石 356018800 417~7910 0.23~1.88 图拉尔根岩心样品
      下载: 导出CSV
    • 宫辰. 哈密红石岗铜镍矿矿床地质特征及找矿前景[J]. 中国金属通报, 2020(21): 49−50. doi: 10.3969/j.issn.1672-1667.2020.21.023

      GONG Chen. Geological characteristics and prospecting potential of the Hongshigang copper-nickel deposit in Hami, Xinjiang[J]. China Metal Bulletin,2020(21):49−50. doi: 10.3969/j.issn.1672-1667.2020.21.023

      韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 2004, 49(22): 2324−2328. doi: 10.3321/j.issn:0023-074X.2004.22.012

      HAN Baofu, JI Jianqing, SONG Biao, et al. SHRIMP zircon U-Pb ages and geological significance of the Kalatongke and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes in Xinjiang[J]. Chinese Science Bulletin,2004,49(22):2324−2328. doi: 10.3321/j.issn:0023-074X.2004.22.012

      侯朝勇, 蔡厚安, 裴森龙. 综合物化探方法在新疆哈密月牙湾铜镍矿勘查中的应用[J]. 矿产与地质, 2021, 35(6): 1116−1123.

      HOU Chaoyong, CAI Houan, PEI Senlong. Application of comprehensive geophysical and geochemical methods in the exploration of Yueyawan copper nickel deposit in Hami, Xinjiang[J]. Mineral Resources and Geology,2021,35(6):1116−1123.

      惠卫东, 赵鹏大, 秦克章, 等. 东天山图拉尔根铜镍硫化物矿床综合信息找矿模型的应用[J]. 地质与勘探, 2011, 47(3): 388−399.

      HUI Weidong, ZHAO Pengda, QIN Kezhang, et al. Application of comprehensive information to exploration of the Tulargen Cu-Ni sulfide deposit in Eastern Tianshan, Xinjiang[J]. Geology and Exploration,2011,47(3):388−399.

      李彤泰. 新疆哈密市黄山基性-超基性岩带铜镍矿床地质特征及矿床成因[J]. 西北地质, 2011, 44(1): 54−60. doi: 10.3969/j.issn.1009-6248.2011.01.007

      LI Tongtai. Geological Features and Metallogenesis of Cu-Ni Deposit in Basic-to-Ultrabasic Zone of Huangshan, Hami Area[J]. Northwestern Geology,2011,44(1):54−60. doi: 10.3969/j.issn.1009-6248.2011.01.007

      刘璎, 孟贵祥, 严加永, 等. 重磁3D物性反演技术在金属矿勘探中的应用[J]. 地质与勘探, 2011, 47(3): 448−455.

      LIU Ying, MENG Guixiang, YAN Jiayong, et al. Application of 3D property inversion for gravity and magnetic data to metal mineral exploration[J]. Geology and Exploration,2011,47(3):448−455.

      刘隆, 周建平, 吴涛, 等. 大洋中脊玄武岩磁性特征[J]. 地球物理学进展, 2021, 36(5): 1880−1890. doi: 10.6038/pg2021EE0403

      LIU Long, ZHOU Jianping, WU Tao, et al. Magnetic characteristics of basalt on mid-ocean ridge[J]. Progress in Geophysics,2021,36(5):1880−1890. doi: 10.6038/pg2021EE0403

      骆遥. Hartley变换化极[J]. 地球物理学报, 2013, 56(9): 3163−3172. doi: 10.6038/cjg20130929

      LUO Yao. Hartley transform for reduction to the pole[J]. Chinese Journal of Geophysics,2013,56(9):3163−3172. doi: 10.6038/cjg20130929

      乔天成. 高精度磁法在铜镍多金属矿普查工作中的应用[J]. 新疆有色金属, 2016, 39(1): 36−39.

      QIAO Tiancheng. Application of high-precision magnetic method in the prospecting of Cu-Ni polymetallic deposits[J]. Xinjiang Youse Jinshu,2016,39(1):36−39.

      邵行来. 东天山黄山—镜儿泉超镁铁岩带地球物理特征研究及找矿应用[D]. 北京: 中国地质大学(北京), 2012.

      SHAO Xinglai. Study on geophysical characteristics and prospecting application of the Huangshan-Jingerquan ultramafic rock belt in East Tianshan[D]. Beijing: China University of Geosciences (Beijing), 2012.

      邵行来, 薛春纪, 戴德文, 等. 新疆哈密葫芦岩浆Cu-Ni矿勘查地球物理异常特征[J]. 现代地质, 2010, 24(2): 383−391. doi: 10.3969/j.issn.1000-8527.2010.02.025

      SHAO Xinglai, XUE Chunji, DAI Dewen, et al. Characteristics of Geophysical Anomalies of the Prospecting for Hulu Magmatic Cu-Ni Deposit in Hami of Xinjiang[J]. Geoscience,2010,24(2):383−391. doi: 10.3969/j.issn.1000-8527.2010.02.025

      邵行来, 薛春纪, 周耀明. 哈密图拉尔根镁铁-超镁铁岩磁法异常解释[J]. 新疆地质, 2012a, 30(4): 425−429. doi: 10.3969/j.issn.1000-8845.2012.04.009

      SHAO Xinglai, XUE Chunji, ZHOU Yaoming. The Interpretation of Ground Magnetic on the Tulargen Mafic-ultramafic Complex in Hami, Xinjiang[J]. Xinjiang Geology,2012a,30(4):425−429. doi: 10.3969/j.issn.1000-8845.2012.04.009

      石煜, 王玉往, 王京彬, 等. 东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制: 来自斜长石成分的约束[J]. 地球科学, 2022, 47(9): 3244−3257.

      SHI Yu, WANG Yuwang, WANG Jingbin, et al. Petrogenesis and Metallogenesis Mechanism of the Ore-Bearing Ultramafic Rocks from the Huangshandong and Huangshanxi Ni-Cu Sulfide Deposits, Eastern Tianshan: Constraints from Plagioclase Compositions[J]. Earth Science,2022,47(9):3244−3257.

      师震, 陈宏骏, 钱壮志, 等. 东天山红石岗镁铁—超镁铁质岩体成因及铜镍成矿潜力[J]. 地球科学与环境学报, 2019, 41(2): 156−169. doi: 10.3969/j.issn.1672-6561.2019.02.003

      SHI Zhen, CHEN Hongjun, QIAN Zhuangzhi, et al. Genesis and Cu-Ni Metallogenetic Potential of Hongshigang Mafic-ultramafic Intrusion in East Tianshan, China[J]. Journal of Earth Sciences and Environment,2019,41(2):156−169. doi: 10.3969/j.issn.1672-6561.2019.02.003

      宋谢炎, 邓宇峰, 颉炜, 等. 新疆黄山-镜儿泉铜镍硫化物成矿带岩浆通道成矿特征及其找矿意义[J]. 矿床地质, 2022, 41(6): 1108−1123.

      SONG Xieyan, DENG Yufeng, XIE Wei, et al. Ore-forming processes in magma plumbing systems and significances for prospecting of Huangshan-Jingerquan Ni-Cu sulfide metallogenetic belt, Xinjiang, NW China[J]. Mineral Deposits,2022,41(6):1108−1123.

      王成. 重、磁、电综合勘探方法在寻找铜镍矿中的应用[J]. 新疆有色金属, 2018, 41(4): 13−17.

      WANG Cheng. Application of integrated gravity, magnetic, and electrical exploration methods in Cu-Ni deposit prospecting[J]. Xinjiang Youse Jinshu,2018,41(4):13−17.

      王庆功. 综合物探方法在新疆某铜镍矿勘探中的应用[J]. 甘肃冶金, 2021, 43(2): 96−98+104. doi: 10.3969/j.issn.1672-4461.2021.02.028

      WANG Qinggong. Application of Comprehensive Geophysical Exploration Method in the Exploration of Cu-Ni Deposit in Xinjiang[J]. Gansu Metallurgy,2021,43(2):96−98+104. doi: 10.3969/j.issn.1672-4461.2021.02.028

      王志福, 吴飞, 谭克彬, 等. 哈密红石岗铜镍矿矿床地质特征及找矿前景[J]. 新疆地质, 2012, 30(3): 307−311. doi: 10.3969/j.issn.1000-8845.2012.03.013

      WANG Zhifu, WU Fei, TAN Kebin, et al. Geological Characteristics and Prospecting Potential of the Hongshigang Cu-Ni Sulfide Deposit in Hami, Xinjiang[J]. Xinjiang Geology,2012,30(3):307−311. doi: 10.3969/j.issn.1000-8845.2012.03.013

      王亚磊, 张照伟, 陈寿波, 等. 新疆东天山红石岗北铜镍矿化镁铁质岩体岩石成因及成矿潜力分析[J]. 地质学报, 2017, 91(4): 776−791. doi: 10.3969/j.issn.0001-5717.2017.04.006

      WANG Yalei, ZHANG Zhaowei, CHEN Shoubo, et al. Petrogenesis and Metallogenic Potential Analysis of Mafic Intrusion in the Hongshigangbei Ni Cu Sulfide Mineralization in East Tianshan, Xinjiang[J]. Acta Geologica Sinica,2017,91(4):776−791. doi: 10.3969/j.issn.0001-5717.2017.04.006

      吴功成. 新疆白石泉铜镍矿矿床地质与找矿预测[D]. 北京: 中国地质大学(北京), 2018.

      WU Gongcheng. Geology and prospecting prediction of the Baishiquan Cu-Ni deposit in Xinjiang[D].Beijing: China University of Geosciences (Beijing), 2018.

      肖丹, 宋泽友, 宋维国. 我国岩浆硫化物型镍矿床伴生矿产综合勘查评价指标探讨[J]. 国土资源导刊, 2022, 19(1): 48−53. doi: 10.3969/j.issn.1672-5603.2022.01.011

      XIAO Dan, SONG Zeyou, SONG Weiguo. Comprehensive Exploration and Assessment of Magmatic Type of Nickel Sulfide Deposits in China[J]. Land & Resources Herald,2022,19(1):48−53. doi: 10.3969/j.issn.1672-5603.2022.01.011

      杨大欢, 古志宏. 广东与燕山期岩浆作用有关矿产资源的区域成矿分带特征及成因[J]. 矿产与地质, 2021, 35(4): 603−609.

      YANG Dahuan, GU Zhihong. Regional metallogenic zonation and genesis of mineral resources related to Yanshanian magmatism in Guangdong[J]. Mineral Resources and Geology,2021,35(4):603−609.

      尹希文. 新疆香山铜镍硫化物矿床岩浆深部过程与找矿方向探讨[J]. 西北地质, 2015, 48(3): 22−30. doi: 10.3969/j.issn.1009-6248.2015.03.003

      YIN Xiwen. Magma Deep Process and Prospecting Direction of Xiangshan Ni-Cu deposit, Eastern Tianshan, Xinjiang[J]. Northwestern Geology,2015,48(3):22−30. doi: 10.3969/j.issn.1009-6248.2015.03.003

      Baranov V. A new method for interpretation of aeromagnetic maps; pseudo-gravimetric anomalies[J]. Geophysics,1957,22(2):359−382. doi: 10.1190/1.1438369

      Cockett R, Kang S, Heagy L J, et al. SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications[J]. Computers & Geosciences,2015,85:142−154.

      Ekwok S E, Achadu O-I M, Akpan A E, et al. Depth Estimation of Sedimentary Sections and Basement Rocks in the Bornu Basin, Northeast Nigeria Using High-Resolution Airborne Magnetic Data[J]. Minerals,2022,12(3):285. doi: 10.3390/min12030285

      Ekwok S E, Akpan A E, Ebong E D. Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria[J]. Journal of African Earth Sciences,2019,155:43−53. doi: 10.1016/j.jafrearsci.2019.02.030

      Elysseieva I s, Pašteka R. Review Paper: Historical development of the total normalized gradient method in profile gravity field interpretation[J]. Geophysical Prospecting,2019,67(1):188−209. doi: 10.1111/1365-2478.12704

      Feng Y, Qian Z, Duan J, et al. Geochronological and geochemical study of the Baixintan magmatic Ni-Cu sulphide deposit: New implications for the exploration potential in the western part of the East Tianshan nickel belt (NW China)[J]. Ore Geology Reviews,2018,95:366−381. doi: 10.1016/j.oregeorev.2018.02.023

      He J, Fan Z, Xiong S, et al. Geophysical prospecting of copper-nickel deposits in Beishan rift zone, Xinjiang[J]. China Geology,2021,4(1):126−146. doi: 10.31035/cg2021015

      Jahren C E. Magnetization of keweenawan rocks near duluth, minnesota[J]. Geophysics,1965,30(5):858. doi: 10.1190/1.1439660

      Koenigsberger J G. Natural residual magnetism of eruptive rocks[J]. Terrestrial Magnetism and Atmospheric Electricity,1938,43(3):299−320. doi: 10.1029/TE043i003p00299

      Mao Y J, Qin K Z, Li C, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, 200–201: 111–125.

      Mao Y J, Qin K Z, Tang D M, et al. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China[J]. Journal of Asian Earth Sciences,2016,129:22−37. doi: 10.1016/j.jseaes.2016.07.028

      Meng Z. Three-dimensional potential field data inversion with L0 quasinorm sparse constraints[J]. Geophysical Prospecting,2018,66(3):626−646. doi: 10.1111/1365-2478.12591

      Parkinson W D, Barnes C D. In situ determination of Koenigsberger ratio[J]. Australian Journal of Earth Sciences,1985,32(1):1−5. doi: 10.1080/08120098508729308

      Ran X J, Xue L F ,Zhang Y Y , et al. The 3D Visualization of 2D GM-SYS Gravity-Magnetic Inversion Sections Based on GoCAD[C]//2017 International Conference on Robots & Intelligent System (ICRIS). Huai An City, China: IEEE, 2017. 325–328.

      Sun J, Li Y. Adaptive Lp inversion for simultaneous recovery of both blocky and smooth features in a geophysical model[J]. Geophysical Journal International,2014,197(2):882−899. doi: 10.1093/gji/ggu067

      Sun J, Li Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering[J]. Geophysics,2015,80(4):ID1−ID18. doi: 10.1190/geo2014-0049.1

      Utsugi M. 3-D inversion of magnetic data based on the L1–L2 norm regularization[J]. Earth, Planets and Space,2019,71(1):73. doi: 10.1186/s40623-019-1052-4

      Vanzon T, Roy-Chowdhury K. Structural inversion of gravity data using linear programming[J]. Geophysics,2006,71(3):J41−J50. doi: 10.1190/1.2197491

      Wardinski I, Saturnino D, Amit H, et al. Geomagnetic core field models and secular variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-13)[J]. Earth Planets and Space,2020,72(1):155. doi: 10.1186/s40623-020-01254-7

      Xiao F, Wang Z. Geological interpretation of Bouguer gravity and aeromagnetic data from the Gobi-desert covered area, Eastern Tianshan, China: Implications for porphyry Cu-Mo polymetallic deposits exploration[J]. Ore Geology Reviews,2017,80:1042−1055. doi: 10.1016/j.oregeorev.2016.08.034

      Yurichev A N, Chernyshov A I. New Ore Minerals from the Kingash Ultramafic Massif, Northwestern Eastern Sayan[J]. Geology of Ore Deposits,2017,59(7):626−631. doi: 10.1134/S107570151707011X

    图(6)  /  表(1)
    计量
    • 文章访问数:  23
    • HTML全文浏览量:  2
    • PDF下载量:  11
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-04-11
    • 修回日期:  2024-06-13
    • 录用日期:  2024-11-18
    • 网络出版日期:  2025-03-25
    • 刊出日期:  2025-06-19

    目录

      /

      返回文章
      返回