ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

不同坡度下生态防护黄土边坡水分迁移演化特征研究

张文铎, 包含, 兰恒星, 郑涵, 晏长根, 王俊田, 敖新林

张文铎,包含,兰恒星,等. 不同坡度下生态防护黄土边坡水分迁移演化特征研究[J]. 西北地质,2025,58(2):121−135. doi: 10.12401/j.nwg.2024102
引用本文: 张文铎,包含,兰恒星,等. 不同坡度下生态防护黄土边坡水分迁移演化特征研究[J]. 西北地质,2025,58(2):121−135. doi: 10.12401/j.nwg.2024102
ZHANG Wenduo,BAO Han,LAN Hengxing,et al. Study on Water Migration and Evolution Characteristics of Ecologically Protected Loess Slopes with Different Inclinations[J]. Northwestern Geology,2025,58(2):121−135. doi: 10.12401/j.nwg.2024102
Citation: ZHANG Wenduo,BAO Han,LAN Hengxing,et al. Study on Water Migration and Evolution Characteristics of Ecologically Protected Loess Slopes with Different Inclinations[J]. Northwestern Geology,2025,58(2):121−135. doi: 10.12401/j.nwg.2024102

不同坡度下生态防护黄土边坡水分迁移演化特征研究

基金项目: 国家自然科学基金项目(41927806、42041006、32071586),陕西省重点研发计划项目(2023-YBSF-486),陕西省交通运输厅2024年度交通科研项目(24-38K),中央高校基本科研业务费专项资金项目(300102212213、300102293207)联合资助。
详细信息
    作者简介:

    张文铎(2001−),女,硕士,研究方向为岩土工程与地质工程。E−mail:2874376993@qq.com

    通讯作者:

    包含(1988−),男,教授,博士,主要从事岩土工程与地质工程方面的教学与研究工作。E−mail:baohan@chd.edu.cn

  • 中图分类号: P642;U416.1

Study on Water Migration and Evolution Characteristics of Ecologically Protected Loess Slopes with Different Inclinations

  • 摘要:

    黄土边坡广泛分布于中国西北地区,在强降雨条件下极易发生失稳灾害。生态防护已成为保护黄土边坡的有效手段,但不同坡度的生态防护黄土边坡,会导致其内部水分迁移特征及防护效果的差异。因此,为研究不同坡度对生态防护黄土边坡水分迁移与演化特征的影响,本研究以45°和60°两个坡度的生态防护黄土边坡模型为基础,采用时间序列分析法和Hydrus-2D水分迁移模拟软件,解释了生态防护黄土边坡的水分动态演化规律,揭示了降雨强度、降雨历时和植物生长周期对含水率响应模式的影响,并分析了不同防护阶段和不同坡度下边坡土壤水分迁移的规律。研究结果表明,整个监测期间,60°边坡的整体含水率略低于45°边坡,且60°边坡的土壤水分在坡面下部随土层分布的差异性更加显著,而45°边坡在坡顶时表现更明显;随着降雨强度的增加,坡体内部水分对降雨事件响应的滞后时间显著缩短,而边坡内部水分响应的滞后时间及其达到最强响应的滞后时间则随着降雨事件历时的延长而相应增加,植被防护能够有效增大边坡水分对降雨响应的滞后时间,60°边坡内部对所研究降雨事件响应的滞后时间均慢于45°边坡;针对强降雨事件,生态防护可以有效降低水分入渗速率,不同防护时期水分迁移速率表现为:防护前期>防护中期>防护后期,同时植物对60°边坡的水分迁移速率影响更为显著,且60°边坡水分入渗响应速率比45°边坡更慢。

    Abstract:

    Loess slopes are widely distributed in northwest China and are particularly susceptible to instability during heavy rainfall. Ecological protection has emerged as an effective means of safeguarding these slopes; however, varying ecological protection methods can lead to differences in the characteristics of internal water migration and overall protective efficacy. Therefore, this study aims to investigate the effects of different slope angles on the water migration and evolution characteristics of ecologically protected loess slopes. To achieve this, time series analysis and Hydrus-2D simulation software were utilized to elucidate the dynamic evolution of water within ecologically protected loess slopes, focusing on slope models with angles of 45° and 60°. The study revealed how rainfall intensity, duration, and plant growth stages impact the water content response model and examined the rules governing soil water transfer under different protection stages and slope angles. The results indicate that during the whole monitoring period, the overall moisture content of the 60° slope is slightly lower than that of the 45° slope, and the soil moisture distribution of the 60° slope with soil layer was more pronounced in the lower part of the slope, while the 45° slope is more obvious at the top. As rainfall intensity increased, the response lag time of internal slope water to rainfall significantly decreased, whereas extending the duration of rainfall events led to an increase in both the response lag time and the time to reach peak response. Vegetation protection effectively prolonged the lag time of the response of water inside slope to rainfall events. Additionally, the response of the 60° slope was slower than that of the 45° slope. For intense rainfall events, ecological protection can effectively reduce the water infiltration rate, and the water migration rate in different protection periods is as follows: early protection > middle protection > late protection. Furthermore, the effect of vegetation on the water migration rate was more significant on the 60° slope, where water infiltration occurred more slowly than on the 45° slope.

  • 萤石,其主要成分是氟化钙(CaF2),是重要的基础性、战略性非金属矿产资源。高端含氟材料在新能源、新材料、新一代信息技术和航空航天等领域的重要性日益凸显,中国、美国、日本、欧盟等国家都将其列为“战略性矿产”或“关键矿产”(陈军元等,2021)。萤石矿在中国属于优势矿产资源,大中型萤石矿床集中于东部沿海、华中和内蒙古中东部(王吉平等,2015)。通过近年地质工作,在中国西部新疆若羌县阿尔金地区卡尔恰尔一带萤石找矿取得重大新发现,已发现卡尔恰尔、小白河沟、库木塔什、拉依旦北、盖吉克、皮亚孜达坂等多处(超)大–中型萤石矿床,改变了中国萤石矿的分布格局,已初步形成西部最重要的萤石矿产资源基地。近年来,阿尔金高压–超高压变质带、蛇绿构造混杂岩带和岩浆岩等基础地质研究方面取得了重要进展,但与萤石矿有关的研究才刚刚起步,主要对地质特征、控矿因素、花岗岩年龄与元素地球化学特征及流体包裹体等方面做了一定研究(高永宝等,2021吴益平等,20212022),总体研究程度较低。目前,卡尔恰尔超大型萤石矿区花岗岩成岩时代还未见报道,成矿流体与物质来源的研究还很薄弱,制约了矿床成因的研究和下一步找矿勘查。

    稀土元素的地球化学性质具有一定特殊性,如化学性质稳定,高度均一化,不易受变质作用影响等,是示踪成矿流体来源和反演热液成矿作用过程的有效手段之一(Lottermoser,1992)。萤石是富稀土矿物,萤石中的Ca2+与稀土离子半径相似,可容纳大量稀土元素,且继承了成矿热液流体中的稀土元素配分型式(Moller,1983Bau et al.,19921995Smith et al.,2000许成等,2001赵省民等,2002许东青等,2009孙海瑞等,2014Sasmaz et al.,2018),在示踪成矿流体来源与演化及矿床成因机理等方面已得到广泛应用(叶锡芳等,2014邹灏等,20142016彭强等,2021许若潮等,2022游超等,2022张苏坤等,2022)。笔者选择阿尔金卡尔恰尔超大型萤石矿带中的卡尔恰尔、小白河沟、库木塔什3处典型萤石矿床为研究对象,简要总结其成矿特征,利用LA–ICP–MS锆石U–Pb测年确定卡尔恰尔矿区碱长花岗岩与片麻状钾长花岗岩的形成时代,通过萤石、方解石的稀土元素地球化学及萤石Sr–Nd同位素等研究,探讨成矿流体特征与成矿物质来源,为区域矿床成因研究和指导找矿提供理论依据。

    研究区位于青藏高原北部边缘,地处柴达木地块与塔里木地块接合部位,大地构造位置主要处于阿尔金造山带(图1a图1b)。区域出露地层以元古界为主,新太古界至新元古界遭受程度不一的变形变质作用改造,以中深变质岩为主(图1c)。新太古界—古元古界阿尔金岩群出露广泛,总体上呈北东向展布,该岩组岩石类型复杂,主要为一套由变质碎屑岩、碳酸盐岩和变质火山碎屑岩组成的变质岩系,主要岩性为黑云斜长片麻岩、斜长或二长变粒岩、石榴矽线黑云片麻岩、二长石英片岩夹石英岩、白云质大理岩、斜长角闪岩透镜体等。中元古界巴什库尔干岩群为一套云母石英片岩、片麻岩、变粒岩、长石石英岩夹变质中基性火山岩、火山碎屑岩的变质岩系。中元古界蓟县纪塔昔达坂岩群可分为下部碎屑岩(木孜萨依组)和上部碳酸盐岩(金雁山组)。新元古界索尔库里群为一套轻变质的碳酸盐岩、碎屑岩夹少量火山碎屑岩地层序列。另外,阿尔金西南缘发育由陆壳深俯冲形成的高压-超高压变质带,岩石的原岩形成时代多为1 000~800 Ma,与区域广泛分布的新元古代花岗片麻岩形成时代基本相同,均与Rodinia超大陆事件引发的全球性岩浆活动相关,而变质时代集中在504~486 Ma之间,代表在~500 Ma发生陆壳深俯冲–碰撞事件(Zhang et al.,2001刘良等,2007张建新等,2010Liu et a1.,2012)。

    图  1  阿尔金造山带卡尔恰尔一带地质矿产图
    Figure  1.  Geological and mineral map of the Kalqiaer area in Altyn Tagh

    区域构造活动频繁,经历了前寒武纪多期变形变质作用的强烈改造和构造置换,以及显生宙以来多期韧性、脆性构造的相互叠加,构造形迹十分复杂。区内构造主要为断裂,褶皱因受到岩浆侵位及断裂构造的破坏,形态极不完整。区域性大断裂由北至南有卡尔恰尔–阔什断裂、盖吉勒断裂、约马克其–库兰勒格断裂、阿尔金南缘断裂(图1c)。围绕区域深大断裂广泛分布次级断裂,主要以北东–近东西向为主。卡尔恰尔–阔什断裂呈北东东向,东西向延伸大于70 km,呈明显带状,是一个长期活动的断裂,该断裂不仅是早期地质构造单元(阿尔金杂岩和中新元古界隆起带)之间的分界线,还对早古生代中酸性侵入岩体的分布有控制作用,卡尔恰尔超大型萤石矿、小白河沟萤石矿即与该断裂及其派生的众多次级断裂关系密切。盖吉勒断裂呈北东向,为一南倾的逆断层,与库木塔什、拉依旦北等萤石矿床的形成密切相关。约马克其–库兰勒格断裂总体为北东东向,出露长约为10 km,在研究区与布拉克北、皮亚孜达坂等萤石矿床的形成关系密切。阿尔金南缘断裂呈北东东向横贯阿尔金南部,长度大于几千公里,构成阿中地块与阿南缘蛇绿混杂岩带的边界(校培喜等,2014)。

    区域经历了多期次岩浆活动,新元古代、早古生代、中生代等均有规模不等的中酸性岩浆侵入,多沿阿尔金山呈北东向带状展布,岩石类型复杂,充分反映了造山带花岗岩类型丰富的特点(图1c)。新元古代侵入岩以花岗质片麻岩、花岗闪长质片麻岩为主,主要出露于研究区东部。早古生代侵入岩分布最为广泛,主要岩性有碱长花岗岩、二长花岗岩、黑云母花岗岩、花岗闪长岩等。区域脉岩极为发育,脉岩类型以碱长花岗岩脉、花岗伟晶岩脉为主,呈北东–北东东走向。其中碱长花岗岩脉主要分布于卡尔恰尔深大断裂南侧,在阿尔金岩群和新元古代花岗质片麻岩中尤为发育,受断裂控制明显,出露宽度普遍较窄,该脉岩与萤石矿关系密切(图1c)。花岗伟晶岩脉主要分布于卡尔恰尔深大断裂北侧,主要就位于阿尔金岩群和新元古代花岗质片麻岩中,脉体中矿物以长石和石英为主,个别含矿伟晶岩脉发育有锂辉石、绿柱石、锂云母、铌钽铁矿等稀有金属矿物。

    卡尔恰尔超大型萤石矿区出露地层主要为古元古界阿尔金岩群(Pt1A),为一套角闪岩相的中深变质岩系,萤石矿化主要分布于黑云母斜长片麻岩中,矿脉延伸方向与岩层走向基本一致。矿床位于卡尔恰尔–阔什断裂南侧,该区域深大断裂派生的次一级断裂系统对萤石矿产分布有明显的控制作用,断裂呈北东–近东西向展布,沿构造裂隙大量充填萤石–方解石脉,构成区内重要的赋矿构造。矿区岩浆岩类型主要为碱长花岗岩、片麻状钾长花岗岩,岩体与围岩地层接触界限明显(图2a图2i)。萤石矿化在空间上与碱长花岗岩关系密切,与围岩地层接触关系较明显(图2a图2c)。矿区圈出31条萤石矿体,由众多萤石-方解石细脉构成,多为复脉型矿脉,北东–近东西向带状展布,长度为1710~4580 m,平均厚度为2.36~4.68 m,最大厚度为23.5 m,矿体延伸稳定,连续性好,钻探验证矿脉有收敛增厚趋势,沿倾向控制最大斜深907 m。矿石中矿物成分较为简单,主要是萤石、方解石,少量石英(图2d图2h),萤石呈2阶段成矿,早阶段萤石呈白色、淡绿色,晚阶段萤石呈紫色、紫黑色,可见紫色萤石矿脉穿插白色萤石矿脉,或紫色萤石矿脉发育于白色萤石矿脉边部(图2a图2c)。矿石呈巨晶–粗晶结构、自形–半自形–他形粒状结构、碎裂结构、糜棱结构,矿石自然类型主要有脉状、条带状、角砾状矿石(图2d图2f)。围岩蚀变主要为碳酸盐化、钾化、硅化、高岭土化、绢云母化、绿帘石化等。矿床成因类型属于热液充填型,矿石工业类型主要是CaF2–CaCO3型,CaF2平均品位为33.9%,探明+控制+推断萤石矿石量为6 631万t,矿物量(CaF2)为2 249万t,达超大型规模。

    图  2  卡尔恰尔超大型萤石矿床矿化特征
    a~c.萤石矿化与碱长花岗岩关系密切,与围岩界线较清晰,紫色萤石矿脉穿插或发育于白色萤石矿脉边部;d~e.脉状萤石矿化;f.角砾状萤石矿化;g~h.钻孔中萤石矿化;i.片麻状钾长花岗岩侵入于阿尔金岩群黑云斜长片麻岩中;Cal.方解石;Fl.萤石
    Figure  2.  Photos of mineralization features of Kalqiaer super–large fluorite deposit

    库木塔什萤石矿区出露地层为古元古界阿尔金岩群,岩性主要是黑云斜长片麻岩,其次为大理岩。矿区断裂主要呈北北东向、北东向、近东西向,多为平移断层,并发育韧性–脆性剪切带,北东向及近东西向断裂控制着区内岩脉的发育和展布。矿区内出露的侵入岩主要有碱长花岗岩、片麻状钾长花岗岩,碱长花岗岩脉与萤石矿脉关系十分密切(图3a图3b),脉岩和矿脉均受断裂控制明显。矿区共圈出14条萤石矿化体,多呈北东向,倾向北北西,倾角为40°~70°,地表出露长为50~980 m,宽为0.3~3.6 m。矿石自然类型主要有脉状、角砾状(图3c图3i),矿石中矿物成分较为简单,主要是萤石、方解石,另发育较多磷灰石,包括绿色柱状氟磷灰石和草黄色粒状铈磷灰石(图3e)。矿石具粗晶结构、自形–半自形–他形粒状结构、碎裂结构。矿石工业类型主要为CaF2–CaCO3型,CaF2平均品位为25%。围岩蚀变较为发育,主要为碳酸盐化、钾化、绢云母化、高岭土化等。矿床成因属热液充填型。

    图  3  库木塔什萤石矿床矿化特征
    a~b. 萤石矿化与碱长花岗岩关系密切;c~f. 脉状萤石矿化及其矿物组成;g~i. 角砾状萤石矿化及其矿物组成;Cal. 方解石;Fl. 萤石;Ap. 磷灰石
    Figure  3.  Photos of mineralization features of Kumutashi fluorite deposit

    小白河沟萤石矿区出露地层为古元古界阿尔金岩群,萤石矿化赋存在黑云斜长片麻岩中。矿区出露的侵入岩主要为碱长花岗岩,其与萤石矿脉关系密切(图4a图4b)。矿区构造以近东西向为主。矿区圈定两条萤石矿化带,南侧矿化带长约为2.5 km,宽约为0.4 km,走向北东东;北侧矿化带宽约0.4为 km,长约为1.7 km,走向近东西。萤石矿体走向近东西,倾向北,倾角为30°~40°,该矿床特点是发育高品位矿石,CaF2品位大于50%,局部可达90%以上。矿石类型主要为块状矿石、纹层状矿石(图4c图4f),矿石中矿物主要为萤石,局部发育方解石和少量石英;萤石呈白色、绿色、紫色、紫黑色等。矿石具粗晶结构、自形–半自形–他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变主要为碳酸盐化、钾化、绢云母化、高岭土化等。

    图  4  小白河沟萤石矿床矿化特征
    a~b.萤石矿化与碱长花岗岩关系密切;c.纹层状萤石矿石;d~f.块状萤石矿石
    Figure  4.  Photos of mineralization features of Xiaobaihegou fluorite deposit

    用于锆石U–Pb年龄测试的样品经人工破碎后分选出锆石单矿物,制靶后进行阴极发光及透反射照相,根据图像选测试点位并进行合理数据解释。锆石U–Pb测年在自然资源部岩浆作用成矿与找矿重点实验室进行。激光剥蚀系统为GeoLas Pro,ICP–MS为Agilent 7700x,每时间分析数据包括大约40 s的样品信号和10 s的空白信号,激光剥蚀采用氦气作载气、氩气为补偿气以调节灵敏度。数据分析采用软件Glitter 4.4(Van Achterbergh et al.,2001)完成,详细测试过程和仪器参数可参考李艳广等(2015)。锆石U–Pb年龄谐和图采用Isoplot/Ex_ver 3(Ludwig,2003)软件绘制。

    包含萤石、方解石矿物的矿石样品经过人工破碎后在双目镜下挑纯,挑纯出的小颗粒放入玛瑙研钵中,充分研磨至200目以下呈粉末状用于稀土元素实验测试分析。测试实验在自然资源部岩浆作用成矿与找矿重点实验室完成,萤石、方解石的稀土元素分析测试采用ICP–MS电感耦合等离子体质谱法,检测下限n×10–13n×10–12,检测误差小于10%。

    Rb–Sr、Sm–Nd同位素组成测试在自然资源部中南矿产资源监督检测中心完成。采用热电离质谱仪TRITON分析Rb、Sr、Sm、Nd同位素组成,同位素稀释法计算Rb、Sr、Sm、Nd含量及Sr同位素比值。Nd、Sr同位素比值分析中质量分馏分别采用146Nd/144Nd=0.7219,88Sr/86Sr=8.37521进行幂定律校正。整个分析过程用GBW04411、GBW04419、BCR-2和NBS987、GSW标准物质分别对全流程和仪器进行质量监控。NBS987的87Sr/86Sr测定值为0.71028±1,GBW04411测定值分别为Rb=249.8×10−6、Sr=159.3×10−687Sr/86Sr=0.76005±2,与其推荐值在误差范围内一致。全流程Nd、Sm、Sr、Rb空白分别小于9×10−10 g、3×10−10 g、3×10−9 g和4×10−10 g。

    卡尔恰尔矿区与成矿相关的碱长花岗岩样品中锆石以自形粒状为主,粒径多为50~150 μm,阴极发光图像揭示大部分锆石具有清晰的岩浆韵律环带(图5a)。锆石U含量为233×10−6~1 095×10−6,Th含量为100×10−6~462×10−6,Th/U值为0.2~0.62,平均为0.45,显示出岩浆锆石的特点(表1)(Hoskin et al.,2000)。22个分析点投影于谐和线上及附近,206Pb/238U加权平均年龄为(455.8±2)Ma,代表了岩浆结晶年龄,表明其形成于中—晚奥陶世(图5b)。

    图  5  卡尔恰尔萤石矿区碱长花岗岩的锆石CL图(a)和U–Pb年龄图(b)
    Figure  5.  (a) Zircon CL images and (b) U–Pb diagram of alkali feldspar granite from the Kalqiaer fluorite deposit
    表  1  卡尔恰尔萤石矿区碱长花岗岩的锆石LA–ICP–MS U–Pb分析结果表
    Table  1.  LA–ICP–MS zircon U–Pb isotopic data of alkali feldspar granite in Kaerqiaer fluorite deposit
    测试点ThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    (×10-6比值比值比值MaMaMa
    KJ011003430.290.05640.00210.57340.02100.07370.0009469.082.6460.213.5457.55.1
    KJ021372710.510.05690.00230.57600.02210.07340.0009487.386.2461.914.3456.95.3
    KJ032234570.490.05530.00140.55800.01360.07330.0007422.155.8450.28.9456.04.2
    KJ041052330.450.05670.00200.57210.01890.07320.0008479.075.0459.412.2455.64.9
    KJ0536410950.330.05880.00130.58960.01220.07270.0007561.047.4470.67.8452.54.0
    KJ061513330.450.05410.00190.55150.01840.07390.0008376.376.1446.012.1455.84.9
    KJ071372820.490.05920.00240.59750.02290.07330.0009572.984.2475.614.6456.05.3
    KJ082063690.560.05470.00210.55130.02050.07310.0009400.183.6445.813.4455.05.1
    KJ091432560.560.05520.00250.56390.02460.07410.0010420.097.5454.016.0451.05.7
    KJ101524300.350.05510.00190.56460.01820.07440.0008416.572.8454.511.8452.34.9
    KJ111272770.460.05740.00190.57960.01840.07320.0008508.171.3464.211.8455.64.8
    KJ121493250.460.05690.00200.57740.01920.07360.0008488.175.2462.812.4457.94.9
    KJ131643980.410.05690.00160.57710.01580.07360.0008487.162.6462.610.2457.84.5
    KJ141993700.540.05590.00160.56740.01580.07360.0008449.163.3456.310.2458.04.5
    KJ152586780.380.05500.00150.55500.01440.07320.0007412.158.9448.39.4455.64.4
    KJ161015090.200.05770.00160.58780.01510.07390.0007519.058.1469.49.6456.64.4
    KJ171684880.340.05700.00160.57990.01510.07390.0007489.059.9464.49.7453.64.5
    KJ182334320.540.05610.00160.56970.01560.07370.0008455.662.3457.810.1455.54.5
    KJ194627970.580.05650.00140.57290.01360.07360.0007470.254.9459.98.8458.04.3
    KJ202934720.620.05700.00170.57670.01600.07350.0008488.863.4462.310.3457.24.6
    KJ211704950.340.05530.00160.56300.01550.07380.0008425.962.3453.410.0454.24.5
    KJ221884150.450.05750.00170.58460.01640.07380.0008510.863.5467.410.5457.94.6
    下载: 导出CSV 
    | 显示表格

    卡尔恰尔矿区片麻状钾长花岗岩样品中锆石以自形粒状为主,颗粒较大,粒径多为60~200 μm,阴极发光图像揭示大部分锆石具有清晰的岩浆韵律环带(图6a)。片麻状钾长花岗岩中锆石的U含量为90×10−6~765×10−6,Th含量为24×10−6~270×10−6,Th/U值为0.33~1.76,平均为0.27,显示出岩浆锆石的特点(表2)。16个分析点投影于谐和线上及附近,206Pb/238U加权平均年龄为(914.5±4.1)Ma,代表了岩浆结晶年龄,表明其形成于新元古代早期(图6b)。

    图  6  卡尔恰尔萤石矿区片麻状钾长花岗岩的锆石CL图(a)和U−Pb年龄图(b)
    Figure  6.  (a) Zircon CL images and (b) U–Pb diagram of gneissic feldspar granite from the Kalqiaer fluorite deposit
    表  2  卡尔恰尔萤石矿区片麻状钾长花岗岩的锆石LA–ICP–MS U–Pb分析结果表
    Table  2.  LA–ICP–MS zircon U–Pb isotopic data of gneissic feldspar granite in Kaerqiaer fluorite deposit
    测试点ThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    (×10-6比值比值比值MaMaMa
    KC011584400.360.06850.00171.30240.02980.13800.0014883.449.1846.813.1853.57.8
    KC02243050.080.07050.00171.52060.03480.15660.0016941.948.7938.714.0938.08.8
    KC031004070.250.06890.00151.48170.03050.15610.0015895.444.4922.912.5935.28.4
    KC042294430.520.06980.00141.47710.02690.15380.0015920.939.3921.011.0922.08.1
    KC051404010.350.06850.00141.43640.02800.15230.0015882.942.1904.211.7913.88.2
    KC06642600.250.06860.00161.47250.03350.15590.0016886.648.6919.213.8933.78.8
    KC07972910.330.07370.00161.62550.03400.16010.00161033.744.1980.113.1957.18.8
    KC0828900.320.07600.00302.02980.07600.19390.00261094.575.81125.625.51142.614.1
    KC091374350.310.07050.00141.47880.02790.15220.0014943.440.7921.711.4913.58.1
    KC10274850.050.06980.00141.42770.02690.14850.0014922.440.7900.611.3892.57.9
    KC11793600.220.07000.00161.48200.03130.15360.0015929.045.2923.012.8921.38.5
    KC121757650.230.06860.00131.38800.02480.14690.0014886.939.0883.810.5883.37.7
    KC132706770.400.07030.00131.49730.02500.15460.0014938.136.4929.310.2926.48.0
    KC14842970.280.06940.00161.49650.03360.15660.0016909.947.9928.913.7937.88.8
    KC151034890.210.07100.00141.43750.02590.14690.0014958.638.9904.710.8883.57.8
    KC161352120.640.11060.00194.74300.07520.31140.00301808.631.01774.913.31747.614.7
    KC171037470.140.07100.00121.53220.02470.15660.0014958.035.1943.49.9938.08.0
    KC18513670.140.08770.00162.48950.04150.20610.00201375.534.01269.012.11208.210.5
    KC19804680.170.06880.00141.42770.02650.15060.0014893.240.2900.611.1904.58.0
    KC201025330.190.07010.00131.49330.02580.15460.0014932.537.4927.710.5926.58.1
    下载: 导出CSV 
    | 显示表格

    卡尔恰尔矿床萤石的ΣREE值为39.4×10−6~57.19×10−6,LREE/HREE值为3.20~3.91,(La/Yb)N值为2.97~4.41,δEu值为0.39~0.42。小白河沟矿床萤石ΣREE值为44.73×10−6~65.79×10−6,LREE/HREE值为2.99~3.61,(La/Yb)N值为2.57~3.59,δEu值为0.38~0.44。库木塔什矿床萤石ΣREE值为41.5×10−6~81.01×10−6,LREE/HREE值为6.5~8.53,(La/Yb)N值为11.6~13.55,δEu值为0.46~0.55(表3)。

    表  3  卡尔恰尔(KE)、小白河沟(XB)、库木塔什(KM)矿床的萤石、方解石稀土元素组成表( 10−6
    Table  3.  Rare earth element data of fluorites and calcites from the Kaerqiaer, Xiaobaihegou and Kumutashi deposit
    矿物样号LaCePrNdSmEuGdTbDyHoErTmYbLuYΣREELREEHREELREE/HREE(La/Yb)NδEuδCe

    KE-16.0412.91.858.612.280.322.400.392.320.461.210.191.110.1631.540.2432.008.243.883.900.420.94
    KE-26.4012.21.868.312.290.322.340.382.280.461.180.181.040.1632.039.4031.388.023.914.410.420.86
    KE-38.6418.02.7211.93.180.463.630.583.380.701.850.271.650.2347.657.1944.9012.293.653.760.410.90
    KE-45.7612.91.929.402.780.372.960.512.890.581.580.231.390.2147.343.4833.1310.353.202.970.390.95
    XB-16.4014.12.129.382.620.402.880.472.710.551.440.201.280.1838.344.7335.029.713.613.590.440.93
    XB-27.8118.82.9815.04.260.574.800.784.560.932.420.362.200.3268.665.7949.4216.373.022.550.380.96
    XB-36.6314.72.3911.53.570.453.660.613.630.782.020.301.850.2659.552.3539.2413.112.992.570.380.90
    KM-116.532.74.2111.72.890.512.710.442.370.461.190.161.020.1531.181.0172.518.508.5311.60.550.94
    KM-210.215.41.806.671.640.261.800.301.640.300.780.100.540.0731.541.5035.975.536.5013.550.460.81


    KE-169.916518.466.611.81.418.891.488.021.614.750.855.440.8740.5365.02333.1131.9110.449.220.401.10
    KE-277.718020.774.613.71.6210.31.778.531.785.130.855.760.9846.6403.42368.3235.1010.499.680.401.08
    KE-383.521325.196.818.12.1513.92.5213.52.677.741.348.641.4473.7490.40438.6551.758.486.930.401.13
    XB-110324528.598.818.52.2615.82.6013.22.808.311.489.741.5870.5551.57496.0655.518.947.590.391.09
    XB-215837843.314426.52.9420.03.4117.23.479.911.7211.51.9591.7821.90752.7469.1610.889.860.371.10
    XB-380.120222.883.315.41.8212.32.2110.82.266.971.268.421.3964.4451.03405.4245.618.896.820.391.14
    KM-168.516218.366.813.01.469.771.629.121.735.070.855.700.9245.8364.84330.0634.789.498.620.381.10
    KM-274.716018.964.312.61.288.871.597.701.514.210.724.720.7237.2361.82331.7830.0411.0411.350.351.02
    KM-369.515817.862.212.01.339.011.658.761.704.830.835.660.9443.0354.21320.8333.389.618.810.381.07
    KM-475.116319.965.212.41.319.171.567.651.544.290.744.880.7640.8367.50336.9130.5911.0111.040.361.01
    下载: 导出CSV 
    | 显示表格

    卡尔恰尔矿床方解石ΣREE值为365×10−6~490×10−6,LREE/HREE值为8.48~10.49,(La/Yb)N值为6.93~9.68,δEu值为0.4。小白河沟矿床方解石ΣREE值为451×10−6~822×10−6,LREE/HREE值为8.89~10.88,(La/Yb)N值为7.59~9.86,δEu值为0.37~0.39。库木塔什矿床方解石ΣREE值为354×10−6~368×10−6,LREE/HREE值为9.49~11.04,(La/Yb)N值为8.62~11.35,δEu值为0.35~0.38(表3)。

    卡尔恰尔矿区6件萤石的Rb含量为0.03×10−6~0.06×10−6,Sr含量为340×10−6~343×10−6,Sm含量为1.77×10−6~1.83×10−6, Nd含量为6.40×10−6~6.82×10−6 87Rb/86Sr值为0.00029~0.00046,87Sr/86Sr值为0.71005~0.71009,147Sm/144Nd值为0.1626~0.1682,143Nd/144Nd值为0.511917~0.512040(表4)。

    表  4  卡尔恰尔(KE)、小白河沟(XB)、库木塔什(KM)矿床的萤石Sr−Nd同位素组成表
    Table  4.  Sr−Nd isotopic composition of fluorites from Kaerqiaer, Xiaobaihegou and Kumutashi deposit
    样号Rb/10-6Sr/10-687Rb/86Sr87Sr/86SrSm/10-6Nd/10-6147Sm/144Nd143Nd/144Nd
    KE-10.053430.000390.710051.776.550.16330.511987
    KE-20.033400.000290.710051.836.820.16260.511917
    KE-30.043420.000360.710071.796.480.16720.511932
    KE-40.053420.000410.710081.836.710.16550.511975
    KE-50.063420.000460.710091.786.400.16820.512040
    KE-60.053430.000460.710041.806.490.16780.512036
    XB-10.262640.002870.710252.629.360.16960.511930
    XB-20.132930.001310.710152.609.450.16640.511919
    XB-30.183680.001450.710253.2611.880.16590.512039
    XB-40.163990.001180.710232.9810.680.16880.512062
    XB-50.213750.001610.710363.9414.150.16840.512061
    KM-11.301990.018780.709501.323.900.20440.512071
    KM-20.022610.000250.709521.293.880.20020.512061
    KM-30.022080.000290.709551.323.940.20240.512044
    下载: 导出CSV 
    | 显示表格

    小白河沟矿区5件萤石的Rb含量为0.13×10−6~0.26×10−6,Sr含量为264×10−6~399×10−6,Sm含量为2.60×10−6~3.94×10−6,Nd含量为9.36×10−6~14.15×10−687Rb/86Sr值为0.00118~0.00287,87Sr/86Sr值为0.71015~0.71036,147Sm/144Nd值为0.1659~0.1696 ,143Nd/144Nd值为0.511919~0.512062(表4)。

    库木塔什矿区3件萤石的Rb含量为0.02×10−6~1.3×10−6,Sr含量为199×10−6~261×10−6,Sm含量为1.29×10−6~1.32×10−6,Nd含量为3.88×10−6~3.94×10−6 87Rb/86Sr值为0.00025~0.01878,87Sr/86Sr值为0.70950~0.70955,147Sm/144Nd值为0.2002~0.2044,143Nd/144Nd值为0.512044~0.512071(表4)。

    本次研究工作对卡尔恰尔超大型萤石矿区碱长花岗岩进行LA−ICP−MS锆石U−Pb定年,获得成岩年龄为(455.8±2)Ma,表明其形成于中—晚奥陶世。一般岩浆热液型萤石矿的成矿时代稍晚于成矿岩体形成时代,卡尔恰尔一带各萤石矿区均见发育有肉红色碱长花岗岩脉体,萤石矿化主要赋存于岩体内外接触带附近,常见萤石−方解石细脉穿插于碱长花岗岩脉体中,碱长花岗岩因强烈热液活动而发育碳酸盐化、萤石化、硅化、绢云母化等矿化蚀变。同时库木塔什萤石矿的研究显示,该矿区碱长花岗岩体属高氟岩体[w(F)>0.1%],成岩年龄为(450±2.7)Ma(高永宝等,2021),与萤石共生的磷灰石LA−ICP−MS U−Pb年龄为(448±27)Ma(待见刊),均表明该区碱长花岗岩与萤石成矿具有密切的时空、成因关系。

    区域上,阿尔金西南缘发育大规模早古生代岩浆岩,均为阿中地块与柴达木地块之间洋-陆转换过程中岩浆活动的产物(曹玉亭等,2010孙吉明等,2012杨文强等,2012郭金城等,2014徐旭明等,2014董洪凯等,2014康磊等,2016过磊等,2019)。区域超高压变质岩研究表明,峰期变质时代集中于504~486 Ma,退变质作用时代为~450 Ma(Zhang et al.,2001刘良等,2007Liu et al.,2012)。卡尔恰尔周边邻近的花岗岩研究显示,帕夏拉依档沟一带二长花岗岩锆石U–Pb年龄为(460±4 )Ma、正长花岗岩锆石U−Pb年龄为(455±3.6)Ma,形成于挤压体制向拉张体制转换的构造环境(张若愚等,20162018),清水泉一带花岗质岩石锆石U−Pb年龄为(451±4)Ma,形成于伸展构造背景(王立社等,2016),而镁铁−超镁铁质侵入体(465 Ma)暗示此时碰撞造山已转入伸展阶段(马中平等,2011)。上述研究均表明,中—晚奥陶世阿中地块和柴达木地块由挤压造山转变成伸展构造背景,卡尔恰尔超大型萤石矿带正是该时期岩浆活动的产物。另外,区域上发育大规模形成于早—中奥陶世碰撞造山阶段的伟晶岩脉群,如吐格曼锂铍稀有金属矿床的成矿黑云母二长花岗岩锆石U−Pb年龄为475~482 Ma,含矿伟晶岩脉中铌钽铁矿U−Pb年龄为(472±8)Ma、锡石U−Pb年龄为(468±8.7)Ma(徐兴旺等,2019李杭等,2020Gao et al.,2021)。综上,早古生代加里东期是区域萤石矿、锂铍稀有金属矿的重要成矿期,萤石成矿稍晚于锂铍稀有金属矿。

    卡尔恰尔超大型萤石矿区片麻状钾长花岗岩获得LA−ICP−MS锆石U−Pb年龄为(914.5±4.1)Ma,表明其形成于新元古代早期。区域上,阿尔金西南缘已发现多处新元古代花岗(片麻)岩,可能与~900 Ma Rodinia超大陆事件引发的全球性岩浆活动相关,在空间分布上自西向东有江尕勒萨依、库如克萨依、清水泉、肖鲁布拉克、亚干布阳等地区花岗(片麻)岩呈带状分布,构成了一条与Rodinia超大陆汇聚相关的花岗岩带,正是这次构造事件使阿中地块和柴达木地块固结,该类同碰撞型花岗质片麻岩年龄大多为870~945 Ma(王超等,2006校培喜等,2014朱小辉等,2014王立社等,2015李琦等,2018马拓等,2018PAK Sang Wan,2019曾忠诚,2020),卡尔恰尔萤石矿区的片麻状钾长花岗岩即为Rodinia 超大陆汇聚引发的岩浆活动的产物。

    卡尔恰尔、小白河沟、库木塔什矿床萤石、方解石稀土元素特征表明,萤石、方解石的稀土元素配分曲线特征与碱长花岗岩、地层变质杂岩(黑云斜长片麻岩)较相似,均表现为右倾的LREE富集型,具有明显的负Eu异常特征(图7),表明萤石、方解石的稀土可能继承了岩体、地层的稀土配分模式。相比较,库木塔什矿区的萤石矿物具有更高的轻重稀土分馏程度。研究表明,萤石形成过程中REE含量的分布与结晶作用所处阶段有关,一般结晶早阶段的萤石富集 LREE,而结晶晚阶段萤石富集HREE(Moller et al.,1983Schonenberger et al.,2008),卡尔恰尔、小白河沟、库木塔什矿床中萤石均表现为明显的LREE富集型,可知其均形成于结晶作用的早阶段。

    图  7  卡尔恰尔一带萤石矿床的稀土元素配分模式图
    碱长花岗岩与黑云母斜长片麻岩数据引自高永宝等(2021)吴益平等(2021)
    Figure  7.  Normalized REE patterns of fluorite deposits from the Kaerqiaer area

    Moller等(1976) 在全球 150 多个萤石矿床研究基础上提出Tb/La−Tb/Ca双变量关系图解,用以判别萤石的成因类型,Tb/La原子数比值可反映成矿流体中稀土元素的分馏程度, Tb/Ca原子数比值可代表萤石结晶时的化学环境,具成因指示意义;卡尔恰尔、小白河沟、库木塔什矿床的萤石样品点均落在热液成因区域(图8a),表明该区萤石矿均为岩浆热液作用的产物。Y、Ho元素由于半径、电价相近,具有相似的地球化学性质,故Y/Ho值常作为一种重要参数来示踪成矿流体作用过程(Deng et al.,2014Graupner et al.,2015Mondillo et al.,2016),在富含 F 的成矿流体体系中,Y相对于 Ho 元素含量会较富集,两者比值一般大于28(Veksler et al.,2005)。Bau等(1995)在研究欧洲数个萤石矿床后提出La/Ho−Y/Ho关系图,可有效判别成矿流体来源,同源同期结晶的萤石Y/Ho 值不变而在图上表现为直线,而不同来源的萤石Y/Ho 值变化较大。卡尔恰尔、小白河沟、库木塔什矿床萤石样品在La/Ho−Y/Ho图中呈水平直线展布(图8b),且萤石样品Y/Ho 值(68~105)均远大于28,表明该区萤石矿为同源同期流体成矿,成矿流体是具有相同物化性质的富含F 的成矿流体。前已述及,不同矿区萤石、方解石的稀土元素配分模式具有一致性,同样是同源同期流体的反映。同时,图8中可看出卡尔恰尔、小白河沟矿床的萤石矿物Tb/La、La/Ho值相近,且与库木塔什矿床有明显区别,表明同处于卡尔恰尔断裂的卡尔恰尔、小白河沟矿床萤石的稀土分馏程度相近,而处于盖吉勒断裂的库木塔什萤石矿具有相对更高的轻重稀土分馏程度,可能反映同一成矿流体体系下不同断裂处分布的萤石矿床成矿环境略有差异。

    图  8  卡尔恰尔一带萤石Tb/Ca−Tb/La图与La/Ho−Y/Ho图(底图据Moller et al.,1976; Bau et al.,1995
    计算Tb/Ca原子数比采用CaF2中Ca的理论值(51.332 8%)
    Figure  8.  Tb/Ca−Tb/La and La/Ho−Y/Ho diagram of fluorite from the Kaerqiaer area

    δEu特征能记录成矿流体的氧化还原条件及温度,还原条件下形成的萤石因Eu2+具较大离子半径而不利于取代Ca2+进入到晶格中,导致Eu2+与稀土体系分离而形成Eu负异常,氧化条件下形成的萤石通常呈Eu正异常(Bau et al.,1992)。同时强烈的Eu负异常指示沉淀时成矿流体处于中低温环境(<250 ℃),而当温度超过250 ℃时则表现出正Eu异常(Bau et al.,1992)。卡尔恰尔、小白河沟、库木塔什矿床中萤石、方解石的δEu<0,表示沉淀时成矿流体处于还原条件下中低温环境。

    在反映成矿物质来源的 La/Yb−ΣREE关系图中(图9a),不同矿区的萤石样品均落在沉积岩、钙质泥岩区及其附近,说明成矿物质可能一部分来自围岩。在(Y+La)−Y/La 关系图(图9b)中,样品均落在钙碱性花岗岩区域内,说明萤石矿在成因上确实与花岗岩的侵入有密切关系。显然,元素图解不仅展示了围岩地层对成矿物质的影响,还显示了岩浆热液对成矿作用的影响,且该区成矿碱长花岗岩体属高氟岩体[w(F)>0.1%],可为萤石成矿提供氟物质,萤石赋矿地层具有一定选择性,主要为阿尔金岩群中的黑云斜长片麻岩、碳酸盐岩等富钙质岩系。因此,初步认为成矿主要物质之一的 Ca 元素可能主要是由岩浆热液对地层的淋滤萃取而来,而F元素则可能主要来源于成矿岩体碱长花岗岩。

    图  9  卡尔恰尔一带萤石的La/Yb−ΣREE与(Y+La)−Y/La图解(底图据Allegre et al.,1978
    Figure  9.  La/Yb−ΣREE and (Y+La)−Y/La diagram of fluorite from the Kaerqiaer area

    萤石一般具有较低的Rb含量和较高的Sr含量,此次Sr、Nd同位素测试结果显示,卡尔恰尔一带萤石具有较低的Rb/Sr值,使得萤石的87Sr/86Sr组成可以直接代表成矿流体的87Sr/86Sr初始比值。卡尔恰尔矿区萤石的87Sr/86Sr值为0.71005~0.71009,小白河沟矿区萤石的87Sr/86Sr值为0.71015~0.71036,库木塔什矿区萤石的87Sr/86Sr值为0.70950~0.70955,可看出各矿区成矿流体的87Sr/86Sr值基本一致,反映了成矿流体中Sr可能同源。卡尔恰尔矿区萤石的143Nd/144Nd值为0.511917~0.512040,小白河沟矿区萤石的143Nd/144Nd值为0.511919~0.512062,库木塔什矿区萤石的143Nd/144Nd值为0.512044~0.512071,均介于上、下地壳143Nd/144Nd值(0.50071~0.51212)之间。在87Sr/86Sr −143Nd/144Nd图解中(图10),萤石样品点均落于上、下地壳之间区域,说明萤石成矿物质来源于地壳。

    图  10  卡尔恰尔一带萤石的87Sr/86Sr −143Nd/144Nd图解
    Figure  10.  87Sr/86Sr −143Nd/144Nd diagram of fluorite from the Kaerqiaer area

    (1)阿尔金卡尔恰尔超大型萤石矿带成矿与碱长花岗岩关系密切,萤石矿化主要赋存于岩体内外接触带附近,赋矿围岩主要为阿尔金岩群中的黑云斜长片麻岩、碳酸盐岩等富钙质岩系,矿体明显受北东向断裂构造控制,矿石类型主要有脉状、角砾状、块状、条带状矿石,矿物组成主要是萤石、方解石。

    (2)卡尔恰尔超大型萤石矿区与成矿有关的碱长花岗岩成岩年龄为(455.8±2) Ma,结合前人研究,认为该萤石矿带形成于加里东期中—晚奥陶世,为挤压造山转变成伸展构造背景下岩浆活动的的产物。矿区片麻状钾长花岗岩成岩年龄为(914.5±4.1)Ma,形成于新元古代早期,与 Rodinia 超大陆汇聚事件有关。

    (3)稀土元素特征显示,卡尔恰尔、小白河沟、库木塔什3个矿床的萤石、方解石稀土元素配分模式均为右倾的LREE富集型,具有明显负Eu异常,与成矿岩体、围岩地层十分相似,表明萤石、方解石的稀土可能继承了岩体、地层的稀土配分模式。各矿床萤石均为热液成因,表现出同源同期成矿流体的特征,成矿环境为还原条件下的中低温环境。

    (4)各矿区萤石Sr−Nd同位素组成显示成矿物质来源于地壳,结合成矿特征,初步认为Ca可能主要来自于岩浆热液对地层的淋滤萃取,而F可能主要来源于成矿岩体碱长花岗岩。

  • 图  1   取样点位置及高程图

    Figure  1.   Sampling point position and elevation

    图  2   土水特征曲线

    Figure  2.   Soil-water wharacteristic curve

    图  3   试验模型箱

    Figure  3.   Experimental model box

    图  4   模型边坡水分监测示意图

    Figure  4.   Schematic diagram of moisture monitoring for the model slope

    图  5   边坡的网格划分

    Figure  5.   Grid division of slope

    图  6   2023年7月20日~2023年12月31日降雨情况图

    Figure  6.   Rainfall pattern from July 20, 2023 to December 31, 2023

    图  7   体积含水率动态演化图

    Figure  7.   Dynamic evolution of volume water content

    图  8   一维垂向土壤土水势的动态演化

    Figure  8.   Dynamic evolution of volume water content

    图  9   不同类型降雨事件下降雨和含水率的滞后关系曲线特征点变化

    Figure  9.   Variation of the characteristic points of the hysteresis curves of rainfall and water content under different types of rainfall events

    图  10   含水率等高线图

    Figure  10.   Water content contour map

    图  11   45°边坡水分迁移过程

    Figure  11.   Water migration process of 45° slope

    图  12   60°边坡水分迁移过程

    Figure  12.   Water migration process of 60° slope

    表  1   基材材料配比

    Table  1   Substrate material ratio

    添加材料 黄土(%) 瓜尔胶(%) 木纤维(%) SAP(%) 改良剂(%)
    基层 97.3 1 1.5 0.1 0.1
    面层 94.3 0.5 5 0.1 0.1
    下载: 导出CSV

    表  2   土样水力特征参数

    Table  2   Hydraulic characteristic parameters of soil samples

    土样类型 深度(cm) $ {\theta _{\text{r}}} $(cm3/cm3 $ {\theta _{\text{s}}} $(cm3/cm3 $ \alpha $(cm−1 n $ {{\text{K}}_{\text{s}}} $(cm/min) l
    基材 0~7 0.1797 0.4240 0.0077 1.6201 0.019 0.5
    黄土 7~67 0.0766 0.3537 0.0077 1.4940 0.0018 0.5
     注:l为孔隙连通性参数。θrθs剩余水含量和饱和水含量,Ks为饱和水力传导度,参数αn为影响水力函数形状的经验系数。
    下载: 导出CSV

    表  3   水分胁迫响应函数参数

    Table  3   Parameters of the moisture stress response function

    参数 数值
    提取水分压头Po(mm) −10
    提取水分压力水头最大速率Popt(mm) −25
    极限压头P2H、P2L(mm) 1000
    凋萎点压头P3(mm) 8000
    潜在蒸腾速率r2H(cm/d) 3.47×10−4
    潜在蒸腾速率r2L(cm/d ) 6.94×10−5
    下载: 导出CSV

    表  4   各量级降雨特征统计

    Table  4   Statistics of rainfall characteristics of each magnitude

    降雨类型降雨次数占总降雨次数的比例(%)总降雨量(mm)平均降雨量(mm)占总降雨量的比例(%)
    微量降雨211.10.20.10.1
    小雨316.76.12.02.0
    中雨844.494.911.931.8
    大雨316.7103.834.634.7
    暴雨211.193.846.931.4
    总计18100298.812.5100
    下载: 导出CSV

    表  5   5次代表性降雨事件

    Table  5   5 Representative rainfall events

    降雨事件 降雨日期 降雨量(mm) 降雨历时(h) 降雨等级 降雨特征
    A 7.28 22.7 16.4 大雨 持续较强降雨
    B 7.30 8 10.1 中雨 短时中等降雨
    C 8.20 35 10.4 暴雨 短时强降雨
    D 9.23~9.26 44.1 130.8 h 小雨-中雨 持续弱-中等降雨
    E 11.03 8.2 12.7 中雨 短时中等降雨
    下载: 导出CSV
  • 包含, 马扬帆, 兰恒星, 等. 基于微结构量化的含渐变带黄土各向异性特征研究[J]. 中国公路学报, 2022, 3510): 8899. doi: 10.3969/j.issn.1001-7372.2022.10.009

    BAO Han, MA Yangfan, LAN Hengxing, et al. Anisotropic Characteristics of Loess with Gradation Zone based on Microstructure Quantification[J]. China Journal of Highway and Transport, 2022, 3510): 8899. doi: 10.3969/j.issn.1001-7372.2022.10.009

    包含, 尹晓晴, 兰恒星, 等. 基于微结构量化的含渐变带天然黄土渗透各向异性研究——以延安新区Q1黄土为例[J]. 岩土工程学报, 2023, 454): 730738. doi: 10.11779/CJGE20220159

    BAO Han, YIN Xiaoqin, LAN Hengxing, et al. Permeability anisotropy of natural loess with gradation zone: case study of Q1 loess in Yan'an New District[J]. Chinese Journal of Geotechnical Engineering, 2023, 454): 730738. doi: 10.11779/CJGE20220159

    包含, 敖新林, 高月升, 等. 黄土边坡典型护坡植被的根系加固力学效应演化分析[J]. 中国公路学报, 2024a, 376): 98110.

    BAO Han, AO Xinlin, GAO Yuesheng, et al. Evolution Analysis of Root Reinforcement Mechanical Effect of Typical Plant Protection on Loess Slope[J]. China Journal of Highway and Transport, 2024a, 376): 98110.

    包含, 王耿, 晏长根, 等. 公路建设碳排放核算与岩土工程低碳措施及碳补偿研究综述[J/OL]. 中国公路学报, 2024b, 1−44[2024-10-22].

    BAO Han, WANG Geng, YAN Changgen, et al. Highway Construction Carbon Emission Assessment and Low-Carbon Measures and Carbon Compensation for Geotechnical Engineering: A Review[J/OL]. China Journal of Highway and Transport, 2024b, 1−44[2024-10-22].

    黄少平, 陈俊毅, 肖衡林, 等. 不同坡度植被边坡降雨入渗和径流侵蚀规律的试验研究[J]. 岩土力学, 2023, 4412): 34353447.

    HUANG Shaoping, CHEN Junyi, XIAO Henglin, et al. Test on rules of rainfall infiltration and runoff erosion on vegetated slopes with different gradients[J]. Rock and Soil Mechanics, 2023, 4412): 34353447.

    郭倩怡, 王友林, 谢婉丽, 等. 黄土湿陷性与土体物性指标的相关性研究[J]. 西北地质, 2021, 541): 212221.

    GUO Qianyi, WANG Youlin, XIE Wanli, et al. Study on Correlation between Loess Collapsibility and Soil Physical Property Index[J]. Northwestern Geology, 2021, 541): 212221.

    李鹏. 黄土区草地植被水土保持作用机理试验研究[D]. 咸阳: 西北农林科技大学, 2003.

    LI Peng. Experimental studies on the functional mechanics ofsoil andwater conservation ofgrassland vegetation in loess area[D]. Xianyang: Northwest Sci-Tech University of Agriculture and Forestry, 2003.

    刘黎明, 宋岩松, 钟斌, 等. 植被混凝土生态修复技术研究进展[J]. 环境工程技术学报, 2022, 123): 916927.

    LIU Liming, SONG Yansong, ZHONG Bin, et al. Research progress on ecological restoration technology of vegetation concrete[J]. Journal of Environmental Engineering Technology, 2022, 123): 916927.

    申佩佩, 马振波, 邓士伟. 生态护坡优势及其应用[J]. 河北水利, 20203): 3839.

    SHEN Peipei, MA Zhenbo, DENG Shiwei. Advantages of Ecological Slope Protection and its Application[J]. Hebei Water Resources, 20203): 3839.

    孙萍萍, 张茂省, 冯立, 等. 黄土水敏性及其时空分布规律[J]. 西北地质, 2019, 522): 117124.

    ZHANG Pingping, ZHANG Maosheng, FENG Li, et al. Water Sensitivity of Loess and Its Spatial-Temporal Distribution on the Loess Plateau[J]. Northwestern Geology, 2019, 522): 117124.

    张剑雄, 谷丰, 朱波, 等. 林草恢复对热水河小流域侵蚀区土壤团聚体稳定性与有机碳氮特征的影响[J]. 草业科学, 2021, 386): 10121023. doi: 10.11829/j.issn.1001-0629.2021-0062

    ZHANG Jianxiong, GU Feng, ZHU Bo, et al. Effects of forest and grass restoration on soil aggregate stability, and organic carbon and nitrogen characteristics in an eroded area of the Reshui River[J]. Pratacultural Science, 2021, 386): 10121023. doi: 10.11829/j.issn.1001-0629.2021-0062

    周凤玺, 周志雄, 邵生俊. 非饱和黄土的增湿湿陷变形特性分析[J]. 岩土工程学报, 2021S1): 3640. doi: 10.11779/CJGE2021S1007

    ZHOU Fengxi, ZHOU Zhixiong, SHAO Shengjun. Wetting deformation properties of unsaturated collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2021S1): 3640. doi: 10.11779/CJGE2021S1007

    朱冰冰, 李占斌, 李鹏, 等. 草本植被覆盖对坡面降雨径流侵蚀影响的试验研究[J]. 土壤学报, 2010, 473): 401407. doi: 10.11766/trxb200903180105

    ZHU Bingbing, LI Zhanbin, LI Peng, et al. Effect of Grass Coverage on Sediment Yield of Rain on Slope[J]. Acta Pedologica Sinica, 2010, 473): 401407. doi: 10.11766/trxb200903180105

    朱立峰. 黑方台滑坡群控制因素与外动力条件分析[J]. 西北地质, 2019, 523): 217222.

    ZHU Lifeng. Analysis of Control Factors and External Force for the Landslides in Heifangtai Area[J]. Northwestern Geology, 2019, 523): 217222.

    GB/T 50123-2019, 水利部水利水电规划设计总院 , 南京水利科学研究院. 土工试验方法标准[S]. 中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2019.

    Bai W S, Li R J, Pan J Y, et al. Measured Rainfall Infiltration and the Infiltration Interface Effect on Double-Layer Loess Slope[J]. Water, 2023, 1514): 2505.

    Balzano B, Tarantino A, Ridley A. Preliminary analysis on the impacts of the rhizosphere on occurrence of rainfall-induced shallow landslides[J]. Landslides, 2019, 16: 8851901.

    Bao H, Liu C Q, Lan H X, et al. Time-dependency deterioration of polypropylene fiber reinforced soil and guar gum mixed soil in loess cut-slope protecting[J]. Engineering Geology, 2022, 311: 106895.

    Bao H, Liu L, Lan H X, et al. Evolution of high-filling loess slope under long-term seasonal fluctuation of groundwater[J]. Catena, 2024, 238.

    Chatterjee D , Krishna A M. Effect of Slope Angle on the Stability of a Slope Under Rainfall Infiltration[J]. Indian Geotechnical Journal, 2019, 496): 708717. doi: 10.1007/s40098-019-00362-w

    Feddes R A, Kowalik P J, Zaradny H. Simulation of field water use and crop yield[J]. Soil Science, 1978, 1293): 193.

    Feng W, Li Y. Measuring the ecological safety effects of land use transitions promoted by land consolidation projects: the case of Yan’an City on the Loess Plateau of China[J]. Land, 2021, 10(8): 783.

    Green W H, Ampt G A. Studies on soil physics[J]. The Journal of Agricultural Science, 1911, 41): 124. doi: 10.1017/S0021859600001441

    Hencher S R. Preferential flow paths through soil and rock and their association with landslides[J]. Hydrological Processes, 2010, 2412): 16101630. doi: 10.1002/hyp.7721

    Ismail M A M , Hamzah N H. Study on the Response of Unsaturated Soil Slope Based on the Effects of Rainfall Intensity and Slope Angle. 3rd International Conference of Global Network for Innovative Technology (IGNITE)[R], Malaysia, 2016.

    Jia Z L, Yan C G, Li B, et al. Performance test and effect evaluation of guar gum-stabilized loess as a sustainable slope protection material[J]. Journal of Cleaner Production, 2023, 408.

    Jin Z, Guo L, Lin H, et al. Soil moisture response to rainfall on the Chinese Loess Plateau after a long-term vegetation rehabilitation[J]. Hydrological Processes, 2018, 3212): 17381754. doi: 10.1002/hyp.13143

    Kim Y, Lee S. Field Infiltration Characteristics of Natural Rainfall in Compacted Roadside Slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 13601): 248252.

    Lann T, Bao H, Lan H X, et al. Hydro-mechanical effects of vegetation on slope stability: A review[J]. Science of the Total Environment, 2024, 926.

    Liu B, Xie Y, Li Z, et al. The assessment of soil loss by water erosion in China[J]. International Soil and Water Conservation Research, 2020, 8: 430439. doi: 10.1016/j.iswcr.2020.07.002

    Liu X, Lan H, Li L, et al. An ecological indicator system for shallow landslide analysis[J]. Catena, 2022, 214: 106211. doi: 10.1016/j.catena.2022.106211

    Luo W Q, Gong J, Zhang Z Y, et al. Research on dynamic effects of rainfall and groundwater on stability of slope[C]. International Symposium on Hydrogeology and the Environment (HE 2000), Wuhan, Peoples R China, 2000.

    Ma Y F, Bao H, Yan C G, et al. Mechanical properties and microstructure evolution of two ecological slope-protection materials under dry-wet cycles[J]. Journal of Cleaner Production, 2023, 416.

    Qin C B, Wang R, Chen W K, Shi Y S, et al. Stability of Ficus virens-Reinforced Slopes Considering Mechanical and/or Hydrological Effects[J]. Forests, 2024, 15: 133. doi: 10.3390/f15010133

    Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 15): 318333. doi: 10.1063/1.1745010

    Shao W, Bogaard T, Bakker M. The influence ofpreferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide[J]. J Hydrol, 2016, 543B: 360372.

    Sreenivas L, Johnston J R, Hill H O. Some relationships of vegetation and soil detachment in the erosion process[J]. Soil Science Society of America Journal, 1948, 12C): 471474. doi: 10.2136/sssaj1948.036159950012000C0105x

    Suched L, Kittikhun K, Gayuh A P. Performance of geosynthetic cementitious composite mat and vetiver on soil erosion control[J]. Journal of Mountain Science, 2020, 17: 14101422. doi: 10.1007/s11629-019-5926-5

    Sun P, Wang H, Wang G, et al. Field model experiments and numerical analysis of rain-fall-induced shallow loess landslides[J]. Engineering Geology, 2021, 295: 106411.

    Tu X, Kwong A, Dai F, et al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides[J]. Engineering Geology. 2009; 105: 134–150.

    Van G M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 445): 892898. doi: 10.2136/sssaj1980.03615995004400050002x

    Waldron L J, Dakessian S. Soil reinforcement by roots: calculation of increased soil shear resistance from root properties[J]. Soil Science, 1981, 1326): 427435. doi: 10.1097/00010694-198112000-00007

    Wang Q, Callisti M, Miranda A, et al. Evolution of structural, mechanical and tribological properties of Ni–P/MWCNT coatings as a function of annealing temperature[J]. Surface and Coatings Technology, 2016, 302: 195201. doi: 10.1016/j.surfcoat.2016.06.011

    Wang G L, Li T L, Xing X L, et al. Research on loess flow-slides induced by rainfall in July 2013 in Yan'an, NW China[J]. Environmental Earth Sciences, 2015, 7312): 79337944. doi: 10.1007/s12665-014-3951-9

    Weng X, Sun Y, Zhang Y, et al. Physical modeling of wetting-induced collapse of shield tunneling in loess strata[J]. Tunnelling and Underground Space Technology, 2019, 90: 208219. doi: 10.1016/j.tust.2019.05.004

    Wu L Z, Zhou Y, Sun P, et al. Laboratory characterization of rainfall-induced loess slope failure[J]. Catena, 2017, 150: 18. doi: 10.1016/j.catena.2016.11.002

    Yang Y D, Liu H, Li H F, et al. Planting in ecologically solidified soil and its use[J]. Open Geosciences, 2022, 141): 750762. doi: 10.1515/geo-2022-0391

    Zhang S, Han T, Lu Y, et al. Experimental study of water migration characteristics in compacted loess subjected to rainfall infiltration[J]. PLOS ONE, 2022, 17(9).

    Zhao B, Zhang L, Xia Z, et al. Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope[J]. Advances in Civil Engineering. 2019, 1–14.

    Zhou B B, Wu J G, Anderies J M. Sustainable landscapes and landscape sustainability: A tale of two concepts. Landsc[J]. Urban Plan, 2019, 189: 274284.

  • 期刊类型引用(12)

    1. 贾伍慧,刘凯,余成华,朱伟,邓岳飞. 锶同位素在地质学领域的分析技术与应用研究进展. 岩矿测试. 2025(02): 149-160 . 百度学术
    2. 何治亮,杨鑫,高键,云露,曹自成,李慧莉,杨佳奇. 特提斯洋与古亚洲洋协同演化控制下的塔里木台盆区油气富集效应. 石油与天然气地质. 2024(03): 637-657 . 百度学术
    3. 连政,汪东,殷豫江,张小林. 若羌盖吉克萤石矿地质特征及成矿构造环境分析. 新疆地质. 2024(02): 250-253 . 百度学术
    4. 万弘,欧阳永棚,陈祺,蒋起保,曾闰灵,杨立飞,邓腾,李增华. 赣东上水桥萤石矿床萤石微量元素地球化学特征及其对矿床成因的指示. 西北地质. 2024(04): 80-96 . 本站查看
    5. 张建芳,陈浩然,伍江涵,王振,张琨仑,吕鹏瑞,曹华文,邹灏. 萤石矿床成因研究方法及发展趋势. 西北地质. 2024(04): 97-112 . 本站查看
    6. 沈金祥,张建芳,曹华文,喻黎明,方乙,邹灏. 浙江缙云县吾山萤石矿床成因:来自稀土元素、流体包裹体、红外光谱的制约. 西北地质. 2024(04): 37-49+305 . 本站查看
    7. 高永宝,陈康,王亮,赵辛敏,李艳广,刘明,张龙,王元伟,张毅,刘基. 阿尔金西段库木塔什萤石矿床成因:磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束. 西北地质. 2024(04): 1-20+305 . 本站查看
    8. 刘天航,唐卫东,高永宝,魏立勇,何佳乐,范堡程,张羽,董梦杰. 内蒙古北山花石头山萤石矿床成因:萤石微量、稀土和H-O同位素制约. 西北地质. 2024(04): 66-79 . 本站查看
    9. 马少兵,裴秋明,王亮,韩术合,梁翼,孙清飞,沈家乐. 内蒙古喀喇沁旗大西沟萤石矿床成因:来自稀土元素、流体包裹体和H-O同位素的制约. 西北地质. 2024(04): 50-65 . 本站查看
    10. 张毅,高永宝,刘明,王元伟,陈康,张龙,景永康,刘靖宇. 阿尔金西段库木塔什萤石矿床成矿流体特征及成矿机制探讨. 西北地质. 2024(04): 21-36 . 本站查看
    11. 张寿庭,邹灏,方乙,曹华文,裴秋明,唐利,王亮,高永璋,张伟,徐旃章. 热液脉型萤石矿床隐伏矿体定位预测综合技术方法. 矿床地质. 2024(04): 785-801 . 百度学术
    12. 郭宇,陈登,汤子程,刘志臣,张晓东. 黔东北地区金亮萤石矿床稀土元素地球化学特征与成矿物质来源. 矿物学报. 2023(06): 873-881 . 百度学术

    其他类型引用(3)

图(12)  /  表(5)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  5
  • PDF下载量:  12
  • 被引次数: 15
出版历程
  • 收稿日期:  2024-10-04
  • 修回日期:  2024-11-16
  • 录用日期:  2024-11-21
  • 网络出版日期:  2025-03-02
  • 刊出日期:  2025-04-19

目录

/

返回文章
返回