ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

黄土高原泥流灾变机理研究进展与发展趋势

王新刚, 王道正, 王家鼎, 黄强兵, 胡胜, 连宝琴, 辜超颖

王新刚,王道正,王家鼎,等. 黄土高原泥流灾变机理研究进展与发展趋势[J]. 西北地质,2025,58(2):1−15. doi: 10.12401/j.nwg.2024113
引用本文: 王新刚,王道正,王家鼎,等. 黄土高原泥流灾变机理研究进展与发展趋势[J]. 西北地质,2025,58(2):1−15. doi: 10.12401/j.nwg.2024113
WANG Xingang,WANG Daozheng,WANG Jiading,et al. Research Status and Development Trend on the Mechanism of Mudflow Disasters in the Loess Plateau[J]. Northwestern Geology,2025,58(2):1−15. doi: 10.12401/j.nwg.2024113
Citation: WANG Xingang,WANG Daozheng,WANG Jiading,et al. Research Status and Development Trend on the Mechanism of Mudflow Disasters in the Loess Plateau[J]. Northwestern Geology,2025,58(2):1−15. doi: 10.12401/j.nwg.2024113

黄土高原泥流灾变机理研究进展与发展趋势

基金项目: 国家重点研发项目(2023YFC3008401)和国家自然科学基金项目(42207184)联合资助。
详细信息
    作者简介:

    王新刚(1984−),男,博士,教授,博士生导师,主要从事地质灾害机理与防控研究。E−mail:xgwang@nwu.edu.cn

    通讯作者:

    王道正(1990−),男,博士,主要研究黄土地质灾害机理与防控技术。E−mail:dzwang@nwu.edu.cn

  • 中图分类号: P642.5

Research Status and Development Trend on the Mechanism of Mudflow Disasters in the Loess Plateau

Funds: This research was supported by the National Key R&D Program of China (No.2023YFC3008401) and the National Natural Science Foundation of China (No. 42207184).
  • 摘要:

    黄土泥流是黄土高原地区较为频发的地质灾害,具有超强的流动性、超远的运动距离及超大的冲击破坏力,时常造成重大灾难发生。科学的认识黄土高原泥流灾变机理对降低灾害风险、采取科学有效的减灾措施具有重要意义。笔者针对黄土泥流孕灾环境特征、流体性质、灾变机理以及监测预警等方面研究的最新进展进行了综述,分析了黄土泥流灾害研究方面所存在的关键科学问题,提出了针对黄土高原泥流灾害研究未来仍需以“野外调研–试验研究–理论分析–实践应用”为研究范式,并采用新理论、新方法、新技术和新设备,考虑黄土泥流多尺度、多时序和多阶段等视角,重点关注复杂孕灾环境下黄土泥流时空发育特征及其超前识别技术研究、黄土泥流演化机制与成灾机理的动力学模型构建、黄土泥流灾害实时监测预警模型及综合评价方法、黄土泥流韧性防控与应急救援综合技术体系等研究方向。

    Abstract:

    Loess mudflow is a frequent geological hazard in the Loess Plateau region, characterized by strong mobility, long-distance movement, and massive impact and destructive force, often causing major disasters. A scientific understanding of the mechanism of mudflow disasters on the Loess Plateau is of great significance for reducing disaster risks and adopting scientifically effective disaster reduction measures. This article first reviews the latest progress in research on the environmental characteristics, fluid properties, disaster mechanisms, and monitoring and early warning of loess mudflow disasters. Then, it analyzes the key scientific issues in the research of loess mudflow disasters. Finally, it is proposed that the future research on mudflow disasters on the Loess Plateau should still take "field investigation - experimental research - theoretical analysis - practical application" as the research paradigm, and adopt new theories, new methods, new technologies and new equipment, and focus on the following research directions considering the multi-scale, multi-time series and multi-stage perspectives of mudflow on the loess Plateau: Study the temporal and spatial development characteristics of loess mudflow and its advanced identification technology under complex disaster-prone environment, build a dynamic model of loess mudflow evolution mechanism and disaster mechanism, establish a real-time monitoring and early warning model of loess mudflow disaster and a comprehensive evaluation method, and form a comprehensive technical system of loess mudflow toughness prevention and control and emergency rescue.

  • 沿黄公路位于黄土高原黄河中游区,区域地貌类型属典型的黄土丘陵沟壑区。受特定的地形地貌特征、气候条件、人类活动等影响,该区是中国地质灾害高发且最为严重的地区之一(彭建兵等,2014)。沿黄公路建设切坡形成大量的切坡群,这些高陡边坡成为沿线地质灾害的主要危险源。自2017年通车以来,公路沿线地质灾害频发,主要表现为风化剥落、掉块落石、倾倒、滑塌等,对沿线游客及过往车辆安全造成极大的威胁。为确保沿黄公路安全运行,排除致灾隐患,开展其地质灾害风险调查和研究迫在眉睫。

    中国从90年代开始实施了一系列覆盖全国山地丘陵区和重点城镇的地质灾害普查、详查及精细化调查工作,积累了黄土高原不同发展时期的地质灾害本底信息,在此基础上众多学者分析研究了黄土高原地质灾害发育规律(许领等,2008孙萍萍等,2019)、黄土滑坡发育类型(李同录等,2007唐亚明等,2015黄强兵等,2016)、崩塌破坏模式(王根龙等,2011彭军等2015薛强等,2021)等,提出了针对黄土高原不同区域、不同尺度的地质灾害风险评价方法(张茂省等,2019杨柳等,2020冯凡等,2022),形成了成熟的黄土高原区域地质灾害风险评估体系。而针对黄土高原公路沿线地质灾害破坏模式总结及风险管控相对薄弱,主要集中在基岩山区公路边坡破坏机理(陈晓刚等,2024)、边坡稳定性评价(岳中琦等,2024伍运霖等,2024)、风险区划(廖小平等,2021蒋瑜阳等,2023)等方面。

    笔者在1:10000比例尺地质灾害野外调查基础上,分析总结了黄土高原沿黄公路陕西绥德–清涧段边坡地质灾害变形破坏演化模式,定量评估了研究段边坡地质灾害财产风险和人员风险,并根据边坡变形破坏模式及风险评估结果制定了相应的地质灾害风险管控措施建议,为沿黄公路沿线地质灾害防灾减灾提供技术支撑。

    研究区为沿黄公路陕西省绥德县河底乡–清涧县儿狼山乡路段,长度为43 km,地处黄河中游的晋陕大峡谷内。地理位置为E 110°30′~110°45′ , N 37°10′~37°20′,总体地势北高南低,属于黄土丘陵沟壑区的河谷阶地,地形切割强烈。年均降水量为450~600 mm,多集中在6~9月份,且多以暴雨形式出现,年平均气温为11.5 ℃。地质构造属鄂尔多斯盆地I级构造单元陕北台凹,地质构造简单。

    沿线边坡类型主要为土质、岩质和土岩混合质3种。土质为第四系黄土。地层岩性为三叠系近水平产状的砂岩–泥岩互层(T3h),出露的泥岩风化侵蚀严重,地层差异性风化强烈,节理裂隙发育。沿线人员居住较少,仅一处崩塌隐患坡体下分布有4户居民,其余威胁对象均为公路沿线行人和车辆。

    沿黄公路研究区崩塌、滑坡等地质灾害多发,通过1∶10000地质灾害野外调查识别边坡灾害及隐患点51处,其中崩塌7处,崩塌隐患40处,滑坡3处,滑坡隐患1处(表1图1)。地质灾害以小型基岩崩塌为主,基岩崩塌39处,占比82.98%,黄土崩塌次之。滑坡较少,其中3处为黄土滑坡,1处为黄土–基岩接触面滑坡。基岩崩塌是研究区主要的灾害类型。

    表  1  研究区边坡灾害变形破坏模式分类
    Table  1.  Classification of deformation and failure modes of slope disasters in the study area
    编号 灾害类型 破坏模式 地层岩性及灾害体特征 编号 灾害类型 破坏模式 地层岩性及灾害体特征
    1 崩塌隐患 倾倒 基岩,坡高18 m,宽200 m 27 滑坡 拉裂-滑移 黄土+基岩,厚15~20 m,
    坡高120 m,宽270 m
    2 崩塌 倾倒 黄土,坡高13 m,宽50 m 28 崩塌 滑移 黄土,坡高66 m,宽100 m
    3 崩塌隐患 倾倒 基岩,坡高60 m,宽150 m 29 崩塌 滑移 黄土,坡高20 m,宽50 m
    4 崩塌隐患 倾倒 基岩,坡高50 m,宽150 m 30 滑坡隐患 拉裂–滑移 黄土,坡高45.5 m,宽100 m
    5 崩塌隐患 倾倒 基岩,坡高80 m,宽650 m 31 滑坡 拉裂–滑移 黄土,坡高45.5 m,
    宽100 m,厚1~2 m
    6 崩塌隐患 倾倒 基岩,坡高100 m,宽500 m 32 崩塌隐患 倾倒 基岩,坡高33 m,宽100 m
    7 崩塌隐患 倾倒 基岩,坡高96 m,宽250 m 33 崩塌隐患 倾倒 基岩,坡高18.4 m,宽70 m
    8 崩塌隐患 倾倒 基岩,坡高65 m,宽150 m 34 滑坡 拉裂–滑移 黄土,坡高23 m,
    宽100 m,厚约4 m
    9 崩塌隐患 倾倒 基岩,坡高65 m,宽250 m 35 崩塌隐患 倾倒 基岩,坡高21 m,宽20 m
    10 崩塌隐患 倾倒 基岩,坡高70 m,宽300 m 36 崩塌 滑移 黄土,坡高23 m,宽100 m
    11 崩塌隐患 滑移 基岩,坡高108 m,宽150 m 37 崩塌隐患 倾倒 黄土,坡高29 m,宽7 m
    12 崩塌隐患 倾倒 基岩,坡高114 m,宽300 m 38 崩塌隐患 倾倒 基岩,坡高29.5 m,宽105 m
    13 崩塌隐患 滑移 基岩,坡高115 m,宽150 m 39 崩塌隐患 倾倒 基岩,坡高18 m,宽50 m
    14 崩塌隐患 倾倒 基岩,坡高105 m,宽100 m 40 崩塌隐患 倾倒 基岩,坡高20 m,宽150 m
    15 崩塌隐患 倾倒 基岩,坡高106 m,宽200 m 41 崩塌隐患 滑移 黄土+基岩,坡高30 m,宽120 m
    16 崩塌隐患 倾倒 基岩,坡高90 m,宽500 m 42 崩塌隐患 倾倒 基岩,坡高18 m,宽60 m
    17 崩塌隐患 倾倒 基岩,坡高26 m,宽300 m 43 崩塌隐患 倾倒 基岩,坡高19 m,宽100 m
    18 崩塌隐患 坠落 基岩,坡高30 m,宽200 m 44 崩塌隐患 倾倒 基岩,坡高13 m,宽70 m
    19 崩塌隐患 倾倒 基岩,坡高60 m,宽100 m 45 崩塌隐患 倾倒 基岩,坡高11 m,宽93 m
    20 崩塌隐患 倾倒 基岩,坡高45 m,宽100 m 46 崩塌 滑移 黄土,坡高17 m,宽10 m
    21 崩塌隐患 坠落 基岩,坡高17 m,宽50 m 47 崩塌隐患 倾倒 基岩,坡高18 m,宽200 m
    22 崩塌隐患 倾倒 基岩,坡高35 m,宽30 m 48 崩塌隐患 倾倒 基岩,坡高19 m,宽50 m
    23 崩塌隐患 坠落 基岩,坡高15 m,宽100 m 49 崩塌隐患 倾倒 基岩,坡高21 m,宽75 m
    24 崩塌隐患 坠落 基岩,坡高23 m,宽70 m 50 崩塌 滑移 黄土,坡高17 m,宽100 m
    25 崩塌隐患 倾倒 基岩,坡高20 m,宽60 m 51 崩塌 滑移 黄土,坡高22 m,宽100 m
    26 崩塌隐患 倾倒 基岩,坡高25 m,宽250 m
    下载: 导出CSV 
    | 显示表格
    图  1  沿黄公路边坡灾害隐患分布图
    Figure  1.  Distribution of hidden hazards along the Yellow Highway slope

    受地质环境条件和诱发因素影响,不同地质灾害类型表现出不同的变形破坏特征和破坏模式。研究区按边坡变形破坏模式划分,崩塌有倾倒式、滑移式和坠落式3种破坏模式,其中,倾倒式34处,滑移式9处,坠落式4处; 4处滑坡及隐患破坏模式均为拉裂–剪切滑移式。

    倾倒式破坏模式:既发生于岩质边坡也发生于土质边坡。人工开挖、自然风化及降雨是形成该地区此类灾害的主要诱因(薛强等,2021)。

    岩质边坡受公路建设切割影响,坡体近直立,坡面破碎,节理裂隙发育。坡体因砂泥岩强度不同而差异风化,导致泥岩剥落、岩体向外凸出。同时受降雨及风化影响,边坡上部节理裂隙不断扩张,导致岩体向临空方向持续蠕动变形,自身重力作用下危岩体重心不断前倾,沿着节理裂隙面发生倾倒式变形破坏(图2)。

    图  2  倾倒式基岩崩塌变形破坏分析
    Figure  2.  Analysis of deformation and damage caused by toppling bedrock collapse

    黄土斜坡因切坡,坡度较陡。受外部风化剥蚀影响,坡体顶部边缘处形成近垂直的拉张裂隙,在降雨影响下裂隙逐步向深部扩张,开裂的土体逐渐偏离母体。当开裂土体重心偏离母体时,发生倾倒式变形崩塌(图3)。

    图  3  倾倒式黄土崩塌变形破坏分析
    Figure  3.  Analysis of collapse, deformation and failure of inverted loess

    倾倒式岩质崩塌实例为清涧县解家沟乡49号崩塌隐患体,该边坡段高为21 m,宽为75 m,坡度为70°,因公路建设切坡形成。坡体节理裂隙发育,岩体向外凸出,部分裂隙较大约5 cm,砂岩块体发生错动(图2)。倾倒式土质崩塌实例为绥德县定仙嫣乡沟口村崩塌(编号:2号),该崩塌体高为13 m,宽为50 m,坡度近50°,最新发生于2019年,崩塌堆积体多堆积在公路沿线内侧坡体上(图3)。

    滑移式破坏模式:主要发生于黄土崩塌,人工开挖和降雨是其主要诱发因素。研究区高陡黄土斜坡剥落、侵蚀现象强烈。降水沿着高陡坡面自上而下冲刷,使得坡体因剥落侵蚀产生的裂隙发展为裂缝或落水洞,但因坡度大导致侵蚀裂隙深度小。随着降水入渗,坡脚土体含水量增大,强度降低,剥落侵蚀现象较坡体中上部严重,造成坡底局部滑塌,随着时间推移,高陡边坡逐渐出现内凹,形成反坡,失去对上部土体的支撑。同时坡体中上部裂隙扩张,形成贯通拉裂面,边坡最终沿着较浅拉裂面产生滑动、崩塌(图4)。

    图  4  滑移式黄土崩塌变形破坏分析
    Figure  4.  Analysis of deformation and failure of sliding loess collapse

    滑移式崩塌实例为陕西省清涧县吴家山村沿黄公路358 km+100~110 m段黄土崩塌(编号:46号),该坡体由Q3黄土组成,坡高为25 m,宽为10 m,坡度约为60°,滑塌坡面较新鲜,崩塌堆积体于坡脚,垂直节理裂隙发育,贯通性较好,降雨诱发下可再次发生滑移式崩塌(图4)。

    坠落式破坏模式:发生于研究区直线型岩质边坡。边坡为砂泥岩互层,砂泥岩差异性风化导致泥岩剥落、上面砂岩层悬空。同时在重力、自然风化、降雨等作用下,岩体后缘节理裂隙逐渐加深和张裂,悬空岩体在重力作用下沿着节理裂隙面发生拉裂–坠落式崩塌(图5)。

    图  5  坠落式基岩崩塌变形破坏分析
    Figure  5.  Analysis of deformation and damage caused by falling bedrock collapse

    坠落式崩塌实例为清涧县石盘乡上坪村北18号基岩崩塌隐患体,该崩塌体高约为30 m,宽为200 m,近直立,砂岩巨厚,拉张裂隙发育,砂岩悬空。遇降雨或其他扰动拉张裂隙不断扩张,在自身重力作用下砂岩会发生坠落(图5)。

    研究区3处滑坡发生于黄土层内,1处发生在黄土与基岩接触面,均为拉裂–剪切滑移式破坏模式。

    黄土层内滑坡:黄土垂直节理发育,在自重力卸荷与物理风化作用下,斜坡沿垂直节理向临空方向蠕动变形,导致垂直节理拉张扩展形成拉张裂隙,雨水沿拉张裂隙入渗斜坡体,导致斜坡体不断蠕动变形,拉张裂隙向下延伸在黄土内产生剪切破坏,并向下延伸发育,直至贯通形成剪切面,土体强度进一步降低,最终导致土体沿剪切面下滑形成整体滑移式破坏(图6)。

    图  6  黄土层内滑移式滑坡变形破坏分析
    Figure  6.  Deformation and failure analysis of sliding landslides within loess layers

    黄土–基岩接触面滑坡:主要发生在切割较深、可见基岩出露的沟谷中,其典型的斜坡结构形式是黄土+基岩结构。上覆黄土垂直裂隙发育,降水沿垂直或侧向通道入渗至基岩层。基岩隔水性相对较好,水体在基岩面上富集,饱水,造成基岩表部土体饱和而强度降低,进而转变为滑带。同时,斜坡地下水位快速抬升,稳定性不断下降,拉张裂缝不断扩展直至到基岩表部,滑坡后缘贯通,斜坡在自重力作用下发生滑坡(图7)。

    图  7  黄土-基岩接触面滑移式滑坡变形破坏分析
    Figure  7.  Deformation and failure analysis of lliding landslides at the loess bedrock contact surface

    黄土层内滑坡实例为清涧县解家沟乡庙墕村滑坡(编号:34号),该坡体由Q3和Q2黄土组成,坡高为23 m,宽为100 m,坡度为60°,滑体平均厚约为4 m,后缘陡坎高5 m,降雨诱发下可再次发生滑动(图6)。

    黄土–基岩接触面滑坡实例为清涧县解家沟乡西山里村滑坡体(编号:27号),黄体由Q3和Q2黄土组成,下伏基岩为T3h砂泥岩互层。滑坡坡高为120 m,宽为270 m,平均坡度为60°。滑体厚为10~15 m,上覆黄土发生滑动,挤压下伏砂泥岩顶层破碎,随滑体滑动,堆积于坡体,滑床整体为黄土,夹杂部分破碎砂泥岩。滑坡后壁黄土裸露,主滑面后缘陡坎出露10 m,坡体北侧羽状裂隙发育,部分贯通,后续降水入渗后缘,发生滑坡可能性较大(图7)。

    地质灾害定量风险评价可通过以下公式计算(张茂省等,2019)。

    财产风险计算公式:

    $$ \mathit{P} _{ \mathrm{(prop)}} \mathrm= \mathit{P} _{ \mathrm{(L)}} \mathrm{\times } \mathit{P} _{ \mathrm{(T:L)}} \mathrm{\times } \mathit{P} _{ \mathrm{(S:T)}} \mathrm{\times } \mathit{V} _{ \mathrm{(prop:S)}} \mathrm{\times } \mathit{E} $$ (1)

    式中:P(prop)为财产年损失;P(L)为灾害发生概率;P(T:L)为灾害到达承载体的概率;P(S:T)为承载体时空概率;V(prop:S)为承灾体易损性;E为承灾体价值。

    单人生命风险计算公式:

    $$ \mathit{P} _{ \mathrm{(LOL)}} \mathrm= \mathit{P} _{ \mathrm{(L)}} \mathrm{\times } \mathit{P} _{ \mathrm{(T:L)}} \mathrm{\times } \mathit{P} _{ \mathrm{(S:T)}} \mathrm{\times } \mathit{V} _{ \mathrm{(D:T)}} $$ (2)

    式中:P(LOL)为单人年死亡概率;V(D:T)为人员易损性。

    灾害发生概率根据野外实地调查灾害发生可能性级别确定,对于失稳可能性是“可能”的相当于年发生概率10−3,对于失稳可能性是“很可能”的确定为10−2,几乎确定的为10−1马红娜等,2023)。灾害到达承载体的概率由承灾体距离风险源的远近及地形因素决定,研究区除34号和51号外灾害体威胁的承灾体均位于坡脚,灾害体失稳到达承灾体的概率为1.0。承灾体时空概率包括固定承灾体和流动承灾体,固定承灾体时空概率为1.0;流动承灾体考虑灾害威胁建筑物内的人员和沿黄公路上行驶人员和车辆,时空概率分别为0.342和0.208(张茂省等,2019)。

    研究区除15号灾害体的承灾体有窑洞外,其他承灾体均为沿黄公路及其过往车辆。财产易损性和人员易损性参照《地质灾害风险调查评价技术要求(试行)》,并结合灾害体强度、承灾体抵抗灾害能力等综合考虑赋值,财产易损性赋值为0~1,0表示财产完好无损,1表示彻底损坏;人员易损性赋值为0~1,0代表未受到伤害,1代表死亡。

    研究区灾害财产和人员风险评估结果见表2,人员风险区划见图8。51处地质灾害财产年损失在0.0005~3.375万元/a,其中1.0万元以上有7处,占比13.73%;年损失在3.0万元/a以上的有3处(15号、17号和27号),15号和17号均为直线型基岩斜坡,节理裂隙极其发育,灾害发生概率极高。15号危岩体块状大,最大粒径5.0 m,对承灾体损失大。17号坡下为沿黄公路和居民点,承灾体易损性高。27号为黄土–基岩接触面滑坡,规模大,发生概率高,致使承灾体易损性高。

    表  2  沿黄公路段边坡灾害风险评估结果
    Table  2.  Results of slope disaster risk assessment along the Yellow Highway section
    风险源
    编号
    发生概
    率P(L)
    到达概
    率P(T:L)
    固定承载体时
    空概率P(S:T)
    流动承灾体时
    空概率P(S:T)
    财产易损
    性V(prop:S)
    人员易损
    性V(D:T)
    承灾体
    价值E(万元)
    财产年损失
    P(prop)(万元/a)
    单人年死亡
    概率P(LOL)
    1 10−2 1.0 1.0 0.208 0.60 0.60 45.00 0.270 1.25×10−3
    2 10−2 1.0 1.0 0.208 0.20 0.20 11.25 0.023 4.16×10−4
    3 10−2 1.0 1.0 0.208 0.30 0.40 11.25 0.034 8.32×10−4
    4 10−2 1.0 1.0 0.208 0.40 0.40 22.50 0.090 8.32×10−4
    5 10−2 1.0 1.0 0.208 0.40 0.50 146.25 0.585 1.04×10−3
    6 10−2 1.0 1.0 0.208 0.30 0.40 112.50 0.338 8.32×10−4
    7 10−2 1.0 1.0 0.208 0.30 0.40 56.25 0.169 8.32×10−4
    8 10−2 1.0 1.0 0.208 0.40 0.50 33.75 0.135 1.04×10−3
    9 10−3 1.0 1.0 0.208 0.20 0.30 56.25 0.011 6.24×10−5
    10 10−3 1.0 1.0 0.208 0.30 0.40 67.50 0.020 8.32×10−5
    11 10−3 1.0 1.0 0.208 0.30 0.40 33.75 0.010 8.32×10−5
    12 10−2 1.0 1.0 0.208 0.40 0.60 67.50 0.270 1.25×10−3
    13 10−1 1.0 1.0 0.208 0.60 0.70 33.75 2.025 1.46×10−2
    14 10−2 1.0 1.0 0.208 0.40 0.50 22.50 0.090 1.04×10−3
    15 10−1 1.0 1.0 0.55 0.60 0.80 55.00 3.300 4.40×10−2
    16 10−3 1.0 1.0 0.208 0.30 0.40 112.50 0.034 8.32×10−5
    17 10−1 1.0 1.0 0.208 0.50 0.70 67.50 3.375 1.46×10−2
    18 10−1 1.0 1.0 0.208 0.50 0.60 45.00 2.250 1.25×10−2
    19 10−3 1.0 1.0 0.208 0.40 0.30 22.50 0.009 6.24×10−5
    20 10−3 1.0 1.0 0.208 0.20 0.30 22.50 0.005 6.24×10−5
    21 10−2 1.0 1.0 0.208 0.40 0.60 11.25 0.045 1.25×10−3
    22 10−1 1.0 1.0 0.208 0.40 0.60 6.75 0.270 1.25×10−2
    23 10−2 1.0 1.0 0.208 0.60 0.60 22.50 0.135 1.25×10−3
    24 10−2 1.0 1.0 0.208 0.40 0.50 15.75 0.063 1.04×10−3
    25 10−1 1.0 1.0 0.208 0.40 0.40 13.50 0.540 8.32×10−3
    26 10−3 1.0 1.0 0.208 0.20 0.30 33.75 0.007 6.24×10−5
    27 10−1 1.0 1.0 0.208 0.50 0.70 60.75 3.038 1.46×10−2
    28 10−3 1.0 1.0 0.208 0.30 0.40 22.50 0.007 8.32×10−5
    29 10−2 0.3 1.0 0.208 0.20 0.10 11.25 0.007 6.24×10−5
    30 10−3 1.0 1.0 0.208 0.30 0.30 22.50 0.007 6.24×10−5
    31 10−2 1.0 1.0 0.208 0.30 0.20 22.50 0.068 4.16×10−4
    32 10−2 1.0 1.0 0.208 0.5 0.60 15.75 0.079 1.25×10−3
    33 10−1 1.0 1.0 0.208 0.40 0.50 15.75 0.630 1.04×10−2
    34 10−1 0.5 1.0 0.208 0.30 0.20 9.00 0.135 2.08×10−3
    35 10−1 1.0 1.0 0.208 0.5 0.70 4.50 0.225 1.46×10−2
    36 10−3 1.0 1.0 0.208 0.30 0.20 1.58 0.0005 4.16×10−5
    37 10−1 1.0 1.0 0.208 0.40 0.50 22.50 0.900 1.04×10−2
    38 10−1 1.0 1.0 0.208 0.5 0.60 23.63 1.181 1.25×10−2
    39 10−1 1.0 1.0 0.208 0.50 0.60 11.25 0.563 1.25×10−2
    40 10−1 1.0 1.0 0.208 0.5 0.50 33.75 1.688 1.04×10−2
    41 10−3 1.0 1.0 0.208 0.30 0.20 27.00 0.008 4.16×10−5
    42 10−2 1.0 1.0 0.208 0.5 0.60 13.50 0.675 1.25×10−3
    43 10−2 1.0 1.0 0.208 0.40 0.50 22.50 0.900 1.04×10−3
    44 10−1 1.0 1.0 0.208 0.40 0.40 15.75 0.630 8.32×10−3
    45 10−1 1.0 1.0 0.208 0.40 0.40 20.93 0.837 8.32×10−3
    46 10−2 1.0 1.0 0.208 0.30 0.30 2.25 0.068 6.24×10−4
    47 10−2 1.0 1.0 0.208 0.60 0.70 45.00 0.270 1.46×10−3
    48 10−2 1.0 1.0 0.208 0.60 0.70 11.25 0.068 1.46×10−3
    49 10−1 1.0 1.0 0.208 0.50 0.50 16.88 0.844 1.04×10−2
    50 10−2 1.0 1.0 0.208 0.30 0.40 22.50 0.068 8.32×10−4
    51 10−2 0.3 1.0 0.208 0.20 0.20 22.50 0.014 1.25×10−4
    下载: 导出CSV 
    | 显示表格
    图  8  沿黄公路边坡灾害风险区划及防控措施图
    Figure  8.  Risk zoning and prevention measures for slope disasters along the Yellow Highway

    目前国际上无通用的因崩塌滑坡灾害引起的个人生命风险容许标准,本次采用澳大利亚地质力学学会和香港特别行政区政府共同建议的标准(1×10−4/a)(毕银强等,2016徐继维等,2016),把单人年死亡概率1×10−4/a以下定为低风险源,以上按10倍差依次定为中风险源、高风险源和极高风险源。低风险源12个,占比23.53%;中风险源9个,占比17.65%;高风险源18个,占比35.29%;极高风险源12个,占比23.53%。

    沿黄公路研究段灾害及其隐患51处。根据风险定量评估结果,对单人年死亡概率P(LOL)<10−4且财产年损失P(prop)<0.1万元的采取群策群防措施;对单人年死亡概率P(LOL) >10−4或财产年损失P(prop)>0.1万元的灾害体采取搬迁避让、坡面防护、削坡处理、专业监测等相应的风险管控措施。

    (1)搬迁避让:建议对15号基岩崩塌隐患威胁范围内的4户居民搬迁避让,同时对坡体坡面采取拉防护网等措施防护。

    (2)建立专业地质灾害监测体系:建议在清涧县解家沟乡西山里村滑坡体(27号)建立一体化自动监测站。

    (3)工程防治措施:针对1号、3~8号、12~14号、17~18号、21~25号、32~33号、35号、37~40号、42~45号、47~49号等基岩崩塌及隐患体,建议采取清理坡面松动危岩,拉防护网等措施。针对2号、31号、34号、46号、50~51号等土质崩塌及滑坡体,建议采取坡体后缘削坡、修建排水沟等防治措施。

    (4)群策群防:针对9~11号、16号、19~20号、26号、28~30号、36号、41号等低风险源,建议采取群策群防措施。群策群防人员定期目视检查,雨季加强巡查。

    (1)研究区地质灾害多发,共识别地质灾害及其隐患51处,其中崩塌7处,崩塌隐患40处,滑坡3处,滑坡隐患1处。地质灾害以小型基岩崩塌为主,基岩崩塌是研究区主要的灾害类型。

    (2)研究区崩塌包括土质崩塌和岩质崩塌,有倾倒式、滑移式和坠落式3种破坏模式,其中以倾倒式为主,滑移式次之。滑坡较少,均为黄土滑坡,拉裂–剪切滑移式破坏模式。

    (3)针对每处边坡地质灾害风险源开展了定量财产风险和人员风险评估。同时根据边坡破坏模式及风险评估结果,对单人年死亡概率P(LOL)<10−4且财产年损失P(prop)<0.1万元的地质灾害采取群策群防措施;对单人年死亡概率P(LOL)>10−4或财产年损失P(prop)>0.1万元的制定了专业监测、搬迁避让、工程防治等相应的风险管控措施建议。

  • 图  1   黄土高原典型黄土泥流灾害

    Figure  1.   Typical loess mudflow disasters on the Loess Plateau

    图  2   关键词聚类及时间线图谱

    a. 由中国知网整理得出;b. 由Web of science核心数据集整理得出

    Figure  2.   Keyword clustering and timeline

    图  3   黄土高原泥流灾害与年均降雨量空间分布图(a)、2003~2020年年均降雨量与泥流灾害次数对应关系图(b)

    Figure  3.   (a) Spatial distribution of mudflow hazards and annual average rainfall on the Loess Plateau, (b) the corresponding relationship between the average annual rainfall and the number of mudflow disasters in the Loess Plateau from 2003 to 2020

    图  4   黄土泥流起动演化示意图 (据马鹏辉等,2022修改)

    Figure  4.   Schematic diagram of loess mudflow start-up evolution

    图  5   黄土泥流起动力学机理分析图(Wang et al., 2024a

    Figure  5.   Analysis of dynamic mechanism of loess mudflow

    图  6   屈服应力与塑性粘度关系特征图(据Phillips等, 1991Major等, 1992Coussot等, 1995Ilstad等,2004Kaitna等, 2007Sosio等, 2007Parsons等, 2001Boniello等, 2010Jeong等, 2010史泽华, 2020修改)

    Figure  6.   Distribution of characteristics of the relationship between yield stress and plastic viscosity

    图  7   剪切和静置下土体絮凝结构的解聚示意图 (王裕宜等,2002

    Figure  7.   Schematic diagram of depolymerization of soil flocculation structure under shear and static

    图  8   泥流灾害I-D临界模型对比图(据Caine, 1980王万忠等, 1984Jibson,1989王家鼎等, 1997雷祥义等, 2000赵之旭, 2005Chen等, 20052013马超, 2014Zhou等, 2014修改)

    Figure  8.   Comparison of I-D critical models for mudflow disasters

    图  9   黄土泥流灾变研究主要涉及的关键科学问题

    Figure  9.   The key scientific problems involved in the study of loess mudflow disaster

    图  10   黄土泥流研究范式思路图

    Figure  10.   Paradigms of loess mudflow research

    图  11   黄土泥流研究实施路径图(据辜超颖等,2024,修改)

    Figure  11.   Path map of loess mudflow research implementation

  • 陈海霞, 王家鼎. 延安地区降雨引发黄土泥流的试验研究[J]. 水土保持通报, 2013, 332): 3942.

    CHEN Haixia, WANG Jiading. Experimental study on loess mudflow induced by rainfall in Yan'an area[J]. Bulletin of Soil and Water Conservation, 2013, 332): 3942.

    费祥俊. 高浓度浑水的宾汉极限剪应力[J]. 泥沙研究, 1981, (3): 2130.

    FEI Xiangjun. Bingham limit shear stress in high concentration muddy water[J]. Journal of Sediment Research, 1981, (3): 2130.

    傅伯杰, 刘彦随, 曹智, 等. 黄土高原生态保护和高质量发展现状、问题与建议[J]. 中国科学院院刊, 2023, 388): 11101117.

    FU Bojie, LIU Yansui, CAO Zhi, et al. Status quo, problems and suggestions of ecological protection and high-quality development in the Loess Plateau[J]. Proceedings of the Chinese Academy of Sciences, 2023, 388): 11101117.

    付泉, 党光普, 李致博, 等. 基于分形维数耦合支持向量机和熵权模型的滑坡易发性研究[J]. 西北地质, 2024, 576): 255267.

    FU Quan, DANG Guangpu, LI Zhibo, et al. Study of Landslide Susceptibility Mapping Based on Fractal Dimension Integrating Support Vector Machine with Index of Entropy Model[J]. Northwestern Geology, 2024, 576): 255267.

    辜超颖, 王新刚. 基于CiteSpace可视化分析的滑坡滑带土研究现状与发展趋势[J/OL]. 中国地质灾害与防治学报, 2024: 1−18.

    GU Chaoying, WANG Xinguang. Research status and development trend of landslide slip zone soil based on CiteSpace visual analysis [J/OL]. Chinese Journal of Geological Hazards and Prevention, 2024: 1−18.

    郭正堂, 丁仲礼, 刘东生. 黄土中的沉积-成壤事件与第四纪气候旋回[J]. 科学通报, 1996, 411): 5659.

    GUO Zhengtang, DING Zhongli, LIU Dongsheng. Sedimentary pedogenesis events and Quaternary climatic cycles in loess[J]. Chinese Science Bulletin, 1996, 411): 5659.

    韩金良, 吴树仁, 汪华斌. 地质灾害链[J]. 地学前缘, 2007, 146): 1123. doi: 10.1016/S1872-5791(08)60001-9

    HAN Jinliang, WU Shuren, WANG Huabin. Geological hazard chain[J]. Earth Science Frontiers, 2007, 146): 1123. doi: 10.1016/S1872-5791(08)60001-9

    胡华, 顾恒星, 俞登荣. 淤泥质软土动态流变特性与流变参数研究[J]. 岩土力学, 2008, 293): 696700.

    HU Hua, GU Xingxing, YU Dengrong. Study on dynamic rheological properties and parameters of silty soft soil[J]. Rock and Soil Mechanics, 2008, 293): 696700.

    华山, 贾晓丹, 张霞. 拦挡作用对黄土坡面泥流动力过程影响机制[J]. 西北地质, 2024, 573): 285292.

    HUA Shan, JIA Xiaodan, ZHANG Xia. Mechanism of barrier effect on mudflow dynamic process on loess slope[J]. Northwestern Geology, 2024, 573): 285292.

    黄玉华, 武文英, 冯卫, 等. 陕北延安“7.3暴雨”诱发地质灾害主要类型与特征[J]. 西北地质, 2014, 473): 140146.

    HUANG Yuhua, WU Wenying, FENG Wei, et al. Main types and characteristics of geological disasters induced by "7.3 rainstorm" in Yan'an, northern Shaanxi[J]. Northwestern Geology, 2014, 473): 140146.

    姜程, 霍艾迪, 朱兴华, 等. 黄土水力侵蚀-滑坡-泥流灾害链的研究现状[J]. 自然灾害学报, 2019, 281): 3843.

    JIANG Cheng, HUO Aidi, ZHU Xinghua, et al. Research status of disaster chain of hydraulic erosion-landslide-mudflow in loess[J]. Journal of Natural Disasters, 2019, 281): 3843.

    兰恒星, 彭建兵, 祝艳波, 等. 黄河流域地质地表过程与重大灾害效应研究与展望[J]. 中国科学: 地球科学, 2022, 522): 199221.

    LAN Xing, PENG Jianbing, ZHU Yanbo, et al. Geological surface processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences, 2022, 522): 199221.

    郎煜华, 曾思伟, 张又安. 天水市柿沟泥流及其防治[J]. 环境研究与监测, 1989, (1): 4042.

    LANG Yuhua, ZENG Siwei, ZHANG Youan. Mudflow and its control in Shizigou, Tianshui City[J]. Environmental Research and Monitoring, 1989, (1): 4042.

    雷祥义, 黄玉华, 王卫. 黄土高原的泥流灾害与人类活动[J]. 陕西地质, 2000, 181): 2839. doi: 10.3969/j.issn.1001-6996.2000.01.006

    LEI Xiangyi, HUANG Yuhua, WANG Wei. Mudflow hazards and human activities in the Loess Plateau[J]. Shaanxi Geology, 2000, 181): 2839. doi: 10.3969/j.issn.1001-6996.2000.01.006

    李昭淑. 陕西省泥石流灾害与防治[M]. 西安: 西安地图出版社, 2002.
    李学曾. 黄土高原是中华民族的摇篮和古文化的发祥地[J]. 西北大学学报(自然科学版), 1985, 472): 9296.

    LI Xueceng. The Loess Plateau is the cradle of the Chinese nation and the birthplace of ancient culture[J]. Journal of Northwest University (Natural Science Edition), 1985, 472): 9296.

    蔺晓燕. 甘肃黑方台灌区黄土滑坡一泥流形成机理研究[D]. 西安: 长安大学, 2013.

    LIN Xiaoyan. Study on formation mechanism of mud flow in loess landslide in Heifangtai Irrigation District, Gansu Province [D]. Xi'an: Chang'an University, 2013.

    刘东生, 孙继敏, 吴文祥. 中国黄土研究的历史、现状和未来──一次事实与故事相结合的讨论[J]. 第四纪研究, 2001, 213): 185207.

    LIU Dongsheng, SUN Jimin, WU Wenxiang. The history, present situation and Future of Loess Research in China: a discussion combining facts and stories[J]. Quaternary Sciences, 2001, 213): 185207.

    刘锋, 张茂省, 董英, 等. 基于1984~2022年榆林市地质灾害记录对其时空分布规律分析[J]. 西北地质, 2023, 563): 204213.

    LIU Feng, ZHANG Maosheng, DONG Ying, et al. Analysis of Spatial and Temporal Distribution of Geological Disasters in Yulin City Based on the Records from 1984 to 2022[J]. Northwestern Geology, 2023, 563): 204213.

    刘传正, 陈春利. 中国地质灾害防治成效与问题对策[J]. 工程地质学报, 2020, 282): 375383.

    LIU Chuanzheng, CHEN Chunli. Effects and countermeasures of geological disaster prevention in China[J]. Journal of Engineering Geology, 2020, 282): 375383.

    刘青泉, 陈力, 李家春. 坡度对坡面土壤侵蚀的影响分析[J]. 应用数学和力学, 2001, 225): 449457.

    LIU Qingquan, CHEN Li, LI Jiachun. Effect of slope on soil erosion on slope[J]. Applied Mathematics and Mechanics, 2001, 225): 449457.

    刘忠义. 咸阳地区黄土高原泥流形成的主要因素及规律[J]. 中国水土保持, 1987, (3): 1921+65.

    LIU Zhongyi. Main factors and rules of mudflow formation in Loess Plateau of Xianyang area[J]. Soil and Water Conservation in China, 1987, (3): 1921+65.

    马超. 基于土体含水量和实时降雨的泥石流预警指标研究[D]. 北京: 中国科学院大学, 2014.

    MA Chao. Research on debris flow warning index based on soil moisture content and real-time rainfall [D]. Beijing: University of Chinese Academy of Sciences, 2014.

    马东涛, 崔鹏, 张金山, 等. 黄土高原泥流灾害成因及特征[J]. 干旱区地理, 2005, 284): 1924.

    MA Dongtao, CUI Peng, ZHANG Jinshan, et al. Causes and characteristics of mudflow disasters in the Loess Plateau[J]. Arid Land Geography, 2005, 284): 1924.

    马东涛, 祁龙, 邓晓峰. 甘肃环县东山黄土泥流综合治理[J]. 山地学报, 2000, 183): 217220.

    MA Dongtao, QI Long, DENG Xiaofeng. Comprehensive mudflow management of Dongshan loess in Huan County, Gansu Province[J]. Journal of Mountain Science, 2000, 183): 217220.

    马鹏辉, 彭建兵. 论黄土地质灾害链(二)[J]. 自然灾害学报, 2022, 313): 1524.

    MA Penghui, PENG Jianbing. On loess geological hazard chain (II)[J]. Journal of Natural Hazards, 2022, 313): 1524.

    彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 265): 714730.

    PENG Jianbing, WANG Qiyao, ZHUANG Jianqi, et al. Dynamic mechanism of landslide hazard formation in Loess Plateau[J]. Chinese Journal of Geomechanics, 2020, 265): 714730.

    史泽华. 黄土流变特性试验研究[D]. 兰州: 兰州大学, 2020.

    SHI Zehua. Experimental study on rheological properties of loess [D]. Lanzhou: Lanzhou University, 2020.

    孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 553): 96107.

    SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Progress of geological hazard investigation in loess areas of western China[J]. Northwestern Geology, 2022, 553): 96107.

    唐邦兴, 周必凡, 吴积善, 等. 中国泥石流[M]. 北京: 商务印书馆, 2000.
    唐益群, 袁斌, 李军鹏. 基于正交试验的黄土泥流运动分析[J]. 水利学报, 2015, 462): 183189.

    TANG Yiqun, YUAN Bin, LI Junpeng. Analysis of mud flow in loess based on orthogonal test[J]. Journal of Hydraulic Engineering, 2015, 462): 183189.

    王家鼎, 王靖泰, 黄海国. 饱和土蠕(滑)动液化的研究[J]. 现代地质, 1993, 71): 102108.

    WANG Jiading, WANG Jingtai, HUANG Haiguo. Study on creep (slip) dynamic liquefaction of saturated soil[J]. Geoscience, 1993, 71): 102108.

    王家鼎. 高速黄土滑坡的一种机理-饱和黄土蠕动液化[J]. 地质论评, 1992, 386): 532539. doi: 10.3321/j.issn:0371-5736.1992.06.011

    WANG Jiading. A mechanism of high-speed loess landslide - creep liquefaction of saturated loess[J]. Geological Review, 1992, 386): 532539. doi: 10.3321/j.issn:0371-5736.1992.06.011

    王家鼎. 中国黄土山城“依山造居”的几个灾害问题讨论(Ⅳ)-黄土泥流分析[J]. 西北大学学报(自然科学版), 1997, 275): 7882.

    WANG Jiading. Discussion on several disaster problems of "settlement by mountain" in loess Mountain City in China (Ⅳ) -Analysis of mud flow in loess[J]. Journal of Northwest University (Natural Science Edition), 1997, 275): 7882.

    王兰民, 柴少峰, 薄景山, 等. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报, 2023, 458): 15431554. doi: 10.11779/CJGE20220531

    WANG Lanmin, CHAI Shaofeng, BO Jingshan, et al. Triggering types, characteristics and disaster mechanism of loess earthquake landslide[J]. Journal of Rock and Soil Engineering, 2023, 458): 15431554. doi: 10.11779/CJGE20220531

    王万忠. 黄土沟道小流域的泥流特征和防治[J]. 水土保持通报, 1984, (1): 1923.

    WANG Wanzhong. Mudflow characteristics and control of loess gully watershed[J]. Bulletin of Soil and Water Conservation, 1984, (1): 1923.

    王新刚, 谷天峰, 王家鼎. 基质吸力控制下的非饱和黄土三轴蠕变试验研究[J]. 水文地质工程地质, 2017, 444): 5761+70.

    WANG Xingang, GU Tianfeng, WANG Jiading. Experimental study on triaxial creep of unsaturated loess under matric suction control[J]. Hydrogeology and Engineering Geology, 2017, 444): 5761+70.

    王新刚, 刘凯, 连宝琴, 等. 黄土卸荷蠕变特性与典型开挖型黄土滑坡机理研究[J]. 工程地质学报, 2024, 322): 513521.

    WANG Xingang, LIU Kai, LIAN Baoqin, et al. Study on unloading creep characteristics of loess and mechanism of typical excavated loess landslide[J]. Chinese Journal of Engineering Geology, 2024, 322): 513521.

    王新刚, 刘凯, 王友林, 等. 典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J]. 水文地质工程地质, 2022, 495): 137143.

    WANG Xingang, LIU Kai, WANG Youlin, et al. Experimental study on creep characteristics of soil in typical loess landslide slip zone with different water content[J]. Hydrogeology and Engineering Geology, 2022, 495): 137143.

    王新刚, 余宏明, 胡斌, 等. 节理控制的降雨入渗通道对黄土开挖边坡稳定性的影响[J]. 山地学报, 2013, 314): 413417. doi: 10.3969/j.issn.1008-2786.2013.04.005

    WANG Xingang, YU Hongming, HU Bin, et al. Effect of joint-controlled rainfall infiltration channel on stability of excavated loess slope[J]. Journal of Mountain Science, 2013, 314): 413417. doi: 10.3969/j.issn.1008-2786.2013.04.005

    王裕宜, 詹钱登, 李昌志, 等. 粘性泥石流应力应变特征的初步试验研究[J]. 山地学报, 2002, 201): 4246. doi: 10.3969/j.issn.1008-2786.2002.01.007

    WANG Yuyi, ZHAN Qiandeng, LI Changzhi, et al. Preliminary experimental study on stress-strain characteristics of viscous debris flow[J]. Acta Geographica Sinica, 2002, 201): 4246. doi: 10.3969/j.issn.1008-2786.2002.01.007

    王占礼, 常庆瑞. 黄土高原降雨因素对土壤侵蚀的影响[J]. 西北农业大学学报, 1998, 264): 106110.

    WANG Zhanli, CHANG Qingrui. Effects of rainfall factors on soil erosion in Loess Plateau[J]. Journal of Northwest Agricultural University, 1998, 264): 106110.

    王兆印. 高含沙水流运动力学及其应用[M]. 北京: 清华大学, 2002.

    WANG Zhaoyin. High sediment content flow dynamics and its application [M]. Beijing: Tsinghua University, 2002.

    王学礼, 刘世德, 赵良成. 吕二沟泥石流的形成及特性[J]. 水土保持, 1981, (2): 3035.

    WANG Xueli, LIU Shide, ZHAO Liangcheng. Formation and characteristics of debris flow in Luergou[J]. Soil and Water Conservation in China, 1981, (2): 3035.

    吴玮江, 王国亚, 任路滨, 等. 泥流型黄土滑坡的特征与成因[J]. 冰川冻土, 2015, 371): 138146.

    WU Weijiang, WANG Guoya, REN Lubin, et al. Characteristics and genesis of mudflow type loess landslide[J]. Journal of Glaciology and Geocryology, 2015, 371): 138146.

    辛鹏, 吴树仁, 石菊松, 等. 降雨诱发浅层黄土泥流的研究进展, 存在问题与对策思考[J]. 地质论评, 2015, 613): 485493.

    XIN Peng, WU Shuren, SHI Jusong, et al. Research progress, existing problems and countermeasures of rain-induced mud flow in shallow loess[J]. Geological Review, 2015, 613): 485493.

    许强, 彭大雷, 范宣梅, 等. 甘肃积石山6.2级地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J/OL]. 武汉大学学报(信息科学版), 2024: 1−18.

    XU Qiang, PENG Dalei, FAN Xuanmei, et al. Characteristics and mechanism of liquefaction landslide-mudflow in Zhongchuan Township, Qinghai Province triggered by the Jishishan M6.2 earthquake [J/OL]. Journal of Wuhan University (Information Science Edition), 2024: 1−18.

    闫蕊鑫. 饱和黄土静态液化力学行为及启滑机制[D]. 西安: 长安大学, 2020.

    YAN Ruixin. Static liquefaction mechanical behavior and sliding mechanism of saturated loess [D]. Xi'an: Chang'an University, 2020.

    殷跃平, 高少华. 高位远程地质灾害研究: 回顾与展望[J]. 中国地质灾害与防治学报, 2024, 351): 121.

    YIN Yueping, GAO Shaohua. Research on high altitude remote geological hazards: Review and prospect[J]. Chinese Journal of Geological Hazards and Prevention, 2024, 351): 121.

    张林梵. 基于时序InSAR的黄土滑坡隐患早期识别—以白鹿塬西南区为例[J]. 西北地质, 2023, 563): 250257.

    ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR: A Case Study of Southwest Bailuyuan[J]. Northwestern Geology, 2023, 563): 250257.

    张宗祜. 我国黄土类土显微结构的研究[J]. 地质学报, 1964, (3): 357369+375.

    ZHANG Zonghu. Study on microstructure of loess soil in China[J]. Acta Geologica Sinica, 1964, (3): 357369+375.

    张仲福. 陇东黄土高原泥流灾害临界雨量研究[J]. 地质灾害与环境保护, 2020, 313): 1824.

    ZHANG Zhongfu. The research on the critical rainfall ofmudflow disaster in the loess plateau of east gansu[J]. Journal of Geological Hazards and Environment Preservation, 2020, 313): 1824.

    张茂省, 胡炜, 孙萍萍, 等. 黄土水敏性及水致黄土滑坡研究现状与展望[J]. 地球环境学报, 2016, 74): 323334. doi: 10.7515/JEE201604001

    ZHANG Maosheng, HU Wei, SUN Pingping, et al. Research status and prospect of water sensitivity and water-induced landslide in loess[J]. Journal of Earth Environment, 2016, 74): 323334. doi: 10.7515/JEE201604001

    赵之旭, 聂福彪, 张万福. 黄土塬区沟道流域泥流的形成因素与防治对策[J]. 防护林科技, 2005, 674): 3335. doi: 10.3969/j.issn.1005-5215.2005.04.013

    ZHAO Zhixu, NIE Fubiao, ZHANG Wanfu. Formation factors and control measures of mudflow in gully watershed of Loess Tableland[J]. Shelterbelt Science and Technology, 2005, 674): 3335. doi: 10.3969/j.issn.1005-5215.2005.04.013

    周明. 咸阳黄土高原泥流的形成因素及土壤侵蚀类型[J]. 人民黄河, 1996, (2): 3133.

    ZHOU Ming. Formation factors and soil erosion types of mudflow in Xianyang Loess Plateau[J]. Yellow River, 1996, (2): 3133.

    朱兴华, 彭建兵, 同霄, 等. 黄土地区地质灾害链研究初探[J]. 工程地质学报, 2017, 251): 117122.

    ZHU Xinghua, PENG Jianbing, TONG Xiao, et al. Study on geological hazard chain in loess area[J]. Journal of Engineering Geology, 2017, 251): 117122.

    Baum R L, Godt J W. Early warning of rainfall-induced shallow landslides and debris flows in the USA[J]. Landslides, 2010, 73): 259272. doi: 10.1007/s10346-009-0177-0

    Berti M, Bernard M, Gregoretti C, et al. Physical interpretation of rainfall thresholds for runoff-generated debris flows[J]. Journal of Geophysical Research: Earth Surface, 2020, 1256): e2019JF005513. doi: 10.1029/2019JF005513

    Bogaard T, Greco R. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds[J]. Natural Hazards and Earth System Sciences, 2018, 181): 3139. doi: 10.5194/nhess-18-31-2018

    Boniello M A, Calligaris C, Lapasin R, et al. Rheological investigation and simulation of a debris-flow event in the Fella watershed[J]. Natural Hazards and Earth System Sciences, 2010, 105): 989997. doi: 10.5194/nhess-10-989-2010

    Caine N. The rainfall intensity-duration control of shallow landslides and debris flows[J]. Geografiska Annaler: Series A, Physical Geography, 1980, 621−2): 2327. doi: 10.1080/04353676.1980.11879996

    Carrière S R, Jongmans D, Chambon G, et al. Rheological properties of clayey soils originating from flow-like landslides[J]. Landslides, 2018, 158): 16151630. doi: 10.1007/s10346-018-0972-6

    Chanson H, Coussot P, Jarny S, et al. A study of dam break wave of thixotropic fluid: Bentonite surges down an inclined plane [R]. Department of Civil Engineering, The University of Queensland, 2004, Report CH54/04.

    Chen C Y, Chen T C, Yu F C, et al. Rainfall duration and debris-flow initiated studies for real-time monitoring[J]. Environmental Geology, 2005, 475): 715724.

    Chen H X, Wang J D. Regression analyses for the minimum intensity-duration conditions of continuous rainfall for mudflows triggering in Yan’an, northern Shaanxi (China)[J]. Bulletin of Engineering Geology and the Environment, 2013, 73: 917928.

    Ciccarese G, Mulas M, Corsini A. Combining spatial modelling and regionalization of rainfall thresholds for debris flows hazard mapping in the Emilia-Romagna Apennines (Italy)[J]. Landslides, 2021, 1811): 35133529. doi: 10.1007/s10346-021-01739-w

    Coussot P, Nguyen Q D, Huynh H T, et al. Viscosity bifurcation in thixotropic, yielding fluids[J]. Journal of Rheology, 2002, 463): 573589. doi: 10.1122/1.1459447

    Coussot P, Piau J M. A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions[J]. Journal of Rheology, 1995, 391): 105124. doi: 10.1122/1.550693

    Coussot P, Piau J M. On the behavior of fine mud suspensions[J]. Rheologica Acta, 1994, 333): 175184. doi: 10.1007/BF00437302

    Coussot P, Roussel N, Jarny S, et al. Continuous or catastrophic solid–liquid transition in jammed systems[J]. Physics of Fluids, 2005, 171): 011704. doi: 10.1063/1.1823531

    Coussot P. Mudflow rheology and dynamics [M]. Routledge, 2017.

    Cui P, Zhou G G D, Zhu X H, et al. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology, 2013, 182: 173189. doi: 10.1016/j.geomorph.2012.11.009

    Eilertsen R S, Hansen L, Bargel T H, et al. Clay slides in the Målselv valley, northern Norway: Characteristics, occurrence, and triggering mechanisms[J]. Geomorphology, 2008, 933−4): 548562. doi: 10.1016/j.geomorph.2007.03.013

    Gens Solé A. Fundamentals of soil behaviour [J]. XXII Conferenza di Geotecnica di Torino, 2009.

    Guzzetti F, Peruccacci S, Rossi M, et al. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides, 2008, 51): 317. doi: 10.1007/s10346-007-0112-1

    Hoch O J, McGuire L A, Youberg A M, et al. Hydrogeomorphic recovery and temporal changes in rainfall thresholds for debris flows following wildfire[J]. Journal of Geophysical Research: Earth Surface, 2021, 12612): e2021JF006374. doi: 10.1029/2021JF006374

    Holthusen D, Pertile P, Awe G O, et al. Soil density and oscillation frequency effects on viscoelasticity and shear resistance of subtropical Oxisols with varying clay content[J]. Soil and Tillage Research, 2020, 203: 104677. doi: 10.1016/j.still.2020.104677

    Hu W, Li Y, Xu Q, et al. Flowslide high fluidity induced by shear thinning[J]. Journal of Geophysical Research: Solid Earth, 2022: e2022JB024615.

    Huang Z, Aode H. A laboratory study of rheological properties of mudflows in Hangzhou Bay, China[J]. International Journal of Sediment Research, 2009, 244): 410424. doi: 10.1016/S1001-6279(10)60014-5

    Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 112): 167194. doi: 10.1007/s10346-013-0436-y

    Ilstad T, Elverhøi A, Issler D, et al. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking[J]. Marine Geology, 2004, 2131−4): 415438. doi: 10.1016/j.margeo.2004.10.017

    Iverson R M. Regulation of landslide motion by dilatancy and pore pressure feedback [J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F2).

    Iverson R M. Scaling and design of landslide and debris-flow experiments[J]. Geomorphology, 2015, 244: 920. doi: 10.1016/j.geomorph.2015.02.033

    Jeong S W, Locat J, Leroueil S, et al. Rheological properties of fine-grained sediment: the roles of texture and mineralogy[J]. Canadian Geotechnical Journal, 2010, 4710): 10851100. doi: 10.1139/T10-012

    Jeong S W. Influence of physico-chemical characteristics of fine-grained sediments on their rheological behavior [D]. Université Laval, 2006.

    Jibson R W. Debris flows in southern Puerto Rico: Landslide processes of the eastern United States and Puerto Rico[J]. Geological Society of America Special Paper, 1989, 236: 2955.

    Jongmans D, Bièvre G, Renalier F, et al. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps)[J]. Engineering Geology, 2009, 1091−2): 4556. doi: 10.1016/j.enggeo.2008.10.005

    Kaitna R, Rickenmann D, Schatzmann M. Experimental study on rheologic behaviour of debris flow material[J]. Acta Geotechnica, 2007, 22): 7185. doi: 10.1007/s11440-007-0026-z

    Kirschbaum D B, Stanley T, Simmons J. A dynamic landslide hazard assessment system for Central America and Hispaniola[J]. Natural Hazards and Earth System Sciences, 2015, 1510): 22572272. doi: 10.5194/nhess-15-2257-2015

    Lian B Q, Wang X G, Zhan H B, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589. doi: 10.1016/j.enggeo.2022.106589

    Mainsant G, Jongmans D, Chambon G, et al. S-wave velocity as an indicator of solid-liquid transition in clay[C]. EGU General Assembly Conference Abstracts, 2013: EGU2013−4380.

    Mainsant G, Jongmans D, Larose E, et al. The solid-to-liquid transition in the Trièves clay: the lessons from rheometric and seismic tests[C]. Mountain Risks: Bringing Science to Society, 2010: 6.

    Major J J, Pierson T C. Debris flow rheology: Experimental analysis of fine-grained slurries[J]. Water Resources Research, 1992, 283): 841857. doi: 10.1029/91WR02834

    Malet J P, Laigle D, Remaitre A, et al. Triggering conditions and mobility of debris flows associated to complex earthflows[J]. Geomorphology, 2005, 661−4): 215235.

    McGuire L A, Youberg A M. What drives spatial variability in rainfall intensity-duration thresholds for post-wildfire debris flows? Insights from the 2018 Buzzard Fire, NM, USA[J]. Landslides, 2020, 1710): 23852399. doi: 10.1007/s10346-020-01470-y

    Mewis J, Wagner N J. Thixotropy[J]. Advances in Colloid and Interface Science, 2009, 147: 214227.

    O'Brien J S, Julien P Y. Laboratory analysis of mudflow properties[J]. Journal of Hydraulic Engineering, 1988, 1148): 877887. doi: 10.1061/(ASCE)0733-9429(1988)114:8(877)

    Papa M N, Medina V, Ciervo F, et al. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems[J]. Hydrology and Earth System Sciences, 2013, 1710): 40954107. doi: 10.5194/hess-17-4095-2013

    Parsons J D, Whipple K X, Simoni A. Experimental study of the grain-flow, fluid-mud transition in debris flows[J]. The Journal of Geology, 2001, 1094): 427447. doi: 10.1086/320798

    Peng J B, Wang S K, Wang Q Y, et al. Distribution and genetic types of loess landslides in China[J]. Journal of Asian Earth Sciences, 2019, 170: 329350. doi: 10.1016/j.jseaes.2018.11.015

    Pértile P, Reichert J M, Gubiani P I, et al. Rheological parameters as affected by water tension in subtropical soils [J]. Revista Brasileira de Ciência do Solo, 2016, 40.

    Phillips C J, Davies T R H. Determining rheological parameters of debris flow material[J]. Geomorphology, 1991, 42): 101110. doi: 10.1016/0169-555X(91)90022-3

    Picarelli L, Olivares L, Comegna L, et al. Mechanical aspects of flow-like movements in granular and fine grained soils[J]. Rock Mechanics and Rock Engineering, 2008, 411): 179197. doi: 10.1007/s00603-007-0135-x

    Picarelli L, Urciuoli G, Ramondini M, et al. Main features of mudslides in tectonised highly fissured clay shales[J]. Landslides, 2005, 21): 1530. doi: 10.1007/s10346-004-0040-2

    Raymond C A, McGuire L A, Youberg A M, et al. Thresholds for post-wildfire debris flows: Insights from the Pinal Fire, Arizona, USA[J]. Earth Surface Processes and Landforms, 2020, 456): 13491360. doi: 10.1002/esp.4805

    Schippa L, Doghieri F, Pellegrino A M, et al. Thixotropic Behavior of Reconstituted Debris-Flow Mixture[J]. Water, 2021, 132): 153. doi: 10.3390/w13020153

    Sosio R, Crosta G B, Frattini P. Field observations, rheological testing and numerical modelling of a debris-flow event[J]. Earth Surface Processes and Landforms, 2007, 322): 290306. doi: 10.1002/esp.1391

    Staley D M, Kean J W, Cannon S H, et al. Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California[J]. Landslides, 2013, 105): 547562. doi: 10.1007/s10346-012-0341-9

    Stoppe N, Horn R. Microstructural strength of tidal soils-a rheometric approach to develop pedotransfer functions[J]. Journal of Hydrology and Hydromechanics, 2018, 661): 87. doi: 10.1515/johh-2017-0031

    Thomas M A, Mirus B B, Collins B D. Identifying physics-based thresholds for rainfall-induced landsliding[J]. Geophysical Research Letters, 2018, 4518): 96519661. doi: 10.1029/2018GL079662

    Tang H, McGuire L A, Rengers F K, et al. Developing and testing physically based triggering thresholds for runoff‐generated debris flows[J]. Geophysical Research Letters, 2019, 4615): 88308839.

    Van Asch T W J, Malet J P. Flow-type failures in fine-grained soils: an important aspect in landslide hazard analysis[J]. Natural Hazards and Earth System Sciences, 2009, 95): 17031711. doi: 10.5194/nhess-9-1703-2009

    Wang D Z, Wang X G, Chen X Q, et al. Analysis of factors influencing the large wood transport and block-outburst in debris flow based on physical model experiment[J]. Geomorphology, 2022, 398: 108054. doi: 10.1016/j.geomorph.2021.108054

    Wang D, Wang X, Chen X, et al. Solid–fluid phase transition characteristics of loess and its drag reduction mechanism[J]. Landslides, 2024a, 86): 19.

    Wang D Z, Wang X G, Chen X Q, et al. Influence of micromorphology and water content on the rheological properties and performance evaluation model of loess mudflow[J]. Physics of Fluids, 2024b, 3611): 21352148.

    Wang X, Wang J, Zhan H, et al. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide[J]. Catena, 2019, 187: 104371.

    Wang X G, Sheng H, Lian B Q, et al. Formation mechanism of a disaster chain in Loess Plateau: A case study of the Pucheng County disaster chain on August 10, 2023, in Shaanxi Province, China[J]. Engineering Geology, 2024c, 331: 107463. doi: 10.1016/j.enggeo.2024.107463

    Xu L, Dai F C, Tu X B, et al. Occurrence of landsliding on slopes where flowsliding had previously occurred: an investigation in a loess platform, North-west China[J]. Catena, 2013, 104: 195209. doi: 10.1016/j.catena.2012.11.010

    Xu Q, Peng D L, Zhang S, et al. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai terrace, China[J]. Engineering Geology, 2020, 278: 105817. doi: 10.1016/j.enggeo.2020.105817

    Yuan B, Chen W W, Tang Y Q, et al. Experimental study on gully-shaped mud flow in the loess area[J]. Environmental Earth Sciences, 2015, 741): 759769. doi: 10.1007/s12665-015-4080-9

    Zhang F Y, Wang G H, Peng J B. Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: Insights from hydrogeological conditions and liquefaction criteria[J]. Engineering Geology, 2022, 302: 106619. doi: 10.1016/j.enggeo.2022.106619

    Zhang F Y, Wang G H. Effect of irrigation-induced densification on the post-failure behavior of loess flowslides occurring on the Heifangtai area, Gansu, China[J]. Engineering Geology, 2018, 236: 111118. doi: 10.1016/j.enggeo.2017.07.010

    Zhou W, Tang C. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China[J]. Landslides, 2014, 11: 877887. doi: 10.1007/s10346-013-0421-5

图(11)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  33
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-12-01
  • 录用日期:  2024-12-01
  • 网络出版日期:  2024-12-05
  • 刊出日期:  2025-04-19

目录

/

返回文章
返回