ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    青海省水溶氦气资源现状及赋存特征

    晁海德, 韩生林, 安生婷, 徐永锋, 李青, 谢菁, 李吉庆, 蔡廷俊, 王琪玮

    晁海德,韩生林,安生婷,等. 青海省水溶氦气资源现状及赋存特征[J]. 西北地质,2025,58(5):1−13. doi: 10.12401/j.nwg.2025003
    引用本文: 晁海德,韩生林,安生婷,等. 青海省水溶氦气资源现状及赋存特征[J]. 西北地质,2025,58(5):1−13. doi: 10.12401/j.nwg.2025003
    CHAO Haide,HAN Shenglin,AN Shengting,et al. Current status and occurrence characteristics of water-soluble helium resources in Qinghai Province[J]. Northwestern Geology,2025,58(5):1−13. doi: 10.12401/j.nwg.2025003
    Citation: CHAO Haide,HAN Shenglin,AN Shengting,et al. Current status and occurrence characteristics of water-soluble helium resources in Qinghai Province[J]. Northwestern Geology,2025,58(5):1−13. doi: 10.12401/j.nwg.2025003

    青海省水溶氦气资源现状及赋存特征

    基金项目: 青海省地质矿产勘查开发局地质勘查项目“青海省清洁能源靶区优选”(青地矿科[2020]61、青地矿科[2021]61)、青地矿科[2022]32))、“柴达木盆地北缘全吉地块氦气形成地质条件及资源潜力评价资助”(青地矿科[2022]32))联合资助。
    详细信息
      作者简介:

      晁海德(1987−),男,高级工程师,工程硕士,从事能源矿产勘查、研究工作。E-mail:394262585@qq.com

    • 中图分类号: P618.13

    Current status and occurrence characteristics of water-soluble helium resources in Qinghai Province

    • 摘要:

      水溶氦气作为氦气藏的一种特殊赋存类型,近年来逐步得到广泛关注。青海省地域广阔,温泉等地下水资源丰富,通过对温泉、冷泉、卤水的系统调查,系统探究了水溶氦资源分布、含量、成因特征及其与温度、矿化度的关系。研究表明:青海省水溶氦气资源的分布与侵入岩关系密切,主要分布于柴达木盆地、共和盆地、玛多地区、南祁连盆地,其中柴达木盆地水溶氦含量最大,最高达1.1%;估算柴达木盆地、共和盆地、玛多地区、南祁连盆地生氦量,分别为39.49×108 m3、2.16×108 m3、1.46×108 m3、1.90×108 m3;水溶氦R值为0.42×10−8~11.07×10−8,R/Ra为0.003~0.068,属典型壳源成因气;氦含量与温度呈弱正相关关系、与矿化度呈正相关关系,且水温大于25 ℃的温泉及矿化度大于1 g/l的咸水是青海省水溶氦资源赋存的有利环境。

      Abstract:

      As a special type of helium reservoir, water-soluble helium has gradually received widespread attention in recent years. Qinghai Province has a vast territory and abundant groundwater resources such as hot springs. Through a systematic investigation of hot springs, cold springs, and brine, the distribution, content, genetic characteristics, and relationship with temperature and mineralization of water-soluble helium resources were systematically explored. Research has shown that the distribution of water-soluble helium resources in Qinghai Province is closely related to intrusive rocks, mainly distributed in the Qaidam Basin, Gonghe Basin, Maduo Region, and South Qilian Basin. Among them, the Qaidam Basin has the highest water-soluble helium content, up to 1.1%; Estimate the helium production in the Qaidam Basin, Gonghe Basin, Maduo Region, and South Qilian Basin, which are 39.49 × 108 m3, 2.16 × 108 m3, 1.46 × 108 m3, and the R/Ra is 0.003~0.068, indicating a typical crustal origin gas; The helium content is weakly positively correlated with temperature and positively correlated with mineralization, and hot springs with water temperature greater than 25 ℃ and saline water with mineralization greater than 1 g/l are favorable environments for the occurrence of water-soluble helium resources in Qinghai Province.

    • 图  1   青海省水溶氦气资源分布图

      Figure  1.   Distribution Map of Water Soluble Helium Resources in Qinghai Province

      图  2   青海省侵入岩及样品分布图

      1 侵入岩时代;2 中酸性侵入岩;3 湖泊;4 省界;5侵入岩界线;6 断裂构造;7 地理点;8 达到评价标准的采样点;9 未达评价标准的采样点

      Figure  2.   Distribution map of intrusive rocks and samples in Qinghai province

      图  3   不同区域水溶氦气成因分析图

      Figure  3.   Genetic analysis of water-soluble helium in different regions

      图  4   不同区域水溶氦氦含量对比图

      Figure  4.   Comparison Chart of Water Soluble Helium and Helium Content in Different Regions

      图  5   氦气含量与水温相关图

      Figure  5.   Correlation chart between helium content and water temperature

      图  6   氦气含量与矿化度相关图

      Figure  6.   Correlation chart between helium content and mineralization degree

      表  1   柴达木盆地水溶氦气资源含量特征

      Table  1   Characteristics of Water Soluble Helium Resource Content in the Chaidamu Basin

      样品号泉水性质位置水温(℃)氦含量(%)氖含量(%)氩含量(%)是否达到
      评价标准
      Y5温泉大柴旦温泉山庄730.842 100.078 200.945 60
      Y6温泉大柴旦温泉山庄550.091 700.002 290.825 30
      Y29温泉都兰县果木村65.60.002 100.000 120.001 30
      Y30温泉都兰县热水乡东部84.40.068 700.001 150.034 35
      Y52冷泉茫崖市艾肯泉190.000 400.000 000.480 00
      Y63冷泉博鲁克斯坦河200.000 300.000000.000 20
      Y34采油井茫崖市七个泉油田300.004 300.002 150.430 00
      Y35采油井茫崖市七个泉油田250.004 300.002 450.560 00
      Y67采油井茫崖市花土沟油田200.001 500.000 400.170 00
      Y68采油井茫崖市花土沟油田200.002 400.000 100.266 40
      Y3卤水井落雁山490.007 700.001 930.770 00
      Y4卤水井花土沟一里坪820.921 000.001 840.987 50
      Y7卤水井西台巴嘎雅乌660.000 300.000 010.360 00
      Y8卤水井西台巴嘎雅乌530.785 800.075 000.834 50
      Y53卤水井冷湖镇俄博梁220.116 800.000 130.215 60
      Y53卤水井落雁山130.000 300.000 000.360 00
      Y55卤水井西台巴嘎雅乌230.000 300.000 000.300 00
      Y旱卤水井旱ZK01/0.014 450.0013 62/
      Y碱卤水井碱石山-11井/0.650 70//
      Y9-8卤水井全吉山9-8孔/1.100 00//
      下载: 导出CSV

      表  2   共和盆地水溶氦气资源含量特征

      Table  2   Characteristics of Water Soluble Helium Resource Content in the Gonghe Basin

      样品号 泉水性质 位置 水温(℃) 氦含量(%) 氖含量(%) 氩含量(%) 是否满足
      评价标准
      Y1 温泉 乌兰县巴硬格莉沟 40 0.000 70 0.000 04 0.420 00
      Y36 地热井 共和县塘格木镇 38 0.027 43 / /
      Y37 地热井 共和县塘格木镇 38 0.028 67 / /
      Y38 温泉 贵德扎仓寺 93.00 0.000 53 0.001 76 0.568 96
      Y39 温泉 兴海桑持沟 60.00 0.022 34 0.002 45 0.186 98
      Y40 温泉 兴海桑持沟 61.00 0.024 33 0.001 26 0.003 10
      Y41 温泉 贵德新街 62.00 0.000 88 0.002 17 0.461 95
      Y42 温泉 共和谢玛龙哇 33.00 0.071 54 0.001 94 0.967 95
      Y43 温泉 共和曲乃亥 67.00 0.837 91 0.002 06 1.036 06
      Y44 温泉 兴海温泉乡 58.00 0.034 47 0.002 40 0.804 84
      Y45 温泉 兴海温泉乡 62.00 0.055 44 0.002 07 0.519 61
      Y46 温泉 共和阿乙亥 38.00 0.090 68 0.002 15 0.820 73
      Y47 温泉 共和阿乙亥 40.00 0.867 17 0.002 08 0.744 65
      Y48 地热井 共和南 98.00 0.052 22 0.003 00 0.963 33
      Y69 地热井 贵德罗汉堂 22 0.022 22 0.003 00 0.869 43
      Y70 冷泉 兴海温泉乡 10 0.008 28 0.002 44 0.775 07
      Y71 冷泉 共和恰不恰 10 0.005 24 0.002 53 0.577 18
      Y72 冷泉 共和下塔买村 23 0.000 56 0.001 94 0.514 34
      Y73 冷泉 共和下塔买村 23 0.000 47 0.001 70 0.593 78
      下载: 导出CSV

      表  3   南祁连盆地水溶氦气资源含量特征

      Table  3   Characteristics of Water Soluble Helium Resource Content in the South Qilian Basin

      样品号 泉水类型 位置 水温(℃) 氦含量(%) 氖含量(%) 氩含量(%) 是否满足
      评价标准
      Y31 温泉 刚察县达玉村 49.33 0.054 90 0.006 86 1.098 00
      Y32 温泉 天峻县木里镇 31 0.000 30 0.000 10 0.165 00
      Y33 温泉 热水镇北西10公里处 40 0.014 90 0.000 75 0.447 00
      Y64 冷泉 刚察县达玉村 6 0.000 40 0.000 02 0.000 01
      Y65 冷泉 刚察县默勒镇 21 0.004 20 0.000 20 0.002 50
      Y66 冷泉 江仓煤业有限公司南8公里处 18 0.001 30 0.000 07 0.000 57
      下载: 导出CSV

      表  4   玛多地区水溶氦气资源含量特征

      Table  4   Characteristics of Water Soluble Helium Resource Content in Maduo Region

      样品号泉水性质位置水温(℃)氦含量(%)氖含量(%)氩含量(%)是否满足评价标准
      Y49地震断层泉玛多县黄河乡40.023 700.001 580.185 00
      Y50地震断层泉玛多县黄河乡80.001 100.000 310.120 00
      Y51地震断层泉玛多县黄河乡80.763 200.001 910.875 00
      下载: 导出CSV

      表  5   其它地区水溶氦气资源含量特征

      Table  5   Characteristics of water-soluble helium resource content in other regions

      样品号泉水性质位置水温(℃)氦含量(%)氖含量(%)氩含量(%)
      Y2温泉同仁市兰采乡610.003 600.001 030.360 00
      Y9温泉班玛县红军温泉87.80.000 200.000 010.000 10
      Y10温泉班玛县红军温泉780.001 000.000 050.090 00
      Y11温泉玛沁县大武镇东倾沟250.002 300.000 110.230 00
      Y12温泉杂多县然者尕哇切吉沟29.30.003 700.000 180.370 00
      Y13温泉治多县贡萨寺290.002 400.000 110.240 00
      Y14温泉格尔木市当曲中游380.000 500.000 020.000 01
      Y15温泉格尔木市当曲中游380.000 200.000 010.000 00
      Y16温泉格尔木市当曲中游380.000 100.000 000.000 40
      Y17温泉格尔木市当曲中游380.000 300.000 010.001 20
      Y18温泉青藏公路90道班26.40.001 700.000 080.000 85
      Y19温泉称多县赛柴沟350.000 200.000 010.000 00
      Y20温泉称多县赛柴沟360.000 200.000 010.000 13
      Y21温泉称多县细曲沟420.000 200.000 010.000 11
      Y22温泉称多县扎朵乡440.001 800.000 091.800 00
      Y23温泉玉树市东南你那龙沟57.50.000 300.000 010.000 01
      Y24温泉玉树州囊谦县觉拉乡340.000 800.000 040.000 02
      Y25温泉玉树杂多县扎沟310.000 800.000 040.000 02
      Y26温泉治多县西南290.004 600.000 230.002 50
      Y27温泉格尔木市萨底赛保(沱沱河以南)250.000 200.000 010.000 00
      Y28温泉青藏公路103道班610.000 600.000 030.000 01
      Y56冷泉班玛县俄昂俄加沟130.000 840.000 030.840 00
      Y57冷泉称多县直门达北240.005 400.000 260.540 00
      Y58冷泉玉树市得窝陇巴南山90.000 300.000 010.000 01
      Y59冷泉玉树市东南查盖得勒240.000 500.000 020.000 01
      Y60冷泉玉树市西南G214国道边70.000 000.000 000.000 00
      Y61冷泉青藏公路104道班140.000 300.000 010.000 01
      Y62冷泉格尔木市温泉水库秀沟100.000 700.000 030.840 00
      Y63冷泉博鲁克斯坦河200.000 300.000 010.000 16
      下载: 导出CSV

      表  6   氦气同位素特征及幔源氦占比表

      Table  6   Characteristics of helium isotopes and the proportion of helium from mantle sources

      地区 样品号 氦含量/% R/Ra 3He/4He(10−8 幔源氦占比(%) 来源
      比值 平均值 比值 平均值
      柴达木盆地 Y30 0.068 70 0.041 0.030 5.68 4.29 0.34 壳源
      Y4 0.921 00 0.030 4.21 0.20 壳源
      Y53 0.116 80 0.010 1.95 0.00 壳源
      Y旱 0.014 45 0.050 6.59 0.42 壳源,少量幔源
      Y9-8 1.100 00 0.020 3.00 0.09 壳源
      共和盆地 Y36 0.027 43 0.030 0.056 4.23 7.93 0.20 壳源
      Y37 0.028 67 0.028 3.92 0.17 壳源
      Y39 0.022 34 0.008 1.19 0.07 壳源
      Y40 0.024 33 0.023 3.21 0.11 壳源
      Y41 0.000 88 0.068 9.58 0.69 壳源,少量幔源
      Y42 0.071 54 0.020 2.74 0.07 壳源
      Y43 0.837 91 0.003 0.42 0.14 壳源
      Y44 0.034 47 0.023 3.26 0.11 壳源
      Y45 0.055 44 0.033 5.26 0.30 壳源
      Y46 0.090 68 0.012 1.74 0.02 壳源
      Y47 0.867 17 0.018 2.52 0.05 壳源
      Y48 0.052 22 0.013 1.84 0.01 壳源
      Y69 0.022 22 0.013 1.84 0.01 壳源
      Y70 0.008 28 0.009 1.25 0.07 壳源
      Y71 0.005 24 0.079 11.07 0.83 壳源,少量幔源
      Y72 0.000 56 0.041 5.80 0.35 壳源
      Y73 0.000 47 0.007 0.99 0.09 壳源
      南祁连盆地 Y31 0.054 90 0.05 0.050 7.09 7.09 0.46 壳源,少量幔源
      下载: 导出CSV

      表  7   水溶氦气生氦量计算表

      Table  7   Calculation table for helium production from water-soluble helium gas

      地区 地层/岩性 年龄
      (Ma)
      U(10−6 Th(10−6 面积
      (km2
      高度加深度
      或厚度(km)
      体积
      (km3
      密度
      (g/cm3
      生氦量
      (108 m3
      柴达木盆地 / / / / / / / / 39.49
      南祁连盆地 泥盆纪
      花岗岩
      400 19.60 14.50 1165.00 0.80 932.00 2.50 1.90
      玛多地区 三叠纪巴颜喀拉群 220 12.90 10.93 2821.00 0.80 2256.80 2.30 1.46
      共和盆地 印支期中酸性侵入岩 236 17.08 30.65 875.26 1.90 1662.99 2.50 2.16
       ①引自晁海德等(2022);②引自陈建洲等(2023
      下载: 导出CSV

      表  8   满足评价标准的样品氦含量、温度统计表

      Table  8   Statistical Table for Helium Content and Temperature of Samples that Meet Evaluation Criteria

      样品号 水温(℃) 氦含量(%) 样品号 水温(℃) 氦含量(%)
      Y4 82 0.921 00 Y45 62.00 0.055 44
      Y5 73 0.842 10 Y46 38.00 0.090 68
      Y6 55 0.091 70 Y47 40.00 0.867 17
      Y8 53 0.785 80 Y48 98.00 0.052 22
      Y30 84.4 0.068 70 Y51 8 0.763 20
      Y31 49.33 0.054 90 Y53 22 0.116 80
      Y42 33.00 0.071 54 Y碱 / 0.650 70
      Y43 67.00 0.837 91 Y9-8 / 1.100 00
      下载: 导出CSV

      表  9   氦含量、矿化度统计表

      Table  9   Statistical Table of Helium Content and Mineralization

      样品号氦含量(%)矿化度(g/l)样品号氦含量(%)矿化度(g/l)
      Y10.000 700.55Y380.000 531.43
      Y20.003 600.39Y390.022 341.00
      Y90.000 200.91Y440.034 471.00
      Y180.001 701.02Y480.052 221.41
      Y230.000 301.30Y570.005 400.47
      Y260.004 601.25Y620.000 700.82
      Y280.000 601.46Y640.000 400.27
      Y300.068702.91Y660.001 301.55
      Y310.054 900.93Y720.000 560.51
      Y330.014 900.88
       (矿化度数据源于马兴华等(2012))
      下载: 导出CSV
    • 晁海德, 陈建洲, 王国仓, 等. 柴达木盆地水溶氦气资源的发现及富集机理[J]. 西北地质, 2022, 554): 6173.

      CHAO Haide, CHEN Jianzhou WANG Guocang, et al. Discovery and Enrichment Mechanism of Water Soluble Helium Resources in Qaidam Basin[J]. Northwestern Geology, 2022, 554): 6173.

      陈建洲, 谢菁, 刘立波, 等. 青海共和盆地与干热岩体相关氦气成藏条件浅析[J]. 天然气地球科学, 2023, 343): 460468.

      CHEN Jianzhou;XIE Jing;LIU Libo, et al. Analysis of helium accumulation conditions related to dry-hot rock mass in Gonghe Basin, Qinghai Province[J]. Natural Gas Geoscience, 2023, 343): 460468.

      陈悦, 陶士振, 杨怡青. 中国氦气地球化学特征、聚集规律与前景展望[J]. 中国矿业大学学报, 20231): 145167.

      CHEN Yue, TAO Shizhen, YANG Yiqing. Geochemistry characteristics, accumulation regularity and development prospect of helium in China[J]. Journal of China University of Mining & Technology, 20231): 145167.

      付锁堂, 马达德, 陈琰, 等. 柴达木盆地阿尔金山前东段天然气勘探[J]. 中国石油勘探, 20156): 113.

      FU Suotang, MA Dade, CHEN Yan, et al. Natural Gas Exploration in Eastern Segment of Alkin Piedmont, Northern Qaidam Basin[J]. China Petroleum Exploration, 20156): 113.

      韩伟, 李玉宏, 卢进才, 等. 陕西渭河盆地富氦天然气异常的影响因素[J]. 地质通报, 2014, v.33234): 18361841.

      HAN Wei, LI Yuhong, LU Jingcai, et al. The factors responsible for the unusual content of helium-rich natural gas in the Weihe Basin, Shaanxi Province[J]. Geological Bulletin of China, 2014, v.33234): 18361841.

      韩元红, 罗厚勇, 薛宇泽, 等. 渭河盆地地热水伴生天然气成因及氦气富集机理[J]. 天然气地球科学, 2022, 332): 277287. doi: 10.11764/j.issn.1672-1926.2021.09.009

      HAN Yuanhong, LUO Houyong, XUE Yuze, et al. Genesis and helium enrichment mechanism of geothermal water-associated gas in Weihe Basin[J]. Natural Gas Geoscience, 2022, 332): 277287. doi: 10.11764/j.issn.1672-1926.2021.09.009

      李玉宏, 卢进才, 李金超, 等. 渭河盆地天然气成因特征及其意义[J]. 西安石油大学学报: 自然科学版, 2011, 26(5): 11-16+113-114.

      LI Yuhong, LU Jingcai, LI Jinchao, et al. Genetic characteristics of the natural gas in Weihe Basin and its significance[J], Journal of Xi´an Shiyou University(Natural Science Edition, 2011, 26(5): 11-16+113-114.

      李玉宏, 张文, 王利, 等. 壳源氦气成藏问题及成藏模式[J]. 西安科技大学学报, 2017, 374): 565572.

      LI Yuhong, ZHANG WEN, WANG Li, et al. Several issues in the accumulation of crust-derived helium and the accumulation model[J]. Journal of Xi'an University of science and Technology, 2017, 374): 565572.

      李玉宏, 周俊林, 张文, 等. 渭河盆地氦气成藏条件与资源前景[M]. 北京: 地质出版社, 2018: 6-10.
      柳永刚, 张翔, 刘子锐, 等. 甘肃省首个高品位氦气盆地的发现及勘探前景[J]. 甘肃地质, 2020, 293): 2936.

      LIU Yonggang, ZHANG Xiang, LIU Zirui, et al. The First Discovery and Exploration Prospect of High Grade Helium Basin in Gansu Province[J]. Gansu Geology, 2020, 293): 2936.

      卢雪梅. 氦气成藏机制研究进展[J]. 石油与天然气地质, 2022, 43(2): 封2.

      LU Xuemei. Research progress of helium reservoir forming mechanism [J]. Petroleum and Natural Gas Geology, 2022, 43(2): seal 2.

      马兴华, 李积成, 谢继香, 等. 青海省综合水文地质图说明书[R]. 青海省水文地质工程地质勘察院, 2012.
      秦胜飞, 李济远. 世界氦气供需现状及发展趋势[J]. 石油知识, 20215): 4445.

      QIN Shengfei, LI Jiyuan. Current situation and development trend of helium supply and demand in the world[J]. Petroleum Knowledge, 20215): 4445.

      秦胜飞, 李济远, 梁传国, 等. 中国中西部富氦气藏氦气富集机理——古老地层水脱氦富集[J]. 天然气地球科学, 2022, 338): 12031217.

      QIN Shengfei, LI Jiyuan, LIANG Chuanguo, et al. Helium enrichment mechanism of helium rich gas reservoirs in central and western China: Degassing and accumulation from old formation water[J]. Natural Gas Geoscience, 2022, 338): 12031217.

      秦胜飞, 周国晓, 李济远, 等. 氦气与氮气富集耦合作用及其重要意义[J]. 天然气地球科学, 2023, 3411): 19811992.

      QIN Shengfei, ZHOU Guoxiao, LI Jiyuan, et al. The coupling effect of helium and nitrogen enrichment and its significance[J]. Natural Gas Geoscience, 2023, 3411): 19811992.

      司庆红, 曾威, 刘行, 等. 临汾-运城盆地氦气富集要素及成藏条件[J]. 西北地质, 2023, 561): 129141. doi: 10.12401/j.nwg.2022039

      SI Qinghong, ZENG Wei, LIU Xing, et al. Analysis of Helium Enrichment Factors and Reservoir Forming Conditions in Linfen-Yuncheng Basin[J]. Northwestern Geology, 2023, 561): 129141. doi: 10.12401/j.nwg.2022039

      陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 443): 10241041.

      TAO Xiaowan, LI Jianzhong, ZHAO Libin, et al. Helium Resources and Discovery of First Supergiant Helium Reserve in China: Hetianhe Gas Field[J]. Earth Science, 2019, 443): 10241041.

      王沐众, 牛永斌, 王保玉. 矿化度对甲烷溶解度影响的探讨[J]. 煤炭技术, 20161): 178180.

      WANG Muzhong, NIU Yunbin, WANG Baoyu. Discussion about Relationship between Water′s Salinity and Methane′s Solubility[J]. Coal Technology, 20161): 178180.

      吴颜雄, 马达德, 刘君林, 等. 柴西地区基岩油藏形成的石油地质条件分析[J]. 天然气地球科学, 2014, 2511): 16891696. doi: 10.11764/j.issn.1672-1926.2014.11.1689

      WU Yanxiong, MA Dade, LIUJunlin, et al. Geological Conditions of Basement Oil Pools in Western Qaidam Basin[J]. Natural Gas Geoscience, 2014, 2511): 16891696. doi: 10.11764/j.issn.1672-1926.2014.11.1689

      伍劲, 高先志, 马达德, 等. 柴达木盆地东坪地区基岩风化壳特征[J]. 现代地质, 2017, 311): 129141. doi: 10.3969/j.issn.1000-8527.2017.01.011

      WU Jin, GAO Xianzhi, MA Dade, et al. Characteristics of the Basement Weathering Crust in Dongping Area, Qaidam Basin[J]. Geoscience, 2017, 311): 129141. doi: 10.3969/j.issn.1000-8527.2017.01.011

      徐永昌. 天然气中氦同位素分布及构造环境[J]. 地学前缘, 1997, 43/4): 185190. doi: 10.3321/j.issn:1005-2321.1997.04.003

      XU Yongchang. Helium isotope distribution and tectonic environment in natural gas[J]. Geoscience Frontiers, 1997, 43/4): 185190. doi: 10.3321/j.issn:1005-2321.1997.04.003

      杨振宁, 李永红, 刘文进, 等. 柴达木盆地北缘全吉山地区氦气形成地质条件及资源远景分析[J]. 中国煤炭地质, 2018, 306): 6470. doi: 10.3969/j.issn.1674-1803.2018.06.13

      YANG Zhenning, LI Yonghong, LIU Wenjin, et al. Geological Conditions of Helium Formation and Resource Prospect Analysis in Quanjishan Area, Northern Qaidam Basin[J]. Coal Geology of China, 2018, 306): 6470. doi: 10.3969/j.issn.1674-1803.2018.06.13

      余琪祥, 史政, 王登高, 等. 塔里木盆地西北部氦气富集特征与成藏条件分析[J]. 西北地质, 2013, 464): 215222. doi: 10.3969/j.issn.1009-6248.2013.04.021

      YU Qixiang, SHI Zheng, WANG Denggao, et al. Analysis on Helium Enrichment Characteristics and Reservoir Forming Conditions in Northwest Tarim Basin[J]. Northwestern Geology, 2013, 464): 215222. doi: 10.3969/j.issn.1009-6248.2013.04.021

      张驰, 关平, 张济华, 等. 中国氦气资源分区特征与成藏模式[J]. 天然气地球科学, 2023, 344): 656671.

      ZHANG Chi, GUAN Pin, ZHANG Jihua, et al. Zoning characteristics of helium resources and helium accumulation model in China[J]. Natural Gas Geoscience, 2023, 344): 656671.

      张健, 张海华, 贺君玲, 卞雄飞, 张德军, 陈树旺, 孙雷. 东北地区氦气成藏条件与资源前景分析[J]. 西北地质, 2023, 561): 117128. doi: 10.12401/j.nwg.2022042

      ZHANG Jian, ZHANG Haihua, HE Junling, et al. Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China[J]. Northwestern Geology, 2023, 561): 117128. doi: 10.12401/j.nwg.2022042

      张明升, 张金功, 张建坤, 等. 氦气成藏研究进展[J]. 地下水, 20143): 189191. doi: 10.3969/j.issn.1004-1184.2014.03.084

      ZHANG Mingsheng, ZHANG Jingong, ZHANG Jiankun, et al. Research progress of helium gas accumulation[J]. Groundwater, 20143): 189191. doi: 10.3969/j.issn.1004-1184.2014.03.084

      张书林, 刘永茜, 孟涛. 不同矿化度水对煤的甲烷解吸影响的试验研究[J]. 煤炭科学技术, 2021, 497): 110117.

      ZHANG Shulin;LIU Yongqian;MENG Tao. Experimental study on influence of water with different salinity on methane desorption performance of coal seam[J]. Coal Science and Technology, 2021, 497): 110117.

      张文, 李玉宏, 王利, 等. 渭河盆地氦气成藏条件分析及资源量预测[J]. 天然气地球科学, 2018, 292): 236244.

      ZHANG Wen, LI Yuhong, WANG Li, et al. The analysis of helium accumulation conditions and prediction of helium resource in Weihe Basin[J]. Natural Gas Geoscience, 2018, 292): 236244.

      张雪. 渭河盆地天然气及氦气成藏条件与资源量预测[D]. 西安: 长安大学, 2015.

      ZHANG Xue. Accumulation Conditions and Resource Prediction of Nature Gas and Helium Gas in Weihe Basin[D]. xi'an: Chang'an University, 2015.

      张云鹏, 李玉宏, 卢进才, 等. 柴达木盆地北缘富氦天然气的发现-兼议成藏地质条件[J]. 地质通报, 2016, 352): 364371. doi: 10.3969/j.issn.1671-2552.2016.02.019

      ZHANG Yunpeng, LI Yuhong, LU Jincai, et al. The discovery and origin of helium-rich gas on the northern margin of the Qaidam Basin. Geological Bulletin of China[J]. Geological Bulletin of China, 2016, 352): 364371. doi: 10.3969/j.issn.1671-2552.2016.02.019

      张哲, 王春燕, 王秋晨, 等. 中国氦气市场发展前景展望[J]. 油气与新能源, 2022, 341): 3641. doi: 10.3969/j.issn.2097-0021.2022.01.007

      ZHANG Zhe, WANG Chunyan WANG Qiuchen et al. Development Prospects of China’s Helium Market[J]. Petroleum and New Energy, 2022, 341): 3641. doi: 10.3969/j.issn.2097-0021.2022.01.007

      周保, 李五福, 董福辰, 等. 青海省玛多县“5·22 M s7.4地震”地表破裂与次生灾害发育特征[J]. 地质通报, 2023, 421): 8491. doi: 10.12097/j.issn.1671-2552.2023.01.008

      ZHOU Bao, LI Wufu, DONG Fuchen, et al. The development characteristics of surface fracture and secondary hazards at 5·22 M s7.4 earthquake in Maduo County, Qinghai Province[J]. Geological Bulletin of China, 2023, 421): 8491. doi: 10.12097/j.issn.1671-2552.2023.01.008

      曾旭, 田继先, 杨桂茹, 等. 柴北缘侏罗纪凹陷结构特征及石油地质意义[J]. 中国石油勘探, 2017, 225): 5463. doi: 10.3969/j.issn.1672-7703.2017.05.006

      Zeng Xu, Tian Jixian, Yang Guiru, et al. Structure characteristics and petroleum geological significance of Jurassic sags at the northern margin of Qaidam Basin[J]. China Petroleum Exploration, 2017, 225): 5463. doi: 10.3969/j.issn.1672-7703.2017.05.006

      Brown A A. Formation of high Helium gases: a guide for explorationists[C]. AAPG convention, New 0rleans, Louisiana. USA, 2010.

      Stuart F M, Burnard P G, Taylor RP. Resolving mantle and crustal contributions to ancient hydrothermalfluids: He-Arisotopes in fluid inclusions from Dae Hwa W—Mo mineraliza-tion, South Korea[J]. Geochim. Cosmochim. Acta, 1995, 5922): 46634673. doi: 10.1016/0016-7037(95)00300-2

      Tissot B P, Welte D H. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration[M]. Berlin, Hei-delberg, New York, Tokyo: Springer Verlag, 1984, 1G538.

    图(6)  /  表(9)
    计量
    • 文章访问数:  9
    • HTML全文浏览量:  1
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-20
    • 修回日期:  2024-12-30
    • 录用日期:  2025-01-06
    • 网络出版日期:  2025-03-23

    目录

      /

      返回文章
      返回