Rock Thin Section Scale In-Situ Apatite U-Pb Dating Technique Discussion: A New Perspective on Ultramafic Rock Geochronology Analysis
-
摘要:
超基性岩作为地幔岩石的主要组分,其形成时代对理解地球内部结构和动力学过程具有重要意义。由于超基性岩浆硅元素不饱和,难以结晶出锆石,而作为超基性岩中常见的副矿物,磷灰石凭借其独特的晶体化学特征,成为超基性岩年代学研究的重要对象。随着原位微区分析技术的进步,磷灰石U-Pb定年技术得到了显著发展,定年的精度和可靠性显著提高。然而,在超基性岩薄片上进行原位磷灰石定年分析仍然需要解决一些棘手的问题,如普通铅的校正问题、矿物的成因分析以及岩石薄片制备过程中的污染控制等。笔者分析了超基性岩定年研究现状,综述了岩石原位定年技术和磷灰石U-Pb定年技术的研究进展,探讨了磷灰石U-Pb定年技术在超基性岩原位定年中的应用前景,并对未来研究方向进行了展望。
Abstract:Ultramafic rocks, as a major component of mantle rocks, hold significant importance for understanding the Earth's internal structure and dynamic processes. Due to the silicon undersaturation in ultramafic magmas, crystallization of zircon is challenging; instead, apatite, a common accessory mineral in ultramafic rocks, has emerged as a crucial target for geochronological studies owing to its unique crystallochemical characteristics. With advancements in in-situ microanalysis techniques, the U-Pb dating method for apatite has experienced marked improvements, significantly enhancing both precision and reliability. However, conducting in-situ apatite dating analyses on thin sections of ultramafic rocks still presents several challenges, such as the correction of common lead, genetic analysis of the minerals, and contamination control during the preparation of rock thin sections. This paper reviews the current state of geochronological research on ultramafic rocks, summarizes advancements in in-situ dating techniques and apatite U-Pb dating methodologies, discusses the prospects for the application of apatite U-Pb dating in the in-situ dating of ultramafic rocks, and outlines future research directions.
-
Keywords:
- apatite /
- ultramafic rocks /
- in-situ U-Pb dating /
- thin section scale
-
-
图 1 截至目前公开报道的磷灰石在全球的分布示意图
图中数字代表在该地报道过磷灰石数据的文献数量;由于缩放尺度所限,该区域可能包含多处矿床、地质体、自然保护区、陨石发现地等;数据来源:https://zh.mindat.org/min-29229.html
Figure 1. The global distribution of apatite as reported in publicly available literature to date
-
高永宝, 陈康, 王亮, 等. 阿尔金西段库木塔什萤石矿床成因: 磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束[J]. 西北地质, 2024, 57(4): 1−20. doi: 10.12401/j.nwg.2024038 GAO Yongbao,CHEN Kang,WANG Liang,et al. Genesis of Kumutashi Fluorite Deposit in the West Altyn-Tagh Orogen, NW China: Constraints from Apatite In-Situ U-Pb Dating, Sr-Nd Isotope and Chemistry[J]. Northwestern Geology,2024,57(4):1−20. doi: 10.12401/j.nwg.2024038
靳梦琪, 李艳广, 王鹏, 等. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究[J]. 岩矿测试, 2020, 39(2): 274−284. JIN Mengqi, LI Yanguang, WANG Peng, et al. Element fractionation and correction method for U-Pb dating of titanite by laser ablation-inductively coupled plasms-mass spectrometry[J]. Rock and Mineral Analysis,2020,39(2):274−284.
李琳琳. 斜锆石、锆石和磷灰石U-Pb年代学在华北克拉通基性岩墙研究中的应用[D]. 北京: 中国地质科学院, 2019. LI Linlin. Application of U-Pb geochronology of baddeleyite, zircon, and apatite in the study of mafic dykes in the North China Craton[D]. Beijing: Chinese Academy of Geological Sciences, 2019.
李献华, 苏犁, 宋彪, 等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 2004, 49(4): 401−402. doi: 10.3321/j.issn:0023-074X.2004.04.018 LI Xianhua, SU Li, SONG Biao, et al. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin,2004,49(4):401−402. doi: 10.3321/j.issn:0023-074X.2004.04.018
李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb 定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282. doi: 10.12401/j.nwg.2023104 LI Yanguang,JIN Mengqi. WANG Shuangshuang,et al. Exploration of Issues Related to the LA-ICP-MS U-Pb Dating Technique[J]. [J]. Northwestern Geology,2023,56(4):274−282. doi: 10.12401/j.nwg.2023104
李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS定年方法及应用[J]. 地质学报, 2015, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015 LI Yanguang, WANG Shuangshuang, LIU Minwu, et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica,2015,89(12):2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
许雅雯, 王家松, 郭虎, 等. U-Pb同位素测年新方法-激光烧蚀等离子体质谱法直接测定探针片中锆石和磷灰石年龄[J]. 地质调查与研究, 2015, 38(1): 67−76. XU Yawen, WANG Jiasong, GUO Hu, et al. A new method of u-pb isotopic dating: in polished thin section u-pb dating of zircon, apatite using laser ablation-MC-ICP-MS[J]. Geological Survey and Research,2015,38(1):67−76.
杨岳衡, 孙金凤, 谢烈文, 等. 地质样品Nd同位素激光原位等离子体质谱(LA-MC-ICPMS)测定[J]. 科学通报, 2008, 53(5): 568−576. doi: 10.3321/j.issn:0023-074X.2008.05.012 YANG Yueheng, SUN Jinfeng, XIE Liewen, et al. In-situ Nd isotopic measurement of natural geological samples by LA-MC-ICP-MS[J]. Chinese Science Bulletin,2008,53(5):568−576. doi: 10.3321/j.issn:0023-074X.2008.05.012
杨岳衡, 吴福元, 谢烈文, 等. 地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J]. 岩石学报, 2009, 25(12): 3431−3441. YANG Yueheng, WU Fuyuan, XIE Liewen, et al. In-situ Sr isotopic measurement of natural geological samples by LA-MC-ICP-MS[J]. Acta Petrologica Sinica,2009,25(12):3431−3441.
赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753. ZHAO Linghao, ZHAN Xiuchun, ZENG Lingsen, et al. Direct Calibration Method for LA-HR-ICP-MS Apatite U-Pb Dating[J]. Rock and Mineral Analysis,2022,41(5):744−753.
钟福军, 夏菲, 王玲, 等. 诸广中部鹿井铀矿田辉绿岩磷灰石U-Pb年龄、地球化学特征及其与铀成矿关系[J]. 地质学报, 2023, 97(8): 2593−2608. ZHONG Fujun, XIA Fei, WANG Ling, et al. Geochronology and geochemistry of dolerite in the Lujing uranium ore field of central Zhuguangshan complex, and its relationshipwith uranium mineralization[J]. Acta Geologica Sinica,2023,97(8):2593−2608.
周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857−864. doi: 10.3975/cagsb.2012.06.03 ZHOU Hongying, GENG Jianzhen, CUI Yurong, et al. In Situ U-Pb Dating of Apatite Using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica,2012,33(6):857−864. doi: 10.3975/cagsb.2012.06.03
周红英, 李怀坤, 张健, 等. 新太古代花岗片麻岩中麻粒岩包体磷灰石U-Pb定年对燕辽裂陷槽中元古代长城群底界年龄的制约[J]. 地质调查与研究, 2020, 43(2): 81−88. ZHOU Hongying,LI Huaikun,ZHANG Jian,et al. U-Pb dating of apatite from the granulite xenoliths in the Neoarchaean granitic gneiss: constraints on the base age of the Mesoproterozoic Changchengian Group in the Yanliao Aulacogen,northern North China Craton[J]. Geological Survey and Research,2020,43(2):81−88.
Amelin Y, Li C, Naldrett A J. Geochronology of the Voisey's Bay intrusion, Labrador, Canada, by precise U–Pb dating of coexisting baddeleyite, zircon, and apatite[J]. Lithos,1999,47(1-2):33−51. doi: 10.1016/S0024-4937(99)00006-7
Barfod G H, Krogstad E J, Frei R, et al. Lu–Hf and PbSL geochronology of apatites fromProterozoic terranes: a first look at Lu–Hf isotopic closure inmetamorphic apatite[J]. Geochimica Et Cosmochimica Acta,2005,69:1847−1859. doi: 10.1016/j.gca.2004.09.014
Barnes S J, Maier W D, Ashwal L D. Platinum-group element distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa[J]. Chemical Geology,2004,208(1-4):293−317. doi: 10.1016/j.chemgeo.2004.04.018
Chamberlain K R, Schmitt A K, Swapp S M, et al. In situ U–Pb SIMS (IN-SIMS) micro-baddeleyite dating of mafic rocks: method with examples[J]. Precambrian Research,2010,183(3):379−387. doi: 10.1016/j.precamres.2010.05.004
Chen H, Sun X, Li D, et al. In situ apatite U-Pb dating for the ophiolite-hosted Nianzha orogenic gold deposit, Southern Tibet[J]. Ore Geology Reviews,2022,144:104811. doi: 10.1016/j.oregeorev.2022.104811
Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U–Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology,2013,353:151−172. doi: 10.1016/j.chemgeo.2012.04.022
Chew D M, O’Sullivan G, Caracciolo L, et al. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis[J]. Earth Science Reviews, 2020, 202, 103093.
Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals,2021,11(10):1095. doi: 10.3390/min11101095
Chew D M, Spikings R A. Geochronology and thermochronology using apatite: time and temperature, lower crust to surface[J]. Elements,2015,11(3):189−194. doi: 10.2113/gselements.11.3.189
Chew D M, Sylvester P J, Tubrett M N. U–Pb and Th–Pb dating of apatite by LA-ICP-MS[J]. Chemical Geology,2011,280(1-2):200−216. doi: 10.1016/j.chemgeo.2010.11.010
Guo Q, Li Q, Zhu Z, et al. An Acid-Based Method for Highly Effective Baddeleyite Separation from Gram-Sized Mafic Rocks[J]. ACS Omega,2022,7:3634−3638. doi: 10.1021/acsomega.1c06264
Hamlyn P R, Bonatti E. Petrology of mantle-derived ultramafics from the Owen Fracture Zone, northwest Indian Ocean: implications for the nature of the oceanic upper mantle[J]. Earth and Planetary Science Letters,1980,48(1):65−79. doi: 10.1016/0012-821X(80)90171-5
Heaman L M, LeCheminant A N. The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: An evaluation of three mineral standards[J]. Chemical Geology,2000,163(1-4):43−62. doi: 10.1016/S0009-2541(99)00133-3
Herzberg C, Asimow PD, Arndt N, et al. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites[J]. Geochemistry, Geophysics, Geosystems. 2007, 8(2): 1-34.
Hirschmann M M, Stolper E M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB[J]. Contributions to Mineralogy and Petrology,1996,124:185−208. doi: 10.1007/s004100050184
Kamenetsky V S, Crawford A J, Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks[J]. Journal of Petrology,2002,42:655−671.
Lan Z, Zhang G, Cao R, et al. Apatite U-Pb geochronological and geochemical constraints on the Mazhala Au-Sb deposit in South Tibet, China[J]. Ore Geology Reviews,2023,158:169−1368.
Larsen R B, Grant T B, Sørensen B E, et al. Portrait of a giant deep-seated magmatic conduit system: The Seiland Igneous Province[J]. Lithos,2018,296:600−622.
Li C, Ripley E M, Maier W D. Olivine-hosted sulfide melt inclusions as an exploration tool for magmatic Ni-Cu-(PGE) deposits: a case study from Jinchuan deposit (China)[J]. Economic Geology,2014,109:2079−2089. doi: 10.2113/econgeo.109.8.2079
Li Q, Li X, Wu F, et al. In-situ SIMS U–Pb dating of phanerozoic apatite with low U and high common Pb[J]. Gondwana Research,2012,21(4):745−756. doi: 10.1016/j.gr.2011.07.008
Li Y, Yuan F, Simon M J, et al. Combined garnet, scheelite and apatite U–Pb dating of mineralizing events in the Qiaomaishan Cu–W skarn deposit, eastern China[J]. Geoscience Frontiers,2023,14(1):101459. doi: 10.1016/j.gsf.2022.101459
Liu M, Su S, Yao Y, et al. Discovery and genesis of two types of olivines and its significance to metallogeny in Jinchuan magmatic copper-nickel (PGE) sulfide deposit[J]. Acta Petrologica Sinica,2020,36(4):1151−1170. doi: 10.18654/1000-0569/2020.04.11
Margaret L O, Drew A L, Daniel F S, et al. Deformation and metasomatism recorded by single-grain apatite petrochronology[J]. Geology,2022,50(6):697−703. doi: 10.1130/G49809.1
McDowell F W, McIntosh W C, Farley K A. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard[J]. Chemical Geology,2005,214:249−263. doi: 10.1016/j.chemgeo.2004.10.002
Monteleone B D, Baldwin S L, Webb L E, et al. Late Miocene–Pliocene eclogite facies metamorphism, D’Entrecasteaux Islands, SE Papua New Guinea[J]. Journal of Metamorphic Geology,2007,25:245−265. doi: 10.1111/j.1525-1314.2006.00685.x
Moody J B. Serpentinization: a review[J]. Lithos,1976,9(2):125−138. doi: 10.1016/0024-4937(76)90030-X
Oosthuyzen E J, Burger A J. The suitability of apatite as an age indicator by the uranium-lead isotope method[J]. Earth and Planetary Science Letters,1973,18:29−36. doi: 10.1016/0012-821X(73)90030-7
O'Sullivan G J, Chew D M, Kenny G, et al. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews,2020b,201:103044. doi: 10.1016/j.earscirev.2019.103044
O'Sullivan G J, Chew D M, Samson S D. Detecting magma-poor orogens in the detrital record[J]. Geology,2016,44(10):871−874. doi: 10.1130/G38245.1
O'Sullivan G J, Chew D M. The clastic record of a Wilson Cycle: Evidence from detrital apatite petrochronology of the Grampian-Taconic fore-arc[J]. Earth and Planetary Science Letters,2020a,552:1116588.
Patrick D. Roycroft, Martine Cuypers. The Etymology of The Mineral Name ‘Apatite’: A Clarification[J]. Irish Journal of Earth Sciences,2015,33:71−75. doi: 10.1353/ijes.2015.0000
Piccoli P M, Candela P A. Apatite in igneous systems[A]. In: Kohn M L, Rakovan J, Hughes J M (eds). Phosphates, Geochemical, Geobiological and Materials Importance: Reviews in Mineralogy and Geochemistry[M]. Mineralogical Society of America, Chantilly, VA, USA, 2002, 48: 255–292.
Schoene B, Bowring S A. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard McClure[J]. Contributions to Mineralogy and Petrology,2006,151:615−630.
Simonetti A, Heaman L M, Chacko T, et al. In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS[J]. International Journal of Mass Spectrometry,2006,253:87−97. doi: 10.1016/j.ijms.2006.03.003
Söderlund U, Johansson L K H. A simple way to extract baddeleyite (ZrO2)[J]. Geochemistry Geophysics Geosystems,2002,3:1−7.
Spear F S, Pyle J M. Apatite, monazite, and xenotime in metamorphic rocks[A]. In: Kohn M L, Rakovan J, Hughes J M (eds). Phosphates, Geochemical, Geobiological and Materials Importance: Reviews in Mineralogy and Geochemistry[M]. Mineralogical Society of America, Chantilly, VA, USA, 2002, 48, 293–335.
Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers,2016,7(4):581−589.
Thomas B Grant, Rune B Larsen, Eric L Brown, et al. Mixing of heterogeneous, high-MgO, plume-derived magmas at the base of the crust in the Central Iapetus Magmatic Province (Ma 610-550): Origin of parental magmas to a global LIP event[J]. Lithos, 2020, 364–365, 105535.
Thomson S N, Gehrels G E, Ruiz J, et al. Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICP-MS[J]. Geochemistry Geophysics Geosystems,2012,13:Q0AA21.
Tomkins H S, Williams I S, Ellis D J. In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway[J]. Journal of Metamorphic Geology,2005,23:201−215. doi: 10.1111/j.1525-1314.2005.00572.x
Whitehouse M J, Platt J P. Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet[J]. Contributions to Mineralogy and Petrology,2003,145:61−74. doi: 10.1007/s00410-002-0432-z
Williams I S. U-Th-Pb geochronology by ion microprobe[A]. In: McKibben M A, Shanks W C III, Ridley W I (Eds). Applications of Microanalytical Techniques to Understanding Mineralizing Processes[M]. Reviews in Economic Geology,Society of Economic Geologists, Littleton, CO, USA, 1998, 7: 1–35.
Xiang D, Zhang Z, Zack T, et al. Apatite U‐Pb dating with common Pb correction using LA‐ICP‐MS/MS[J]. Geostandards and Geoanalytical Research,2021,45(4):621−642.
Wolfgang Müller. Strengthening the link between geochronology, textures and petrology[J]. Earth and Planetary Science Letters,2003,206(3-4):237−251. doi: 10.1016/S0012-821X(02)01007-5
Wyllie P J. The origin of ultramafic and ultrabasic rocks[J]. Tectonophysics,1969,7(5-6):437−455. doi: 10.1016/0040-1951(69)90015-8
Zong K, Liu Y, Gao C, et al. In situ U–Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the ultrahigh-pressure metamorphism of the Sulu terrane, China[J]. Chemical Geology,2010,269(3-4):237−251. doi: 10.1016/j.chemgeo.2009.09.021
-
期刊类型引用(4)
1. 孟勇,张欣,陈奋宁,李佐臣,冯益民,祁尧刚,郑若蕾. 古亚洲洋构造域中西段新元古代晚期至晚泥盆世的构造运动. 地质学报. 2025(01): 58-77 . 百度学术
2. 马立,杨静,张峰. 腾格里沙漠表沙常量元素地球化学特征及其空间分布. 第四纪研究. 2025(01): 91-104 . 百度学术
3. 王波,宋光永,张荣虎,曾庆鲁,王艳清,孙秀建,吴志雄,李森明,李雅楠,宫清顺. 柴达木盆地超深层基岩气藏勘探发现及启示. 海相油气地质. 2025(01): 59-70 . 百度学术
4. 李东,李铁笔,郑月,孙中行,姜克楠,潘建. 青海省南祁连阳康地区水系沉积物地球化学特征及成矿远景. 地质与资源. 2024(06): 747-758 . 百度学术
其他类型引用(0)