ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮羌断裂为例

张子亚, 郭召杰, 宋岩, 杨威, 刘达东, 程翔

张子亚,郭召杰,宋岩,等. 走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮羌断裂为例[J]. 西北地质,2025,58(3):196−205. doi: 10.12401/j.nwg.2025011
引用本文: 张子亚,郭召杰,宋岩,等. 走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮羌断裂为例[J]. 西北地质,2025,58(3):196−205. doi: 10.12401/j.nwg.2025011
ZHANG Ziya,GUO Zhaojie,SONG Yan,et al. Identification and Application of Growth Strata Associated with Strike-Slip Faults: Example from the Piqiang Fault in the Northwestern Margin of the Tarim Basin[J]. Northwestern Geology,2025,58(3):196−205. doi: 10.12401/j.nwg.2025011
Citation: ZHANG Ziya,GUO Zhaojie,SONG Yan,et al. Identification and Application of Growth Strata Associated with Strike-Slip Faults: Example from the Piqiang Fault in the Northwestern Margin of the Tarim Basin[J]. Northwestern Geology,2025,58(3):196−205. doi: 10.12401/j.nwg.2025011

走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮羌断裂为例

基金项目: 

国家自然科学基金项目(42102255),安徽省高校优秀青年科研项目(2022AH030136)和宿州学院博士科研启动基金项目(2023BSK063)联合资助。

详细信息
    作者简介:

    张子亚(1990−),男,博士研究生,从事构造地质和油气成藏方向研究。E−mail:zyzhang3327@163.com

    通讯作者:

    程翔(1989−),男,博士研究生,从事构造地质和油气构造方向研究。E−mail:cxsandy@pku.edu.cn

  • 中图分类号: P548

Identification and Application of Growth Strata Associated with Strike-Slip Faults: Example from the Piqiang Fault in the Northwestern Margin of the Tarim Basin

  • 摘要:

    生长地层是指构造变形过程中沉积的地层,其年龄可用于限定构造变形发生的时间。通过生长地层分析约束构造活动的发生时限已在挤压和伸展构造发育区得到了广泛应用,然而与走滑断裂相关的生长地层分析案例尚鲜见报道。笔者通过野外地质调查、遥感影像分析和地震剖面解释等手段与方法,厘定塔里木盆地西北缘皮羌断裂的几何样式和构造属性;基于地层的平面特征,确定与该断裂构造活动同期的生长地层,并据此限定皮羌断裂的活动时间。研究结果表明,地表标志层的左旋错断、断层面发育的近水平擦痕和近竖直阶步、断层迹线的线性特征及地震剖面上的正花状构造特征指示皮羌断裂为左行走滑断裂。在平面上,中新统(N1)及以下地层的厚度在皮羌断裂西侧向斜的同一翼保持稳定,地层的曲率也基本协调;而上新统(N2)与下伏地层则呈角度不整合接触,且上新统—早更新统(N2-Q11)地层的厚度越靠近皮羌断裂越薄,且随着地层时代变新,地层的平面曲率逐渐变小,表明上新统至早更新统(N2-Q11)地层是与皮羌断裂强烈走滑活动相关的生长地层。这一认识与基于地震剖面的生长地层分析结果一致。研究成果不仅有助于深入理解皮羌断裂的构造演化过程,还可为走滑断裂构造背景下生长地层的识别与应用提供新思路。

    Abstract:

    Growth strata, which are deposited during tectonic deformation, serve as vital markers for dating the timing of such deformation events. While the utilization of growth strata analysis to constrain the timing of tectonic activities is well-established in regions characterized by compressional and extensional tectonics, its application to strike-slip faults remains largely unexplored. This study employs a comprehensive methodology integrating field geological investigations, remote sensing image analysis, and seismic profile interpretation to elucidate the geometric patterns and structural attributes of the Piqiang Fault located at the northwestern margin of the Tarim Basin. By identifying syntectonic growth strata through their map-view characteristics, we aim to determine the active period of the Piqiang Fault. The results show that the Piqiang Fault exhibits characteristics of a sinistral strike-slip fault, evidenced by left-lateral dislocation of surface marker beds, nearly horizontal scratches and vertical steps on the fault plane, the linear fault trace, and the positive flower structural style in seismic profiles. Notably, the strata of N1 and older intervals maintain consistent thicknesses and curvatures within the same limb of the syncline to the west of the Piqiang fault. In contrast, the N2 strata display an angular unconformity with the underlying strata. Furthermore, from N2 to Q11, strata thicknesses decrease progressively towards the Piqiang Fault, accompanied by a reduction in map-view curvatures with decreasing stratigraphic age. These observations collectively suggest that the strata from N2 to Q11 represent growth strata associated with intense strike-slip activity along the Piqiang Fault. This interpretation is corroborated by growth strata analysis from seismic profile data. Our findings not only contribute to a deeper understanding of tectonic evolution of the Piqiang Fault, but also provide novel insights into the identification and application of growth strata in the context of strike-slip faulting.

  • 图  1   数字高程图(DEM)显示塔里木盆地西北缘的柯坪塔格冲断带、皮羌断裂(A)和其大地构造位置(B)

    A-A’表示图5中地震剖面的位置

    Figure  1.   (A) Digital elevation map of the NW Tarim Basin showing the Keping Tagh thrust belt、the Piqiang Fault and (B) the tectonic position

    图  2   皮羌断裂及其邻区的地质图(A)(改自ZanBiLe K-43-36 1∶200 000地质图)和遥感影像图(B)(Landsat ETM+真彩色,全合成)

    Figure  2.   (A)Geological map (revised from ZanBiLe K-43-36 1∶200 000 geological map) and (B)remote sensing image (Landsat ETM+ true colour, composite) of the Piqiang Fault and its adjacent areas

    图  3   皮羌断裂的断层面表现为线性的摩擦镜面(A)、皮羌断裂的断层面上发育的擦痕和阶步指示左旋走滑构造属性(B和C)、皮羌断裂的断层面及擦痕、方解石生长纤维束等线状构造要素的产状统计(D)

    Figure  3.   (A) The fault plane of the Piqiang Fault is present as a linear slickenside, (B and C) striae and steps on the fault plane of the Piqiang Fault indicate sinistral strike-slip property, (D) the attitude statistics of fault planes and the associated linear structural elements of striae and calcite growth slickenfibers of the Piqiang Fault

    图  4   皮羌断裂西侧的向斜及前生长地层、生长地层的平面几何学地质图(A)和遥感图(B)

    N1及以下地层为前生长地层;N2-Q11为生长地层

    Figure  4.   (A) Geological map and (B) remote sensing image of the syncline in the western block of the Piqiang Fault and the map-view geometry of the pre-growth strata and growth strata

    图  5   横穿皮羌断裂南段的地震剖面图A-A’

    皮羌断裂由两条陡倾断裂构成,整体表现为一个正花状构造;N2与下伏二叠系至中新统(P-N1)地层之间呈角度不整合接触关系,N2-Q11向着皮羌断裂的构造高点显著减薄,表明N2-Q11是皮羌断裂强烈左旋走滑活动相关的生长地层

    Figure  5.   Seismic section A-A’ across the southern segment of the Piqiang Fault

  • 何文渊, 杨宪一, 刘胜. 塔里木盆地西北部构造演化特征—从皮羌断裂发育史想到[J]. 地球学报, 2003, 24(z1): 17−21. doi: 10.3321/j.issn:1006-3021.2003.z1.005

    HE Wenyuan, YANG Xianyi, LIU Sheng. The Evolution History of Northwest Tarim as Viewed from the Features of Piqiang Fault[J]. Acta Geoscientica Sinica,2003,24(z1):17−21. doi: 10.3321/j.issn:1006-3021.2003.z1.005

    韩忠, 张枭, 刘晓煌, 等. 新疆哈拉奇地区柯坪塔格组砂岩粒度特征[J]. 西北地质, 2013, 46(4): 106−114.

    HAN Zhong, ZHANG Xiao, LIU Xiaohuang, et al. The Grain Size Characteristics of Kalpintag Formation’s Sandstones in Kharrazi Region, Xinjiang[J]. Northwestern Geology,2013,46(4):106−114.

    李安, 冉勇康, 刘华国, 等. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377−390. doi: 10.11867/j.issn.1001-8166.2016.04.0377.

    LI An, RAN Yongkang, LIU Huaguo, et al. Active Characteristics and Paleoearthquakes in the West Kalpin Nappe Since the Holocene, SW Tianshan Mountain[J]. Advances in Earth Science,2016,31(4):377−390. doi: 10.11867/j.issn.1001-8166.2016.04.0377.

    吕明, 汤良杰, 岳勇. 塔里木盆地西南部麦盖提斜坡构造演化过程的记录—生长地层及生长不整合[J]. 地质论评, 2014, 60(1): 91−101.

    LV Ming, TANG Liangjie, YUE Yong. Records of Tectonic Evolution in Maigaiti Slope Southwestern Tarim Basin: Growth Strata and Growth Unconformity[J]. Geological Review,2014,60(1):91−101.

    曲国胜, 李亦刚, 陈杰, 等. 柯坪塔格推覆构造几何学、运动学及其构造演化[J]. 地学前缘, 2003, 10(z1): 142−152. doi: 10.3321/j.issn:1005-2321.2003.z1.021

    QU Guosheng, LI Yigang, CHEN Jie, et al. Geometry, Kinematics and Tectonic Evolution of Kepingtage Thrust System[J]. Earth Science Frontiers,2003,10(z1):142−152. doi: 10.3321/j.issn:1005-2321.2003.z1.021

    任建业, 张俊霞, 阳怀忠, 等. 塔里木盆地中央隆起带断裂系统分析[J]. 岩石学报, 2011, 27(1): 219−230.

    REN Jianye, ZHANG Junxia, YANG Huaizhong, et al. Analysis of fault systems in the Central uplift, Tarim Basin[J]. Acta Petrologica Sinica,2011,27(1):219−230.

    王国林, 李曰俊, 孙建华, 等. 塔里木盆地西北缘柯坪冲断带构造变形特征[J]. 地质科学, 2009, 44(1): 50−62. doi: 10.3321/j.issn:0563-5020.2009.01.005

    WANG Guolin, LI Yuejun, SUN Jianhua, et al. Structural deformation characteristics of the Kalpin thrust belt. NW Tarim[J]. Chinese Journal of Geology,2009,44(1):50−62. doi: 10.3321/j.issn:0563-5020.2009.01.005

    王鹏昊, 汤良杰, 邱海峻, 等. 塔里木盆地皮羌断裂晚期活动ESR年代学证据及其地质意义[J]. 石油与天然气地质, 2013, 34(1): 107−111. doi: 10.11743/ogg20130114

    WANG Penghao, TANG Liangjie, QIU Haijun, et al. Chronology evidence of EAR dating for the late movements of the Piqiang fault in the Tarim Basin and its geological implication[J]. Oil & Gas Geology,2013,34(1):107−111. doi: 10.11743/ogg20130114

    肖安成, 杨树锋, 王清华, 等. 塔里木盆地巴楚-柯坪地区南北向断裂系统的空间对应性研究[J]. 地质科学, 2002, 37(z1): 64−72. doi: 10.3321/j.issn:0563-5020.2002.z1.009

    XIAO Ancheng, YANG Shufeng, WANG Qinghua, et al. Corresponding Relation of S-N-Striking Fault Systems in The Bachu-Kalpin Area, Tarim Basin[J]. Chinese Journal of Geology,2002,37(z1):64−72. doi: 10.3321/j.issn:0563-5020.2002.z1.009

    肖安成, 杨树锋, 李曰俊, 等. 塔里木盆地巴楚隆起断裂系统主要形成时代的新认识[J]. 地质科学, 2005, 40(2): 291−302. doi: 10.3321/j.issn:0563-5020.2005.02.013

    XIAO Ancheng, YANG Shufeng, LI Yuejun, et al. Main Period for Creation of Fracture System in the Bachu Uplift, Tarim Basin[J]. Chinese Journal of Geology,2005,40(2):291−302. doi: 10.3321/j.issn:0563-5020.2005.02.013

    杨海军, 李曰俊, 师骏, 等. 南天山晚新生代褶皱冲断带构造特征[J]. 第四纪研究, 2010, 30(5): 1030−1043. doi: 10.3969/j.issn.1001-7410.2010.05.21

    YANG Haijun, LI Yuejun, SHI Jun, et al. Tectonic Characteristics of The Late Cenozoic South Tianshan Fold-Thrust Belt[J]. Quaternary Sciences,2010,30(5):1030−1043. doi: 10.3969/j.issn.1001-7410.2010.05.21

    杨勇, 汤良杰, 郭颖, 等. 柯坪冲断带皮羌断裂的新生代构造演化特征[J]. 中国矿业大学学报, 2016, 45(6): 1204−1210.

    YANG Yong, TANG Liangjie, GUO Ying, et al. Cenozoic structural evolution characteristics of Piqiang fault, Kalpin thrust belt[J]. Journal of China University,2016,45(6):1204−1210.

    袁波, 汪新, 王心强, 等. 准噶尔盆地南缘构造分层分带特征及其油气勘探意义[J]. 地球科学, 2023, 48(10): 3946−3956.

    YUAN Bo, WANG Xin, WANG Xinqiang, et al. Characteristics of Structural Stratification and Zoning in Southern Junggar Basin and Its Significance for Oil and Gas Exploration[J]. Earth Science,2023,48(10):3946−3956.

    张广良, 张培震, 闵伟, 等. 逆冲-褶皱造山过程中生长地层的识别及应用[J]. 地震地质, 2006, 28(2): 299−311. doi: 10.3969/j.issn.0253-4967.2006.02.013

    ZHANG Guangliang, ZHANG Peizhen, MIN Wei, et al. The Iden-Tificatoin and Application of Growth Strata Linked to The Foreland Fold-and-Thrust Belt During Mountain Building[J]. Seismology and Geology,2006,28(2):299−311. doi: 10.3969/j.issn.0253-4967.2006.02.013

    张子亚. 塔里木盆地西北缘晚新生代构造解析——帕米尔前缘与南天山前缘的叠合[D]. 北京: 北京大学, 2014.

    ZHANG Ziya. The structural analysis at the northwest margin of the Tarim Basin——the foreland thrusts superimposition between Pamir and Southwest Tienshan[D]. Beijing: Peking University, 2014.

    张义平, 陈宣华, 张进, 等. 印支运动在鄂尔多斯盆地和四川盆地启动时间的讨论: 来自生长地层的证据[J]. 中国地质, 2019, 46(5): 1021−1038. doi: 10.12029/gc20190505

    ZHANG Yiping, CHEN Xuanhua, ZHANG Jin, et al. Discussion on the initial timing of the Indosinian movement in the Ordos basin and the Sichuan basin: Constraints from growth strata evidence[J]. Geology in China,2019,46(5):1021−1038. doi: 10.12029/gc20190505

    张永, 崔永平, 刘长磊. 塔里木盆地色力布亚断裂带几何学及运动学特征[J]. 新疆石油地质, 2018, 39(3): 264−276.

    ZHANG Yong, CUI Yongping, LIU Changlei. Geometrical and Kinematics Characteristics of Selibuya Fault Belt, Tarim Basin[J]. Xinjiang Petroleum Geology,2018,39(3):264−276.

    张韬, 邬光辉, 陈鑫, 等. 皮羌走滑断裂构造演化研究综述[J]. 中国石油和化工标准与质量, 2020(1): 117−118. doi: 10.3969/j.issn.1673-4076.2020.01.059

    ZHANG Tao, WU Guanghui, CHEN Xin, et al. Review of tectonic evolution of the Piqiang strike-slip fault[J]. China Petroleum and Chemical Standard and Quality,2020(1):117−118. doi: 10.3969/j.issn.1673-4076.2020.01.059

    Allen M B, Stephen V J. Late Cenozoic tectonics of the Kepingtage thrust zone: Interaction between the Tian Shan and the Tarim Basin, northwest China[J]. Tectonics,1999,18(4):639−654. doi: 10.1029/1999TC900019

    Charreau J, Saint-Carlier D, Lavé J, et al. Late Pleistocene acceleration of deformation across the northern Tianshan piedmont (China) evidenced from the morpho-tectonic evolution of the Dushanzi anticline[J]. Tectonophysics,2018,730:132−140. doi: 10.1016/j.tecto.2018.02.016

    Chen J, Burbank D W, Scharer K M, et al. Magnetochronology of the upper Cenozoic strata in the southwestern Chinese Tian Shan: Rates of pleistocene folding and thrusting[J]. Earth and Planetary Science Letters,2002,195:113−130. doi: 10.1016/S0012-821X(01)00579-9

    Guo Q, Wen Y M, Xu C J, et al. Present-Day Tectonic Activities of Transverse Faults in the Keping Region, Southwest Tianshan[J]. Seismological Research Letters, 2024, 1−10.

    Li A, Ran Y K, Gomez F, et al. Segmentation of the Kepingtage thrust fault based on paleoearthquake ruptures, southwestern Tianshan, China[J]. Natural Hazards,2020,103:1385−1406. doi: 10.1007/s11069-020-04040-6

    Li J, Yao Y, Li R, et al. Present-Day Strike-Slip Faulting and Thrusting of the Kepingtage Fold-and-Thrust Belt in Southern Tianshan: Constraints From GPS Observations[J]. Geophysical Research Letters,2022,49:e2022GL099105. doi: 10.1029/2022GL099105

    Medwedeff D W. Growth fault-bend folding at southeast Lost Hills, San Joaquin Valley, California[J]. AAPG Bulletin,1989,73(1):54−67.

    Medwedeff D W. Geometry and kinematics of an active, laterally propagating wedge thrust, Wheeler Ridge, California[M]. Baltimore: Johns Hopkins University Press, 1992.

    Qin X, Chen X H, Shao Z G, et al. Initiation timing of Cenozoic compression deformation of the southern Tianshan mountains: Implications from growth strata in the Kuqa Depression[J]. Geological Journal,2020,55(11):7206−7226. doi: 10.1002/gj.3953

    Qiu J T, Ji L Y, Zhu L Y, et al. Present-day tectonic deformation partitioning across South Tianshan from satellite geodetic imaging[J]. Frontiers in Earth Science,2022,9:793890. doi: 10.3389/feart.2021.793890

    Rafini S, Mercier R, Eric M. Forward modelling of foreland basins progressive unconformities[J]. Sedimentary Geology,2002,146(1-2):75−89. doi: 10.1016/S0037-0738(01)00167-1

    Riba O. Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: a genetic interpretation[J]. Sedimentary Geology,1976,15:213−233. doi: 10.1016/0037-0738(76)90017-8

    Shaw J H. Seismic interpretation of Structural styles in deepwater Fold-and-Thrust Belts[M]. Harvard University: Course Manual, 2005.

    Shaw J H, Suppe J. Active faulting and growth folding in the eastern Santa Barbara Channel, California[J]. Geological Society of America Bulletin,1994,106(5):607−626. doi: 10.1130/0016-7606(1994)106<0607:AFAGFI>2.3.CO;2

    Suppe J. Geometry and Kinematics of fault bend folding[J]. ‌American Journal of Science,1983,283:684−721.

    Suppe J, Chou, G T, Hook S C. Rates of folding and faulting determined from growth strata In Thrust Tectonics[M]. London: Chapman and Hall, 1992.

    Suppe J, Hubertferrari A, Wang X. Relationships Between Incremental and Cumulative Fold Growth With Neotectonic Examples From the Southern Tianshan, China[C]. AGU Fall Meeting Abstracts, 2004.

    Suppe J, Medwedeff D A. Geometry and kinematics of fault-propagation folding[J]. Eclogae Geologicae Helvetiae,1990,83(3):409−454.

    Suppe J, Sàbat F, Munoz J A. Bed-by-bed fold growth by kink-band migration Sant Llorenq de Morunys, eastern Pyrenees[J]. Journal of Structural Geology,1997,19:443−461. doi: 10.1016/S0191-8141(96)00103-4

    Turner S A, Jian L G, John C W. Structural evolution of the Piqiang Fault Zone, NW Tarim Basin, China[J]. Journal of Asian Earth Sciences,2011,40:394−402. doi: 10.1016/j.jseaes.2010.06.005

    Yang Y, Yao W Q, Yan J J, et al. Mesozoic and Cenozoic structural deformation in the NW Tarim Basin, China: a case study of the Piqiang-Selibuya Fault[J]. International Geological Review,2018,60(7):929−943. doi: 10.1080/00206814.2017.1360803

    Zapata T R, Allmendinger R W. Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina[J]. Tectonics,1996,15:1065−1083. doi: 10.1029/96TC00431

    Zhang T, Han W X, Fang X M, et al. Intensified tectonic deformation and uplift of the Altyn Tagh range recorded by rock magnetism and growth strata studies of the western Qaidam Basin, NE Tibetan Plateau[J]. Global and Planetary Change,2016,137:54−68. doi: 10.1016/j.gloplacha.2015.12.017

    Zhang Z L, Sun J M, Tian Z H, et al. Magnetostratigraphy of syntectonic growth strata and implications for the late Cenozoic deformation in the Baicheng Depression, Southern Tian Shan[J]. Journal of Asian Earth Sciences,2016a,118:111−124. doi: 10.1016/j.jseaes.2015.12.024

    Zhou Y X, Wu C D, Yuan B, et al. Cenozoic tectonic patterns and their controls on growth strata in the northern Tianshan fold and thrust belt, northwest China[J]. Journal of Asian Earth Sciences,2020,198:104237. doi: 10.1016/j.jseaes.2020.104237

    Zhang C L, Xu Y G, Li Z X, et al. Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume?[J]. Lithos,2010,119:537−552. doi: 10.1016/j.lithos.2010.08.007

    Zhang Y, Yang S M, Chen H L, et al. The effect of overburden thickness on deformation mechanisms in the Keping fold-thrust belt, southwestern Chinese Tian Shan Mountains: Insights from analogue modeling[J]. Tectonophysics,2019,753:79−92. doi: 10.1016/j.tecto.2019.01.005

    Zoetemeijer R, Sassi W, Roure F, et al. Stratigraphic and kinematic modeling of thrust evolution, northern Apennines, Italy[J]. Geology,1992,20:1035−1038.

图(5)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  5
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-16
  • 修回日期:  2025-01-09
  • 录用日期:  2025-01-20
  • 网络出版日期:  2025-02-27
  • 刊出日期:  2025-06-19

目录

    /

    返回文章
    返回