ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

造山带岩浆铜镍硫化物矿床深部动力学机制探讨

高晓峰, 隋清霖, 尤敏鑫, 胡朝斌, 查显锋, 李猛, 任广利, 李婷, 杨敏

高晓峰,隋清霖,尤敏鑫,等. 造山带岩浆铜镍硫化物矿床深部动力学机制探讨[J]. 西北地质,2025,58(3):206−220. doi: 10.12401/j.nwg.2025012
引用本文: 高晓峰,隋清霖,尤敏鑫,等. 造山带岩浆铜镍硫化物矿床深部动力学机制探讨[J]. 西北地质,2025,58(3):206−220. doi: 10.12401/j.nwg.2025012
GAO Xiaofeng,SUI Qinglin,YOU Minxin,et al. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts[J]. Northwestern Geology,2025,58(3):206−220. doi: 10.12401/j.nwg.2025012
Citation: GAO Xiaofeng,SUI Qinglin,YOU Minxin,et al. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts[J]. Northwestern Geology,2025,58(3):206−220. doi: 10.12401/j.nwg.2025012

造山带岩浆铜镍硫化物矿床深部动力学机制探讨

基金项目: 

陕西省自然科学基础研究计划资助项目(2023-JC-ZD-15)和中国地质调查局项目(DD20160002、12120114020501、DD20190065)联合资助。

详细信息
    作者简介:

    高晓峰(1979−),男,博士,研究员,从事岩石学和岩石大地构造研究。E−mail:xfgao2000@163.com

  • 中图分类号: P618.63; P611.1+1

Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts

  • 摘要:

    针对造山带岩浆铜镍硫化物矿床成矿岩浆具有富水、源区不均一、弧岩浆元素特征以及矿床中的硫来源多样的特征,前人提出其成矿动力学模式主要包括地幔柱叠加造山带、板块俯冲和地幔柱相互作用、俯冲交代改造的岩石圈地幔部分熔融、后碰撞伸展阶段软流圈地幔和岩石圈地幔共同作用以及板块断裂引起软流圈地幔上涌减压熔融等多种观点。纵观地球演化历史,经历多期次造山作用,但并不是所有造山带均形成了岩浆铜镍硫化物矿床。因此,造山带中能够形成岩浆铜镍硫化物矿床成矿的关键因素有待进一步明晰。基于上述模式均指向造山带岩浆铜镍硫化物矿床均来源于俯冲交代地幔源区,形成时限滞后于俯冲峰期的研究结果和地质事实,笔者提出了造山带岩浆铜镍硫化物矿床两阶段成矿动力学模式。第一阶段:俯冲期内地幔橄榄岩被俯冲板片形成的硅质熔体交代,交代过程中,俯冲熔体导致Ni等元素从橄榄石中释放以及自身携带硫的释放,从而形成含有斜方辉石和镍硫化物的辉石岩为主地幔源区。第二阶段:俯冲碰撞期结束后,富集辉石和镍硫化物地幔通过拆沉方式进入软流圈地幔发生再次熔融,熔融条件转变成近似无水条件,镁铁质岩浆会分异形成富集亲铜元素形成的硫化物堆晶或岩浆硫化物矿床。区域上深大断裂、韧性剪切带和缝合带作为岩浆通道,是母岩浆脱离熔融源区后岩浆过程的富集通道,源区和岩浆过程共同作用形成造山带岩浆铜镍硫化物矿床。

    Abstract:

    Previous studies have proposed various ore-forming dynamic models for magmatic Cu-Ni deposits in orogenic belts, including mantle plume overlapping orogenic belts, plate subduction and mantle plume interaction, partial melting of the lithospheric mantle, mixing of asthenospheric and lithospheric mantle during post-collision extension, and decompression melting caused by tearing of slab leading to asthenospheric mantle upwelling. However, the multiple episodes of subduction-accretion orogeny throughout the history of Earth evolution, the above dynamic processes have occurred, but Cu-Ni sulfide deposits have not been formed. Therefore, the key factors for the formation of Cu-Ni sulfide deposits in orogenic belts await further clarification. Based on the fact that the above models all point to Cu-Ni sulfide deposits in orogenic belts originating from subducted metasomatic mantle sources and forming after the peak subduction period, we propose a two-stage ore-forming dynamic model for Cu-Ni sulfide deposits in orogenic belts. Stage One: During the subduction period, interactions between mantle peridotites and silicic melts from the subducting slab lead to the release of elements such as nickel from olivine and sulfur carried by the subduction melts, thus forming a mantle source dominated by pyroxenite containing orthopyroxene and nickel sulfides. Stage Two: After the end of the subduction-collision period, the pyroxenite mantle source enriched during subduction enters the asthenospheric mantle through delamination and undergoes remelting, where the melting conditions change to near hydrous-free conditions. In this condition, these mafic magmas differentiate to form sulfur-rich, copper-affinitive sulfides crystallizing into sulfide piles or magma sulfide deposits. The large depth fault, ductile shear zones, and suture zones serve as magma conduits for the enrichment of the parent magma, with the combined action of source region and magmatic process leading to the formation of Cu-Ni sulfide deposits in orogenic belts.

  • 酸性矿排水(Acid Mine Drainage,AMD)是硫化矿床或含硫煤层在氧气、水和微生物等的参与下,经一系列生物化学反应或微生物作用而产生,主要来源包括废石堆、选厂、尾矿库和地下矿坑等(Acharya et al.,2020朱爱平等,2020),具有pH值低、可溶性金属离子浓度大、硫酸盐含量高、危害程度大等特点(袁加巧等,2022)。AMD在未经处理情况下排放不仅破坏周边水体、生物群落、土壤等生态环境,还严重危害人体健康(Gayathri et al.,2019徐友宁等,2023)。研究表明,AMD的形成与硫化矿物的水氧反应和细菌的作用有关,并且细菌的存在可通过协助硫化矿物的分解来加速AMD的形成(Ata et al.,2006)。Younger(1995)Chen(2014)认为AMD主要是硫化矿物如黄铁矿(FeS2)在开采阶段的氧化产物溶入恢复中的地下水形成的。李春花等(2022)认为水在黄铁矿氧化过程中可能起到了预氧化作用。陆现彩等(2019)认为地表金属硫化物微生物氧化直接导致酸性矿山排水,并形成重金属污染。李娟等(2015)认为微生物对金属硫化物的氧化分解是导致重金属离子释放的重要原因。王晓勇等(2023)以紫阳石煤矿区为例,通过研究硫酸盐S、O同位素富集规律,认为石煤中黄铁矿开采后氧化是酸性废水产生的主要机制。陈华清等(2023)研究了蒿坪河流域石煤矿区铝相次生矿物吸附重金属的地球化学特征以及“酸性白水”演化机制,对于促进蒿坪河流域酸性磺水–酸性白水防治具有的重要理论及应用价值。多年来,国内外专家学者们在探究酸性水形成机理研究的基础上,将AMD治理技术分为“主动治理”技术和“被动治理”两大类(Johnson et al.,2005Kefeni et al.,2017)。其中,“主动治理”技术本质是一种化学方法,包括中和沉淀法、硫化沉淀法、絮凝法等,主要是通过加入石灰和絮凝剂分别调节AMD酸度和沉淀重金属。杨程等(2021)采用中和法在不同处理工艺和不同加碱速率条件下探究AMD中锰离子去除效果。何绪文等(2013)探究了硫化钠投加量、反应初始pH等操作条件对含铅酸性矿山水中铅离子去除效率的影响。刘伟(2017)以云南某冶炼厂酸性含重金属废水为研究对象,提出以自制生物絮凝剂协同石灰中和沉淀脱除重金属的处理方法,这类方法需不断地投加化学试剂,易产生大量含重金属的污泥,投资、运行和维护成本较高;“被动治理”技术依靠自然的物理、地球化学和生物过程中和AMD的酸度并去除伴生污染物,包括石灰石沟渠(Johnson et al.,2002Skousen et al.,2017)、微生物法、人工湿地法( Jarvis ,1999Fabiand et al.,2005)等,其运行和维护成本较低,在国外应用广泛,但在国内应用比较少,国内主要采用矿硐封堵、修建污水处理厂等(陈宏坪等,2021)。目前,关于AMD治理技术主要是从末端治理体系出发,采用化学或生物的方法对污染水体进行处理以期达到排放标准,主要存在以下两点问题:这类方法仅从单一的角度考虑解决水的问题,硫铁矿矿山造成的环境污染不仅是水的问题,更重要的是土壤、地下水、生物群落等生态环境;矿山酸性废水产生量大,具有长期性,采用化学方法、修建污水处理厂等可以从面上解决水污染问题,但是,长此以往,对于矿山企业来会造成的严重经济负担,不能彻底根除。要彻底解决AMD带来的矿山环境问题,不仅要在方法上有创新,还要从观念上有转变,在治理方法上可因地制宜的选择矿硐封堵、地表废石封存、尾矿的水下存储、尾矿固化等一种或多种源头治理方法来消除AMD根源,再辅以末端治理、生态修复等措施,以达到消除AMD危害、恢复矿区环境的目的。

    陕南地区废弃硫铁矿开采历史悠久,分布广泛。五里坝硫铁矿位于汉中市西乡县,矿区磺水溢流,水质呈强酸性,重金属污染严重,视觉效果差,弃渣裸露堆放,地面塌陷发育,破坏地形地貌景观,生态环境问题突出,硫铁矿开采对生态环境破坏严重。笔者以五里坝硫铁矿为例,在分析矿区环境污染问题及酸性水形成机理的基础上,探究硫铁矿酸性水治理技术,为陕南地区硫铁矿治理提供借鉴。

    研究区位于西乡县高川镇五里坝社区,地理坐标:E 108°04′08″~108°04′36″,N 32°41′00″~32°43′20″,属停产矿山,面积为1.341 5 km2。矿山海拔高程在948~1240 m,相对高差约300 m,地势总体西高东低、南高北低,属于中山地貌单元,地表水系由牟子河支流炮桐沟和乌云沟构成,年均降水量为11001700 mm,雨量充沛,但时空分布差异较大。矿区主要出露地层为寒武系、泥盆系、石炭系、三叠系、二叠系,岩性以碳酸盐、变质岩为主,局部夹杂碎屑岩,矿区含矿岩系含两个矿层,即I矿层和II矿层,赋矿层位为泥盆系中统三岔沟组(D2s),矿床围岩主要为细粒石英砂岩,直接顶板黏土质砂岩及砂质黏土岩。地质构造为一倒转的单斜构造,地层倾向NW,倾角为57°~80°,主要断裂为近SN走向逆断裂(F1),次级断裂较发育(F2~F6,图1),F1断裂SN向延伸长度约40 km,断裂带宽度约20 m,具有多期活动特征,倾向NW,倾角为65°~75°,地质构造不发育。地下水类型包括基岩裂隙水、岩溶水和第四系松散层孔隙水,含水岩组富水性以弱−强为主,岩溶水含水岩组在局部地区(炮桐沟南支沟及乌云沟右岸)富水性较强,可见泉眼出露。受采矿活动影响,人类工程活动强烈主要表现为矿硐挖掘和弃渣堆放等,地表可见多处地面塌陷。矿区主要生态环境问题表现为以下3个方面:矿硐水和弃渣淋滤水中的Fe3+、Mn2+等重金属离子超标,pH呈酸性,对牟子河、乌云沟、炮桐沟流域地表水污染严重;弃渣裸露堆放,破坏地形地貌景观,压占土地资源,与周边地形地貌不协调;不稳定斜坡、采空塌陷等不良地质现象发育,威胁周边群众生命财产安全。

    图  1  研究区环境地质概况
    Figure  1.  The research survey of environmental geology

    近年来,随着遥感科学的快速发展,遥感技术被广泛应用在生态环境、自然资源、农业生产等领域。研究区地形复杂,高差较大,植被发育,尤其是矿区开采历史悠久,对于探矿、开采遗留的部分废渣难以人工发现,利用高精度遥感技术,可以达到精细调查废渣的分布。同时,对于矿区的地面塌陷、不稳定斜坡等地质灾害,利用机载LiDAR制作数字表面模型(DSM)、数字高程模型(DEM)、数字正射影像图(DOM)、三维实景模型和基于InSAR技术的形变探测分析,机载雷达激光发射频率高达750000 点/S,扫描速度高达200次/S,运行高度高达530.352 m,相机像素为4240 MP,数据采集3.71 km2李强等,2022)。在此基础上开展不良地质现象遥感解译,综合判识解译地质灾害隐患点,识别矿区潜在岩溶塌陷区,不稳定斜坡等。

    在搜集区域地质资料的基础上,采用路线追溯法,对矿区开展1∶2000比例尺地质调查、水文地质调查、环境地质调查、物探调查以及主要污染源调查、水环境调查等。其中,水文地质调查在丰水期和枯水期分别对乌云沟和炮桐沟地表水(泉眼)和矿硐水进行测流、采样,同时布设水文孔7个,进尺180 m,共采集水样49件,以分析矿区水水化学类型及地表水对地下水的影响;物探主要采用高密度点法,实测弃渣方量。通过地面调查,进一步查明矿硐围岩的工程地质特征、矿区水力联系情况与补径排关系、地表水的污染现状、主要污染源(矿硐、废渣)的分布现状,为分析酸性水来源和治理方法的探究提供基础资料。

    主要内容包括岩石力学分析、水质简分析、环境样分析、废渣固废属性鉴别等,均送检至有检测资质的实验室。岩石力学分析测试指标包括抗压强度、饱和抗压强和抗剪强度,采集岩石样1件;水质简单分析指标包括K+、Na+、Ca2+、Mg2+、Al3+、Cl、SO42−、HCO3、CO32−、溶解性总固体、pH、总硬度等,共采集水样49件;环境样分析指标包括常量分析(pH、TDS、K+、Na+、Ca2+、Mg2+、Cl、SO42−、HCO3、CO32−)、重金属元素(铁、锰、锌、铜、镉、总铬、铅、镍、铍等)、理化性质(pH、有机质)、定性分析和定量分析等,在丰水期和枯水期分别采集酸性废水样26件(各13件,采样点见图2图3),流域地表水样品16个(采样点见图4);废渣固废属性鉴别采用硝酸法和水平震荡法,分别对尾矿和弃渣中的铜、锌、镉、铅、铬等重金属进行分析,共采集1号和和2号尾矿库尾砂样品各1件,共采集弃渣样11件。旨在研究矿硐顶底板围岩的稳定性、水化学类型、污染源特性等,为下一步分析酸性水迁移途径、演化规律、治理方法等提供基础数据。

    图  2  矿硐分布现状图
    a. 矿硐总体分布平面图;b. 炮桐沟−乌云沟矿硐分布详图
    Figure  2.  The distributing plot of the adit
    图  3  弃渣分布现状图
    a. 弃渣总体分布平面图;b. 炮桐沟−乌云沟弃渣分布详图
    Figure  3.  The distributing plot of the slag
    图  4  流域地表水采样点位置及矿区地表水水化学类型演化规律图
    a. 木梓河流域水地表水水化学类型演化规律图;b. 矿区周边地表水水化学类型演化规律图
    Figure  4.  The plot of the underground water quality evolution rul in the mning area and watershed

    根据资料显示,矿区酸性矿排水污染源主要包括废弃矿硐涌水、弃渣淋滤水等(李麟等,2021)。矿区共有矿硐15处(图2a图2b),主要分布在乌云沟和炮桐沟,多数矿硐可见磺水涌出,雨季实测1006矿坑最大涌水量为512 m3/d,矿坑水呈黄褐色(图5a)。矿区废水(不包括渣堆淋滤水)pH值主要分布为2.94~6.42(表1),呈中−强酸性,铁、锰、镍等重金属离子严重超标,部分矿硐硐口虽已采用钢筋混凝土挡墙,但墙体、钢筋腐蚀强烈,仍可见磺水渗出。矿区弃渣主要沿炮桐沟、乌云沟沟道两侧山坡裸露堆放(13处,图3a图3b),总方量为154439 m3,全区渣堆体平面面积为36685 m2,弃渣粒径大小不一,堆存时间久远,局部稳定性较差,雨后可见磺水渗出(图5b),属性鉴别主要为二类固废。

    表  1  水样分析数据统计表(mg/L)
    Table  1.  The statistical table of water sample analysis data (mg/L)
    采样地点 地表水Ⅱ类
    水质标准
    1070
    平硐
    1006
    主井
    1006
    斜井
    2#尾矿
    库渗水
    1#尾矿
    库渗水
    乌云沟-5
    渣堆渗水
    乌云沟-6
    渣堆渗水
    pH 6~9 4.17 3.02 2.96 5.4 6.42 3.32 7.12
    1 1.54 0.61 2.92 0.05 L 0.05 L 0.11 0.05 L
    1 0.05 L 0.05 L 0.05 L 0.05 L 0.05 L 0.05 L 0.05 L
    0.1 5.33 1.98 7.4 5.36 1.84 0.66 0.34
    0.3 0.91 27.8 48 19.7 0.96 1.18 0.72
    0.005 0.0025 0.0008 0.0021 0.0006 0.0008 0.0015 0.001
    铬(六价) 0.05 0.004 L 0.005 0.004 0.004 L 0.004 L 0.004 L 0.004 L
    0.05 0.0003 0.0004 0.0003 L 0.0003 L 0.0003 L 0.0003 L 0.0003 L
    0.02 0.21 0.09 0.28 0.05 L 0.05 L 0.05 L 0.05 L
    采样
    地点
    地表水Ⅱ类
    水质标准
    乌云沟-4
    渣堆西侧渗水
    乌云沟-4
    渣堆东侧渗水
    乌云沟-4
    渣堆下游地表水
    乌云沟-5
    渣堆下游地表水
    鸳鸯池-8
    渣堆渗水
    鸳鸯池-1
    渣堆渗水
    pH 6-9 3.21 7.22 3.22 7.43 2.94 4.64
    1 0.19 0.05 L 0.29 0.05 L 1.67 0.05 L
    1 0.05 L 0.05 L 0.05 L 0.05 L 0.05 L 0.05 L
    0.01 0.0006 0.0008 0.0007 0.0008 0.0011 0.0006
    0.3 9.39 3.44 13.6 0.84 450 0.14
    0.00005 0.00011 0.00014 0.00008 0.00011 0.00013 0.0002
    0.005 0.0009 0.001 0.0007 0.0004 0.0036 0.0012
    总铬 / 0.005 0.004 L 0.009 0.004 L 0.017 0.004 L
    0.05 0.0003 L 0.0003 L 0.0003 0.0003 L 0.0006 0.0005
    0.02 0.07 0.05 L 0.1 0.05 L 0.57 0.05 L
     注:统计数据来源于2021年4月28日汉环集团陕西名鸿检测有限公司分析结果。L表示低于检出限。
    下载: 导出CSV 
    | 显示表格
    图  5  矿硐和弃渣磺水现状图
    a. 1006主平硐磺水现状图;b. 弃渣雨后磺水现状图
    Figure  5.  The plot of the current situation yellow water in the adit andwaste residue

    前期采矿活动造成矿硐水和弃渣淋滤水对下游河流水化学类型和水质产生了一定影响。为了探究污染源对木梓河及矿区周边地表水体的影响,前期共采集地表水样品16个。矿区地下水原生水化学类型为SO42− HCO3·CaMg、HCO3·Ca型水,呈弱碱性–中性水,受硫铁矿开采影响,矿硐水、渣堆淋滤水水化学类型均为SO42−·Ca型水,且SO42−离子含量显著增大,呈强酸性,pH值约2~3。通过对周边地表水体及下游木梓河的水化学类型进行分析可知,矿区上游地表水水化学类型主要为SO42− HCO3·CaMg、HCO3·Ca型水。受开采活动影响,矿硐及弃渣周边地表水体水化学类型为SO42−·Ca型水。流经矿区后,受到木梓河上游来水的稀释混合作用,在汇入木梓河的WLB4点,硫酸根离子占比有所减少,水化学类型为HCO3SO42−·Ca型水。随木梓河两侧地下水及支流天然来水的进一步稀释混合,在距矿区约33 km处,木梓河水化学类型演变为HCO3·Ca型水(MZH7),恢复天然地表水的水化学类型(图5)。由此可见,硫铁矿开采对矿区下游地表水体水化学类型影响较大。

    地面塌陷是金属矿山地下开采常见的地质灾害之一,尤其是在矿体开采厚度大、埋藏深度浅、围岩工程地质性质差的地段表现更为明显。采空塌陷一方面为地下水汇集形成蓄水空间,另一方面,塌陷周边的裂隙贯通围岩裂隙、采动裂隙,为地下水运移提供了良好的充水通道。根据水文地质调查资料显示,矿区矿坑水的主要来源之一就是地表水沿着塌陷裂隙入渗。因此查明采空塌陷的分布特征对于矿硐涌水防治极为重要。近年来,机载LiDAR和InSAR遥感技术在地面变形监测中具有较好的应用,通过Insar和遥感解译技术,发现研究区共发育地面塌陷9处(W-TX1~W-TX9)、断层6处(F1~F6)和不稳定斜坡4处(W-BWD1~W-BWD4),其中主断裂F1为近SN走向逆断层,次级断裂共5条,与主断裂斜交(图6a)。受采矿活动影响沿矿体走向方向上地面塌陷发育9处(表2),主要分布在何家湾−乌云沟一带,塌陷深度为0.4~2.5 m,单个面积为79.63~1201.81 m2,总面积约为4830.88 m2,规模较小,平面上基本沿矿体走向方向分布,形态呈近圆形、椭圆形(图6b图6e);4处不稳定斜坡坡度为24°~33°,高差为23.9~69.4 m,规模以小型为主(图6f)。

    图  6  地质灾害分布现状(a)及三维实景模型图/机载LiDAR影像(b~f)
    a. 地质灾害分布现状图;b. W-TX4三维实景模型正射影像;c. W-TX4机载LiDAR影像;d. W-TX6三维实景模型正射影像;e. W-TX6机载LiDAR影像;f.W-BWD2下错陡坎与局部塌陷区LiDAR影像
    Figure  6.  (a) The distribution graph of geological hazard and (b~f) real-time 3D/dairborne LiDAR image
    表  2  地面塌陷统计表
    Table  2.  The table of subsidence statistics
    编号面积(m2深度(m)形态特征
    W-TX189.330.7近圆形
    W-TX279.631.3近圆形
    W-TX3590.630.5椭圆形,长轴呈北东东向
    W-TX4574.222.2近圆形
    W-TX5716.532.5不规则四边形
    W-TX61201.810.6椭圆形,长轴呈近南北向
    W-TX7667.762.5近圆形
    W-TX8545.350.4椭圆形,长轴呈近西北北向
    W-TX9365.622.1近圆形
    合计4830.88
    下载: 导出CSV 
    | 显示表格

    五里坝矿山开采遗留的矿硐、巷道多,采空面积大,废弃井巷、采空、采动裂隙等为地下水的运移就储存提供了良好的空间,致使矿山地下水位下降,形成降落漏斗,岩溶突水改变了地下水的补给来源及补给量,改变了矿区地下水补给、径流及排泄条件,改变了矿区地下水循环系统。地表水渗漏改变了地下水的氧化还原电位等水化学条件,进而导致地下的硫铁矿风化溶解产酸。矿区地下水补给主要来自降雨补给,降雨在形成地表水后通过塌陷裂隙、岩溶裂隙、风井孔口等拉裂带不断补给含矿层地下水,造成了补给量的增大效应,增加了矿坑涌水量。矿坑地下水主要通过1006平硐、1006斜井、1070平硐及乌云沟、炮桐沟泉眼进行排泄,最终汇入牟子河(图7)。

    图  7  矿区地下水文循环模式图
    Figure  7.  The model graph of the groundwater circulation in mining area

    根据水循环现状和水文地质调查资料可知,矿区酸性矿排水主要来源于1006和1070矿硐水,而这两个矿硐水又主要来源于乌云沟沟脑、乌云沟魏家沟支沟及何家湾支沟地表径流的垂直入渗补给。

    (1)乌云沟沟脑径流入渗

    据调查资料,在乌云沟上游(1070矿硐左侧)地表平水期测得非灰岩地段流量为9.6 m3/d,但在下游20 m裸露灰岩地段地表径流消失,分析认为消失的水量是1070平硐涌水的主要来源。且1070平硐涌水经管道输送至炮桐沟1006斜井排出地面,在平水期实测流量337 m3/d,雨季观测降雨流量达512 m3/d,增加量为175 m3/d,同时观测到1070平硐口地表径流约1500 m3/d,据此推算最大涌水量达到604 m3/d。

    (2)乌云沟魏家沟支沟径流入渗

    降雨期间在观测魏家沟非灰岩地段与下游流经灰岩地段流量相差30 m3/d,且该地段灰岩(∈1sh5)渗透性好,据此分析渗漏量基本上全部径流至1006平硐,平水期入渗量在30~50 m3/d,根据汇水面积计算丰水期最大径流量约为1100 m3/d,推断最大涌水量达到132 m3/d。

    (3)乌云沟何家湾支沟地表径流入渗

    据调查资料,在采矿活动进行之前,何家湾泉流量大约在350~580 m3/d,受硫铁矿开采,干枯。按照2013年开挖矿1006矿坑突水量为3600 m3/d,该泉域的全部静储量被释放至岩溶含水层,造成了该泉域岩溶含水层的疏干,据此可知1006矿坑最大涌水量为3600 m3/d,按流域面积及入渗量估算最大可达2100 m3/d。

    早在20世纪20~30年代,学者们在研究过程中确定了酸性矿排水形成的化学和生物反应过程(徐志诚,2005)的形成机制,主要涉及到1个核心、3个条件。其中,1个核心是矿石内的硫元素,3个条件是水、氧气和生物氧化(王柱强等,2010)。鉴于样品分析项目中未包含细菌分析测试项,笔者主要分析AMD的水氧形成机理。矿区开采前地下水丰富,水质良好,原生水化学类型为SO42− HCO3·Ca∙Mg、HCO3·Ca型,且SO42−背景值偏高(46.57 mg/L)。受矿体开采影响,地下水化学类型发生严重变化,在矿坑揭露地段,围岩风化较强烈,节理裂隙发育,硫化物矿石矿中的硫离子在在水、空气等参与下发生氧化还原反应,转化成硫酸根离子(最大含量达1103.71 mg/L),最终的硫酸根离子不仅改善了水质的酸度,还溶解了难以溶解的铁、锰等重金属离子。因此,矿石中的硫或硫化物是形成酸性矿排水的核心因素。另一方面,矿区地下水是酸性矿排水产生的根源,乌云沟、炮桐沟地表水来开采前存在多出泉眼,受采动影响,泉水基本消失,这些地下水出露点在地表裂隙发育地段垂直入渗补给含水岩层,一旦含水岩层饱和后会沿着采空区、巷道等释放静储,并汇入斜井,这些水源在迁移、渗流过程与硫化物矿石中的硫离子发生氧化反应形成大量的酸性矿排水。也就是说,酸性矿排水的形成主要是矿区硫化物矿石中的硫离子在水和氧的作用下发生氧化还原反应,形成的含大量硫酸根离子的地下水在含水层饱和后,沿着围岩裂隙、孔洞、矿坑等释放出来的。

    通过分析矿区环境污染现状和酸性矿排水形成机理,综合认为酸性矿排水产生的原因主要有以下4点:乌云沟、魏家沟、何家湾沟道地表水沿着基岩裂隙进入矿硐(采空区);地表水汇入塌陷坑、塌陷裂隙后进入矿硐(采空区);何家湾地表径流垂直入渗;弃渣淋滤水。那么要系统解决酸性矿排水带来的一系列环境污染问题,首先要从根源上解决“水源”的问题,然后再从过程中控制,最后进行末端治理、风险管控等。结合矿区环境现状,提出“地表水治理+地下水治理+地质灾害治理+生态修复+末端治理+环境监测”的综合治理方案(图8),以达到隔绝地表水渗入矿硐、采空区形酸性矿排水,恢复矿区绿水青山面貌的目的。

    图  8  技术路线图
    Figure  8.  The technology roadmap

    五里坝硫铁矿治理工程包括地表水治理、矿硐(采空区)治理、弃渣治理、塌陷区治理、生态恢复等,其中的地表水、矿硐(采空区)、弃渣、塌陷区治理方法主要是“断源”,对于断源后的治理工程需要长时间的环境监测,也就是风险管控,其核心还是是前者。据此,根据目前国内外关于矿硐、废渣、塌陷等治理方法,结合矿区实际,主要探究出以下3种治理模式,以期为陕南硫铁矿类似矿山治理提供借鉴。

    (1)矿硐(采空区)治理:地质聚合物+弃渣混合充填

    矿区开采历史悠久,形成的采空区面积十余万方,废弃矿硐10余处。目前矿硐(采空区)治水的方法主要包括简易封堵、强化封堵、帷幕注浆、地质聚合物新型材料充填封堵。简易封堵和强化封堵是常见的矿硐(采空区)治水方法,但对于五里坝硫铁矿这种酸性环境的矿硐治理,无论是简易封堵还是强化封堵,在封堵一段时间后墙体、钢筋均受到不同程度的腐蚀,普通水泥、抗硫酸水泥等通用的硅酸盐材料都难以达到长久的效果。帷幕注浆主要用于地下水封堵、巷道加固,对于正在使用的矿硐治理效果较好,经验成熟,但工艺复杂,且成本较高,在本研究中的应用受到了一定的限制。地质聚合物新型材料充填封堵近年来在环保领域应用较为广泛,具有环境友好、抗酸、耐腐蚀、低渗透、固封重金属、耐久性好等优良特点(黎洁等,2020李建民等,2021)。五里坝硫铁矿弃渣(尾砂)中硅铝质含量较高,其本身就是制备地质聚合物很好的一种原材料,渣和地质聚合物二者的亲和度很高,利用它们拌合后充填矿硐(采空区),既可解决矿硐磺水横流、重金属超标问题,又可消除弃渣裸露堆放、磺水渗流、占用土地资源、破坏地形地貌景观的问题。因此,利用地质聚合物和弃渣混合后形成的混合材料充填矿硐(采空区)是治理矿硐最佳手段。本着充分利用废渣,优化配比降低成本的原则,根据试验和略阳县长沟硫铁矿酸性水治理工程经验(李麟等,2022年),推荐重量配合比为弃渣∶地质聚合物∶水=100∶22∶45,具体配比可根据矿石化学成分进行适当调整。

    (2)弃渣治理:综合利用充填矿硐+生态恢复

    弃渣治理技术主要包括原位异位处置、风险管控和综合利用三大类。原位异位管控包括建库处置、原位固结封存,原位建库对于陕南秦巴山区这种生态脆弱区而言,需要占用大量的土地资源,且建库投资成本较大,后期需要维护,这种处置方式也不能一劳永逸的解决问题。风险管控主要是原位修整、覆土复绿等,对于废渣污染程度低,危害程度小,治理难度低,可采取这种简易的管控措施,像五里坝矿区这种污染范围大、污染程度严重、治理难度大的矿区,仅仅采取管控措施不能存在解决酸性矿排水的问题。综合利用主要是将弃渣用于建筑材料、微晶玻璃、土壤固化剂、多孔陶粒等(聂轶苗等,2009)。通过综合利用既可解决废渣占地,破坏地形地貌景观,又可消除环境污染风险,还可产生一定的社会效益、经济效益、生态效益。五里坝硫铁矿矿区形成的采空区面积大、废渣量达10余万方,占地面积大,污染程度严重,采用废渣资源化利用,即,用其结合地质聚合物拌合后充填采空区、矿硐,应是弃渣治理的最好方式。根据13处弃渣所处的位置及渣堆特征,按照就近处置、就近充填的原则,全部充填至矿硐(采空区),以实现弃渣全部资源化利用、无害化处理。充填之后,对于弃渣场地,按照渣场所在的土地利用类型,按照宜耕则耕,宜林则林的原则,优先恢复成耕地、园地、林地,恢复矿区绿水青山面貌。

    (3)塌陷区治理:注浆加固+充填+生态恢复

    塌陷区采用的治理方法主要有注浆法、充填复垦法。注浆法是在查清地下含水层、塌陷坑的分布及其影响范围的基础上,采用钻孔灌注法将一定比例的灌浆材料注入塌陷区,填充地下孔隙(洞)、隔断地下水流通道,加固岩土体结构,使之达到稳定状态的方法。充填复垦法是利用矿区已有的废石弃渣作为充填材料来充填地表采空塌陷坑,然后覆土复田,或实施生态恢复,这种方法既解决了塌陷区复垦、生态恢复难题,又解决了矿山固体废弃物的处理问题。注浆法可较为全面解决因塌陷坑及周边的次生裂缝引发的矿硐水水源问题,但是单一的注浆法对生态环境扰动较大,且治理后不利于恢复山体同貌,辅助以充填复垦法,既可系统解决塌陷引起的水源问题,又可恢复矿区生态环境。综合认为,对注浆加固+充填+生态恢复可以解决矿区塌陷引起的酸性矿排水问题。对于注浆孔的布设,参照类似矿山注浆经验,设计采用10 m×10 m 网格布设,钻孔深度根据塌陷裂隙发育程度和采空区埋藏深度等来综合确定,单孔平均深度约40 m,浆液采用渣、地质聚合物和水组成,推荐浆液重量配合比为渣∶地质聚合物∶水=1.25∶0.27∶0.56,具体配比根据研究区域矿渣性质进行调整。在注浆加固的基础上,再采用地质聚合物和渣形成拌合材料对塌陷坑进行充填,最后进行生态恢复,消除塌陷坑汇水面积,减少地表水对地下水的补给渗流。

    (1)笔者以西乡县五里坝硫铁矿为例,以遥感调查、地面调查和实验测试为研究方法,分析了矿区存在的生态环境问题:矿排水水量大,水质呈中−强酸性,铁、锰、镍等重金属离子严重超标;大量弃渣裸露堆放,破坏地形地貌景观,弃渣淋滤水污染地表水体;地面塌陷、不稳定斜坡等地质灾害发育,破坏生态环境。

    (2)通过分析矿区地下水循环模式、水化学类型和酸性矿排水水源等,认为AMD的形成主要是矿区硫化物矿石中的硫离子在水和氧的作用下发生氧化还原反应,形成大量含硫酸根离子的地下水在含水层饱和后,沿着围岩裂隙、孔洞、矿坑等释放而出。

    (3)本着以治理水源为目的,按照“源头治理+过程控制+末端治理+风险管控”的思路,提出“地表水治理+地下水治理+地质灾害治理+生态修复+末端治理+环境监测”治理方案,并探究了矿硐、弃渣和塌陷区3种治理模式。

    (4)硫铁矿矿山环境治理是一个世界性难题,存在一定的复杂性和隐蔽性。目前探究将地质聚合物混合弃渣充填矿硐(采空区)技术应用在硫铁矿矿山酸性水治理修复中,对于后期陕南地区硫铁矿治理有一定的引领示范作用。硫铁矿治理方法处于探索阶段,该方法可借鉴,但也存在不足,因而要加强各种新技术、新方法、新材料的探讨以及试点研究,不断提高治理技术的科学性、经济性、合理性。

  • 图  1   典型造山带岩浆铜镍硫化物矿床分布图(据李文渊,2007修改)

    Figure  1.   Distribution of typical orogenic belt magmatic Cu-Ni sulfide deposits

    图  2   典型造山带岩浆铜镍硫化物矿床Sr-Nd同位素组成

    数据来源:东天山–北山造山带(尤敏鑫,2022及参考文献);东昆仑造山带(姜常义等,2015Peng et al.,2016);西班牙瓦里斯坎造山带(Casquet et al.,2001);芬兰斯韦坎尼造山带(Makkonen et al.,2007);塔里木地幔柱(余星,2009Zhou et al.,2009Zhang et al.,2012Li et al.,2012Wei et al.,2014王振朝,2019);金川铜镍矿(张宗清等,2004Duan et al.,2016Tang et al.,2018);亏损地幔、大陆地壳和俯冲沉积物(Plank et al.,1998Vervoort et al.,1999Chauvel et al.,2009

    Figure  2.   Sr-Nd isotopic composition of magmatic copper-nickel sulfide deposits in typical orogenic belts

    图  3   造山带铜镍硫化物矿床和典型大火成岩省地幔潜能温度(据Liu et al. 2017修改)

    数据来源:东天山-北山造山带(苏本勋, 2011; Mao et al., 2014; 徐刚, 2013; 阮班晓等, 2020);东昆仑造山带(李文渊等, 2020);太古宙科马提岩和大火成岩省(Herzberg et al., 2009; Bizimis and Peslier, 2015; Herzberg, 2016; Liu et al., 2017);平均MORB(Niu et al., 2011; Ivanov, 2015

    Figure  3.   Mantle potential temperature of Cu-Ni sulfide deposits in orogenic belt and typical large igneous provinces

    图  4   造山带和非造山带铜镍硫化物矿床S同位素组成

    数据来源:东天山–北山造山带(尤敏鑫,2022及参考文献);东昆仑和西班牙瓦里斯坎造山带 (Casquet et al.,2001王冠,2014姜常义等,2015Zhang et al.,2017);非造山带(Lightfoot et al.,1984Grinenko,1985Abzalov et al.,1997Ripley et al.,1999Barnes et al.,2001Li et al.,2003Ripley et al.,2003Li et al.,2003Ripley et al.,2005aDing et al.,2009Seat et al.,2009Maier et al.,2010

    Figure  4.   S isotopic composition of Cu-Ni sulfide deposits in orogenic and non-orogenic belts

  • 陈文, 孙枢, 张彦, 等. 新疆东天山秋格明塔什—黄山韧性剪切带40Ar/39Ar年代学研究[J]. 地质学报, 2005, 796): 790804.

    CHEN Wen, SUN Su, ZHANG Yan, et al. 40Ar/39Ar geochronology of the Qiugemingtashi-Huangshan ductile shear zone in east Tianshan, Xinjiang, NW China[J]. Acta Gological Sinica, 2005, 796): 790804.

    邓宇峰, 宋谢炎, 颉炜, 等. 新疆北天山黄山东含铜镍矿镁铁-超镁铁岩体的岩石成因: 主量元素、微量元素和Sr-Nd同位素证据[J]. 地质学报, 2011, 859): 3955.

    DENG Yufeng, SONG Xieyan, XIE Wei, et al. Petrogenesis of the Huangshandong Ni-Cu Sulfide-Bearing Mafic-Ultramafic Intrusion, Northern Tianshan, Xinjiang: Evidence from Major and Trace Elements and Sr-Nd Isotope[J]. Acta Geologica Sinica, 2011, 859): 3955.

    翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动—前沿热点介绍与展望[J]. 岩石学报, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

    ZHAI Mingguo, ZHAO Lei, ZHU Xiyan, et al. Review and overview for the frontier hotspot: Early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

    韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 2004, 4922): 24242429.

    HAN Baofu, JI Jianqing, SONG Biao, et al. SHRIMP zircon U-Pb ages of Kalatongke no. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications[J]. Chinese Science Bulletin, 2004, 4922): 24242429.

    姜常义, 程松林, 叶书锋, 等. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因[J]. 岩石学报, 2006, 221): 115126. doi: 10.3321/j.issn:1000-0569.2006.01.012

    JIANG Changyi, CHENG Songlin, YE Shufeng, et al. Lithogeochemistry and petrogenesis of Zhongposhanbei maflc rock body, at Beishan region, Xinjiang[J]. Acta Petrologica Sinica, 2006, 221): 115126. doi: 10.3321/j.issn:1000-0569.2006.01.012

    姜常义, 凌锦兰, 周伟, 等. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 2015, 314): 11171136.

    JIANG Changyi, LING Jinlan, ZHOU Wei, et al. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment[J]. Acta Petrologica Sinica, 2015, 314): 11171136.

    李文渊, 牛耀龄, 张照伟, 等. 新疆北部晚古生代大规模岩浆成矿的地球动力学背景和战略找矿远景[J]. 地学前缘, 2012, 194): 4150.

    LI Wenyuan, NIU Yaoling, ZHANG Zhaowei, et al. Geodynamic setting and further exploration of magmatism related mineralization concentrated in the Late Paleozoic in the northern Xinjiang Autonomous Region[J]. Earth Science Frontiers, 2012, 194): 4150.

    李文渊, 王亚磊, 钱兵, 等. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 2020, 272): 276293.

    LI Wenyuan, WANG Yalei, QIAN Bing, et al. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in mar-gin of Tarim Block[J]. Earth Science Frontiers, 2020, 272): 276293.

    李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 348): 22012210.

    LI Wenyuan. The primary discussion on the relationship between Paleo-Asian Ocean and Paleo-Tethys Ocean[J]. Acta Petrologica Sinica, 2018, 348): 22012210.

    李文渊. 岩浆Ni-Cu-PGE矿床研究现状及发展趋势[J]. 西北地质, 2007, 402): 128. doi: 10.3969/j.issn.1009-6248.2007.02.001

    LI Wenyuan. The Current Status and Prospect on Magmatic Ni-Cu-PGE Deposits[J]. Northwestern Geology, 2007, 402): 128. doi: 10.3969/j.issn.1009-6248.2007.02.001

    马吉雄, 赵海超, 冶建虎. 青海格尔木市水仙南地区基性—超基性岩体特征及找矿前景分析[J]. 矿产勘查, 2022, 1310): 14301436.

    MA Jixiong, ZHAO Haichao, YE Jianhu. Characteristics of basic-ultrabasic rock mass and ore prospecting potential in Shuixiannan area, Ge’ermu city, Qinghai Province[J]. Mineral Exploration, 2022, 1310): 14301436.

    祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 3011): 33453356.

    QI Shengsheng, SONG Shuguang, SHI Lianchang, et al. Discovery and its geological significance of Early Paleozoic eclogite inXiarihamu-Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 2014, 3011): 33453356.

    阮班晓, 吕新彪, 俞颖敏, 等. 新疆北山二叠纪镁铁-超镁铁质岩成因、成矿作用和找矿信息[J]. 地球科学, 2020, 4512): 44814497.

    RUAN Banxiao, LU Xinbiao, YU Yingmin, et al. Petrogenesis, Mineralization and Prospecting Information of Permian Mafic-Ultramafic Rocks, Beishan, Xinjiang[J]. Earth Science, 2020, 4512): 44814497.

    三金柱, 秦克章, 汤中立, 等. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J]. 岩石学报, 2010, 2610): 30273035.

    SAN Jinzhu, QIN Kezhang, TANG Zhongli, et al. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications[J]. Acta Petrologica Sinica, 2010, 2610): 30273035.

    宋谢炎, 胡瑞忠, 陈列锰. 中国岩浆铜镍硫化物矿床地质特点及其启示[J]. 南京大学学报(自然科学), 2018, 542): 221235.

    SONG XieYan, HU Ruizhong, CHEN Liemeng, et al. Characteristics and inspirations of the Ni-Cu sulfide deposits in China[J]. Journal of Nanjing University (Natural Science), 2018, 542): 221235.

    宋谢炎. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 2019, 384): 699710.

    SONG Xieyan. Current research status and important issues of magmatic sulfide deposits[J]. Mineral Deposits, 2019, 384): 699710.

    苏本勋. 新疆北山镁铁-超镁铁岩的成岩过程、成矿作用及对东天山-北山构造演化与早二叠世地幔柱的制约[D]. 北京: 中国科学院研究生院, 2011.
    孙涛, 钱壮志, 汤中立, 等. 新疆葫芦铜镍矿床锆石U-Pb年代学、铂族元素地球化学特征及其地质意义[J]. 岩石学报, 2010, 2611): 33393349.

    SUN Tao, QIAN Zhuangzhi, TANG Zhongli, et al. Zircon U-Pb chronology, platinum group element geochemistry characteristics of Hulu Cu-Ni deposit, East Xinjiang, and its geological significance[J]. Acta Petrologica Sinica, 2010, 2611): 33393349.

    王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木铜镍矿镁铁质超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 216): 381401.

    WANG Guan, SUN Fengyue, LI Bile, et al. Petrography, zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun, with implications for geodynamic setting[J]. Earth Science Frontiers, 2014, 216): 381401.

    王小红, 杨建国, 王磊, 等. 地质物化探综合方法在甘肃北山红柳沟铜镍矿的应用[J]. 西北地质, 2023, 566): 254261.

    WANG Xiaohong, YANG Jianguo, WANG Lei, et al. The Application Effect of Geological Geophysical and Geochemical Exploration Comprehensive Method in Hongliugou Copper–Nickel Deposit, Beishan, Gansu Province[J]. Northwestern Geology, 2023, 566): 254261.

    王亚磊, 李文渊, 林艳海, 等. 金川超大型铜镍矿床钴的赋存状态与富集过程研究[J]. 西北地质, 2023, 562): 133150.

    WANG Yalei, LI Wenyuan, LIN Yanhai, et al. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit[J]. Northwestern Geology, 2023, 562): 133150.

    王振朝. 塔里木二叠纪溢流玄武岩岩石成因研究[D]. 北京: 中国地质大学(北京), 2019: 29−33.

    WANG Zhenchao. Petrogenesis of Permian overflow basalt in Tarim [D]. Beijing: China University of Geosciences (Beijing), 2019: 29−33.

    夏明哲, 姜常义, 钱壮志, 等. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因[J]. 岩石学报, 2010, 268): 24132430.

    XIA Mingzhe, JIANG Changyi, QIAN Zhuangzhi, et al. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2010, 268): 24132430.

    肖庆华, 秦克章, 唐冬梅, 等. 新疆哈密香山铜镍-钛铁矿床系同源岩浆分异演化产物—矿相学、锆石U-Pb年代学及岩石地球化学证据[J]. 岩石学报, 2010, 262): 503522.

    XIAO Qinghua, QIN Kezhang, TANG Dongmei, et al. Xiangshanxi composite Cu-Ni-Ti-Fe deposit belongs to comagmatic evolution product: Evidences from ore microscopy, zircon U-Pb chronology and petrological geochemistry, Hami, Xinjiang, NW China[J]. Acta Petrologica Sinica, 2010, 262): 503522.

    熊小林, 刘星成, 李立, 等. 俯冲带微量元素分配行为研究: 进展和展望[J]. 中国科学: 地球科学, 2020, 6312): 19381951.

    XIONG Xiaolin, LIU Xingcheng, LI Li, et al. The Partitioning behavior of trace elements in subduction zones: Advances and Prospects[J]. Science China Earth Sciences, 2020, 6312): 19381951.

    徐刚. 甘肃北山地区黑山铜镍硫化物矿床成矿作用研究[D]. 西安: 长安大学, 2013.

    XU Gang. Study on mineralization of Heishan Copper-nickel sulfide deposit in Beishan area, Gansu Province [D]. Xi'an: Chang 'an University, 2013.

    薛胜超, 刘金宇, 周翊, 等. 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报, 2024, 401): 6078. doi: 10.18654/1000-0569/2024.01.03

    XUE Shengchao, LIU Jinyu, ZHOU Yi, et al. Genetic correlation of metasomatized mantle source with Ni-Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica, 2024, 401): 6078. doi: 10.18654/1000-0569/2024.01.03

    杨兴科, 张连昌, 姬金生, 等. 东天山秋格明塔什-黄山韧性剪切带变形特征分析[J]. 西安工程学院学报, 1998, 203): 1118.

    YANG Xingke, ZHANG Lianchang, JI Jinshen, et al. Analysis of deformation features of Qiumingtashi Huangshan ductile shear zone, Eastern Tianshan[J]. Journal of Xi’an Engineering University, 1998, 203): 1118.

    尤敏鑫. 新疆东天山西段岩浆铜镍硫化物矿床岩浆起源与成矿机制[D]. 北京: 中国地质科学院, 2022: 1−251.

    YOU Minxin. Origin and genetic mechanism of magmatic Ni-Cu sulfide deposits in the western part of Eastern Tianshan region, Xinjiang, China[D]. Beijing: Chinese Academy of Geological Sciences, 2022: 1−251.

    余星. 塔里木早二叠世大火成岩省的岩浆演化与深部地质作用[D]. 杭州: 浙江大学, 2009: 1−141.

    YU Xing. Magmatic evolution and deep geological processes of the large igneous province in the Early Permian, Tarim [D]. Hangzhou: Zhejiang University, 2009: 1−141.

    张照伟, 谭文娟, 杜辉, 等. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究[J]. 西北地质, 2023, 566): 242253.

    ZHANG Zhaowei, TAN Wenjuan, DU Hui, et al. Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China[J]. Northwestern Geology, 2023, 566): 242253.

    张宗清, 杜安道, 唐索寒, 等. 金川铜镍矿床年龄和源区同位素地球化学特征[J]. 地质学报, 2004, 783): 359365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    ZHANG Zhongqing, DU Andao, TANG Suohan, et al. Age of the Jinchuan Copper-Nickel Deposit and Isotopic Geochemical Feature of Its Source[J]. Acta Geologica Sinica, 2004, 783): 359365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    赵子福, 戴立群, 郑永飞. 大陆俯冲带两类壳幔相互作用[J]. 中国科学: 地球科学, 2015, 587): 12691283.

    ZHAO Zhifu, DAI Liqun, ZHENG Yongfei. Two types of the crust-mantle interaction in continental subduction zones[J]. Science China: Earth Sciences, 2015, 587): 12691283.

    赵达成, 王美乐, 李章志贤, 等. 夏日哈木岩浆硫化物矿床中钴和镍关键金属的赋存状态及分布规律[J]. 西北地质, 2023, 566): 1740.

    ZHAO Dacheng, WANG Meile, LI Zhangzhixian, et al. The Occurrence and Distribution of Cobalt and Nickel Key Metals in the Xiarihamu Magmatic Sulfide Deposit[J]. Northwestern Geology, 2023, 566): 1740.

    郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 593): 651681.

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones[J]. Science China Earth Sciences, 2016, 593): 651681.

    周伟, 汪帮耀, 夏明哲, 等. 东昆仑石头坑德镁铁-超镁铁质岩体矿物学特征及成矿潜力分析[J]. 岩石矿物学杂志, 2016, 351): 8196. doi: 10.3969/j.issn.1000-6524.2016.01.006

    ZHOU Wei, WANG Bangyao, XIA Mingzhe, et al. Mineralogical characteristics of Shitoukengde mafic_ultramafic intrusion and analysis of its metallogenic potential, East Kunlun[J]. Acta Petrologica et Mineralogica, 2016, 351): 8196. doi: 10.3969/j.issn.1000-6524.2016.01.006

    钟世华, 黄宇, 刘永乐, 等. 东昆仑志留纪—泥盆纪关键金属成矿大爆发[J]. 地质通报, 2025, 444): 574586.

    ZHONG Shihua, HUANG Yu, LIU Yongle, et al. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt[J]. Geological Bulletin of China, 2025, 444): 574586.

    Abzalov M Z, Both R A. The Pechenga Ni-Cu deposits, Russia-Data on PGE and Au distribution and sulphur-isotope compositions[J]. Mineralogy and Petrology, 1997, 61: 119143. doi: 10.1007/BF01172480

    Annen C, Blundy J D, Sparks R S J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones[J]. Journal of Petrology, 20063): 505539.

    Barnes S J, Godel B, Gűrer D, et al. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides[J]. Economic Geology, 2013, 108: 19711982.

    Barnes S J, Makkonen H V, Dowling S E, et al. The 1.88 Ga Kotalahti and Vammala Nickel Belts, Finland: Geochemistry of the mafic and ultramafic metavolcanic rocks[J]. Bulletin of Geology Society of Finland, 2009, 81: 103141. doi: 10.17741/bgsf/81.2.002

    Barnes, Sarah-Jane, Melezhik VA et al. The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia[J]. The Canadian Mineralogist, 2001, 39: 447471. doi: 10.2113/gscanmin.39.2.447

    Bird, P. Continental delamination and the Colorado Plateau[J]. Journal of Geophysical Research-Solid Earth, 1979, 84: 75617571. doi: 10.1029/JB084iB13p07561

    Bizimis M, Peslier A H. Water in Hawaiian garnet pyroxenites: implications for water heterogeneity in the mantle[J]. Chemical Geology, 2015, 397: 6175. doi: 10.1016/j.chemgeo.2015.01.008

    Branquet Y, Gumiaux C, Sizaret S, et al. Synkinematic mafic/ultramafic sheeted intrusions: Emplacement mechanismand strain restoration of the Permian Huangshan Ni-Cu ore belt (eastern Tianshan, NW China)[J]. Journal of Asian Earth Sciences, 2012, 56: 240257. doi: 10.1016/j.jseaes.2012.05.021

    Brzozowski M J, Good D J, Yan W H, et al. Mg-Fe isotopes link the geochemical complexity of the Coldwell Complex, Midcontinent Rift to metasomatic processes in the mantle[J]. Journal of Petrology, 2022, 638): egac081. doi: 10.1093/petrology/egac081

    Brzozowski M J, Samson I M, Gagnon J E, et al. Oxide mineralogy and trace element chemistry as an index to magma evolution and Marathon-type mineralization in the Eastern Gabbro of the alkaline Coldwell Complex, Canada[J]. Mineralium Deposita, 2021, 56: 621642. doi: 10.1007/s00126-020-00985-7

    Casquet C, Galindo C, Tornos F et al. The Aguablanca Cu–Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: age and isotope composition of magmas (Sr, Nd)and ore (S)[J]. Ore Geology Reviews, 2001, 18: 237250.

    Chauvel C, Marini J C, Plank T, et al. Ludden, J. N., 2009. Hf–Nd input flux in the Izu–Mariana subduction zone and recycling of subducted material in the mantle[J]. Geochemistry, Geophysics, Geosystems, 2009, 10, Q01001.

    Chen L M, Song X Y, Hu R Z, et al. Mg- Sr-Nd isotopic insights into petrogenesis of the Xiarihamu mafic-ultramafic intrusion, northern Tibetan Plateau, China[J]. Journal of Petrology, 2021, 622): egaa113. doi: 10.1093/petrology/egaa113

    Condie K C, Kröner A. When did plate tectonics begin? Evidence from the geologic record. In: Condie K C and Pease V(eds.). When did Plate Tectonics Begin on Planet Earth? [M]. Geological Society of America, 2008, 440: 281−294.

    Cui M M, Su B X, Wang J, et al. Linking selective alteration, mineral compositional zonation and sulfide melt emplacement in orogenic-type magmatic Ni-Cu sulfide deposits[J]. Journal of Petrology, 2022, 636): egac043. doi: 10.1093/petrology/egac043

    Deng Y F, Song X Y, Xie W, et al. The role of external sulfur in triggering sulfide immiscibility at depth: Evidence from the Huangshan-Jingerquan Ni-Cu Metallogenic Belt, NW China[J]. Economic Geology, 2022, 1178): 18671879. doi: 10.5382/econgeo.4928

    Deng Z B, Chaussidon M, Guitreau M, et al. An oceanic subduction origin for Archaern granitoids revealed by silicon isotopes[J]. Nature Geoscience, 2019, 129): 774778. doi: 10.1038/s41561-019-0407-6

    Ding X, Ripley E M, Li C S et al. Multiple S isotopic study of the Eagle Ni-Cu-PGE magmatic deposit, northern Michigan, USA [abs.]: American Geophysical Union, Fall Meeting 2009, abstract, V21A-1971.

    Dong Y P, He D F, Sun S S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth Science Reviews, 2018, 186: 231–261.

    Duan J, Li C S, Qian Z Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China[J]. Mineralium Deposita, 2016, 514): 557574. doi: 10.1007/s00126-015-0626-8

    Ducea M N, Bowman E, Chapman A D, et al. Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry[J]. Earth Science Reviews, 2021, 314: 103375.

    Gao J F, Zhou M F, Lightfoot P C, et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshangdong Ni-Cu sulfide deposit, Xinjiang, northwestern China[J]. Economic Geology, 2013, 1088): 18331848. doi: 10.2113/econgeo.108.8.1833

    Ge R F, Zhu W B, Wilde S A, et al. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 2018, 42): eaao3159. doi: 10.1126/sciadv.aao3159

    Good D J, Hollings P, Dunning G, et al. A new model for the Coldwell Complex and associated dykes of the Midcontinent Rift, Canada[J]. Journal of Petrology, 2021, 627): egab036. doi: 10.1093/petrology/egab036

    Good D J, Lightfoot P C. Significance of the metasomatized lithospheric mantle in the formation of early basalts and Cu-platinum group element sulfide mineralization in the Coldwell Complex Midcontinent Rift, Canada[J]. Canadian Journal of Earth Sciences, 2019, 567): 693714. doi: 10.1139/cjes-2018-0042

    Grinenko L N. Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform[J]. International Geology Review, 1985, 28: 695708.

    Helmy H M and Mogessie A. Gabbro Akarem, eastern Desert, Egypt: Cu-Ni-PGE mineralization in a concentrically zoned mafic-ultramafic complex[J]. Mineralium Deposita, 2001, 361): 5871. doi: 10.1007/s001260050286

    Herzberg C, Gazel E. Petrological evidence for secular cooling in mantle plumes[J]. Nature, 2009, 458: 619622. doi: 10.1038/nature07857

    Herzberg C. Petrological evidence from komatiites for an early Earth carbon and water cycle[J]. Journal of Petrology, 2016, 57: 117. doi: 10.1093/petrology/egw007

    Himmelberg G R and Loney R A. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska[J]. US Geological Survey, Professional Papers, 1995, 1564: 147.

    Ivanov A V. Why volatiles are required for cratonic flood basalt volcanism: Two examples from the Siberian craton, in Foulger, G. R., Lustrino, M., and King, S. D., eds., The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson: Geological Society of America Special Paper 514 and American Geophysical Union Special Publication, 2015, 71: 325-338.

    Lee C T, Anderson D. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle[J]. Science Bulletin, 2015, 60: 11411156. doi: 10.1007/s11434-015-0828-6

    Lee C T, Cheng X, Horodyskyj U. The development and refinement of continental arcs by primary basalt magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California[J]. Contributions to Mineralogy and Petrology, 2006, 151: 222242. doi: 10.1007/s00410-005-0056-1

    Li C S, Ripley E M, Naldrett A J. Compositional variation of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia—Implications for ore-forming processes in dynamic magma conduits[J]. Economic Geology, 2003, 98: 6886.

    Li C, Zhang M J, Fu P, et al. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: Product of slab window magmatism?[J]. Mineralium Deposita, 2012, 47: 5167.

    Li C, Zhang Z, Li W, et al. Geochronology, petrology and Hf-S isotope geochemistry of the newly discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China[J]. Lithos, 2015, 216-217: 224240. doi: 10.1016/j.lithos.2015.01.003

    Li Y Q, Li Z L, Sun Y L, et al. Platinum-group elements and geochemical characteristics of the Permian continental flood basalts in the Tarim Basin, northwest China: Implications for the evolution of the Tarim Large Igneous Province[J]. Chemical Geology, 2012a, 328: 278289. doi: 10.1016/j.chemgeo.2012.03.007

    Lightfoot P C and Evans-Lamswood D. Structural controls on the primary distribution of mafic-ultramafic intrusions containing Ni-Cu-Co-(PGE) sulfide mineralization in the roots of large igneous provinces[J]. Ore Geology Reviews, 2015, 64: 354386. doi: 10.1016/j.oregeorev.2014.07.010

    Lightfoot P C, Naldrett A J, Hawkesworth C J. The geology and geochemistry of the Waterfall Gorge Section of the Insizwa Complex with particular reference to the origin of the nickel sulfide deposits[J]. Economic Geology, 1984, 79: 18571879. doi: 10.2113/gsecongeo.79.8.1857

    Liu J, Xia Q K, Kuritani T, et al. Mantle hydration and the role of water in the generation of large igneous provinces[J]. Nature Communications, 2017, 81): 1824. doi: 10.1038/s41467-017-01940-3

    Loney R A and Himmelberg G R. Petrogenesis of the Pd-rich intrusion at Salt Chuck, Prince of Wales Island; an Early Paleozoic Alaskan-type ultramafic body[J]. The Canadian Mineralogist, 1992, 304): 10051022.

    Maier W D, Barnes S J, Chinyepi G, et al. The composition of magmatic Ni-Cu-(PGE) sulfide deposits in the Tati and Selebi-Phikwe belts of eastern Botswana[J]. Mineralium Deposita, 2008, 431): 3760. doi: 10.1007/s00126-007-0143-5

    Maier W D, Barnes S J. The Kabanga Ni sulfide deposits, Tanzania-II. Chalcophile and siderophile element geochemistry[J]. Mineralium Deposita, 2010, 45: 443460. doi: 10.1007/s00126-010-0283-x

    Makkonen H V, Huhma H. Sm-Nd data for mafic-ultramafic intrusions in the Svecofennian (1.88 Ga) Kotalahti Nickel Belt, Finland–implications for crustal contamination at the Archaean/Proterozoic boundary[J]. Bulletin of the Geological Society of Finland, 2007, 79: 175201. doi: 10.17741/bgsf/79.2.003

    Manning C E. The chemistry of subduction-zone fluids[J]. Earth Planetary Science Letters, 2004, 2231-2): 116. doi: 10.1016/j.jpgl.2004.04.030

    Manor M J, Scoates J S, Nixon G T, et al. The giant Mascot Ni-Cu-PGE deposit, British Columbia: Mineralized conduits in a convergent margin tectonic setting[J]. Economic Geology, 2016, 1111): 5783. doi: 10.2113/econgeo.111.1.57

    Mao Y J, Qin K Z, Li C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Centeral Asian Orogenic Belt, western China[J]. Lithos, 2014, 200-201: 111125. doi: 10.1016/j.lithos.2014.04.008

    Meissner R, Mooney W. 1998 Weakness of the lower continental crust: a condition for delamination, uplift, and escape[J]. Tectonophysics, 1998, 296: 4760. doi: 10.1016/S0040-1951(98)00136-X

    Naldrett A J. Magmatic sulfide deposits-geology, geochemistry and exploration[M]. Berlin: Heidelberg. New York: Springer. 2004, 1728.

    Niu Y, Wilson M, Humphreys E R, et al. The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications[J]. Journal of Petrology, 2011, 52: 14431468. doi: 10.1093/petrology/egr030

    O′Neil J, Maurice C, Stevenson R K, et al. The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) greenstone belt, northeastern Superior Province, Canada[J]. Developments in Precambrian Geology, 2007, 15: 219250. doi: 10.1016/S0166-2635(07)15034-9

    Ortega L, Lunar R, Garcia-Palomero F, et al. The Aguablanca Ni-Cu-PGE Deposit, southwestern Iberia: Magmatic ore-forming processes and retrograde evolution[J]. Canadian Mineralogist, 2004, 42: 325350. doi: 10.2113/gscanmin.42.2.325

    Peltonen P. Magma-country rock interaction and the genesis of Ni-Cu deposits in the Vammala nickel belt, SW Finland[J]. Mineralogy and Petrology, 1995, 52: 124. doi: 10.1007/BF01163124

    Peng B, Sun F Y, Li B L, et al. The geochemistry and geochronology of the Xiarihamu II mafic-ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Ore Geology Reviews, 2016, 73: 1328. doi: 10.1016/j.oregeorev.2015.10.014

    Pettigrew N T and Hattori K H. The Quetico intrusions of western superior province: Neo-Archean examples of Alaskan /Uraltype mafic-ultramafic intrusions[J]. Precambrian Research, 2006, 1491-2): 2142. doi: 10.1016/j.precamres.2006.06.004

    Piňa R, Lunar R, Ortega L, et al. Petrology and geochemistry of mafic-ultramafic fragments from the Aguablanca Ni-Cu Ore Breccia, southwest Spain[J]. Economic Geology, 2006, 101: 865881. doi: 10.2113/gsecongeo.101.4.865

    Piña R, Romeo I, Ortega L, et al. Origin and emplacement of the Aguablanca magmatic Ni-Cu-(PGE) sulfide deposit, SW Iberia: A multidisciplinary approach[J]. Geological Society of America Bulletin, 2012, 1225-6): 915925.

    Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145: 325394. doi: 10.1016/S0009-2541(97)00150-2

    Qin K Z, Su B X, Sakyi P A, et al. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NW China): Constraints on a ca. 280 Ma mantle plume2006[J]. American Journal of Science, 2011, 311: 237260. doi: 10.2475/03.2011.03

    Ripley E M, Li C S and Thakurta J. Magmatic Cu-Ni-PGE mineralization at a convergent plate boundary: Preliminary mineralogic and isotopic studies of the Duke Island complex, Alaska[A]. In: Mao J and Bierlein F P, eds. Mineral deposit research: Meeting the global challenge[C]. Berlin, Heidelberg: Springer, 2005, 49−51.

    Ripley E M, Park Y R, Li C S, et al. Sulfur and oxygen isotopic evidence of country-rock contamination in the Voisey’s Bay Ni-Cu-Co deposit, Labrador, Canada[J]. Lithos, 1999, 47: 5368. doi: 10.1016/S0024-4937(99)00007-9

    Ripley E M, Sarkar A, Li C S. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China[J]. Economic Geology, 2005a, 100: 13491361. doi: 10.2113/gsecongeo.100.7.1349

    Ripley EM, Li, Chusi. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits[J]. Economic Geology, 2003, 98: 635641. doi: 10.2113/gsecongeo.98.3.635

    Scheel J E, Scoates J S, Nixon G T. Chromian spinel in the Turnagain Alaskan-type ultramafic intrusion, northern British Columbia, Canada[J]. The Canadian Mineralogist, 2009, 471): 6380. doi: 10.3749/canmin.47.1.63

    Schmidt M W, Poli S. Devolatilization during subduction[M]. In: Turekian K K, ed. Treatise on Geochemistry (Second Edition). Oxford: Elsevier, 2014, 669–697.

    Seat Z, Beresford S W, Grguric B A, et al. Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits—Evidence from the Nebo-Babel Ni-Cu-PGE deposit, West Musgrave, Western Australia[J]. Economic Geology, 2009, 104: 521538. doi: 10.2113/gsecongeo.104.4.521

    Song S G, Bi H Z, Qi S S, et al. HP-UHP metamorphic belt in the East Kunlun Orogen: Final closure of the proto-tethys Ocean and formation of the Pan-North-China Continent[J]. Journal of Petrology, 2018, 5911): 20432060. doi: 10.1093/petrology/egy089

    Song X Y and Li X R. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide Mineralization in a post-collisional environment[J]. Mineralium Deposita, 2009, 44: 303327. doi: 10.1007/s00126-008-0219-x

    Song X Y, Chen L M, Deng Y F et al. Syn-collisional tholeiitic magmatism induced by asthenosphere upwelling due to slab detachment at the southern margin of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, London, 2013, 170: 941950. doi: 10.1144/jgs2012-130

    Song X Y, Deng Y F, Xie W, et al. Prolonged basaltic magmatism and short-lived magmatic sulfide mineralization in Orogenic belts[J]. Lithos, 2021, 390-391: 106114. doi: 10.1016/j.lithos.2021.106114

    Song X Y, Xie W, Deng Y F, et al. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China[J]. Lithos, 2011, 127: 128143. doi: 10.1016/j.lithos.2011.08.011

    Song X Y, Yi J N, Chen L M, et al. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun Orogenic Belt, northern Tibet Plateau, China[J]. Economic Geology, 2016, 111: 2955. doi: 10.2113/econgeo.111.1.29

    Su B X, Qin K Z, Sakyi P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 202-3): 516531. doi: 10.1016/j.gr.2010.11.015

    Su B X, Qin K Z, Sakyi P A, et al. Occurrence of an Alaskan-type complex in the middle Tianshan massif, Central Asian Orogenic Belt: Inferences from petrological and mineralogical studies[J]. International Geology Review, 2012, 543): 249269. doi: 10.1080/00206814.2010.543009

    Su B X, Qin K Z, Tang D M, et al. Late Paleozoic mafic-ultramafic intrusions in southern Central Asian Orogenic belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting[J]. Ore Geology Reviews, 2013, 51: 5773. doi: 10.1016/j.oregeorev.2012.11.007

    Sun T, Qian Z Z, Deng, Y F, et al. PGE and isotopte (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, Northwestern China[J]. Economic Geology, 2013, 108: 18491864. doi: 10.2113/econgeo.108.8.1849

    Tang D M, Qin K Z, Li C S, et al. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intruison in the Central Asian Orogenic Belt, NW China[J]. Lithos, 2011, 126: 8498. doi: 10.1016/j.lithos.2011.06.007

    Tang D M, Qin K Z, Su B X, et al. Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: Evidence from isotopic geochemistry of olivine and zircon[J]. Mineralium Deposita, 2022, 572): 235254. doi: 10.1007/s00126-021-01063-2

    Tang D M, Qin K Z, Su B X, et al. Magma source and tectonics of the Xiangshanzhong mafic–ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures[J]. Lithos, 2013, 170-171: 144163. doi: 10.1016/j.lithos.2013.02.013

    Tang D M, Qin K Z, Sun H, et al. The role of crustal contamination in the formation of Ni-Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwest China: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and sulfur isotopes[J]. Journal of Asian Earth Sciences, 2012, 49: 145160. doi: 10.1016/j.jseaes.2011.11.014

    Tang Q Y, Bao J, Dang Y X et al. Mg–Sr–Nd isotopic constraints on the genesis of the giant Jinchuan Ni–Cu–(PGE) sulfide deposit, NW China[J]. Earth and Planetary Science Letters, 2018, 502: 221230. doi: 10.1016/j.jpgl.2018.09.008

    Taylor H P. The zoned ultramafic complexes of southeastern Alaska[A]. Part 4. In: Wyllie P J, ed. Ultramafic related rocks[M]. New York: John Wiley and Sons Incorporated, 1967, 96−118.

    Thakurta J, Ripley E M and Li C. Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska[J]. Geochemistry Geophysics Geosystems, 2008, 9: Q07003.

    Ueda, K., Gerya, T. V. & Burg, J. -P. Delamination in collisional orogens: thermomechanical modeling[J]. Journal of Geophysical Research-Solid Earth, 2012, 117, 2012JB009144.

    Vervoort J D, Patchett P J, Blichert-Toft J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth and Planetary Science Letters, 1999, 1681): 7999.

    Wang B, Chuzel D, Jahn B M, et al. Late Paleozoic pre- and syn-kinematic plutons of the Kangguer-Huangshan shear zone: Inference on the tectonic evolution of the Eastern Chinese North Tianshan[J]. American Journal of scicence, 2014, 314: 4379. doi: 10.2475/01.2014.02

    Wang Y L, Xue S C, Wang X M, et al. PGE geochemical and Os-S-Sr-Nd isotopic constrains on the genesis of the Shitoukengde magmatic sulfide deposit in the East Kunlun Orogenic Belt, NW China[J]. Ore Geology Reviews, 2023, 156: 105396. doi: 10.1016/j.oregeorev.2023.105396

    Wei B, Wang C Y, Li P. Syn-collisional extension and Ni-Cu sulfide-bearing mafic magma emplacement along the Irtysh Shear Zone in the Central Asian Orogenic belt[J]. Geological Society of America Bulletin, 2023, 1361/2): 403417.

    Wei X, Xu Y G, Feng Y X, et al. Plume-lithosphere interaction in the generation of the Tarim large igneous province, NW China: Geochronological and geochemical constraints[J]. American Journal of Science, 2014, 314: 314356. doi: 10.2475/01.2014.09

    Windley B F. Overview and history of investigation of early earth rocks[J]. Developments in Precambrian Geology, 2007, 15: 37. doi: 10.1016/S0166-2635(07)15011-8

    Xia L Q, Xia Z C, Xu X Y, et al. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China[J]. Journal of Asian Earth Sciences, 2008, 31: 357378. doi: 10.1016/j.jseaes.2007.07.002

    Xia L Q, Xu X Y, Li X M, et al. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas[J]. Geoscience Frontiers, 2012, 3: 445471. doi: 10.1016/j.gsf.2011.12.011

    Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304: 370395. doi: 10.2475/ajs.304.4.370

    Xie W, Song X Y, Chen L M, et al. Geochemistry insights on the genesis of the subduction- related Heishan Magmatic Ni-Cu-(PGE) deposit in Gansu, NW China, at the southern margin of the Central Asian Orogenic Belt[J]. Economic Geology, 2014, 109: 15631583. doi: 10.2113/econgeo.109.6.1563

    Xie W, Song X Y, Deng Y F, et al. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt[J]. Lithos, 2012, 144-145: 209230. doi: 10.1016/j.lithos.2012.03.010

    Xie W, Xu Y G, Chen Y B, et al. High-alumina basalts from the Bogda Mountains suggest an arc setting for Chinese Northern Tianshan during the Late Carboniferous[J]. Lithos, 2016, 256-257: 165181. doi: 10.1016/j.lithos.2016.04.005

    Xue S C, Li C S, Qin K Z, et al. A non-plume model for the Permian protracted (266-286 Ma) basaltic magmatism in the Beishan-Tianshan region, Xinjiang, western China[J]. Lithos, 2016, 256-257: 243249. doi: 10.1016/j.lithos.2016.04.018

    Xue S C, Li C S, Qin K Z, et al. Sub-arc mantle heterogeneity in oxygen isotopes: evidence from Permian mafic-ultramafic intrusions in the Central Asian Orogenic Belt[J]. Contributions to Mineralogy and Petrology, 2018, 17311): 94. doi: 10.1007/s00410-018-1521-y

    Xue S C, Wang Q F, Wang Y L, et al. The roles of various types of crustal contamination in the genesis of the Jinchuan magmatic Ni-Cu-PGE deposit: New mineralogical and C-S-Sr-Nd isotope constraints. Economic Geology, 2023, 118(8): 1795-1812.

    Yuan C, Sun M, Wilde S, Xiao W, et al. 2010. Post-collisional plutons in the Balikun area, East Chinese Tianshan: evolving magmatism in response to extension and slab break-off[J]. Lithos, 2010, 1193-4): 269288. doi: 10.1016/j.lithos.2010.07.004

    Zelenski M, Kamenetsky V S, Nekrylov N, et al. Sulfide-sulfate metasomatism and nickel release in the suprasubduction mantle[J]. Earth and Planetary Science Letters, 2024, 626: 118500. doi: 10.1016/j.jpgl.2023.118500

    Zha X F, Dong Y P, He D F, et al. Early Palaeozoic arc-continent collision in East Kunlun, northern Tibet: Evidence fromminerology, geochemistry, and geochronology of the Adatan garnet amphibolites[J]. International Geology Review, 2023, 653): 357377. doi: 10.1080/00206814.2022.2045641

    Zhang D Y, Zhou T F, Yuan F, et al. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U–Pb dating, Sr–Nd–Pb–Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China[J]. Journal of Asian Earth Sciences, 2012, 49: 175190. doi: 10.1016/j.jseaes.2011.10.018

    Zhang Y, Sun M, Yuan C, et al. Alternating trench advance and retreat: Insights from Paleozoic magmatism in the eastern Tianshan, Central Asian Orogenic Belt[J]. Tectonics, 2018, 37: 21422164. doi: 10.1029/2018TC005051

    Zhang Z C, Mao J W, Chai F M, et al. Geochemistry of the permian Kalatongke mafic intrusions, northern Xinjiang, northwest China: Implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Economic Geology, 2009, 104: 185203. doi: 10.2113/gsecongeo.104.2.185

    Zhang Z W, Tang QY, Li CS, et al. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai–Tibet plateau, China[J]. Mineralium Deposita, 2017, 52: 5168. doi: 10.1007/s00126-016-0645-0

    Zhou M F, Lesher C M, Yang Z X, et al. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sufide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 209: 233257. doi: 10.1016/j.chemgeo.2004.05.005

    Zhou M F, Zhao J H, Jiang C Y, et al. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province[J]. Lithos, 2009, 1133-4): 583594. doi: 10.1016/j.lithos.2009.06.027

图(4)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  8
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 修回日期:  2025-02-03
  • 录用日期:  2025-02-06
  • 网络出版日期:  2025-02-26
  • 刊出日期:  2025-06-19

目录

/

返回文章
返回