ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    盐溶液渗吸–干燥循环下砂岩盐胀风化机制研究

    杨晓雨, 贾海梁, 魏尧, 孙强, 王亚彪

    杨晓雨,贾海梁,魏尧,等. 盐溶液渗吸–干燥循环下砂岩盐胀风化机制研究[J]. 西北地质,2025,58(3):246−257. doi: 10.12401/j.nwg.2025013
    引用本文: 杨晓雨,贾海梁,魏尧,等. 盐溶液渗吸–干燥循环下砂岩盐胀风化机制研究[J]. 西北地质,2025,58(3):246−257. doi: 10.12401/j.nwg.2025013
    YANG Xiaoyu,JIA Hailiang,WEI Yao,et al. Mechanism of Salt Swelling Weathering of Sandstone Subjected to Cyclic Imbibition of Saline and Drying[J]. Northwestern Geology,2025,58(3):246−257. doi: 10.12401/j.nwg.2025013
    Citation: YANG Xiaoyu,JIA Hailiang,WEI Yao,et al. Mechanism of Salt Swelling Weathering of Sandstone Subjected to Cyclic Imbibition of Saline and Drying[J]. Northwestern Geology,2025,58(3):246−257. doi: 10.12401/j.nwg.2025013

    盐溶液渗吸–干燥循环下砂岩盐胀风化机制研究

    基金项目: 

    内蒙古自治区科技重大专项(2021ZD0034),中国交建应用基础研究项目(2021-ZJKJ-PTJS02),极端环境绿色长寿道路工程全国重点实验室开放基金(YGY2021KFKT02)联合资助。

    详细信息
      作者简介:

      杨晓雨(1999−),女,硕士研究生,岩土工程专业。E−mail:21204053048@stu.xust.edu.cn

      通讯作者:

      贾海梁(1987−),男,教授,博士,从事岩石损伤力学、地热能开采等研究工作。E−mail:hailiang.jia@xust.edu.cn

    • 中图分类号: P642.2;TU42

    Mechanism of Salt Swelling Weathering of Sandstone Subjected to Cyclic Imbibition of Saline and Drying

    • 摘要:

      研究含盐溶液渗吸–干燥循环过程中岩石孔隙的演化和表面风化特征,是全面了解岩石风化的前提。笔者设计了6个Na2SO4溶液浓度的渗吸–干燥循环实验,测试了30次循环后砂岩的干燥质量差、吸水质量、纵波波速、核磁共振T2谱和三维形貌等参数,得到以下结论:①在渗吸–干燥循环过程中,盐结晶初步堵塞了砂岩孔隙,结晶不断积累,最终导致孔隙的破坏,砂岩的物理性质逐步劣化。随着循环次数的增加,砂岩的干燥质量差、渗吸质量、纵波速度等参数的变化规律可根据结晶对孔隙的作用划分为3个阶段。②上述测试参数在各个阶段的变化速率与盐溶液浓度成正比。③盐结晶发生在毛细渗吸和干燥两个过程中,随着循环数的增加,盐结晶的产生、聚集、重结晶和膨胀共同作用促进砂岩表面矿物颗粒的脱落。砂岩表面形貌测试结果与溶液浓度和循环次数均成正比。

      Abstract:

      Investigating the pore structure modification and damage features of porous rocks under cyclic imbibition of saline and drying is the premise of building up a full picture of rock weathering. In this study, we designed the experiments on the imbibition-drying cycle under 6 concentrations of Na2SO4 solutions, and tested difference in dry mass, imbibition mass, P-wave velocity, NMR T2 spectrum and three-dimensional morphology in sandstone after 30 cycles. The following conclusions were obtained: ①During the imbibition-drying cycle, the salt crystals initially blocked the pores, and the crystals continued to accumulate, which ultimately led to the destruction of the pores and the gradual deterioration of the physical properties of the sandstone. With the increase in number of cycles, the test parameters such as difference in drying mass, imbibition mass and P-wave velocity of sandstone exhibited a three-stage variational trend.②The rate of variation in above test parameters at each stage is proportional to the concentration.③The crystallization occurs in both capillary imbibition and drying. With the increase in cycles numbers, the generation, accumulation, recrystallization and enlargement of crystals contributes to mineral grains shedding on the surface of sandstone. The morphology was proportional to the number of cycles and solution concentrations.

    • 图  1   砂岩样品及其孔径分布曲线

      Figure  1.   Sandstone samples and their pore size distribution curves

      图  2   实验流程图

      1.烧杯;2.砂岩样品;3.透水石;4.培养皿;5.Na2SO4溶液

      Figure  2.   A schematic diagram of experiment

      图  3   不同循环次数下的干燥质量差

      Figure  3.   Difference in dry mass with imbibition-drying cycles

      图  4   不同溶液浓度、不同循环次数下的吸水质量

      Figure  4.   Imbibition mass of saline at imbibition-drying cycles and different concentrations

      图  5   不同溶液浓度下吸水质量的变化速率

      Figure  5.   Variational rate of imbibition mass for different solution concentrations

      图  6   不同溶液浓度、不同循环次数下的纵波波速

      Figure  6.   P-wave velocity at imbibition-drying cycles and different concentrations

      图  7   不同溶液浓度下波速的变化速率

      Figure  7.   Rate of variation in P-wave velocity for different solution concentrations

      图  8   不同溶液浓度、不同循环次数下的T2

      Figure  8.   T2 spectra of samples at different imbibition-drying cycle and different concentrations

      图  9   不同循环次数下T2谱的总信号幅值

      Figure  9.   Variation in the total signal amplitude of T2 spectra with imbibition-drying cycles

      图  10   循环前后样品的照片和表面形貌

      a. 溶液浓度0 g/L;b.0.1 g/L;c. 0.5 g/L;d. 1.0 g/L;e. 5.0 g/L;f. 10.0 g/L

      Figure  10.   Samples photos and morphology before and after imbibition-drying cycles

      图  11   不同溶液浓度下最大凹陷值

      Figure  11.   Max depression for different solution concentrations

      图  12   毛细渗吸过程中水分分布示意图

      Figure  12.   Moisture distribution during capillary imbibition

      图  13   蒸发示意图和不同循环次数下的结晶示意图

      a.干燥过程的蒸发示意图;b.第1次循环结束结晶示意图;c. 第25次循环结束结晶示意图;d. 第25次循环结束扫盐后样品示意图;砂岩实验后轮廓为红色;砂岩的初始轮廓为黑色

      Figure  13.   Evaporation diagram and crystallization diagram with imbibition-drying cycles

      表  1   砂岩的基本物理参数

      Table  1   Initial physical parameters of the sandstones

      样品编号孔隙率(%)波速(km/s)
      119.402.09
      219.412.08
      319.452.06
      419.382.03
      519.112.04
      619.472.06
      下载: 导出CSV

      表  2   不同干湿循环次数下干燥质量差的特征值

      Table  2   Characteristic values of difference in dry mass with imbibition-drying cycles

      溶液浓度(g/L)转折点对应的次数最大值(g)最终值(g)
      0.00−0.44
      0.10−0.50
      0.50192.07−2.25
      1.00153.28−3.85
      5.00136.03−9.07
      10.0097.65−13.89
      下载: 导出CSV
    • 崔凯, 顾鑫, 吴国鹏, 等. 不同条件下贺兰口岩画载体变质砂岩干湿损伤特征与机制研究[J]. 岩石力学与工程学报, 2021, 40(6): 1236−1247.

      CUI Kai, GU Xin, WU Guopeng, et al. Dry-wet damage characteristics and mechanism of metamorphic sandstone carrying Helan mouths rock paintings under different conditions[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021,40(6):1236−1247.

      陈雪, 汪小祥, 景山, 等. 宁镇矿集区岩石风化成土过程中重金属迁移富集特征[J]. 西北地质, 2025, 58(1): 231−244.

      CHEN Xue,WANG Xiaoxiang,JING Shan,et al. Migration and Enrichment of Heavy Metals During the Weathering Pedogenesis of Rocks in the Ningzhen Ore Cluster Area[J]. Northwestern Geology,2025,58(1):231−244.

      胡鑫, 孙强, 晏长根, 等. 陕北烧变岩水−岩作用的劣化特性[J]. 煤田地质与勘探, 2023, 51(4): 76−84. doi: 10.12363/issn.1001-1986.22.06.0496

      HU Xin, SUN Qiang, YAN Changgen, et al. Deterioration characteristics of water-rock interaction on combustion meta-morphic rocks in northern Shaanxi[J]. Coal Geology & Exploration,2023,51(4):76−84. doi: 10.12363/issn.1001-1986.22.06.0496

      李震, 张景科, 刘盾, 等. 大足石刻小佛湾造像砂岩室内模拟劣化试验研究[J]. 岩土工程学报, 2019, 41(8): 1513−1521. doi: 10.11779/CJGE201908016

      LI Zhen, ZHANG Jingke, LIU Dun, et al. Experimental study on indoor simulated deterioration of sandstone of Xiaofowan statues at Dazu Rock Carvings[J]. Chinese Journal of Geotechnical Engineering,2019,41(8):1513−1521. doi: 10.11779/CJGE201908016

      刘新荣, 张梁, 傅晏. 酸性环境干湿循环对泥质砂岩力学特性影响的试验研究[J]. 岩土力学, 2014, 35(S2): 45−52.

      LIU Xinrong, ZHANG Liang, FU Yan. Experimental study of mechanical properties of argillaceous sandstone under wet and dry cycle in acid environment[J]. Rock and Soil Mechanics,2014,35(S2):45−52.

      刘新荣, 袁文, 傅晏, 等. 化学溶液和干湿循环作用下砂岩抗剪强度劣化试验及化学热力学分析[J]. 岩石力学与工程学报, 2016, 35(12): 2534−2541.

      LIU Xinrong, YUAN Wen, FU Yan, et al. Tests on shear strength deterioration of sandstone under the action of chemical solution and drying-wetting cycles and analysis of chemical thermodynamics[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,35(12):2534−2541.

      刘新荣, 袁文, 傅晏, 等. 干湿循环作用下砂岩溶蚀的孔隙度演化规律[J]. 岩土工程学报, 2018, 40(3): 527−532. doi: 10.11779/CJGE201803017

      LIU Xinrong, YUAN Wen, FU Yan, et al. Porosity evolution of sandstone dissolution under wetting and drying cycles[J]. Chinese Journal of Geotechnical Engineering,2018,40(3):527−532. doi: 10.11779/CJGE201803017

      欧阳渊, 刘洪, 张景华, 等. 西南山区生态地质调查技术方法研究[J]. 西北地质, 2023, 56(4): 218−242.

      OUYANG Yuan, LIU Hong, ZHANG Jinghua, et al. Exploration Techniques and Methods of the Eco−Geological Survey in Mountainous Region, Southwest China[J]. Northwestern Geology,2023,56(4):218−242.

      谈云志, 胡莫珍, 周玮韬, 等. 荷载-干湿循环共同作用下泥岩的压缩特性[J]. 岩土力学, 2016, 37(8): 2165−2171.

      TAN Yunzhi, HU Mozhen, ZHOU Weitao, et al. Effects of drying-wetting cycle and loading on compressive property of mudstone[J]. Rock and Soil Mechanics,2016,37(8):2165−2171.

      谢凯楠, 姜德义, 孙中光, 等. 基于低场核磁共振的干湿循环对泥质砂岩微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(2): 653−659+667.

      XIE Kainan, JIANG Deyi, SUN Zhongguang, et al. Influence of drying-wetting cycles on microstructure degradation of argillaceous sandstone using low field nuclear magnetic resonance[J]. Rock and Soil Mechanics,2019,40(2):653−659+667.

      原鹏博, 杨烜宇, 赵天宇. 水-盐作用下红层砂岩声波特性劣化试验[J]. 岩土力学, 2019, 40(1): 227−234.

      YUAN Pengbo, YANG Xuanyu, ZHAO Tianyu. Deterioration characteristics of red-bed sandstone acoustic wave properties due to water and salt solution[J]. Rock and Soil Mechanics,2019,40(1):227−234.

      杨圣奇, 荆晓娇. 盐水干湿循环后砂岩物理力学特性试验研究[J]. 岩土工程学报, 2023, 45(10): 2165−2171. doi: 10.11779/CJGE20220830

      YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering,2023,45(10):2165−2171. doi: 10.11779/CJGE20220830

      张虎元, 杨盛清, 孙博, 等. 石质文物盐害类型与蒸发速率的关系研究[J]. 岩石力学与工程学报, 2021(S02): 040.

      ZHANG Huyuan, YANG Shengqing, SUN Bo, et al. Research on the relationship between salt damage types and evaporation rate of stone relics[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021(S02):040.

      Arnold A, Zehnder K. Monitoring wall paintings affected by soluble salts. Marina Del Rey: Getty Conservation Institute[M]. London, Marina Del Rey: Getty Conservation Institute, 1987.

      Benavente D, del Cura M G, Fort R, et al. Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone[J]. Journal of Crystal growth,1999,204(1-2):168−178. doi: 10.1016/S0022-0248(99)00163-3

      Brai M, Camaiti M, Casieri C, et al. Nuclear magnetic resonance for cultural heritage[J]. Magnetic Resonance Imaging,2007,25(4):461−465. doi: 10.1016/j.mri.2006.11.007

      Camassel B, Sghaier N, Prat M, et al. Evaporation in a capillary tube of square cross-section: application to ion transport[J]. Chemical Engineering Science,2005,60(3):815−826. doi: 10.1016/j.ces.2004.09.044

      Çelik M Y, Sert M. An assessment of capillary water absorption changes related to the different salt solutions and their concentrations ratios in the Döğer tuff (Afyonkarahisar-Turkey) used as building stone of cultural heritages[J]. Journal of Building Engineering,2021,35:102102. doi: 10.1016/j.jobe.2020.102102

      Correns C W, Steinborn W. Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft[J]. Zeitschrift für Kristallographie-Crystalline Materials,1939,101(1-6):117−133.

      Everett D H. The thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society,1961,57:1541−1551. doi: 10.1039/tf9615701541

      Flatt R J, Caruso F, Sanchez A M A, et al. Chemo-mechanics of salt damage in stone[J]. Nature Communications,2014,5(1):4823. doi: 10.1038/ncomms5823

      Hall K, Hall A. Weathering by wetting and drying: some experimental results[J]. Earth Surface Processes and Landforms,1996,21(4):365−376. doi: 10.1002/(SICI)1096-9837(199604)21:4<365::AID-ESP571>3.0.CO;2-L

      Hu T, Brimblecombe P, Zhang Z, et al. Capillary rise induced salt deterioration on ancient wall paintings at the Mogao Grottoes[J]. Science of The Total Environment,2023,881:163476. doi: 10.1016/j.scitotenv.2023.163476

      Jia H, Ding S, Wang Y, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology,2019,168:102893. doi: 10.1016/j.coldregions.2019.102893

      Jia H, Ding S, Zi F, et al. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks[J]. Catena,2020,195:104915. doi: 10.1016/j.catena.2020.104915

      Jia H, Dong B, Wu D, et al. Capillary imbibition in layered sandstone[J]. Water,2023,15(4):737. doi: 10.3390/w15040737

      Jia H, Yang X, Wei Y, et al. Capillary imbibition laws of fresh–brackish waters in sandstone[J]. Water,2024,16(8):1180. doi: 10.3390/w16081180

      Lewin S Z. The mechanism of masonry decay through crystallization[J]. Conservation of Historic Stones Buildings and Monuments,1982(1):120−144.

      Loubser M J. Weathering of basalt and sandstone by wetting and drying: a process isolation study[J]. Geografiska Annaler: Series A, Physical Geography,2013,95(4):295−304. doi: 10.1111/geoa.12023

      Lubelli B, Cnudde V, Diaz-Goncalves T, et al. Towards a more effective and reliable salt crystallization test for porous building materials: state of the art[J]. Materials and Structures,2018,51:1−21. doi: 10.1617/s11527-017-1129-0

      Murphy B P, Johnson J P L, Gasparini N M, et al. Chemical weathering as a mechanism for the climatic control of bedrock river incision[J]. Nature,2016,532(7598):223−227. doi: 10.1038/nature17449

      Pappalardo G, Mineo S, Caliò D, et al. Evaluation of natural stone weathering in heritage building by infrared thermography[J]. Heritage,2022,5(3):2594−2614. doi: 10.3390/heritage5030135

      Pel L, Huinink H, Kopinga K. Salt transport and crystallization in porous building materials[J]. Magnetic Resonance Imaging,2003,21(3-4):317−320. doi: 10.1016/S0730-725X(03)00161-9

      Richter D D, Eppes M C, Austin J C, et al. Soil production and the soil geomorphology legacy of Grove Karl Gilbert[J]. Soil Science Society of America Journal,2020,84(1):1−20. doi: 10.1002/saj2.20030

      Rodriguez-Navarro C, Doehne E. Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group,1999,24(3):191−209. doi: 10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G

      Sawdy-Heritage A M, Heritage A, Pel L. A review of salt transport in porous media, assessment methods and salt reduction treatments. In: Ottosen, L. M. (Ed.) Salt weathering on buildings and stone sculptures (SWBSS) proceedings[C]. Lyngby, Denmark, 2008, 1−27.

      Scherer G W. Theory of drying[J]. Journal of the American Ceramic Society,1990,73(1):3−14. doi: 10.1111/j.1151-2916.1990.tb05082.x

      Scherer G W. Stress from crystallization of salt[J]. Cement and Concrete Research,2004,34(9):1613−1624. doi: 10.1016/j.cemconres.2003.12.034

      Sghaier N, Prat M. Effect of efflorescence formMeation on drying kinetics of porous media[J]. Transport in Porous Media,2009,80:441−454. doi: 10.1007/s11242-009-9373-6

      Shahidzadeh-Bonn N, Desarnaud J, Bertrand F, et al. Damage in porous media due to salt crystallization[J]. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics,2010,81(6):066110.

      Shen Y, Wang Y, Yang Y, et al. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface[J]. Construction and Building Materials,2019,213:156−166. doi: 10.1016/j.conbuildmat.2019.04.078

      Shokri N, Lehmann P, Or D. Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore-scale processes near vaporization surface[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,2010,81(4):046308. doi: 10.1103/PhysRevE.81.046308

      Siegesmund S, Weiss T, Vollbrecht A. Natural stone, weathering phenomena, conservation strategies and case studies: introduction[J]. Geological Society, London, Special Publications,2002,205(1):1−7. doi: 10.1144/GSL.SP.2002.205.01.01

      Steiger M, Asmussen S. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4-H2O and the generation of stress.[J]. Geochimica et Cosmochimica Acta,2008,72(17):4291−4306. doi: 10.1016/j.gca.2008.05.053

      Wang T, Jia H, Sun Q, et al. Effects of thawing-induced softening on fracture behaviors of frozen rock[J]. Journal of Rock Mechanics and Geotechnical Engineering,2024,16(3):979−989. doi: 10.1016/j.jrmge.2023.07.016

      Wu Q, Meng Z, Tang H, et al. Experimental investigation on weakening of discontinuities at the interface between different rock types induced by wetting and drying cycles[J]. Rock Mechanics and Rock Engineering, 2022: 1−17.

      Zhao Y, Ren S, Jiang D, et al. Influence of wetting-drying cycles on the pore structure and mechanical properties of mudstone from Simian Mountain[J]. Construction and Building Materials,2018,191:923−931. doi: 10.1016/j.conbuildmat.2018.10.069

      Zhang D, Kang Y, Selvadurai A P S, et al. Experimental investigation of the effect of salt precipitation on the physical and mechanical properties of a tight sandstone[J]. Rock Mechanics and Rock Engineering,2020,53(10):4367−4380. doi: 10.1007/s00603-019-02032-y

      Zhang Z T, Gao W H. Effect of different test methods on the disintegration behaviour of soft rock and the evolution model of disintegration breakage under cyclic wetting and drying[J]. Engineering Geology,2020a,279:105888. doi: 10.1016/j.enggeo.2020.105888

      Zhang Z, Niu Y, Shang X, et al. Deterioration of physical and mechanical properties of rocks by cyclic drying and wetting[J]. Geofluids,2021,2021(1):6661107.

    图(13)  /  表(2)
    计量
    • 文章访问数:  30
    • HTML全文浏览量:  1
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-24
    • 修回日期:  2025-01-21
    • 录用日期:  2025-02-06
    • 网络出版日期:  2025-02-26
    • 刊出日期:  2025-06-19

    目录

      /

      返回文章
      返回