Research progress on copper isotope in high-temperature magmatic system and its implications for magmatic sulfide deposits
-
摘要:
Cu同位素在地幔部分熔融、岩浆结晶分异以及地幔交代等高温地质过程中表现出显著的变化特征,其中在岩浆铜镍硫化物成矿系统中发现了~4‰的Cu同位素变化,不同于金属稳定同位素的分馏主要受控于温度变化的传统认识。除了陨石撞击成因的Sudbury矿床外,板内和造山带环境的铜镍矿床均显示较大的Cu同位素变化范围,在复杂的成岩-成矿过程研究中显示出巨大潜力。目前主要认识包括:(1)地幔Cu同位素存在不均一性,洋中脊玄武岩和科马提岩更能代表地幔源区Cu同位素组成;(2)Cu含量与同位素之间的协同变化,以及Cu同位素在硫化物-硅酸盐之间的分馏系数的控制因素,是理解岩浆形成和演化过程中Cu同位素变化的关键因素;(3)目前对于俯冲带变质脱水过程中Cu同位素的分馏行为研究十分有限,因此单独利用Cu同位素判断Cu迁移路径存在较大不确定性。大部分Cu仍保存在俯冲板片中,与俯冲相关的各类岩石中Cu同位素偏离地幔值的情况可能是偶然现象;(4)铜镍矿床中Cu同位素的变化受控于多种地质过程或分馏机制的叠加作用,包括:①地幔源区Cu同位素不均一性;②地壳混染物质对于岩浆体系Cu同位素的改变;③硫化物熔离和分异过程导致硫化物矿石Cu同位素的变化;④岩浆体系氧化还原状态的变化:一方面Cu同位素随岩浆氧逸度的变化而变化,另一方面是氧化性的熔/流体导致原生硫化物发生分解及其二次沉淀可以导致Cu同位素变化。Cu同位素在揭示成岩-成矿过程中的关键作用日益凸显,未来应加强探讨Cu同位素与其他同位素体系(如Fe、Zn、Ni等)的协同作用,结合实验与模拟,完善岩浆铜镍硫化物矿床成矿模型,对深入理解壳幔物质循环及其资源效应具有重要意义。
Abstract:Copper isotope exhibits significant variations during high-temperature geological processes such as mantle partial melting, magmatic differentiation, and mantle metasomatism. Notably, a ~4‰ variation in Cu isotope has been observed in magmatic Ni-Cu sulfide systems, challenging the conventional understanding that fractionation of metal stable isotopes is predominantly controlled by temperature. Beyond the Sudbury deposit, which formed via meteoritic impact, Ni-Cu deposits in intraplate and orogenic settings show a wide range of Cu isotope variations, highlighting their potential for studying complex magmatic and metallogenic processes. Current insights include: (1) Cu isotope in mantle is highly heterogeneous. Mid-ocean ridge basalts and komatiites better represent the Cu isotopic composition of the mantle source. (2) The coupled behavior of Cu concentrations and isotopes, as well as the fractionation coefficients between sulfides and silicates, are crucial for understanding Cu isotopic changes during magma formation and evolution. (3) Research on Cu isotope fractionation during metamorphic dehydration in subduction zones remains limited, resulting in significant uncertainty in using Cu isotope to trace Cu migration paths. Since most Cu is retained in the subducting slab, Cu isotopic deviations from mantle values in subduction-related rocks may be coincidental. (4) Cu isotope variations in Ni-Cu deposits are controlled by multiple geological processes and fractionation mechanisms, including: heterogeneity in mantle Cu isotope, crustal contamination, sulfide segregation and differentiation, and redox state changes in the magmatic system. The crucial role of Cu isotopes in revealing the processes of diagenesis and mineralization is increasingly prominent. In the future, efforts should be intensified to explore the synergistic effects of Cu isotopes with other isotope systems (such as Fe, Zn, Ni, etc.), combining experiments and simulations to refine the mineralization models of magmatic Cu-Ni sulfide deposits. This has significant implications for gaining a deeper understanding of crust-mantle material cycling and its resource effects.
-
20世纪50年代以前,由于一直未确认可靠的早期生命和相应的生物化石,石油地质学界普遍认为元古界没有烃类沉积,因此未将元古界作为油气勘探的目的层。(Xiao et al., 1988;Anbar et al, 2002; Hoffman et al., 2002, 2009)然而,近几十年来元古宙早期生命演化基础性研究取得重大进展,分别在西澳大利亚西北部的Pilbara超级群层状燧石单元中发现了距今最早的原核生物组合碳质微化石(早太古界,3.47 Ga);在南非Mozaan群的海相硅屑沉积物中发现最早的微生物垫发育证据(中太古界,2.9 Ga),并明确了元古界烃源岩所含有机质几乎全部来自于海底微生物垫(主要是细菌和古生菌)(Sheikh, 2003; Altermann, 2004; Kontorovich et al., 2005; Canfield et al. 2007; Brocks et al., 2009; Craig, et al., 2013a, 2013b; French et al., 2015; Brocks et al., 2017)。从全球范围来看,除南极洲以外的各大洲都有元古界古老而未变质的沉积层系存在,中外元古界划分对比关系见表1(Klemme et al., 1991; Bazhenova et al., 1996; Kuznetsov et al., 1997; Galushktn et al., 2004; Kontorovich et al., 2005; Yuan et al., 2011; Bhat et al., 2012; 高林志等, 2009)。虽然在全球油气资源地层分布的统计数据中,元古界仅占1%~2%的油气份额,但随着西伯利亚、东欧、非洲、印度阿拉伯、澳大利亚等克拉通中-新元古界至下寒武统原生油气与油气藏的发现,特别是中国四川盆地、俄罗斯东西伯利亚和阿曼地区大型油气田的发现和开发,说明局部地区存在元古界油气富集,证实了中-新元古界油气勘探的巨大潜力,元古界大型油气田的发现及商业勘探开采存在可能(图1)(Murray et al., 1980; Jackson et al., 1986; Crick et al., 1988; Summons et al., 1988; Jacob, 1989; Peng et al., 1998; Terken et al., 2000; Banerjee et al., 2006; Su et al., 2008; Craig al., 2009; Su et al., 2010; Blumenberg et al., 2012; Strauss et al., 2014)。
表 1 元古界地层划分对照表Table 1. Stratigraphic division of Proterozoic界 系 年龄/Ma 古生界(Pz) 寒武系 543 新元古界(Pt3) 震旦系(Z) 文德系 埃迪卡拉系 680 南华系(Nh) 里菲系 上统 成冰系 800 青白口系(Qb) 拉伸系 1000 中元古界(Pt2) 待建系(Dj) 中统 狭带系 蓟县系(Jx) 延展系 1400 长城系(Ch) 下统 盖层系 1600 /1800 古元古界(Pt1) 滹沱系(Ht) — — 中国 俄罗斯 欧美 图 1 全球前寒武系油气藏及烃源岩层分布示意图1.俄罗斯伏尔加-乌拉尔地区;2.俄罗斯东西伯利亚地区;3.阿曼Salt盆地;4.印度Rajasthan 地区;5.中国四川盆地;6.澳大利亚MacArthur盆地;7.巴西Sao Franasco盆地;8.西非Taoudenni盆地;9.印度喜马拉雅山西北部;10.中国燕辽裂陷带;11.北非 Tindouf盆地;12.刚果 Katanga 地区;13.利比亚Sirte 盆地;14.利比亚Al Kufra盆地;15. 沙特阿拉伯 Salt 盆地;16.巴基斯坦旁遮普盆地;17.印度 Vindhyan盆地群;18.美国亚利桑那州西北部;19.美国堪萨斯北部;20.巴西/玻利维亚 Vazante 地区Figure 1. Global distribution map of Precambrian reservoirs and source rocks20世纪50年代以来,科研人员对地球早期生命的深入研究,元古宙生物多样性研究取得重大进展(王铁冠等, 2018)。随着石油地质学和地球化学针对元古界的研究取得突破,距今
1800 ~541 Ma的元古界沉积地层(地球已知最古老沉积地层)具有原生烃类沉积这一认识基本达成共识:其暗色页岩和碳酸盐岩可含丰富有机质,形成极佳烃源层(Barghoorn et al., 1965; Bondesen et al., 1967; Bertrand-Sarfati, 1972)。研究人员随后又证实了元古界沉积有机质成熟度可以存在多种热演化阶段,这奠定了元古界油气资源研究的科学基础(Dickes, 1986a, 1986b; 王铁冠等, 2011, 2016)。元古界沉积有机质存在“未成熟、成熟、过成熟”等多种阶段,一部分地层仍然处在生烃液态窗范围内,完全具备富集规模性油气藏的可能。中国是全球中—新元古界沉积地层发育最完整的国家之一,也是研究中-新元古界沉积地层最早的国家,有相当广的中-新元古界分布,尤其是燕辽裂陷带北部的冀北坳陷(河北兴隆-承德-宽城-平泉)和辽西坳陷(辽宁凌源-朝阳-北票-阜新),其中元古界具有面积广(分别达到
8733 km2和29781 km2), 厚度大(分别达到8043 m和7567 m)的特点(朱士兴, 1994; Bao et al., 2004; 彭艳东等, 2003; 高林志等, 2007; 乔秀夫等, 2007; 高林志等, 2008;李怀坤等, 2009;王铁冠等, 2011; 朱日祥等, 2012; 胡波等, 2013; 潘建国等, 2013)。两坳陷已发现多处中元古界油苗、沥青、沥青砂岩点(分别达到115和86处),深部结构处于岩石圈增厚的“冷圈、冷盆”单元,地温梯度低,对古老油气资源的保存十分有利,燕辽裂陷带北部中元古界极具油气勘探潜力(图2)(王铁冠, 1980; 郝石生, 1984; 王铁冠等, 2018; 王浩等, 2019)。1. 燕辽裂陷带北部中元古界油气资源研究进展
燕辽裂陷带北部中元古界油气资源调查始于20世纪70年代,研究的重点区域为北部的冀北、辽西两坳陷。1976年,华北油田最早开始针对燕辽裂陷带北部中元古界储层的油气资源调查工作,在华北蓟县系雾迷山组与长城系高于庄组碳酸盐岩中陆续发现任丘、雁翎、 鄚州等11个“新生古储”型油气藏,油气源自古近系沙河街组泥质烃源层(北京石油勘探开发科学研究院, 华北石油管理局, 1992)。
针对本区中元古界原生油气藏的研究,则始于1977年(王铁冠等, 2018) 。王铁冠(1980)在燕辽裂陷带北部中元古界进行油气地质调查及油源对比研究:在燕辽裂陷带北部地区发现32处中元古界液体油苗与固体沥青,首次论证了中元古界油苗的原生属性,发现13亿年前的古油藏,从而证明中—新元古界是中国一个值得关注的重要能源资源领域,为中国前寒武纪油气地质学研究作出了理论贡献,奠定了燕辽裂陷带中元古界油气地质调查的基础(王铁冠, 1980)。
1.1 烃源层生烃潜力研究进展
郝石生(1984)等人对燕辽裂陷带北部中元古界烃源层进行初步研究,认为冀辽坳陷(冀北、辽西坳陷)中元古界烃源层分布广泛,具生烃潜力,提出可能存在原生油气藏(郝石生, 1984; 刘宝泉等, 1989)。自20世纪80年代,针对燕辽裂陷带北部中元古界烃源层的研究逐步深入,结合前人的研究成果,综合认为燕辽裂陷带北部中元古界烃源层为以下五套:长城系串岭沟组、蓟县系高于庄组、洪水庄组、铁岭组以及待建系下马岭组(刘宝泉等, 1985,1989,2000;王定一,1993;赵澄林等, 1997; 周洪瑞等, 1999; 王杰等, 2001,2004;方杰等, 2002;张亚明等, 2002;鲍志东等, 2004; 秦建中, 2005; 戴金星等, 2005;夏林圻等, 2009; 陆松年等,2010; 秦靖等, 2010; 杨时杰, 2013; 周铁锁, 2014; 荆铁亚等, 2015; 宗文明等, 2017, 2019;赵文智等,2019; 刘静等, 2019; 张文浩, 等, 2021)。秦靖(2010)对华北北部冀浅1井洪水庄组岩心进行系统有机碳含量、硫含量及有机显微组分研究,认为洪水庄组菌藻类生源的有机质经历了有效生、排烃过程,洪水庄组应为迄今为止我国最古老的、并经历有效排烃的富有机质沉积(秦靖等, 2010) 。
中国地质调查局于2020年在辽西坳陷凌源地区实施的辽凌地3井,钻遇洪水庄组下部(438~487 m)黑色泥页岩夹灰黑色灰岩地层,采集的烃源岩样品TOC分布范围在3.21%~4.21%,均值为3.57%;生烃潜量(S1+S2)分布范围6.25~9.89 mg/g,均值为8.20 mg/g;有机质类型为Ⅱ1型,等效镜质体反射率值(Ro)分布范围0.86%~1.06%,均值为0.95%,为极好烃源岩,有效烃源岩累计厚度超过49 m,为辽西坳陷迄今为止发现的最优洪水庄组烃源层,与冀北坳陷洪水庄组具可对比性(数据尚未发表)。随着洪水庄组优质烃源岩在冀北坳陷和辽西坳陷的陆续发现,进一步研究确认洪水庄组页岩沉积厚度大、范围广,有机质已进入生烃门限,有机质成熟度较高, 生烃潜力较大,洪水庄组为本区中元古界最优烃源层的认识趋于统一。
1.2 油源对比研究进展
1990年,王铁冠首次报道了在辽宁龙潭沟的沥青砂岩中检测、发现新的生物标志物13α(正烷基)—三环萜烷系列,证实了中国古老的元古界原生石油的存在(王铁冠, 1989),发现并论证了元古代时期形成的古油藏,而且对于元古界生物演化、有机质的烃类组成以及石油资源研究,均具有重要意义。随后,又论证了13α(正烷基)—三环萜烷为蓟县系洪水庄组页岩特有的生物标志化合物(Wang, 1991; Wang et al., 1995)。王铁冠(2011)在华北克拉通燕山地区(冀北、辽西坳陷)发现中元古界油苗200余处。刘岩(2011)估算下马岭组沥青砂岩古油藏油藏规模高达1~10亿吨,并通过油源对比确定洪水庄组烃源层贡献的下马岭组沥青砂岩油藏为中国最古老油藏(刘岩等, 2011; Wang et al., 2011) 。
2015年中国地质调查局沈阳地质调查中心在辽西坳陷凌源地区实施的牛D1井钻遇高于庄组碳酸盐岩裂缝型油藏。孙求实(2019)对其进行油源对比研究,确定油源来自洪水庄组,应为目前已知的中国最古老油藏(Sun et al., 2019, 2020)。
1.3 成藏期次研究进展
欧光习等(2006)最早开始冀北、辽西坳陷中元古界成藏期次的研究,认为该区中-上元古界具油气生成的物质基础 并经历了三至四期油气成藏过程, 其中中晚期油气成熟度较高, 油质较轻, 并具一定规模, 最具成藏意。马明侠, 等(2009)以双洞背斜为例研究冀北坳陷中元古界中的油气活动,同样认为研究区存在多期油气活动;田永晶, 等(2012)对冀北坳陷龙潭沟古油藏下马岭组辉绿岩侵入进行定量评价,解释了下马岭组固体沥青的热蚀变成因,认为与高于庄组烃源岩有亲缘关 ;周铁锁(2014)为油气成藏至少分早晚2期,晚期的早白垩纪晚期油气成藏意义重大。
王铁冠等(2016)通过对冀北坳陷下马岭组底砂岩古油藏成藏史的深入研究,证实了周铁锁的观点,并进一步认为存在两期油源充注,早期成藏的油源来自高于庄组烃源层,生烃门限深度约
3600 m;晚期成藏的油源来自洪水庄组烃源层充注,时间在中生代。冀北坳陷雾迷山组、铁岭组等液体油苗和下马岭组沥青砂岩晚期沥青的可溶烃组分源自洪水庄组烃源。赵文智等(2019)进一步研究认为,冀北、辽西坳陷中元古界原生成藏存在两期油源充注,晚期洪水庄组有机质应该已经进入生烃门限,是冀北、辽西坳陷中元古界油气勘探的关键。2. 主要烃源层沉积特征及生烃潜力评价
中国海相烃源岩生烃潜力评价标准长期以来都难以达成共识,在国内石油地质、地球化学界存在争议且始终没有解决。研究人员在确定有效烃源岩标准时, 常以有机质含量下限标准作为依据, 不同研究区存在不同的有效烃源岩下限标准,但可以确定的是,形成大中型油气田的海相碳酸盐岩的有机质丰度均较高,有机碳的含量基本上在0.5%以上(傅家谟等, 1984, 1989; 郝石生等, 1984; 梁狄刚等, 2000; 黄蒂藩等, 2008; 薛海涛, 2010; 秦建中等, 2010)。按不同标准厘定的烃源岩厚度和分布面积会有很大差异,这将直接影响资源评价结果。如果下限指标过高,势必会否定某些有利的探区;如若过低,就会造成巨大的勘探投入浪费。因此,如何确定有效烃源岩,已成为油气资源预测和勘探部署的基本地质问题。
与国外海相富油气盆地相比,我国海相沉积时代老、碳酸盐岩沉积厚度大、有机质丰度低、有机质热演化程度高(李晋超等, 1998)。中国海相沉积地层的这些特点,导致了正确认识与评价烃源岩原始生烃潜力的困难,国内研究人员对海相沉积烃源岩评价标准进行了大量的探讨研究(钟宁宁等, 2004a, 2004b; 陈建平等, 2007, 2012)。本文燕辽裂陷带中元古界烃源岩生烃潜力的评价标准主要参照钟宁宁(2004)和陈建平(2012)的相关标准,厘定了燕辽裂陷带北部中元古界海相烃源岩分级评价标准(表2)。
Table 2. Classification and evaluation criteria for Marine source rocks生烃潜力 泥页岩 碳酸盐岩 TOC(%) S1+S2(mg/g) TOC(%) S1+S2(mg/g) 非 <0.5 <0.5 <0.5 <0.5 差 0.5~1.0 0.5~2.5 0.5~0.75 0.5~2.0 中等 1.0~2.0 2.5~6.0 0.75~1.5 2.0~6.0 好 2.0~3.0 6.0~20.0 1.5~2.0 6.0~10.0 很好 3.0~5.0 >20.0 2.0~4.0 10.0~20.0 极好 >5.0 >20.0 >4.0 >20.0 自1984年郝石生等人开始对燕辽裂陷带北部中元古界烃源层进行研究以来(郝石生, 1984),烃源岩特征及生烃潜力研究逐年深入,综合认为燕辽裂陷带北部中元古界可能的烃源层系共6套,分别为串岭沟组、洪水庄组和下马岭组页岩,高于庄组和雾迷山组碳酸盐岩,以及铁岭组页岩和碳酸盐岩。
其中雾迷山组虽然在研究区内厚度巨大(冀北坳陷厚
2947 m,辽西坳陷厚2935 m),岩性稳定,但有机质贫乏,前人多将其列为差烃源岩或非烃源岩范畴。仅张亚明(2002)认为雾迷山组是辽西地区重要烃源岩, 但从其提供数据(TOC平均0.13%,氯仿沥青“A”平均0.01%)来看,雾迷山组生烃潜力非常有限。王铁冠(2016)从冀北、辽西坳陷收集的443件白云岩样品分析数据统计,TOC全部小于0.03%,属于非烃源岩范畴。综上,本次将雾迷山组列为非烃源岩不作讨论,现分别对其余五套烃源层特征及生烃潜力进行评价。2.1 串岭沟组
王定一(1993)最早开展了对燕辽裂陷带北部中元古界串岭沟组页岩烃源层特征及生烃潜力的研究,认为串岭沟组深灰色页岩中平均有机碳含量为0.44%,氯仿沥青“A” 为49 ppm, 总烃为32 ppm, 属于差烃源岩。
新世纪以来,针对冀北、辽西坳陷的串岭沟组烃源层进行深入分析研究,综合认为串岭沟组页岩在燕辽裂陷带北部,自北向南厚度有减薄趋势,在冀北坳陷蓟县、兴隆一带沉积厚度最大(均大于500米)。总有机碳(TOC)含量平均为0.75%~0.89%,个别区域最高能达到1.47%,生烃潜力(S1+S2)0.04~0.22, (平均0.13 mg*g−1),等效镜质体反射率(Ro)平均值为2.03%(表3)。参照海相烃源岩分级评价标准(表1),认为串岭沟组是中国最古老生油层,具有一定的生烃能力,但地层年代较老,热演化程度高,处于准变质阶段,综合评价属于较差烃源岩(王杰, 2004; 王丽娟等, 2010; 牛露等, 2015; 张文浩等, 2020)。
表 3 冀北坳陷串岭沟组样品有机地球化学分析结果(据牛露,2015)Table 3. Organic geochemical testing analysis of the Chuanlinggou formation samples in Jibei depression样号 岩性 TOC/% Tmax/℃ S1+S2/(mg·g−1) 产率指数 HI/(mg.g−1) Ro/% S11 粉砂质泥岩 0.15 492 0.07 0.29 33 1.60 S12 灰黄色泥岩 0.05 543 0.04 0.25 60 — S13 灰色泥页岩 0.13 572 0.03 0.33 15 1.57 S14 深灰色页岩 0.15 569 0.03 0.33 13 1.55 S15 深灰色页岩 0.46 530 0.06 0.17 11 1.54 S16 黑色页岩 1.02 497 0.08 0.25 6 3.01 S17 黑色页岩 1.08 548 0.04 0.25 3 2.68 S18 黑色页岩 1.31 534 0.03 0.33 2 2.48 S19 黑色页岩 2.36 531 0.04 0.25 1 1.84 2.2 高于庄组
燕辽裂陷带北部虽然中元古界高于庄组地层发育,但冀北、辽西两坳陷烃源岩差异较大,冀北坳陷于庄组沉积地层厚度达939 m,碳酸盐岩型烃源层,地层厚度大,深灰、黑色白云岩有机碳TOC虽整体偏低,但其中TOC值大于0.5%的烃源层段厚度达到164 m(崔景伟, 2011; 杨云祥等, 2011; 王铁冠, 2023)。
相比较而言,辽西坳陷高于庄组烃源岩生烃潜力有限(图4)。虽然辽西坳陷中元古界高于庄组地层厚度较大,达到951 m,但整体烃源岩品质一般(图5)。中国地质调查局沈阳地调中心对辽西坳陷凌源地区辽凌地1井和16LP剖面的45块高于庄组样品进行分析,仅14件样品TOC值大于0.5%,多数为都未达到工业油气级别,其他都为差~中等级别烃源岩,烃源岩中可溶烃含量较低(表4)。辽西坳陷凌源地区16LP剖面的10块高于庄组烃源岩等效镜质体反射率值(Ro)主要分布在0.97%~2.53%之间,平均值为1.99%,属于过成熟烃源岩范畴。
表 4 冀北、辽西坳陷高于庄组样品烃源岩有机质丰度Table 4. Abundance of organic matter in source rocks of Gaozhuang Formation in Jibei and Liaoxi depressions地区 剖面/井 TOC(%) 氯仿沥青“A” (%) S1+S2(mg/g) 范围 均值 范围 均值 范围 均值 冀北坳陷 尖子山剖面 0.02~2.38 0.33(180) 0.0080 ~0.0106 0.0039 (34)0~0.63 0.052(180) 冀浅3井 0.02~4.29 0.61(157) 0.0016 ~0.0152 0.0061 (23)0.01~2.39 0.19(157) 辽西坳陷 辽凌地1井 0.11~1.83 0.49(35) 0.0020 ~0.0370 0.0240 (35)0~2.0 0.35(35) 16LP剖面 0.11~0.90 0.30(10) 0.0019 ~0.0040 0.0029 (10)0.10~0.40 0.26(10) 注:*1(样品数)。 综合认为,燕辽裂陷带北部冀北、辽西两坳陷中元古界高于庄组碳酸盐岩烃源岩虽然生烃潜力具有差异性,但其在区域上分布范围广,沉积厚度大(蓟县剖面厚度
1596 m,辽凌地1井厚度1255.71 m),可以确定高于庄组烃源岩是迄今为止国内发现的最好的一套中元古界碳酸盐岩型烃源岩(孙枢等, 2016)。2.3 洪水庄组
燕辽裂陷带中元古界蓟县系洪水庄组是一套富含黑色页岩的沉积,在冀北、辽西两坳陷的沉积厚度分别达到102 m和92 m。主要岩性为黑色页岩及灰黑色硅质页岩,夹中薄层灰色泥质白云岩。洪水庄组地层较为稳定,在燕辽裂陷带北部广泛分布,沉积中心位于冀北坳陷宽城至辽西坳陷凌源一带(罗情勇等, 2013; 贾雨东等, 2020; 吴迪等, 2021; 姜在兴等, 2023)。
洪水庄组是燕辽裂陷带中元古界最主要的烃源层,是迄今为止我国最古老的并经历有效排烃的富有机质沉积,具有勘探潜力(秦靖,2010)。现阶段的研究已证实已发现的燕辽裂陷带绝大多数古油藏,例如辽西坳陷龙潭沟下马岭组沥青砂岩古油藏、冀北坳陷双洞背斜铁岭组沥青、辽西坳陷牛D1井高于庄组裂缝型油藏等,其可溶烃组分均源自洪水庄组泥质岩贡献(田永晶等, 2012; 孙求实等, 2019; 宋到福等, 2021)。
从露头样品烃源岩数据分析,冀北坳陷洪水庄组烃源岩优于辽西坳陷。冀北坳陷36件样品的有机碳TOC值平均达到4.65%,生烃潜力(S1+S2)均值达到12.2 mg/g,Ro(等效镜质体反射率)均值1.19%,有效烃源层累计厚度60 m,有机质已进入生烃门限,有机质成熟度相对较高,生烃潜力较大,为好烃源岩。
而在辽西坳陷,笔者分析及统计洪水庄组烃源岩样品数量共计172件,其中露头样品106件,辽凌地2井样品55件,辽凌地3井样品11件。地表剖面样品的有机碳TOC平均值1.2%,分布范围0.01%~4.07%。从图6可以看到,占比例最多的为中等烃源岩,其次为非烃源岩和差烃源岩。好烃源岩及以上样品占所有样品总数的18%,而差和非烃源岩占比达到48.1%。单从露头样品的分布来看,洪水庄组主体有机质丰度并不算高,且有接近一半的样品为非烃源岩和差烃源岩。中等及好烃源岩占比一半以上,指示大部分样品还是具备较好的生烃物质基础。
2020年中国地质调查局沈阳地调中心组织实施的辽凌地3井钻遇的洪水庄组烃源岩,其TOC平均值达到3.57%,生烃潜力(S1+S2)均值8.20 mg/g,Ro(等效镜质体反射率)均值0.95%,有效烃源层累计厚度49 m,有机质成熟度较好,生烃潜力较大,为好烃源岩(表5,图7、图8)。
表 5 辽西、冀北坳陷洪水庄组有效烃源岩地球化学参数对照表Table 5. Abundance of organic matter in source rocks of Hongshuizhuang Formation in Jibei and Liaoxi depressions区域 TOC/% 氯仿沥青"A"/ppm S1+S2(mg/g) Ro(等效镜质体反射率)% 有效烃源岩
累计厚度/m*2范围 均值 范围 均值 范围 均值 范围 均值 冀北坳陷 0.50~7.21 4.65(36) 34~ 4510 2650 (10)0.52~18.23 12.2(36) 0.90~1.42 1.19 60 辽西坳陷 0.16~5.42 1.79(51) 25~ 2556 220(49) 0.02~8.37 0.878(51) 0.51~2.26 1.74(48) 92.3 LLD3 3.21~4.21 3.57(4) — — 6.25~9.89 8.20(4) 0.86~1.06 0.95(4) 49 注:*1(样品数);*2有效烃源岩以TOC≥0.5%为标准统计其累计厚度。 综合以上露头和钻井结果可知,虽然辽西坳陷部分露头洪水庄组烃源岩样品TOC含量较低,但辽凌地3井洪水庄组烃源岩样品TOC含量较高,总体来看,辽西坳陷主体为好烃源岩,具备较好的生烃潜力。虽然与冀北地区相比略低,但仍有大量的样品属于好和很好烃源岩。
洪水庄组露头样品较低的原因可能主要是强烈的风化作用。一方面,风化作用使得有机质在后期保存过程中被再次氧化和矿化,导致残留的TOC较低。另一方面,风化作用强烈使得野外采样不具备较好的代表性,即有大量的样品并非取自黑色页岩段,二是取自黄绿色页岩或者碳酸盐岩段,这些层段的TOC显著低于黑色页岩段,导致总体TOC分布呈现非正态形式。
利用以上露头和钻井分析数据并参考前人发表的冀北地区数据,本次工作绘制了燕辽裂陷带北部洪水庄组TOC平面等值线图(图9)。由图可以看出TOC总体呈现西南高东北低的特点,等值线多数沿NE-NNE方向延伸。TOC分布有一个主要的高值中心和一个次要的高值中心。主要的高值中心位于龙潭沟和杨树岭附近,TOC普遍大于2.5%,位置也比较接近沉积中心的位置。次要的高值中心位于瓦房子附近,TOC普遍大于1.5%。总体来看,TOC与洪水庄组厚度分布具有很好的一致性,即厚度大的地区TOC也较高。
综上所述,洪水庄组是燕辽裂陷带北部中元古界最主要的烃源层。冀北坳陷地表洪水庄组烃源岩优于辽西坳陷,但辽西坳陷地下未受后期改造破坏的烃源层有着极好的生烃潜力。中元古界油气勘探的重点是找寻辽西坳陷洪水庄组供油的构造稳定圈闭。
2.4 铁岭组
燕辽裂陷带北部冀北、辽西两坳陷的中元古界铁岭组地层岩性可分三段:一段岩性主要为灰色薄~中厚层状白云岩夹灰绿色纸片状页岩;二段为浅灰绿色泥岩、页岩互层夹中厚层状含锰粉晶白云岩;三段为灰色、灰白色薄~中厚层含燧石结核白云岩、下部夹灰色中厚层状砾屑泥晶白云岩。冀北、辽西两坳陷铁岭组厚度分别为211 m和329 m。前人对于冀北坳陷铁岭组烃源层生烃潜力的认识存在争议:刘宝泉(2000)对冀北坳陷铁岭组烃源岩进行了评价。铁岭组碳酸盐岩和泥页岩TOC平均值分别为0.31%和2.39%;生烃潜量(S1+S2)平均值为1.12 mg/g,氯仿沥青“A”平均为
0.0088 %,等效镜质体反射率值(Ro)平均值为1.10%,属于中等~差烃源岩(图5)。但孙枢(2016)认为冀北坳陷铁岭组含薄层泥质白云岩总体有机质丰度不高,地层厚度有限,实际油源贡献甚微(孙枢等, 2016)。综合宗文明(2017)和辽凌地3井数据,对辽西坳陷铁岭组14件样品进行综合分析。样品分别来自孟家窝铺村北P1701剖面(4块)、侯杖子南P1702剖面(1块)辽凌地2井LLD2(7块)以及辽凌地3井LLD3(2块)。其中,P1701剖面铁岭组烃源岩TOC分布范围在0.21%~0.82%,平均值为0.47%,生烃潜量(S1+S2)分布范围0.01~0.06 mg/g,平均为0.04 mg/g,氯仿沥青“A”分布在
0.0018 %~0.0060 %之间,平均为0.0034 %,等效镜质体反射率值(Ro)主要分布在1.45%~1.62%之间,平均值为1.54%。P1702剖面铁岭组烃源岩仅1件,其TOC为0.26%,生烃潜量(S1+S2)为0.03 mg/g。LLD2井铁岭组烃源岩TOC分布范围在0.53%~0.94%,平均值为0.70%,生烃潜量(S1+S2)分布范围0.06~0.47 mg/g,平均为0.04 mg/g,氯仿沥青“A”分布在0.0040 %~0.0846 %之间,平均为0.0236 %,等效镜质体反射率值(Ro)主要分布在2.08%~2.18%之间,平均值为2.13%,为高~过成熟特征。辽凌地3井铁岭组两块样品铁岭组两块烃源岩样品TOC分别为0.47%和0.32%,生烃潜量(S1+S2)分别为0.08 mg/g和0.26 mg/g,等效镜质体反射率值(Ro)分别为0.86%和1.28%,平均值为0.96%。整体来看生烃潜力较差,为非烃源岩~差烃源岩(表6)。表 6 辽西坳陷铁岭组烃源岩地球化学参数对照表(冀北坳陷数据来源刘宝泉, 2000)Table 6. Abundance of organic matter in source rocks of Tieling Formation in Liaoxi depressions区域 剖面/井 TOC/% 氯仿沥青"A"/% S1+S2(mg/g) Ro(等效镜质体反射率)% 范围 均值 范围 均值 范围 均值 范围 均值 冀北
坳陷— 0.31(68)a
2.39(13)b— 0.0088 (38)— 1.12(78) — 1.10(28) P1701剖面 0.21~0.82 0.47(4) 0.0018 ~0.0060 0.0034 (4)0.01~0.06 0.04(4) 1.45~1.62 1.54 辽西
坳陷P1702剖面 0.26 0.26(1) — — 0.03 0.03(1) — — LLD2井 0.53~0.94 0.70(7) 0.004~ 0.0085 0.0236 (7)0.06~0.47 0.31(7) 2.08~2.18 2.13(7) LLD3井 0.32~0.47 0.40(2) — — 0.08~0.26 0.17(2) 0.86~1.06 0.96(2) 注:*1(样品数);a.碳酸盐岩;b.泥页岩。 综上所述,从横向来看冀北、辽西坳陷铁岭组烃源岩生烃潜力存在差异,但整体为非烃源岩~差烃源岩,生烃能力有限。
2.5 下马岭组
中元古界待建系下马岭组岩性以暗色页岩为主,底部见石英砂岩沉积,中部为一套灰黄、灰白色薄~中层状粉细砂岩,其上以灰黑、深灰色页岩为主。冀北、辽西两坳陷厚度分别为369 m和303 m。由于受后期抬升剥蚀影响,在燕辽裂陷带北部下马岭组地层分布不均,辽西坳陷西南沟~小庄户一带厚度最大,向东厚度逐渐变薄,研究区西部下马岭组仅零星分布。
值得注意的是,下马岭组地层普遍夹有2~4层暗灰绿色辉长辉绿岩床,岩床累计厚度约占下马岭组地层厚度一半,辉长辉绿岩床的侵入,使下马岭组地层遭受到不同程度围岩蚀变作用,这对下马岭组页岩的生烃、排烃以及油气成藏是有影响的(图10)。田永晶(2012)对龙潭沟古油藏下马岭组辉绿岩侵入体进行了定量计算,辉长辉绿岩床侵入体冷却速度很快,时间仅为0.1 Ma,侵入体对围岩影响范围有限,最大影响范围仅50 m左右,影响仅限于下马岭组地层(宋到福等, 2012; 田永晶等, 2012; 朱毅秀等, 2019)。
冀北坳陷下马岭组烃源层数据以北杖子剖面数据为例,样品的有机碳TOC平均值1.11%,生烃潜力(S1+S2)均值0.07 mg/g,氯仿沥青“A”平均值0.002%,为非烃源岩(孙枢等, 2016)。
辽西坳陷老庄户剖面(LP剖面)9块下马岭组烃源岩样品进行分析,TOC分布范围在0.15%~1.68%,平均值为0.76%;生烃潜量(S1+S2)分布范围0.04~1.54 mg/g,平均为0.32 mg/g;氯仿沥青“A”分布在0.041%~0.090%之间,平均为0.010%;等效镜质体反射率值(Ro)主要分布在1.26%~2.24%之间,平均值为1.87%,为高~过成熟特征。辽西坳陷老庄户剖面(LP剖面)整体为差~中等级别烃源岩(宗文明等, 2017)。中国地质调查局沈阳地质调查中心2020年实施的辽凌地3井,在56.72~94.44 m钻遇下马岭组地层,其中93.7 m的黑色页岩样品烃源岩数据明显优于其他,有机碳TOC值达到6.64%,生烃潜量(S1+S2)达到26.8%,等效镜质体反射率值(Ro)为0.89%,达到极好烃源岩标准(表7)。
表 7 冀北、辽西坳陷下马岭组烃源岩地球化学参数对照表Table 7. Abundance of organic matter in source rocks of Xiamaling Formation in Jibei and Liaoxi depressions区域 TOC/% 氯仿沥青"A"/% S1+S2(mg/g) Ro(等效镜质体反射率)% 范围 均值 范围 均值 范围 均值 范围 均值 冀北坳陷 0.02~2.69 1.11(8) 0.001~0.003 0.002(4) 0.04~0.11 0.07(8) — — 辽西坳陷 0.15~1.68 0.76(9) 0.041~0.090 0.010(9) 0.04~1.54 0.32(9) 1.26~2.24 1.87(9) LLD3(93.7 m) 6.64 6.64(1) — — 26.8 26.8(1) 0.89 0.89(1) 注:*1(样品数)。 综上,燕辽裂陷带北部中元古界下马岭组地层虽然岩性以暗色页岩为主,但受后期辉绿岩侵入岩床影响,生烃潜力有限,多为非烃源岩或差烃源岩。但在未被侵入岩床影响的层位,仍然存在极好烃源岩的可能。
3. 结论
(1)全球范围内元古界已发现数十处原生油气藏,探明油气储量达到亿吨级规模,局部地区存在元古界油气富集。燕辽裂陷带北部冀北、辽西两坳陷中元古界厚度大,分布范围广,烃源层发育,对古老油气资源的保存十分有利,是油气勘探的有利区域和层系。
(2)综合分析燕辽裂陷带北部6套可能的烃源岩层系,认为洪水庄组页岩分布范围广,沉积厚度大,受后期蚀变及构造破坏小,具有好的生烃潜力,是燕辽裂陷带北部中元古界最主要的烃源层。此外,高于庄组和铁岭组暗色碳酸盐岩、下马岭组未被侵入体蚀变破坏的黑色页岩也是中元古界油气勘探的有利层系。
(3)建议将燕辽裂陷带北部中元古界油气勘探的重点着眼于找寻辽西坳陷洪水庄组供油的构造稳定圈闭。
-
图 1 不同构造背景下的铜镍硫化物矿床的铜同位素值统计图
陆内裂谷:Tamarack、Eagle、Partridge River 矿床 (Ripley et al., 2015; Smith et al., 2022)、South Kawishiw 矿床 (Ripley et al., 2015);Coldwell 矿床 (Brzozowski et al., 2021b)。造山带:图拉尔根 (Zhao et al., 2017, 2019, 2022b)、白石泉 (Tang et al., 2020) 、喀拉通克 (Tang et al., 2020, 2024b)、葫芦、黄山南和黄山东 (Zhao et al., 2022)、夏日哈木 (Tang et al., 2024a)。大火成岩省:Noril’sk矿床 (Malitch et al., 2014)。克拉通裂谷带:金川矿床 (Zhao et al., 2022a)。陨石撞击:Sudbury (Zhu et al., 2000; Larson et al., 2003)。
Figure 1. Statistical chart of copper isotope values of Cu-Ni sulfide Deposits under different structural backgrounds
图 2 地外储库的Cu同位素组成(据许英奎等,2023修改)
数据来源:碳质球粒陨石:Luck et al. (2003); Barrat al. (2012); Paquet et al. (2023);普通球粒陨石:Luck et al. (2003); Moynier et al. (2007);顽火辉石球粒陨石:Savage et al. (2015);月球:Moynier et al. (2006); Herzog et al. (2009); Day et al. (2019);火星:Neuman. (2022);灶神星:Dhaliwal. (2021)。
Figure 2. The Cu isotope composition of extraterrestrial reservoirs (modified from Xu et al., 2023)
图 3 地幔橄榄岩、辉石岩和榴辉岩Cu同位素数据 (据Kempton et al., 2022修改)
数据来源:榴辉岩:Busigny et al. (2018);Liu et al. (2023);Huang et al. (2024);深海橄榄岩:Debret et al. (2018);Liu et al. (2019);大别苏鲁造山带橄榄岩: Liu et al. (2015);雅鲁藏布江蛇绿岩型橄榄岩:Liu et al. (2019);Lanzo造山带橄榄岩:Savage et al. (2015);Baldissero、Balmuccia造山带橄榄岩: Huang et al. (2017);Bohemian 造山带橄榄岩、辉石岩:Fang et al. (2024);Balmuccia造山带辉石岩Zou et al. (2019);汉诺坝堆晶辉石岩捕虏体: Zhang et al. (2022);杰罗尼莫火山区橄榄岩和辉石岩捕虏体Kempton et al. (2022);华北克拉通橄榄岩捕虏体 Liu et al. (2015);标红的样品 (RC-1J)被认为是榴辉岩:Zhang et al. (2009)。
Figure 3. Cu isotope data of mantle peridotite, eclogite and pyroxenite (modified from Kempton et al., 2022)
图 4 不同储库Cu同位素组成
数据来源: 洋中脊玄武岩:Liu et al. (2015); Wang et al. (2021); Sun et al. (2023); Zou et al. (2024);科马提岩:Savage et al. (2015);洋岛玄武岩:Ben Othman et al. (2006); Liu et al. (2015); savage et al. (2015);岛弧熔岩Liu et al. (2015); Wang et al. (2019, 2021); Chen et al. (2022);陆相火山岩:Liu et al. (2015); Huang et al. (2016); Kempton et al. (2022); Qu et al. (2024); Chen et al. (2024);黄土:Li et al. (2009); 王跃等, (2010);I型花岗岩、S型花岗岩:Li et al. (2009);角闪岩:Liu et al. (2023); Luo et al. (2023);麻粒岩:Zhang et al. (2022); Liu et al. (2023); Luo et al. (2023);陆壳辉长岩:Luo et al. (2023);陆壳辉石岩:Zhang et al., (2022);印度洋中脊洋壳辉长岩:Zou et al. (2024a);大西洋中脊洋壳辉长岩和橄长岩:Zhang et al. (2024) ;海水:Vance et al. (2008); Boyle et al. (2012); Takano et al. (2014); Thompson et al. (2014);河水:Vance et al. (2008);土壤:Bigalke et al. (2010, 2011, 2013)。
Figure 4. Isotope composition of Cu in different reservoirs
图 5 瑞利分馏模拟岩浆演化过程残余熔体、结晶的瞬时硫化物和堆晶硫化物的δ65Cu的变化 (据Zou et al., 2019修改)
其中f表示硅酸盐熔体中剩余的Cu的比例,δ65Cu残余熔体是硅酸盐熔体的初始Cu同位素组成,δ65Cu堆晶硫化物是堆晶硫化物的Cu同位素组成,δ65Cu结晶的瞬时硫化物是结晶的瞬时硫化物Cu同位素组成,α表示硫化物和硅酸盐熔体之间的分馏因子。初始熔体的δ65Cu假定为硅酸盐地球值 (0.07‰),分馏因子分别为1.001、0.9999、0.999
Figure 5. The variation of δ65Cu in residual melt, instantaneous sulfide, and cumulated sulfide during the simulated magma evolution process using Rayleigh fractionation (modified after Zou et al., 2019)
图 6 部分熔融过程以及不同类型熔体对地幔橄榄岩的影响 (据Huang et al., 2017修改)
数据来源:Arami和华北克拉通:Liu et al. (2015);杰罗莫尼火山场:Kempton et al. (2022);Horoman:Ikehata and Hirata (2012);Baldissero和Balmuccia:Huang et al. (2017);Bohemian:Fang et al. (2024)。
Figure 6. The influence of partial melting processes and different types of melts on mantle peridotites (modified after Huang et al., 2017)
表 1 已报道的岩浆镍铜硫化物矿床的铜同位素值
Table 1 Reported copper isotopic values of magmatic Ni-Cu sulfide deposits
构造背景 矿床 矿化类型 同位素范围(‰) 文章 西伯利亚大火成岩省 Kharaelakh 块状 −1.8~− 0.9 Malitch et al., 2014 浸染状 −2.3~−1.1 Talnakh. 块状 −0.6~−0.1 浸染状 −1.1~−0.1 Noril’sk-1 浸染状 −0.1~0.6 Chernogorsk 浸染状 −0.1~0 Zub-Marksheider 浸染状 −0.1 Vologochan 浸染状 −1.1~−0.4 Nizhny Talnakh 浸染状 −0.9~0 陆内裂谷 South Kawishiwi 浸染状 −0.36~0.45 Ripley et al., 2015 Partridge River 块状 −0.46 浸染状 −0.85~0.26 Eagle 浸染状 0.90~1.03 网脉状 0.74~1.32 块状 0.69 Tamarack 网脉状 1.21~1.29 浸染状 0.99~1.84 Marathon −1.47~1.07 Brzozowski et al., 2021b Northern −0.59~0.47 Partridge River 块状 −1.14~0.25 Smith et al., 2022 Eagle 块状 −0.43~0.15 Tamarack 块状 −0.39~1.06 中亚造山带 图拉尔根 块状 −1.08~−0.52 Zhao et al., 2017 浸染状 −1.98~0.15 图拉尔根 块状 −0.53~0.53 Zhao et al., 2019 浸染状 −0.83~0.04 喀拉通克 块状 −0.85~0.67 Tang et al., 2024b 浸染状 −0.52~0.18 块状 −0.16~0.03 Tang et al., 2020 浸染状 −1.32~0.07 白石泉 块状 −0.40~0.59 浸染状 −0.22~0.38 黄山南 块状 −0.29~−027 Zhao et al., 2022b 浸染状 −0.35~0.18 黄山东 浸染状 −0.69~−0.05 葫芦 块状 0.06~0.17 浸染状 −0.65~0.13 图拉尔根 浸染状 −1.17~0.05 东昆仑造山带 夏日哈木 块状 0.63~0.73 Tang et al., 2024a 浸染状 0.19~0.79 克拉通边缘裂谷带 金川 浸染状 0.26~0.96 Zhao et al., 2022a 网脉状 −0.47~1.29 块状 −0.91~0.09 陨石撞击 Sudbury −0.54~0.4 Zhu et al., 2000
Larson et al., 2003 -
李津, 唐索寒, 马健雄, 等 . 金属同位素质谱分析中样品处理的基本原则与方法[J]. 岩矿测试,2021 ,40 (5 ):627 −636 .LI Jin, TANG Suohan, MA Jianxiong, et al . Principles and Treatment Methods for Metal Isotopes Analysis[J]. Rock and Mineral Analysis,2021 ,40 (5 ):627 −636 .李世珍, 朱祥坤, 吴龙华, 等 . 干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J]. 地球学报,2011 ,32 (6 ):754 −760 .LI Shizhen, ZHU Xiangkun, WU Longhua, et al . A Comparative Study of Plant Sample Preparation by Dry Ashing and Wet Digestion for Isotopic Determination of Cu, Zn and Fe[J]. Acta Geoscientica Sinica,2011 ,32 (6 ):754 −760 .吕楠, 包志安, 陈开运, 等 . fs-LA-MC-ICP-MS非基体匹配精确测定富铜矿物的铜同位素[J]. 中国科学(地球科学), 52(11): 2239-2253. LV N, Bao Zhian, Chen Kaiyun, et al. Accurate analysis of Cu isotopes by fs-LA-MC-ICP-MS with non-matrix-matched calibration[J]. Science ChinaEarthSciences,2022 ,65 (10 ):2005 −2017 .邱坦, 汤庆艳, 杨皓辰, 等 . 铁同位素分馏机理以及在镁铁-超镁铁质岩浆作用和成矿作用中的应用[J]. 岩石矿物学杂志,2024 ,43 (4 ):1034 −1051 .QIU Tan, TANG Qinyan, YANG Haochen, et al . Fractionation mechanism of iron isotope and its application in mafic-ultramafic magmatism and metallogenesis[J]. Acta Petrologica et Mineralogica,2024 ,43 (4 ):1034 −1051 .许英奎, 李智, 冯娟, 等 . 星子碰撞增生过程中的同位素分馏研究进展[J]. 东华理工大学学报(自然科学版),2023 ,46 (6 ):585 −596 .XU Yingkui, LI Zhi, Feng Juan, et al . Advanees in isotopic fractionation in planetesimal collisional accrelion processes[J]. Joumal of East China University of Technology(Natural Science),2023 ,46 (6 ):585 −596 .王倩, 侯清华, 张婷, 等. 铜同位素测定方法研究进展[J]. 矿物岩石地球化学通报, 35(3): 497-506. WANG Qian, HOU Qinghua, ZHANG Ting, et al. Progresses of Copper Isotope Analytical Methods[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 497-506.
王跃, 朱祥坤 . 铜同位素在矿床学中的应用: 认识与进展[J]. 吉林大学学报: 地球科学版,2010 ,40 (4 ):739 −751 .Wang Yue, Zhu Xingkun . Applications of Cu Isotopes on Studies of Mineral Deposits: a Status Report[J]. Journal of Jilin University(Earth Science Edition),2010 ,40 (4 ):739 −751 .王泽洲, 刘盛遨, 李丹丹, 等 . 铜同位素地球化学及研究新进展[J]. 地学前缘,2015 ,22 (5 ):72 −83 .WANG Zezhou, LIU Shengao, LI Dandan, et al . A review of progress in copper stable isotope geochemistry[J]. Earth Science Frontiers,2015 ,22 (5 ):72 −83 .辛雨, 薛胜超, 王信水, 等 . 汇聚环境岩浆氧化态来源的进展与展望[J]. 岩石学报,2023 ,39 (9 ):2817 −2831 . doi: 10.18654/1000-0569/2023.09.16XIN Yu, XUE Shengchao, WANG Xinshui, et al . Progress and prospect of the oxidation state of magmas in convergent tectonic settings[J]. Acta Petrologica Sinica,2023 ,39 (9 ):2817 −2831 . doi: 10.18654/1000-0569/2023.09.16薛胜超, 刘金宇, 周翊, 等 . 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报,2024 ,40 (1 ):60 −78 . doi: 10.18654/1000-0569/2024.01.03Xue Shengchao, LIU Jinyu, ZHOU Xu, et al . Genetic correlation of metasomatized mantle source with Ni-Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica,2024 ,40 (1 ):60 −78 . doi: 10.18654/1000-0569/2024.01.03朱祥坤, 王跃, 闫斌, 等 . 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报,2013 ,32 (6 ):651 −688 .ZHU Xiangkun, WANG Yue, YAN Bin, et al . Developments of Non-Traditional Stable Isotope Geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2013 ,32 (6 ):651 −688 .Asael D, Matthews A, Bar-Matthews M . Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel)[J]. Chemical Geology,2007 ,243 (3-4 ):238 −254 . doi: 10.1016/j.chemgeo.2007.06.007Barrat J A, Zanda B, Moynier F, et al . Geochemistry of Cl chondrites: Major and trace elements, and Cu and Zn isotopes[J]. Geochimica et Cosmochimica Acta,2012 ,83 :79 −92 .Ben Othman D, Luck J M, Bodinier J L, et al . Cu-Zn isotopic variations in the Earth’s mantle[J]. Geochimica et Cosmochimica Acta,2006 ,70 (18 ):A46 .Bigalke M, Kersten M, Weyer S, et al . Isotopes trace biogeochemistry and sources of Cu and Zn in an intertidal soil[J]. Soil Science Society of America Journal,2013 ,77 (2 ):680 −691 . doi: 10.2136/sssaj2012.0225Bigalke M, Weyer S, Wilcke W. Stable copper isotopes: A novel tool to trace copper behavior in hydromorphic soils[J]. Soil Science Society of America Journal. 2010, 74(1), 60-73.
Bigalke M, Weyer S, Wilcke W . Stable Cu isotope fractionation in soils during oxic weathering and podzolization[J]. Geochimica et Cosmochimica Acta,2011 ,75 (11 ):3119 −3134 . doi: 10.1016/j.gca.2011.03.005Bishop M C, Moynier F, Weinstein C, et al . The Cu isotopic composition of iron meteorites[J]. Meteoritics and Planetary Science,2012 ,47 (2 ):268 −276 . doi: 10.1111/j.1945-5100.2011.01326.xBohlien S R, Merzger K . Origin of granulite terrenes and the formation of the lowermost continental crust[J]. Science,1989 ,244 :326 −329 . doi: 10.1126/science.244.4902.326Borrok D M, Wanty R B, Ridley W I, et al . Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement[J]. Chemical Geology,2007 ,242 (3 ):400 −414 .Boyle E A, John S, Abouchami W, et al . GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration[J]. Limnology and Oceanography: methods,2012 ,10 (9 ):653 −665 . doi: 10.4319/lom.2012.10.653Brzozowski M J, Good D J, Wu C, et al . Cu isotope systematics of conduit-type Cu-PGE mineralization in the Eastern Gabbro, Coldwell Complex, Canada[J]. Mineralium Deposita,2021b ,56 (4 ):707 −724 . doi: 10.1007/s00126-020-00992-8Brzozowski M J, Good D J, Wu C, et al . Iron isotope fractionation during sulfide liquid evolution in Cu–PGE mineralization of the Eastern Gabbro, Coldwell Complex, Canada[J]. Chemical Geology,2021a ,576 :120282 . doi: 10.1016/j.chemgeo.2021.120282Busigny V, Chen J B, Philippot P, et al . Insight into hydrothermal and subduction processes from copper and nitrogen isotopes in oceanic metagabbros[J]. Earth and Planetary Science Letters,2018 ,498 :54 −64 . doi: 10.1016/j.jpgl.2018.06.030Chen C F, Foley S F, Shcheka S S, et al . Copper isotopes track the Neoproterozoic oxidation of cratonic mantle roots[J]. Nature Communications,2024 ,15 (1 ):4311 . doi: 10.1038/s41467-024-48304-2Chen L M, Lightfoot P C, Zhu J M, et al . Nickel isotope ratios trace the process of sulfide-silicate liquid immiscibility during magmatic differentiation[J]. Geochimica et Cosmochimica Acta,2023 ,353 :1 −12 . doi: 10.1016/j.gca.2023.05.013Chen Z X, Chen J B, Tamehe L S . Heavy Copper Isotopes in Arc-Related Lavas From Cold Subduction Zones Uncover a Sub-Arc Mantle Metasomatized by Serpentinite-Derived Sulfate-Rich Fluids[J]. Journal of Geophysical Research: Solid Earth,2022 ,127 (10 ):e2022JB024910 . doi: 10.1029/2022JB024910Day J M D, Sossi P A, Shearer C K, et al . Volatile distributions in and on the Moon revealed by Cu and Fe isotopes in the ‘Rust-y Rock’66095[J]. Geochimica et Cosmochimica Acta,2019 ,266 :131 −143 . doi: 10.1016/j.gca.2019.02.036Debret B, Beunon H, Mattielli N, et al . Ore component mobility, transport and mineralization at mid-oceanic ridges: A stable isotopes (Zn, Cu and Fe) study of the Rainbow massif (Mid-Atlantic Ridge 36 14′ N)[J]. Earth and Planetary Science Letters,2018 ,503 :170 −180 . doi: 10.1016/j.jpgl.2018.09.009Dhaliwal J K, Day JM D, Creech J B, et al. Volatile depletion and evolution of Vesta from coupled Cu-Zn isotope systematics[C]//European Geosciences Union (EGU) General Assembly Conference Ab-stracts, 2021: EGU21-12820.
Ding S, Dasgupta R . The fate of sulfide during decompression melting of peridotite-implications for sulfur inventory of the MORB-source depleted upper mantle[J]. Earth and Planetary Science Letters,2017 ,459 (1 ):183 −195 .Ding X, Ripley E M, Wang W Z, et al . Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta,2019 ,261 :327 −341 . doi: 10.1016/j.gca.2019.07.015Ehrlich S, Butler I, Halicz L, et al . Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS[J]. Chemical Geology,2004 ,209 (3 ):259 −269 .Fang S B, Huang J, Ackerman L, et al. Copper migration and enrichment in the mantle wedge: Insights from orogenic peridotites and pyroxenites. Geochimica et Cosmochimica Acta, 2024, 380: 83-95.
Fellows S A, Canil D . Experimental study of the partitioning of Cu during partial melting of Earth's mantle[J]. Earth and Planetary Science Letters,2012 ,337 :133 −143 .Feng Y T, Zhang W, Hu Z C, et al . New Potential Sulfide Reference Materials for Microbeam S-Fe-Cu Isotope Measurements[J]. Geostandards and Geoanalytical Research,2023 ,48 (1 ):227 −244 .Fernandez A, Borrok D M . Fractionation of Cu, Fe and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology,2009 ,264 (1-4 ):1 −12 . doi: 10.1016/j.chemgeo.2009.01.024Guo H H, Xia Y, Bai R X, et al . Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits[J]. National Science Review,2020 ,7 (8 ):1319 −1330 . doi: 10.1093/nsr/nwz221Herzog G F, Moynier F, Albarède F, et al . Isotopic and elemental abundances of copper and zinc in lunar samples, ZagamiPele’s hairs, and a terrestrial basalt[J]. Geochimica et Cosmochimica Acta,2009 ,73 (19 ):5884 −5904 . doi: 10.1016/j.gca.2009.05.067Hou Q H, Zhou L, Gao S, et al . Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry,2016 ,31 (1 ):280 −287 . doi: 10.1039/C4JA00488DHuang J, Fang S B, Guo S . Fluid-mediated Cu and Zn isotope fractionation in subduction zones and implications for arc volcanism: Constraints from high pressure veins within eclogites in the Dabie Orogen[J]. Chemical Geology,2024 ,663 :122258 . doi: 10.1016/j.chemgeo.2024.122258Huang J, Huang F, Wang Z C, et al . Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps[J]. Geochimica et Cosmochimica Acta,2017 ,211 :48 −63 . doi: 10.1016/j.gca.2017.05.007Huang J, Liu S A, Gao Y J, et al . Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific[J]. Journal of Geophysical Research: Solid Earth,2016b ,121 (10 ):7086 −7100 . doi: 10.1002/2016JB013095Huang J, Liu S A, Wörner G, et al . Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany)[J]. Contributions to Mineralogy and Petrology,2016a ,171 :1 −16 . doi: 10.1007/s00410-015-1217-5Ikehata K, Hirata T . Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan[J]. Economic Geology,2012 ,107 (7 ):1489 −1497 . doi: 10.2113/econgeo.107.7.1489Ikehata K, HirataT . Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite[J]. Analytical Sciences,2013 ,29 (12 ):1213 −1217 . doi: 10.2116/analsci.29.1213Ikehata K, Notsu K, Hirata T . In situ determination of Cu isotope ratios in copper-rich materials by NIR femtosecond LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2008 ,23 (7 ):1003 −1008 . doi: 10.1039/b801044gIrrgeher J, Prohaska T, Sturgeon RE, et al . Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS[J]. Analytical Methods,2013 ,5 (7 ):1687 −1694 . doi: 10.1039/c3ay00028aKempton P D, Mathur R, Harmon R S, et al . Cu-isotope evidence for subduction modification of lithospheric mantle[J]. Geochemistry, Geophysics, Geosystems,2022 ,23 (8 ):e2022GC010436 . doi: 10.1029/2022GC010436Lambart S, Koornneef J M, Millet M A, et al . Highly heterogeneous depleted mantle recorded in the lower oceanic crust[J]. Nature Geoscience,2019 ,12 (6 ):482 −486 . doi: 10.1038/s41561-019-0368-9Larner F, Rehkämper M, Coles B J, et al . A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2011 ,26 (8 ):1627 −1632 . doi: 10.1039/c1ja10067jLarson P B, Maher K, Ramos F C, et al . Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J]. Chemical Geology,2003 ,201 (3-4 ):337 −350 . doi: 10.1016/j.chemgeo.2003.08.006Lauwens S, Costas-Rodriguez M, Vanhaecke F . Ultra-trace Cu isotope ratio measurements via multi-collector ICP-mass spectrometry using Ga as internal standard: an approach applicable to micro-samples[J]. Analytica Chimica Acta,2018 ,1025 :69 −79 . doi: 10.1016/j.aca.2018.05.025Le Roux V, Dasgupta R, Lee C T A . Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga, and Ge during mantle melting[J]. American Mineralogist,2015 ,100 (11-12 ):533 −2544 .Lee C T A, Luffi P, Chin E J, et al . Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science,2012 ,336 (6077 ):64 −68 . doi: 10.1126/science.1217313Li J, Tang S H, ZhuX K, et al . Basaltic and Solution Reference Materials for Iron, Copper and Zinc Isotope Measurements[J]. Geostandards and Geoanalytical Research,2018 (1 ):163 −175 .Li W Q, Jackson S E, Pearson N J, et al . The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia[J]. Chemical Geology,2009 ,258 (1-2 ):38 −49 . doi: 10.1016/j.chemgeo.2008.06.047Li Y, Audétat A . Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions[J]. Earth and Planetary Science Letters,2012 ,355 :327 −340 .Little S H, Vance D, Mcmanus J, et al . Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta,2017 ,212 :253 −273 . doi: 10.1016/j.gca.2017.06.019Liu S A, Huang J, Liu J G, et al . Copper isotopic composition of the silicate Earth[J]. Earth and Planetary Science Letters,2015 ,427 :95 −103 . doi: 10.1016/j.jpgl.2015.06.061Liu S A, Li D D, Li S G, et al . High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2014a ,29 (1 ):122 −133 . doi: 10.1039/C3JA50232ELiu S A, Liu P P, Lv Y W, et al . Cu and Zn isotope fractionation during oceanic alteration: Implications for Oceanic Cu and Zn cycles[J]. Geochimica et Cosmochimica Acta,2019 ,257 :191 −205 . doi: 10.1016/j.gca.2019.04.026Liu S A, Rudnick R L, Liu W R, et al . Copper isotope evidence for sulfide fractionation and lower crustal foundering in making continental crust[J]. Science Advances,2023 ,9 (36 ):eadg6995 . doi: 10.1126/sciadv.adg6995Liu S Q, Li Y B, Liu J, et al . Equilibrium Cu isotope fractionation in copper minerals: a first-principles study[J]. Chemical Geology,2021 ,564 :120060 . doi: 10.1016/j.chemgeo.2021.120060Liu X C, Xiong X L, Audétat A, et al . Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions[J]. Geochimica et Cosmochimica Acta,2014b ,125 :1 −22 . doi: 10.1016/j.gca.2013.09.039Luck J M, Othman D B, Albarède F . Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes[J]. Geochimica et Cosmochimica Acta,2005 ,69 (22 ):5351 −5363 . doi: 10.1016/j.gca.2005.06.018Luck J M, Othman D B, Barrat J A, et al . 2003. Coupled 63Cu and16O excesses in chondrites[J]. Geochimica et Cosmochimica Acta,2003 ,67 (1 ):143 −151 . doi: 10.1016/S0016-7037(02)01038-4Luo C H, Wang R, Zhao Y, et al . Mobilization of Cu in the continental lower crust: A perspective from Cu isotopes[J]. Geoscience Frontiers,2023 ,14 (5 ):101590 . doi: 10.1016/j.gsf.2023.101590Malitch K N, Latypov R M, Badanina I Y, et al . Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk Province (Russia): Evidence from copper and sulfur isotopes[J]. Lithos,2014 ,204 :172 −187 . doi: 10.1016/j.lithos.2014.05.014Maréchal C N, Télouk P, Albarède F . Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology,1999 ,156 (1 ):251 −273 .Markl G, Lahaye Y, Schwinn G . Copper isotopes as monitors of redox processes in hydrothermal mineralization[J]. Geochimica et Cosmochimica Acta,2006 ,70 (16 ):4215 −4228 . doi: 10.1016/j.gca.2006.06.1369Mason T F D, Weiss D J, Horstwood M, et al . High-precision Cu and Zn isotope analysis by plasma source mass spectrometry[J]. Journal of Analytical Atomic Spectrometry,2004 ,19 (2 ):209 −217 . doi: 10.1039/b306958cMathur R, Dendas M, Titley S, et al . Patterns in the Copper Isotope Composition of Minerals in Porphyry Copper Deposits in Southwestern United States[J]. Ecomomic Geology,2010 ,105 (8 ):1457 −1467 . doi: 10.2113/econgeo.105.8.1457Mathur R, Ruiz J, Titley S, et al . Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta,2005 ,69 (22 ):5233 −5246 . doi: 10.1016/j.gca.2005.06.022Mathur R, Titley S, Barra F, et al . Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geochemical exploration,2009 ,102 (1 ):1 −6 . doi: 10.1016/j.gexplo.2008.09.004Meija J, Yang L, Sturgeon R E, et al . Certification of natural isotopic abundance inorganic mercury reference material NIMS-1 for absolute isotopic composition and atomic weight[J]. Journal of Analytical Atomic Spectrometry,2010 ,25 (3 ):384 −389 . doi: 10.1039/b926288aMoynier F, Albarède F, Herzog G F. 2006. Isotopic composition of zinc, copper, and iron in lunar samples[J]. Geochimica et Cosmochimica Acta, 70(24): 6103-6117.
Moynier F, Blichert-Toft J, Telouk P, et al. 2007. Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites[Jl. Geochimica et Cosmochimica Acta, 7l(17): 4365-4379.
Moynier F, Koeberl C, Beck P, et al . Isotopic fractionation of Cu intektities[J]. Geochimica et Cosmochimica Acta,2010 ,74 (2 ):799 −807 . doi: 10.1016/j.gca.2009.10.012Moynier F, Vance D, Fujii T, et al . The isotope geochemistry of zinc and copper[J]. Reviews in mineralogy and geochemistry,2017 ,82 (1 ):543 −600 . doi: 10.2138/rmg.2017.82.13Naldrett A J, Fedorenko V A, Asif M, et al . Controls on the composition of Ni-Cu sulfide deposits as illustrated by those at Noril’sk, Siberia[J]. Economic Geology,1996 ,91 (4 ):751 −773 . doi: 10.2113/gsecongeo.91.4.751Naldrett A J, Singh J, Krstic S, et al . The mineralogy of the Voisey’s Bay Ni-Cu-Co deposit, northern Labrador, Canada: Influence of oxidation state on textures and mineral compositions[J]. Economic Geology,2000 ,95 (4 ):889 −900 .Neuman M, Gargano A, Shearer C K, et al. Volatile element evolution in the Martian crust: communications with the Martian surface and atmosphere[C]//Lunar and Planetary Institute, NASA Johnson Space Center, 53rd Lunar and Planetary Science Conference, Texas: Woodlands, 2022: 1385.
Paquet M, Moynier F, Yokoyama T, et al . Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotop ic analysis[J]. Nature Astronomy,2023 ,7 :182 −189 .Qu Y R, Liu S A . Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet[J]. Geoscience Frontiers,2024 ,15 (4 ):101818 . doi: 10.1016/j.gsf.2024.101818Ripley E M, Dong S F, Li C, et al . Cu isotope variations between conduit and sheet-style Ni-Cu-PGE sulfide mineralization in the Midcontinent Rift System, North America[J]. Chemical Geology,2015 ,414 :59 −68 . doi: 10.1016/j.chemgeo.2015.09.007Ripley E M, Li C. Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis[J]?Economic Geology, 2013, 108(1): 45-58.
Ripley E M, Li C . Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits[J]. Economic Geology,2003 ,98 (3 ):635 −641 . doi: 10.2113/gsecongeo.98.3.635Rouxel O, Fouquet Y, Ludden J N . Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge[J]. Economic Geology,2004 ,99 (3 ):585 −600 . doi: 10.2113/gsecongeo.99.3.585Savage P S, Moynier F, Chen H, et al . Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation[J]. Geochemical Perspectives Letters,2015 ,1 (1 ):53 −64 .Schauble E A . Applying stable isotope fractionation theory to new systems[J]. Reviews in mineralogy and geochemistry,2004 ,55 (1 ):65 −111 . doi: 10.2138/gsrmg.55.1.65Sherman D M . Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory[J]. Geochimica et Cosmochimica Acta,2013 ,118 :85 −97 . doi: 10.1016/j.gca.2013.04.030Shields W R, Goldich S S, Garner E L, et al . Natural variations in the abundance ratio and the atomic weight of copper[J]. Journal of Geophysical Research,1965 ,70 (2 ):479 −491 . doi: 10.1029/JZ070i002p00479Smith J M, Ripley E M, Li C, et al . Cu and Ni Isotope Variations of Country Rock-Hosted Massive Sulfides Located Near Midcontinent Rift Intrusions[J]. Economic Geology,2022 ,117 (1 ):195 −211 . doi: 10.5382/econgeo.4872Sullivan K, Layton-Matthews D, Leybourne M, et al . Copper Isotopic Analysis in Geological an Biological Reference Materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research,2020 ,44 (2 ):349 −362 . doi: 10.1111/ggr.12315Sun P, Niu Y L, Chen S, et al . Copper isotope fractionation during magma differentiation: evidence from lavas on the East Pacific Rise at 10◦30′N[J]. Geochimica et Cosmochimica Acta,2023 ,356 :93 −104 . doi: 10.1016/j.gca.2023.07.016Takano S, Tanimizu M, Hirata T, et al . Isotopic constraints on biogeochemical cycling of copper in the ocean[J]. Nature communications,2014 ,5 (1 ):1 −7 .Tang D M, Qin K Z, Evans N J, et al . Sulfide copper-iron isotopic fractionation during formation of the Kalatongke magmatic Cu-Ni sulfide deposit in the Central Asian Orogenic Belt[J]. Geochemistry, Geophysics, Geosystems,2024b ,25 (6 ):e2023GC011406 . doi: 10.1029/2023GC011406Tang D M, Qin K Z, Su B X, et al . Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits[J]. Geochimica et Cosmochimica Acta,2020 ,275 :209 −228 . doi: 10.1016/j.gca.2020.02.015Tang Q Y, Bao J, Zhang Y, et al . Copper isotope fractionation during magmatic evolution in a convergent tectonic setting: Constraints from sulfide Cu-S isotopes and whole-rock PGE of the Xiarihamu Ni-Cu sulfide deposit[J]. Chemical Geology,2024a ,668 :122348 . doi: 10.1016/j.chemgeo.2024.122348Taylor S R, MeLennan S M, MeCulloch M T . Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta,1983 ,47 (11 ):1897 −1905 . doi: 10.1016/0016-7037(83)90206-5Thompson C M, Ellwood M J . Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry,2014 ,165 :1 −9 . doi: 10.1016/j.marchem.2014.06.009Tollan P, Hermann J . Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene[J]. Nature Geoscience,2019 ,12 (8 ):667 −671 . doi: 10.1038/s41561-019-0411-xUrey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (London), 1947: 562-581.
Vance D, Archer C, Bermin J, et al . The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters,2008 ,274 (1 ):204 −213 .Wang Q, Zhou L, Feng L, et al . Use of a Cu-selective resin for Cu preconcentration from seawater prior to its isotopic analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2020 ,35 (11 ):2732 −2739 . doi: 10.1039/D0JA00096EWang Z C, Becker H, Gawronski T . Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: A case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps)[J]. Geochimica et Cosmochimica Acta,2013 ,108 :21 −44 . doi: 10.1016/j.gca.2013.01.021Wang Z C, Becker H . Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle[J]. Geochimica et Cosmochimica Acta,2015 ,160 :209 −226 . doi: 10.1016/j.gca.2015.04.006Wang Z C, Park J W, Wang X, et al . Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc[J]. Geochimica et Cosmochimica Acta,2019 ,250 :18 −33 . doi: 10.1016/j.gca.2019.01.040Wang Z C, Zhang P Y, Li Y B . Copper recycling and redox evolution through progressive stages of oceanic subduction: Insights from the Izu-Bonin-Mariana forearc[J]. Earth and Planetary Science Letters,2021 ,574 :117178 . doi: 10.1016/j.jpgl.2021.117178Williams H M, Archer C . Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallisation processes on iron meteorite parent bodies[J]. Geochimica et Cosmochimica Acta,2011 ,75 (11 ):3166 −3178 . doi: 10.1016/j.gca.2011.03.010Wohlgemuth-Ueberwasser C C, Fonseca R O C, Ballhaus C, et al . Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides[J]. Mineralium Deposita,2013 ,48 :115 −127 . doi: 10.1007/s00126-012-0420-9Xia Y, Kiseeva E S, Wade J, et al . The effect of core segregation on the Cu and Zn isotope composition of the silicate Moon[J]. Geochemical Perspectives Letters,2019 ,12 :12 −17 .Xue S C, Deng J, Wang Q F, et al . The redox conditions and C isotopes of magmatic Ni-Cu sulfide deposits in convergent tectonic settings: The role of reduction process in ore genesis[J]. Geochimica et Cosmochimica Acta,2021 ,306 :210 −225 . doi: 10.1016/j.gca.2021.05.039Xue S C, Wang Q F, Deng J, et al . Mechanism of organic matter assimilation and its role in sulfide saturation of oxidized magmatic ore-forming system: insights from C-S-Sr-Nd isotopes of the Tulaergen deposit in NW China[J]. Mineralium Deposita,2022 ,57 (7 ):1123 −1141 . doi: 10.1007/s00126-021-01087-8Yang L, Peter C, Panne U, et al . Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2008 ,23 (9 ):1269 −1274 . doi: 10.1039/b803143fYang X M, Wang S J, Zhang Y W, et al . Nickel isotope fractionation during magmatic differentiation[J]. Geochemistry, Geophysics, Geosystems,2023 ,24 (6 ):e2023GC010926 . doi: 10.1029/2023GC010926Zhang G L, Liu Y S, Moynier F, et al . Copper mobilization in the lower continental crust beneath cratonic margins, a Cu isotope perspective[J]. Geochimica et Cosmochimica Acta,2022 ,322 :43 −57 . doi: 10.1016/j.gca.2022.01.031Zhang R Y, Liou J G, Zheng J P, et al . Petrogenesis of eclogites enclosed in mantle-derived peridotites from the Sulu UHP terrane constraints from trace elements in minerals and Hf isotopes in zircon[J]. Lithos,2009 ,109 (3-4 ):176 −192 . doi: 10.1016/j.lithos.2008.08.002Zhang W Q, Liu C Z, Lissenberg C J, et al . Post-cumulus control on copper isotopic fractionation during oceanic intra-crustal magmatic differentiation[J]. Geochimica et Cosmochimica Acta,2024 ,369 :35 −50 . doi: 10.1016/j.gca.2024.01.030Zhang Y, Bao Z, Lv N, et al . Copper Isotope Ratio Measurements of Cu-Dominated Minerals Without Column Chromatography Using MC-ICP-MS[J]. Frontiers in Chemistry,2020 ,8 :609 . doi: 10.3389/fchem.2020.00609Zhao Y, Liu S A, Xue C J, et al . Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit[J]. American Mineralogist,2022a ,107 (4 ):673 −683 . doi: 10.2138/am-2021-7911Zhao Y, Liu S A, Xue C J, et al . Copper isotope fractionation in magmatic Ni-Cu mineralization systems associated with the variation of oxygen fugacity in silicate magmas[J]. Geochimica et Cosmochimica Acta,2022b ,338 :250 −263 . doi: 10.1016/j.gca.2022.09.040Zhao Y, Liu S A, Xue C J, et al . Metasomatized mantle facilitates the genesis of magmatic nickel-copper sulfide deposits in orogenic belts: A copper isotope perspective[J]. Geochimica et Cosmochimica Acta,2024a ,366 :128 −140 . doi: 10.1016/j.gca.2023.11.028Zhao Y, Wang S J, Xue C J, et al. Hidden deep sulfide cumulates beneath the Jinchuan Ni-Cu-platinum-group element deposit (China) inferred from Ni-Cu isotopes[J]. Geology. 2024b.
Zhao Y, Xue C J, Liu S A, et al . Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China[J]. Lithos,2017 ,286-287 :206 −215 . doi: 10.1016/j.lithos.2017.06.007Zhao Y, Xue C J, Liu S A, et al . Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system[J]. Geochimica et Cosmochimica Acta,2019 ,249 :42 −58 . doi: 10.1016/j.gca.2018.12.039Zheng Y C, Liu S A, Wu C D, et al . Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology,2019 ,47 (2 ):135 −138 . doi: 10.1130/G45362.1Zhu X K, Guo Y, Williams R J P, et al . Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters,2002 ,200 (1-2 ):47 −62 . doi: 10.1016/S0012-821X(02)00615-5Zhu X K, O’nions R K, Guo Y, et al . Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers[J]. Chemical Geology,2000 ,163 (1-4 ):139 −149 . doi: 10.1016/S0009-2541(99)00076-5Zhu Y T, Li M, Wang Z C, et al . High-precision Copper and Zinc Isotopic Measurements in Igneous Rock Standards Using Large-geometry MC-ICP-MS[J]. Atomic Spectroscopy,2019 ,40 (6 ):206 −214 . doi: 10.46770/AS.2019.06.002Zou Z Q, Wang Z C, Li M, et al . Copper isotope variations during magmatic migration in the mantle: Insights from mantle pyroxenites in Balmuccia peridotite massif[J]. Journal of Geophysical Research: Solid Earth,2019 ,124 (11 ):11130 −11149 . doi: 10.1029/2019JB017990Zou Z Q, Wang Z C, Xu Y G, et al . Deep mantle cycle of chalcophile metals and sulfur in subducted oceanic crust[J]. Geochimica et Cosmochimica Acta,2024b ,370 :15 −28 . doi: 10.1016/j.gca.2024.02.007Zou Z Q, Wang Z Q, Xu Y G, et al . Contrasting Cu isotopes in mid-ocean ridge basalts and lower oceanic crust: Insights into the oceanic crustal magma plumbing systems[J]. Earth and Planetary Science Letters,2024a ,627 :118563 . doi: 10.1016/j.jpgl.2023.118563