ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    铜同位素在高温岩浆系统中的研究进展及其在岩浆硫化物矿床中的应用

    Research Progress on Copper Isotope in High-temperature Magmatic System and Its Implications for Magmatic Sulfide Deposits

    • 摘要: Cu同位素在地幔部分熔融、岩浆结晶分异以及地幔交代等高温地质过程中表现出显著的变化特征,其中在岩浆铜镍硫化物成矿系统中发现了~4‰的Cu同位素变化,不同于金属稳定同位素的分馏主要受控于温度变化的传统认识。除了陨石撞击成因的Sudbury矿床外,板内和造山带环境的铜镍矿床均显示较大的Cu同位素变化范围,在复杂的成岩–成矿过程研究中显示出巨大潜力。目前主要认识包括:①地幔Cu同位素存在不均一性,洋中脊玄武岩和科马提岩更能代表地幔源区Cu位素组成。②Cu含量与同位素之间的协同变化,以及Cu同位素在硫化物–硅酸盐之间的分馏系数的控制因素,是理解岩浆形成和演化过程中Cu同位素变化的关键因素。③目前对于俯冲带变质脱水过程中Cu同位素的分馏行为研究十分有限,因此单独利用Cu同位素判断Cu迁移路径存在较大不确定性。大部分Cu仍保存在俯冲板片中,与俯冲相关的各类岩石中Cu同位素偏离地幔值的情况可能是偶然现象。④铜镍矿床中Cu同位素的变化受控于多种地质过程或分馏机制的叠加作用,包括:地幔源区Cu同位素不均一性;地壳混染物质对于岩浆体系Cu同位素的改变;硫化物熔离和分异过程导致硫化物矿石Cu同位素的变化;岩浆体系氧化还原状态的变化:一方面Cu同位素随岩浆氧逸度的变化而变化,另一方面是氧化性的熔/流体导致原生硫化物发生分解及其二次沉淀可以导致Cu同位素变化。Cu同位素在揭示成岩–成矿过程中的关键作用日益凸显,未来应加强探讨Cu同位素与其他同位素体系(如Fe、Zn、Ni等)的协同作用,结合实验与模拟,完善岩浆铜镍硫化物矿床成矿模型,对深入理解壳幔物质循环及其资源效应具有重要意义。

       

      Abstract: Copper isotope exhibits significant variations during high-temperature geological processes such as mantle partial melting, magmatic differentiation, and mantle metasomatism. Notably, a ~4‰ variation in Cu isotope has been observed in magmatic Ni-Cu sulfide systems, challenging the conventional understanding that fractionation of metal stable isotopes is predominantly controlled by temperature. Beyond the Sudbury deposit, which formed via meteoritic impact, Ni-Cu deposits in intraplate and orogenic settings show a wide range of Cu isotope variations, highlighting their potential for studying complex magmatic and metallogenic processes. Current insights include: ① Cu isotope in mantle is highly heterogeneous. Mid-ocean ridge basalts and komatiites better represent the Cu isotopic composition of the mantle source. ② The coupled behavior of Cu concentrations and isotopes, as well as the fractionation coefficients between sulfides and silicates, are crucial for understanding Cu isotopic changes during magma formation and evolution. ③ Research on Cu isotope fractionation during metamorphic dehydration in subduction zones remains limited, resulting in significant uncertainty in using Cu isotope to trace Cu migration paths. Since most Cu is retained in the subducting slab, Cu isotopic deviations from mantle values in subduction-related rocks may be coincidental. ④ Cu isotope variations in Ni-Cu deposits are controlled by multiple geological processes and fractionation mechanisms, including: heterogeneity in mantle Cu isotope, crustal contamination, sulfide segregation and differentiation, and redox state changes in the magmatic system. The crucial role of Cu isotopes in revealing the processes of diagenesis and mineralization is increasingly prominent. In the future, efforts should be intensified to explore the synergistic effects of Cu isotopes with other isotope systems (such as Fe, Zn, Ni, etc.), combining experiments and simulations to refine the mineralization models of magmatic Cu-Ni sulfide deposits. This has significant implications for gaining a deeper understanding of crust-mantle material cycling and its resource effects.

       

    /

    返回文章
    返回