ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

铜同位素在高温岩浆系统中的研究进展及其在岩浆硫化物矿床中的应用

张泽, 薛胜超, 唐冬梅, 王信水, 王路阳, 王晓曼, 张瑞麟

张泽,薛胜超,唐冬梅,等. 铜同位素在高温岩浆系统中的研究进展及其在岩浆硫化物矿床中的应用[J]. 西北地质,2025,58(4):1−18. doi: 10.12401/j.nwg.2025015
引用本文: 张泽,薛胜超,唐冬梅,等. 铜同位素在高温岩浆系统中的研究进展及其在岩浆硫化物矿床中的应用[J]. 西北地质,2025,58(4):1−18. doi: 10.12401/j.nwg.2025015
ZHANG Ze,XUE Shengchao,TANG Dongmei,et al. Research progress on copper isotope in high-temperature magmatic system and its implications for magmatic sulfide deposits[J]. Northwestern Geology,2025,58(4):1−18. doi: 10.12401/j.nwg.2025015
Citation: ZHANG Ze,XUE Shengchao,TANG Dongmei,et al. Research progress on copper isotope in high-temperature magmatic system and its implications for magmatic sulfide deposits[J]. Northwestern Geology,2025,58(4):1−18. doi: 10.12401/j.nwg.2025015

铜同位素在高温岩浆系统中的研究进展及其在岩浆硫化物矿床中的应用

基金项目: 国家自然科学基金面上项目(42172076)和求真学人计划项目(265QZ2022008)联合资助。
详细信息
    作者简介:

    张泽(1999−),博士研究生,主要从事岩浆铜镍矿床研究,E-mail:z1695408916@163.com

    通讯作者:

    薛胜超(1987−),教授,主要从事矿床学的教学和科研,E−mail:xuesc@cugb.edu.cn

  • 中图分类号: P597+.2;P611

Research progress on copper isotope in high-temperature magmatic system and its implications for magmatic sulfide deposits

  • 摘要:

    Cu同位素在地幔部分熔融、岩浆结晶分异以及地幔交代等高温地质过程中表现出显著的变化特征,其中在岩浆铜镍硫化物成矿系统中发现了~4‰的Cu同位素变化,不同于金属稳定同位素的分馏主要受控于温度变化的传统认识。除了陨石撞击成因的Sudbury矿床外,板内和造山带环境的铜镍矿床均显示较大的Cu同位素变化范围,在复杂的成岩-成矿过程研究中显示出巨大潜力。目前主要认识包括:(1)地幔Cu同位素存在不均一性,洋中脊玄武岩和科马提岩更能代表地幔源区Cu同位素组成;(2)Cu含量与同位素之间的协同变化,以及Cu同位素在硫化物-硅酸盐之间的分馏系数的控制因素,是理解岩浆形成和演化过程中Cu同位素变化的关键因素;(3)目前对于俯冲带变质脱水过程中Cu同位素的分馏行为研究十分有限,因此单独利用Cu同位素判断Cu迁移路径存在较大不确定性。大部分Cu仍保存在俯冲板片中,与俯冲相关的各类岩石中Cu同位素偏离地幔值的情况可能是偶然现象;(4)铜镍矿床中Cu同位素的变化受控于多种地质过程或分馏机制的叠加作用,包括:①地幔源区Cu同位素不均一性;②地壳混染物质对于岩浆体系Cu同位素的改变;③硫化物熔离和分异过程导致硫化物矿石Cu同位素的变化;④岩浆体系氧化还原状态的变化:一方面Cu同位素随岩浆氧逸度的变化而变化,另一方面是氧化性的熔/流体导致原生硫化物发生分解及其二次沉淀可以导致Cu同位素变化。Cu同位素在揭示成岩-成矿过程中的关键作用日益凸显,未来应加强探讨Cu同位素与其他同位素体系(如Fe、Zn、Ni等)的协同作用,结合实验与模拟,完善岩浆铜镍硫化物矿床成矿模型,对深入理解壳幔物质循环及其资源效应具有重要意义。

    Abstract:

    Copper isotope exhibits significant variations during high-temperature geological processes such as mantle partial melting, magmatic differentiation, and mantle metasomatism. Notably, a ~4‰ variation in Cu isotope has been observed in magmatic Ni-Cu sulfide systems, challenging the conventional understanding that fractionation of metal stable isotopes is predominantly controlled by temperature. Beyond the Sudbury deposit, which formed via meteoritic impact, Ni-Cu deposits in intraplate and orogenic settings show a wide range of Cu isotope variations, highlighting their potential for studying complex magmatic and metallogenic processes. Current insights include: (1) Cu isotope in mantle is highly heterogeneous. Mid-ocean ridge basalts and komatiites better represent the Cu isotopic composition of the mantle source. (2) The coupled behavior of Cu concentrations and isotopes, as well as the fractionation coefficients between sulfides and silicates, are crucial for understanding Cu isotopic changes during magma formation and evolution. (3) Research on Cu isotope fractionation during metamorphic dehydration in subduction zones remains limited, resulting in significant uncertainty in using Cu isotope to trace Cu migration paths. Since most Cu is retained in the subducting slab, Cu isotopic deviations from mantle values in subduction-related rocks may be coincidental. (4) Cu isotope variations in Ni-Cu deposits are controlled by multiple geological processes and fractionation mechanisms, including: heterogeneity in mantle Cu isotope, crustal contamination, sulfide segregation and differentiation, and redox state changes in the magmatic system. The crucial role of Cu isotopes in revealing the processes of diagenesis and mineralization is increasingly prominent. In the future, efforts should be intensified to explore the synergistic effects of Cu isotopes with other isotope systems (such as Fe, Zn, Ni, etc.), combining experiments and simulations to refine the mineralization models of magmatic Cu-Ni sulfide deposits. This has significant implications for gaining a deeper understanding of crust-mantle material cycling and its resource effects.

  • 盐类资源是农产品的依赖,既是民生的“饭碗”,又是工业发展的基础原料。柴达木盆地面积约25万km2,是我国最大的陆相盐类沉积盆地,储藏有丰富的固、液相盐类矿资源和石油、天然气,以青藏高原“聚宝盆”之誉蜚声海内外。盆地内盐类矿产以钾、硼、锂、锶、石盐、芒硝等为主,伴生镁、溴、碘等多种矿产,其钾、锂、镁、锶等矿产查明及保有资源储量均居全国第一位,是我省重要的优势战略资源,其中钾矿占全国总量的79.78%,锂矿占83.16%,硼矿占26.69%,石盐占22.13%(潘彤等,2022)。前人对柴达木盆地个别盐湖及盐类矿床成因及成矿条件进行探讨和分析后,提出该类型矿床是在封闭的干旱气候条件下经蒸发作用而成(杨谦,1992魏新俊等,1993李家棪,1994刘兴起等,2007张彭熹,2007王春男等,2008应占禄等,1988马金元等,2010胡宇飞等,2021)。潘彤等(2022)对柴达木盆地盐类矿产成矿单元研究后,划分出了5个Ⅳ级成矿亚带及21个Ⅴ级矿集区,为柴达木盆地盐类矿研究提供了基础性资料。可见,前人对柴达木盆地盐类资源特征和及时空分布规律探讨方面较少,笔者对柴达木盆地盐湖成果研编基础上,对全盆地盐湖矿产的矿床类型、资源分布特征结合盐类矿结晶成盐规律和定比定律,探讨了盐类资源时空分布规律,划分了盐湖和盐类矿成矿期,为今后盐湖勘查工作提供成矿预测方向,同时为世界级盐湖产业基地的建设发挥重要作用。

    柴达木盆地地处秦祁昆成矿域(I-2)昆仑(造山带)成矿省(II-12)柴达木盆地盐-天然气-石油成矿带(III-25)(图1a),大地构造位置属塔里木—中朝板块的柴达木地块。研究区位于青藏高原隆升带前缘,北西部为阿尔金走滑断裂,北东部为祁连山南缘逆冲断裂,南西部为昆北逆冲断裂,各断裂显示为巍峨的高山;柴中断裂横亘柴达木盆地中部,地貌平坦,坡度不大。盆地基底地层和周缘山区由老至新依次为古元古代角闪岩相变质建造、中元古代长城纪至蓟县纪高绿片岩建造;新元古代至晚古生代震旦纪—寒武纪海陆交互相碎屑岩建造、奥陶纪和志留纪蛇绿岩、碳酸盐和碎屑岩建造;晚古生代泥盆纪—石炭纪海相碳酸盐、碎屑岩建造;中生代侏罗纪杂色碎屑岩、灰岩夹煤层,白垩纪陆相砂砾岩、砂泥岩建造,盖层地层为新生代陆相湖、盐湖及冲洪积相沉积物。受喜马拉雅山期新构造运动的影响,在柴中断裂和昆北拟冲断裂带以北和阿尔金断裂以南,形成了大批北西向—北西西向褶皱构造,并伴生同走向断裂构造(翟裕生等,1999陈毓川等,2007Royden et al.,2008Zhang et al,2013Sun et al,2015,)。根据以上特征,将柴达木盆地划分为6个Ⅳ级构造单元,分别为柴北缘断阶带、中央坳陷区、昆北逆冲带、达布逊湖坳陷区、欧龙布鲁克隆起和德令哈坳陷区(杨超等,2012)。除欧龙布鲁克隆起外,各构造单元内形成了特征各异的盐湖和盐类矿:在北西向新生代背斜构造中形成了古盐类矿和构造裂隙孔隙卤水;其间的向斜凹地沉积了大量的湖相和盐湖相,形成了固体盐类矿和盐类晶间卤水,在阿尔金山前凹地沉积了规模巨大的冲洪积扇相沉积物,形成了砂砾孔隙卤水。柴中断裂以南地貌平坦,坡度不大,沉积了第四纪湖相和盐湖相沉积物,形成了第四纪现代盐湖盐类矿产(图1b),依次划分为柴北缘硼-锂-钾盐成矿亚带(Ⅳ1)、中央坳陷钾-石盐-镁-锂-天青石-芒硝成矿亚带 (Ⅳ2)、昆北硼-钾-石盐-芒硝成矿亚带(IV3)、察尔汗钾镁盐-石盐-锂-硼-天然碱成矿亚带(Ⅳ4)和德令哈石盐-天然碱成矿亚带(Ⅳ5)五个Ⅳ级盐类成矿单元(图1c)(Meng et al,2008商朋强,2017潘彤等,20172022方维萱,2020李洪普等,2021)。

    图  1  中国成矿域简图(a)和柴达木盆地盐类矿时空分布图(b、c)
    Figure  1.  Brief map of metallogenic domains in China (a) and Spatiotemporal distribution map of salt deposits in Qaidam Basin (b、c)

    柴达木盆地盐类矿床有固体盐类矿床和卤水(矿床)两种形态,其卤水按化学成分分为碳酸盐型卤水、硫酸盐型卤水(包括硫酸钠亚型和硫酸镁亚型)和氯化物型卤水(郑绵平等,1989),按赋存形式分为卤水湖、潜卤水和承压卤水,埋深大于200 m以上的承压卤水又称深藏(地下)卤水(邵厥年等,2014)。柴达木盆地盐类矿床按成矿时代、矿床地质特征及成盐成矿作用分为第四纪现代盐湖矿床、深藏地下卤水(矿床)和古代化学盐类矿床三个类型。第四纪现代盐湖矿床由固体盐类矿床和卤水(卤水湖、潜卤水和承压卤水)组成,以我国最大的察尔汗钾镁盐矿床为例,固体盐类矿床组成物为石盐、方解石、石膏、光卤石或少量钾石盐等;卤水矿床为含盐量大于5%、矿化度一般大于200 g/L的地下水,卤水中钾、硼、锂、钠、镁等达到工业品位。深藏地下卤水矿床又称深层卤水,以柴达木盆地西部大浪滩、南翼山等深层卤水矿为例,含盐量一般大于6%,矿化度一般大于250 g/L;深藏地下卤水矿床按储卤层地质特征,分为深层砂砾孔隙卤水、深层盐类晶间卤水和深层构造裂隙孔隙卤水(郑绵平等,20062010徐志刚等,2008李洪普等,201420212022)。古代盐类矿分为:产于红色碎屑岩系地层中,盐层与粘土层互层,构成一套含盐岩系,如青海省大风山锶矿(表1)和产于柴达木盆地向斜凹地深部的岩盐层,如大浪滩深部石盐矿。

    表  1  柴达木盆地盐类矿柴达木盆地盐类矿产分类表
    Table  1.  Classification of Salt ore Qaidam Basin
    盐湖矿类型 盐湖矿亚类型 矿床实例
    第四纪现代盐湖矿 第四纪现代盐湖矿(固体盐矿、卤水,卤水
    分为地表卤水湖、潜卤水、承压卤水)
    察尔汗盐湖
    古代盐类矿 古代盐类矿 大风山锶矿
    深藏卤水 深层砂砾孔隙卤水 大浪滩深层卤水钾盐矿
    深层盐类晶间卤水 大浪滩深层卤水钾盐矿
    构造裂隙孔隙卤水 南翼山深层卤水钾矿
    下载: 导出CSV 
    | 显示表格

    第四纪现代盐湖盐矿床属钾盐、镁盐、石盐矿、硼矿和碱矿床。成矿单元:①柴北缘硼-锂-钾盐成矿亚带之塞西钾盐矿集区(IV-1)和大、小柴旦湖硼-锂-钾盐矿集区(IV-2);塞西钾盐矿集区分布巴伦马海钾矿区外围钾盐矿(大型),大、小柴旦湖硼-锂-钾盐矿集区分布大柴旦湖硼矿床(大型)和小柴旦湖硼矿床(大型)。②中央坳陷钾-石盐-镁-锂-天青石-芒硝成矿亚带 (Ⅳ2)之马海钾-石盐-镁盐矿集区(Ⅳ2-1)、昆特依钾-石盐-锂-镁-芒硝矿集区(Ⅳ2-3)、南里滩钾-石盐矿集区(Ⅳ2-4)、察汗斯拉图芒硝-石盐-钾-镁盐矿集区(Ⅳ2-6)、一里平至东、西台锂-硼-盐矿集区(Ⅳ2-7)、碱石山锂-硼-钾盐矿集区(Ⅳ2-9)和大浪滩钾镁盐-石盐-芒硝-天青石矿集区(Ⅳ2-10);马海钾-石盐-镁盐矿集区分布马海钾矿床(中型)、巴仑马海钾矿床(中型)和牛郎织女湖钾矿床(小型),昆特依钾-石盐-锂-镁-芒硝矿集区分布由北部新盐带、钾湖、俄博滩、大盐滩和大熊滩五个矿床组成的昆特依钾矿田(大型),南里滩钾-石盐矿集区分布南里滩钾矿床(小型),察汗斯拉图芒硝-石盐-钾镁盐矿集区分布察汗斯拉图芒硝矿床(大型)和碱北凹地钾矿床(大型),一里平-东、西台锂-硼-钾盐矿集区分布一里平及东、西台吉乃尔盐湖矿床(大型),碱石山锂-硼-钾盐矿集区分布大柴旦行委红南凹地钾矿床(小型),大浪滩钾镁盐-石盐-芒硝-青石矿集区分布由大浪滩凹地钾矿床、黑北凹地钾矿床、风南凹地钾矿床和风北凹地钾矿床和双泉凹地钾矿床组成的大浪滩钾矿田(大型)。③昆北硼-钾-石盐-芒硝成矿亚带之昆北钾-石盐-锂-硼矿集区(IV3-2),分布尕斯库勒盐湖钾矿床(中型)、茫崖湖盐矿点、芒硝矿点。④察尔汗钾镁盐-石盐-锂-硼-天然碱成矿亚带(Ⅳ4)之察尔汗钾镁盐-石盐-锂-硼矿集区(Ⅳ4-1)、乌图美仁—诺木洪钾盐矿集区(Ⅳ4-2)、巴隆天然碱矿集区(Ⅳ4-3);察尔汗钾镁盐-石盐-锂-硼矿集区分布察尔汗钾镁盐矿田(大型)、团结湖镁盐矿床(中型)、北霍鲁逊湖东盐矿床(中型)和中灶火北钾盐矿床(中型),乌图美仁—诺木洪钾盐矿集区分布大灶火北石盐矿点,巴隆天然碱矿集区分布哈图天然碱矿点、柴达木河北岸天然碱矿点和宗家—巴隆天然碱矿床(天然碱小型)。⑤德令哈石盐-天然碱成矿亚带之德令哈天然碱矿集区(Ⅳ5-2)、柯柯石盐矿集区矿集区(Ⅳ5-3)和茶卡石盐矿集区(Ⅳ5-4);德令哈天然碱矿集区分布德令哈市尕海湖硼矿化点、德令哈市陶力石膏矿点,柯柯石盐矿集区矿集区分布乌兰县柯柯湖盐矿床(大型)和柴凯湖石盐矿床(小型),茶卡石盐矿集区(Ⅳ5-4)分布茶卡盐矿床(中型)。建造构造:盐层岩性为湖相—盐湖相石盐层和夹于其间的碎屑层,在各盐层中盐类矿物主要为石盐、含芒硝粉砂之石盐、粉砂石盐、含石膏的粉砂石盐、含石膏的石盐淤泥、含石膏的石盐粉砂,钾石盐、光卤石、水氯镁石及石膏、钾石膏、杂卤石、芒硝、钾芒硝、泻利盐、钾盐镁矾、钾镁矾、无水钾镁矾等,不同矿床盐类矿有一定的变化。控矿构造:第四纪沉降中心,为盆地内背斜构造之间的向斜凹地(如红南凹地)、断陷凹地(如大浪滩矿田、昆特依矿田和马海矿床)或盆地内最深的坳陷区(如察尔汗盐湖矿床)。成矿时代:中更新世—全新世;成矿组分:钾盐矿物成分以光卤石、钾石盐为主,次为杂卤石、软钾镁矾、石盐等(李宝兰等,2014)。矿床实例:青海省格尔木市察尔汗钾镁盐矿床,该矿床是在晚更新世末至全新世形成的,为固液相共存的现代盐湖矿床。盐系地层的厚度一般为40~55 m,最大可达70 m以上,自西向东逐渐变薄。固体矿由8个钾矿层和3个石盐层组成。钾盐矿分布面积大、层数多、矿层薄,矿物物成分以光卤石、钾石盐为主,次为杂卤石、软钾镁矾等,KCl含量一般为2%~4%,单独开采困难,现采用水溶解开采,已被利用。石盐矿呈层状或似层状盐层厚度一般8~17 m,最大53.5 m,NaCl含量一般50%~80%,最高达97.1%,全区由西向东、向下向上NaCl 含量逐渐增高。液体矿根据卤水赋存状态可分湖水、晶间卤水、孔隙卤水三种,以晶间卤水为主,卤水中有益组分以钾为主,并共、伴生有镁、钠、硼、锂、溴、碘、铷、铯等多种有益元素。地表卤水主要分布于达布逊湖,湖水面积在不同年份和季节有所变化,面积为184~354.67 km2。不同季节,不同部位和不同卤水层,其盐度及含钾量亦不同,K+含量为6~27.84 g/L。孔隙卤水赋存于各盐层间的碎屑岩中。晶间卤水钾盐矿是主要开采对象。可分为上下两个含水层,上含水层水位埋深0.5 m左右,厚10~25 m,属潜卤水,含卤层岩性主要为粗巨粒石盐或含粉砂石盐,结构松散,富水性强,孔隙度一般为20%~30%,单位涌水量为50~80 L/s·m,渗透系数300~400 m/d,为高矿化卤水,是主要晶间卤水钾盐层。下含水层属承压水,含水层岩性主要为石盐,结构比较致密,富水性差,孔隙度5%~15%,单位涌水量0.01~0.10 L/s·m,最大不超过2.00 L/s·m。晶间卤水的矿化度310~400 g/L,主要阳离子为K+、Na+、Mg2+,主要阴离子为Cl、SO42−,卤水中KCl含量1.58%~2.16%。LiCl 含量一般300~780 mg/L,最高4960 mg/L;B2O3 含量一般250~2500 mg/L,最高2178 mg/L。成因认识:中更新世后期至晚更新末期,在强烈的新构造运动持续作用下,东昆仑山上升,察尔汗地区相对下降,“高山深盆”地貌环境形成,那棱格勒河、格尔木河和香日德河等水系将基岩山区钾、钠、硼、锂元素溶解、迁移、汇集至察尔汗地区,在持续干旱的古气候条件下,强烈的蒸发作用,使钾、钠、硼、锂元素不断富集,地下水不断浓缩,形成钾镁盐矿。物质来源:一是与火山作用有关的地下热水;二是那陵郭勒河、洪水河含锂河水;三是盆地内的地表河水和北缘深部来源的CaCl2型水体不同比例混合掺杂作用(应占禄等,1988杨谦,1992魏新俊等,1993李家棪,1994刘兴起等,2007张彭熹,2007王春男等,2008马金元等,2010胡宇飞等,2021)。

    古代盐类矿床属芒硝、碱及盐矿床。成矿单元:①中央钾镁盐-石盐-锂-天青石-芒硝成矿亚带(Ⅳ2)之冷湖锂-硼-钾盐矿集区(Ⅳ2-2)、鄂博梁锂盐-硼矿集区(Ⅳ2-5)、红三旱-碱山锂-硼-天青石矿集区(Ⅳ2-8)和大浪滩钾镁盐-石盐-镁-芒硝-天青石矿集区(Ⅳ2-10);冷湖锂-硼-钾盐矿集区分布南八仙天然碱矿床(小型),鄂博梁锂盐-硼矿集区分布鄂博梁透明石膏矿点,红三旱-碱山锂-硼-天青石矿集区分布碱山锶矿床(中型),大浪滩钾镁盐-石盐-镁-芒硝-天青石矿集区分布大浪滩深部盐类矿(大型)、尖顶山锶矿床(大型)和大风山锶矿田(大型)。②昆北硼-钾-石盐-芒硝成矿亚带(Ⅳ3)之南翼山锂-硼-钾盐矿集区(Ⅳ3-1),主要矿床有开特米里克硼矿床(大型)和土林沟结晶盐矿点。建造构造:凹地构造地层为湖相沉积的粘土、粉砂粘土层和化学湖相沉积的岩盐层、含粘土岩盐层、粉砂岩盐层等,背斜构造地层为湖相石膏质泥晶灰岩与泥晶灰岩质石膏岩→石膏质鮞状灰岩与石膏质碎屑灰岩→天青石矿层→石膏质鲕状灰岩或石膏质碎屑灰岩,互为相变关系,多次出现,显示盆地西北缘上新统狮子沟组岩性、岩相古地理对天青石矿体明显的控制作用。控矿构造:古近纪-新近纪背斜构造、向斜凹地。成矿时代:凹地内古盐层成矿时代为上新世—早更新世;背斜构造古盐类矿为渐新世—上新世。成矿组分:凹地古盐类矿为石盐;背斜构造古盐类矿为次生天青石矿石(SrSO4)、碳酸锶(SrCO3)。矿床实例:大风山锶矿。简要特征:大风山锶矿赋存于上新统狮子沟组—下更新统阿拉尔组,含矿岩系为浅灰色、灰色和深灰色天青石,呈晶粒或隐晶质结构、细粒结构和它形粒状结构,块状构造、角砾状构造、糖粒状构造和土状构造,SrSO4含量20%~50%,经风化后的白色次生天青石呈晶粒结构和纤维状结构,假层纹状构造、钟乳状构造、同心圆状构造、叠管状构造和脉状构造,SrSO4含量80%~90%。碳酸盐地层的泥晶灰岩质石膏岩、石膏质泥晶灰岩夹薄层白云质灰岩、石膏质鮞状灰岩、石膏质灰岩层为围岩层。成因认识:上新统狮子沟组期矿区沉积了一套碳酸盐地层。在持续干旱、不断蒸发浓缩的条件下,盐湖沉积由碳酸盐阶段向早期硫酸盐阶段转变,Sr不断富集,与此同时,深部富Sr流体不断沿深部断裂运移补给,开始形成天青石矿,后期气候不断炎热干旱,矿体在一定部位不断增厚,形成大风山天青石矿。天青石形成后期,随着蒸发作用持续,盐类开始沉积,开始出现石膏。天青石矿在近地表受氧化淋滤作用,使天青石产生重结晶,晶体粒度变粗,Sr不断在天青石矿中富集,品位升高。综上,大风山矿床天青石矿形成过程可以归纳为:碳酸盐(白云石、菱锶矿)(CaCO3、SrCO3)→天青石(SrSO4)→石膏(CaSO4 )→次生富集(林文山等,2005)。

    深层砂砾孔隙卤水钾盐矿床属钾盐、石盐矿床。成矿单元:中央钾镁盐-石盐-锂-天青石-芒硝成矿亚带(Ⅳ2)之马海钾镁盐-石盐矿集区(Ⅳ2-1)、昆特依钾镁盐-石盐-芒硝矿(Ⅳ2-3)矿集区、察汗斯拉图-芒硝-石盐-钾镁盐矿集区(Ⅳ2-6)和大浪滩钾镁盐-石盐-芒硝-天青石矿集区(Ⅳ2-10);马海钾镁盐-石盐矿集区分布马海深层砂砾孔隙卤水钾矿床(大型),昆特依钾镁盐-石盐-芒硝矿集区分布昆特依深层砂砾孔隙卤水钾矿(大型),察汗斯拉图-芒硝-石盐-钾镁盐矿集区分布察汗斯拉图深层砂砾孔隙卤水钾矿床(小型),大浪滩钾镁盐-石盐-芒硝-天青石矿集区分布大浪滩—黑北凹地深层砂砾孔隙卤水钾矿床(大型)。建造构造:阿尔金山前分布冲洪积相砂砾层,是孔隙卤水的储层,岩性为砾石层、砂砾层、含砾粗砂层、含粘土砾石层、含石膏的粗砂层、砂层及粘土层,由南向北粒度变粗。向盆地中心,盐类沉积厚度增加。控矿构造:一般呈北西向次级盆地,北部为阿尔金走滑断裂构造,东西侧为向南收缩的背斜构造,盆地的基底断裂较发育。成矿时代:上新世—晚更新世;成矿组分:钾、钠、硼、锂等。矿床实例:青海省茫崖市昆特依深层砂砾孔隙卤水钾盐矿。简要特征:该矿由昆ZK01孔和昆ZK09孔控制,长度18 km,推定宽度18 km,面积30 km2,含水层顶板埋深240.6~292.31 m,底板埋深10001374.3 m,厚度582~805 m,水位埋深9.6~27.7 m,储卤层孔隙度16.66%~33.96%,平均27.03%,给水度0.02%~26.09%,平均11.68%,矿化度284.39~292.89 g/L,平均288.85 g/L,KCl含量0.25%~0.48%,含量0.35%,NaCl含量18.09%~20.37%,平均19.94%,MgCl2含量2.41%~3.69%,平均4.07%,水化学类型为氯化物型。地层单位涌水量71.18~203.12 m3/d·m,富水性强。成因认识:基岩山区地下水向盆地径流时,溶解阿尔金山前古近纪—新近纪含盐地层中的盐类物质,在盆地砂砾层中富集成钾盐矿(郑绵平等,2015)。

    深层盐类晶间卤水钾盐矿床属钾盐、石盐矿床。构造单元:①中央钾镁盐-石盐-锂-天青石-芒硝成矿亚带之大浪滩钾石-镁-芒硝-天青石矿集区(Ⅳ2-10),分布大浪深层盐类晶间卤水滩钾矿(大型)。②昆北硼-钾-石盐-芒硝成矿亚带之昆北钾-石盐-锂-硼矿集区(Ⅳ3-2),分布尕斯库勒深盐类晶间卤水钾矿床(小型)。建造构造:沉积于凹地构造内的上新统狮子沟组,主要岩性为含石膏的粘土、含石盐的淤泥、含砂的粘土、灰绿色砂层灰褐色含石膏、石盐等。控矿构造:北西向次级盆地,北部为阿尔金走滑断裂构造,东西侧为向南收缩的背斜构造,盆地的基底断裂较发育。成矿时代:上新世—早更新世;成矿组分:钾、钠、硼、锂等。典型矿床:尕斯库勒深层盐类晶间卤水矿床。简要特征:尕斯库勒深层晶间卤水由尕ZK03、尕ZK04和尕ZK01等孔控制,长度17 km,宽度4 km,分布面积31.7 km2,顶板埋深50 m,底板埋深300 m,含水层厚度49.02~186.65 m,平均厚度108.71 m;矿化度26.30~333.3 g/L,KCl含量0.70%+,LiCl含量3.34~159.52 mg/L,B2O3含量17.51~238.89 mg/L,矿化度及KCl含量自南向北呈递增趋势,水化学类型为硫酸镁亚型;尕ZK01和尕ZK04钻孔单位涌水量5.91~7.78 m3/d·m,富水性弱(李洪普等,201420212022)。成因认识:上新世—早更新世在强烈的新构造运动持续作用下,东昆仑山上升,尕斯库勒地区相对下降,“高山深盆”地貌环境形成,昆仑山前水系将基岩山区钾、钠、硼、锂元素溶解、迁移、汇集至尕斯库勒低凹地区,在持续干旱的古气候条件下,强烈的蒸发作用,使钾、钠、硼、锂元素不断富集,地下水不断浓缩,后期沉积作用持续,将高矿化度卤水埋藏于地下,形成尕斯库勒深层盐类晶间卤水钾矿(张彭熹,2007)。

    柴达木盆地210处背斜构造有27处已发现深层构造裂隙孔隙卤水钾锂盐矿床及找矿线索,属钾盐、石盐、硼、锂矿床。成矿单元:①柴北缘硼-锂-钾盐成矿亚带之鄂博梁锂盐-硼矿集区(Ⅳ2-5)、一里平—东、西台锂-硼-钾盐矿集区(Ⅳ2-7)、红三旱—碱山锂-硼-天青石矿集区(Ⅳ2-8)、碱石山锂-硼-钾盐矿集区(Ⅳ2-9)和大浪滩钾镁盐-石盐-芒硝-天青石矿集区(Ⅳ2-10);鄂博梁锂盐-硼矿集区分布鄂博梁Ⅰ号、Ⅱ号深层卤水硼-锂-钾矿点,一里平—东、西台锂-硼-钾盐矿集区分布鸭湖深层构造裂隙孔隙卤水锂盐矿床(大型),红三旱—碱山锂-硼-天青石矿集区分布红三旱背斜构造深层构造裂隙孔隙卤水矿床(小型),碱石山锂-硼-钾盐矿集区分布碱石山深层构造裂隙孔隙卤水矿床(小型),大浪滩钾镁盐-石盐-芒硝-天青石矿集区分布尖顶山深层构造裂隙孔隙卤水矿点、大风山深层构造裂隙孔隙卤水矿点和碱山深层构造裂隙孔隙卤水矿点。②昆北硼-钾-石盐-芒硝成矿亚带之南翼山锂-硼-钾盐矿集区(Ⅳ3-1),分布开特米里克深层构造裂隙孔隙卤水钾盐矿点、南翼山深层构造裂隙孔隙卤水锂-硼-钾矿床(大型)、狮子沟深层构造裂隙孔隙卤水钾矿点、小冒泉深层构造裂隙孔隙卤水锂矿点、凤凰台深层构造裂隙孔隙卤水锂矿点。建造构造:储卤岩性为古新世—上新世河流相、浅湖相、较浅湖相、深湖相、较浅湖相沉积地层;靠近盆地边缘地带地层粒度较粗,靠近盆地中心地带岩性较细;下部路乐河组、上干柴沟组、下干柴沟组为一套棕灰色、灰色砾岩及砾状砂岩,以灰色及深灰色泥岩、砂质泥岩为主夹鲕状泥灰岩,中部上油砂山组、下油砂山组为灰色泥岩、砂质泥岩夹棕灰色泥岩、砂质泥岩,灰色钙质泥岩,上部狮子沟组以灰色泥岩、砂质泥岩为主,夹少量灰色泥质粉砂岩,出现膏盐层。控矿构造:背西向、北北西向背斜构造。成矿组分:钾、钠、硼、锂等。典型矿床:碱石山深层构造裂隙孔隙卤水矿床。简要特征:该卤水矿由ZK0901、ZK0001、ZK0002和ZK1001孔控制,长约50 km,宽4~10 km,主要出水层位分布在600~3200 m,600~1100 m含水层累计厚度28.20~119.60 m,1100~2000 m含水层累计厚度6.50~280.20 m,2000~3200 m含水层累计厚度63.10~82.10 m。单井最大涌水量1200 m3/d,温度54~68 ℃,LiCl含量478.24 mg/L,B2O3含量1180.13 mg/L。镁锂比值为6.88,水化学类型为氯化钙型。成因认识:柴达木盆地周缘基岩的各种岩石长期受自然界的风化、剥蚀,大多数破碎物质和盐分受流水、风和自身重力等作用,搬运到盆地内,地表蒸发作用使大量的原始地表水不断浓缩,形成古盐湖。沉积过程中,部分卤水结晶成盐,未结晶的高浓缩(矿化度)卤水渗入地层,或地层最初沉积的松散物质被之后继沉积物覆盖,在上覆厚达几千米以上的地层静压力和矿物结晶作用下,地层孔隙逐渐减小,产生原始地层水(地下水)。上新世晚期印度板块持续向北俯冲、喜山运动作用下,柴达木盆地古盐湖收缩,产生褶皱、断层和断层裂隙,形成地下水的运移通道和容水空间,地壳深部岩浆气液沿断裂裂隙运移至古盐湖构造裂隙孔隙之中,与地层中卤水混合。在高承压和高封闭的还原环境下,卤水在地层孔隙、断层裂隙等部位不断运移和循环,并和围岩发生水—岩作用,产生物质交换,富集锂、硼、钾等盐类物质,形成高矿化度盐湖卤水(李洪普等,2015李雯霞等,2016韩光等,2021)。

    截止2022年底,柴达木盆地已发现盐类矿矿床(含矿田、矿点)56处,大型及以上23个,中型8个,小型13个,矿点12个。其中第四纪盐湖矿床29个,大型以上13个,中型6个,小型8个,矿点2个;深层砂砾孔隙卤水矿床4个,大型床3个,小型1个;深层盐类晶间卤水钾盐矿床2个,大型1个,小型1个;深层构造裂隙孔隙卤水锂矿床大型1个,小型1个,矿点10个;古代盐类矿床9个,大型5个,中型2个,小型2个(图2)。以上盐湖矿床中KCl资源量16.22 亿t,LiCl资源量2104.80 万t,B2O3资源量1948.47 万t,芒硝73.50亿t,天青石2681.83万t,MgCl262.31 亿t,石盐23.5209 亿t(青海省地质局石油普查大队,1959青海省地质调查院,2003四川省地质矿产勘查开发局川西北地质队,2010青海省天宝矿业有限公司,2015汪傲等,2016杨生德等,2013青海省柴达木综合地质矿产勘查院,2018潘彤等,2022周小康等,2020)。

    图  2  柴达木盆地盐类矿床类型、数量统计柱形图
    1.柴达木盆地已发现盐类矿矿床(含矿田、矿点);2.第四系现代盐湖矿床;3.古代盐类矿床;4.深层砂砾孔隙卤水床;5.深层盐类晶间卤水矿床;6.深层构造裂隙孔隙卤水矿床。
    Figure  2.  bar chart of type and quantity statistics of Qaidam Basin salt deposits

    特定的地质历史、地质环境、气候环境决定着盐类矿物结晶成盐规律。主要盐类矿物中,阳离子Ca2+、Mg2+、Na+、K+溶解度依次升高,而阴离子CO32−、HCO31−、SO42−、Cl溶解度依次升高,在盆地沉积过程中,溶解度低的离子先相结合形成化合物,再根据定比定律,盆地内首先Ca2+依次与CO32−、HCO3、SO42−、Cl配合依次产生CaCO3、Ca(HCO32、CaSO4和CaCl2等化合物,当Ca2+消耗完之后,Mg2+与剩余的阴离子配合依次产生MgCO3、Mg(HCO32、MgSO4和MgCl2等化合物,当Mg2+消耗完之后,Na+与剩余的阴离子配合依次产生Na2CO3、Na(HCO3)、Na2SO4和NaCl等化合物,最后K+仅与Cl配合产生KCl或K2SO4等化合物。与此同时,Sr2+、Ba2+可与HCO31−和SO42−配合,Br、I、B4O72−一般与Mg2+配合产生盐类化合物,Li+、Rb+、Cs+与Cl配合产生盐类化合物(郑绵平等,1989)。由此可以看出,Ca2+与阴离子配合形成化合物阶段,盐类矿物尚未出现,说明碳酸盐形成阶段代表着盐类沉积的萌芽期,Mg2+、Na+、Sr2+、Ba2+与阴离子配合形成化合物,形成了大量的硫酸盐、石盐等大量的岩盐层,说明硫酸盐、石盐形成阶段代表着盐类沉积的的发展期,而k+与阴离子配合形成化合物时,处于极度干旱期,形成了数量、规模巨大的的岩盐及盐类矿,说明该阶段为盐类沉积的鼎盛期。

    柴达木盆地从古新世—始新世—渐新世—中新世—上新世—更新世至全新世,古气候从相对湿润向干旱变化,沉积相从河流相→湖相→盐湖相变化,盐类地层从无到有,直至盐类矿发育,说明不同地质时期,或为盐类成矿创造了条件(如古、始新世以来的早期地层开始出现碳酸盐沉积,同时形成深层卤水的储存空间),或沉积盐类地层(如渐新世、中新世、上新世以来出现硫酸盐和石盐沉积,沉积大量的石膏、天青石、石盐等盐类地层),或形成盐湖矿(如上新世形成大量的石盐、石膏等古盐类矿,更新世和全新世形成类大量硭硝、石盐等现代盐湖矿。因盆地内沉积的延续性,盐类矿成矿期之间没有严格的时间分界。结合不同层位盐湖矿之间的交叉关系以及地质特征、矿物结晶顺序、定比定律等岩盐岩相学特征研究,可将盆地内盐类主成矿期划分为古新世—始新世为盐类矿的萌芽期、渐新世—早更新世为盐类矿的发展期、中更新世—全新世为盐类矿的鼎盛期3个时期。

    ①古新世—始新世为盐类矿的萌芽期。印度板块向北俯冲的远程效应,柴达木盆地周缘山区隆升,盆地下降,盆地内发生沉积,古新统—始新统路乐河组沉积期,形成了一套棕红色河流相泥质岩和砂质岩、含砾砂岩,少量的碳酸盐,标志着盆地开始下降沉积,但尚未出现盐类沉积,为柴达木盆地盐类矿形成的萌芽期。②渐新世—早更新世为盐类矿的发展期。渐新统下干柴沟组沉积期,气候逐渐干旱,形成了一套深灰色浅湖相泥岩、钙质泥岩,碳酸盐,局部见石膏、石盐层、砂岩及粉砂岩,说明盐矿开始形成(张金明,2021)。中新统上干柴沟组沉积期形成了一套以深灰色钙质泥岩为主,与不等厚灰色泥质粉砂岩、泥灰岩互层的浅湖相沉积地层;下油砂山组沉积期形成了一套灰色钙质泥岩、泥岩和泥晶灰岩互层为主,夹泥质粉砂岩,局部出现薄层状石膏的浅湖—半深湖相沉积地层;上油砂山组沉积期,形成了一套以灰色泥岩夹泥晶灰岩为主的较浅湖相沉积地层;上新统狮子沟组沉积期,形成了一套以灰色泥岩为主,上部夹有少量白色石膏和岩盐,下部夹有灰色砂岩和泥质粉砂岩的潮坪相沉积地层。该阶段因Mg2+、Na+、Sr2+、Ba2+与阴离子配合形成大量的盐类化合物,处于盐类矿的发展期,同时,背斜构造区沉积不断进行,埋藏和压实作用下,地层中析出和来源于深部的地下水和地层之间发生水—岩作用,形成构造裂隙—孔隙型深层卤水盐矿床,与此同时,上新世晚期出现大量的盐类沉积和古代盐类沉积矿床、盐类晶间卤水矿和深层砂砾孔隙卤水矿,为柴达木盆地盐类矿形成的发展期。③中更新世—全新世为盐类矿的鼎盛期:盆地周缘山区持续隆升,在盆地内中央坳陷沉积了较厚的湖相沉积层和化学湖相岩盐层,形成第四纪现代盐湖矿床,该阶段地层中因K+与阴离子配合形成大量的钾镁盐矿,且盐矿类矿数量多,规模大,为柴达木盆地盐类矿形成的的鼎盛期。

    柴达木盆地从边缘到中心,沉积物从山前冲洪积相→滨湖相→湖相→盐湖相变化,受上新世以来新生代构造影响,一是产生大量背斜构造和向斜凹地,凹地区为现代盐湖沉环境;二是出现西高东低的现代地貌,在东部出现以东台、西台及察尔汗为中心的大面积盐湖沉积,这些决定了盆地内沉积物成分、分布位置等不同。

    (1)盐湖矿数量多,但分布受构造影响大,地理分布不均衡。一是盐类矿床集中分布在盆地中央坳陷区,在中央坳陷钾-石盐-镁-锂-天青石-芒硝成矿亚带(Ⅳ2)和察尔汗钾镁盐-石盐-锂-硼-天然碱成矿亚带(IV4)钾盐类矿床数量多,资源量占比大,KCl在Ⅳ2成矿亚带中占比72%,在IV4成矿亚带中占比24%;LiCl在Ⅳ2成矿亚带中占比48%,在IV4成矿亚带中占比45%;B2O3在Ⅳ3成矿亚带中占比69%,在IV1成矿亚带中占比31%;芒硝在Ⅳ2成矿亚带中占比100%;天青石在Ⅳ2成矿亚带中占比100%;MgCl2 在Ⅳ2成矿亚带中占比38%,在IV4成矿亚带中占比62%;NaCl在Ⅳ2成矿亚带中占比81%,在IV4成矿亚带中占比19%,而盆地边部柴北缘断阶带、昆北断阶带和德令哈坳陷区盐类矿数量少,资源量占比小。二是深藏卤水皆分布于柴达木盆地西部,至今在盆地东部很少发现深藏卤水(图3)。盐湖矿类型多样,但集中分布于中更新世—全新世、渐新世—早更新世2个阶段,中更新世—全新世以第四纪现代盐湖矿床为主,渐新世—早更新世以古盐类矿深藏卤水矿床为主。中更新世—全新世第四纪现代盐湖矿床钾盐数量多,矿床数29个,其中大型13个,中型6个,小型8个,其余为矿点;KCl资源量7.32亿t,占比45%;LiCl资源量1774.80万t,占比84%;硼资源量605万t,占比31%;芒硝资源量62.39亿t,占比85%;MgCl2资源量56.21亿t,占比90%;NaCl资源量1949.78亿t,占比84%(图4)。渐新世—早更新世矿床数18个(深层砂砾孔隙卤水型4个,深层盐类晶间卤水型2个,深层构造裂隙孔隙卤水型12个)。深层砂砾型卤水矿床数4个,大型3个,小型1个;KCl资源量7.76亿t,占比48%;MgCl2资源量0.90亿t,占比2%。深层盐类晶间卤水型矿床数2个,大型1个,小型1个;KCl资源量0.99亿t,占比6%;MgCl2资源量5.20亿t,占比8%;NaCl资源量26.47亿t,占比1%。

    图  3  柴达木盆地盐类矿在不同成矿亚带中资源量占比图
    Figure  3.  The resource proportion of Qaidam Basin salt deposits in different metallogenic subzones
    图  4  柴达木盆地中盐类矿在各类矿床中资源量占比图
    Figure  4.  The proportion of salt ore resources in all kinds of deposits in Qaidam basin

    (2)大型矿床集中分布于盆地上部(中更新统—全新统)和中部(渐新统—下更新统)。按矿产资源储量规模划分标准(矿产资源工业手册,2014年修订本),盐类矿按单矿种划分为大型、中型和小型3类。柴达木盆地已发现盐类矿矿床(含矿田、矿点)56处,其中大型23处,中型8处,小型11处。大型矿床KCl资源量15.74亿t,占总量的97.05%,LiCl资源量2099.8万t,占总量的99.76%,硼资源量1948.27万t,占总量的99.41%,芒硝资源量73.50亿t,占总量的99.96%,锶资源量2674.59万t,占总量的99.73%,MgCl2资源量62.31亿t,占总量的99.20%,NaCl资源量2342.17亿t,占总量的99.58% 。总体上,集中分布于中更新统—全新统、渐新统—下更新统两个部位,中小型矿床数量和大型矿床相当,但其资源储量占比较小(占比<5%),较分散。

    (3)盐湖矿共、伴生盐矿床数较多,而单矿种盐湖矿数量少,受盆地构造类型控制明显。盆地内共、伴生盐矿床占90%以上。向斜凹地构造区一般分布与化学盐类有关的固液相共存的盐湖矿或深层砂砾孔隙卤水钾盐矿床,如察尔汗盐湖钾镁盐矿床、大浪滩钾镁盐矿床等分布于盆地内向斜凹地构造,深层砂砾孔隙卤水钾盐矿床如大浪滩地区深层砂砾孔隙卤水钾盐矿床、马海地区深层砂砾孔隙卤水钾盐矿床、昆特依地区深层砂砾孔隙卤水钾盐矿床等分布于山前凹地构造;而背斜构造区一般分布单一的古盐类矿床或深藏卤水矿床,如大风山天青石矿床和南八仙天然碱矿床、南翼山深层卤水钾锂硼矿床、鸭湖构造深层卤水锂硼矿床分布于背斜构造。

    (1)柴达木盆地盐类矿资源较丰富,集中分布于盆地中部地带,为青海省内优势矿种。依据主要矿床特征和成矿作用,将盆地内盐类矿划分为3个类型、5个亚类。

    (2)盐类矿成矿时期跨度范围为始新世至全新世,主要盐类矿成矿期具有重叠性,分为古新世—始新世为盐类矿的萌芽期、渐新世—早更新世为盐类矿的发展期、中更新世—全新世为盐类矿的鼎盛期。

    (3)盆地内盐类矿床具有以下主要特点:矿产地数量多,但地理分布不均衡,集中分布于中央坳陷区;矿床类型多样,但以第四纪现代盐湖型和深层卤水矿床为主;大中型矿床数量多,资源量占比大。因对于第四纪现代盐湖矿资源基本查明,下一步盐湖矿勘查工作中,应在柴达木盆地中央坳陷带及邻区部署深层卤水勘查工作。

  • 图  1   不同构造背景下的铜镍硫化物矿床的铜同位素值统计图

    陆内裂谷:Tamarack、Eagle、Partridge River 矿床 (Ripley et al., 2015; Smith et al., 2022)、South Kawishiw 矿床 (Ripley et al., 2015);Coldwell 矿床 (Brzozowski et al., 2021b)。造山带:图拉尔根 (Zhao et al., 2017, 2019, 2022b)、白石泉 (Tang et al., 2020) 、喀拉通克 (Tang et al., 2020, 2024b)、葫芦、黄山南和黄山东 (Zhao et al., 2022)、夏日哈木 (Tang et al., 2024a)。大火成岩省:Noril’sk矿床 (Malitch et al., 2014)。克拉通裂谷带:金川矿床 (Zhao et al., 2022a)。陨石撞击:Sudbury (Zhu et al., 2000; Larson et al., 2003)。

    Figure  1.   Statistical chart of copper isotope values of Cu-Ni sulfide Deposits under different structural backgrounds

    图  2   地外储库的Cu同位素组成(据许英奎等,2023修改)

    数据来源:碳质球粒陨石:Luck et al. (2003); Barrat al. (2012); Paquet et al. (2023);普通球粒陨石:Luck et al. (2003); Moynier et al. (2007);顽火辉石球粒陨石:Savage et al. (2015);月球:Moynier et al. (2006); Herzog et al. (2009); Day et al. (2019);火星:Neuman. (2022);灶神星:Dhaliwal. (2021)。

    Figure  2.   The Cu isotope composition of extraterrestrial reservoirs (modified from Xu et al., 2023

    图  3   地幔橄榄岩、辉石岩和榴辉岩Cu同位素数据 (据Kempton et al., 2022修改)

    数据来源:榴辉岩:Busigny et al. (2018);Liu et al. (2023);Huang et al. (2024);深海橄榄岩:Debret et al. (2018);Liu et al. (2019);大别苏鲁造山带橄榄岩: Liu et al. (2015);雅鲁藏布江蛇绿岩型橄榄岩:Liu et al. (2019);Lanzo造山带橄榄岩:Savage et al. (2015);Baldissero、Balmuccia造山带橄榄岩: Huang et al. (2017);Bohemian 造山带橄榄岩、辉石岩:Fang et al. (2024);Balmuccia造山带辉石岩Zou et al. (2019);汉诺坝堆晶辉石岩捕虏体: Zhang et al. (2022);杰罗尼莫火山区橄榄岩和辉石岩捕虏体Kempton et al. (2022);华北克拉通橄榄岩捕虏体 Liu et al. (2015);标红的样品 (RC-1J)被认为是榴辉岩:Zhang et al. (2009)。

    Figure  3.   Cu isotope data of mantle peridotite, eclogite and pyroxenite (modified from Kempton et al., 2022

    图  4   不同储库Cu同位素组成

    数据来源: 洋中脊玄武岩:Liu et al. (2015); Wang et al. (2021); Sun et al. (2023); Zou et al. (2024);科马提岩:Savage et al. (2015);洋岛玄武岩:Ben Othman et al. (2006); Liu et al. (2015); savage et al. (2015);岛弧熔岩Liu et al. (2015); Wang et al. (2019, 2021); Chen et al. (2022);陆相火山岩:Liu et al. (2015); Huang et al. (2016); Kempton et al. (2022); Qu et al. (2024); Chen et al. (2024);黄土:Li et al. (2009); 王跃等, (2010);I型花岗岩、S型花岗岩:Li et al. (2009);角闪岩:Liu et al. (2023); Luo et al. (2023);麻粒岩:Zhang et al. (2022); Liu et al. (2023); Luo et al. (2023);陆壳辉长岩:Luo et al. (2023);陆壳辉石岩:Zhang et al., (2022);印度洋中脊洋壳辉长岩:Zou et al. (2024a);大西洋中脊洋壳辉长岩和橄长岩:Zhang et al. (2024) ;海水:Vance et al. (2008); Boyle et al. (2012); Takano et al. (2014); Thompson et al. (2014);河水:Vance et al. (2008);土壤:Bigalke et al. (2010, 2011, 2013)。

    Figure  4.   Isotope composition of Cu in different reservoirs

    图  5   瑞利分馏模拟岩浆演化过程残余熔体、结晶的瞬时硫化物和堆晶硫化物的δ65Cu的变化 (据Zou et al., 2019修改)

    其中f表示硅酸盐熔体中剩余的Cu的比例,δ65Cu残余熔体是硅酸盐熔体的初始Cu同位素组成,δ65Cu堆晶硫化物是堆晶硫化物的Cu同位素组成,δ65Cu结晶的瞬时硫化物是结晶的瞬时硫化物Cu同位素组成,α表示硫化物和硅酸盐熔体之间的分馏因子。初始熔体的δ65Cu假定为硅酸盐地球值 (0.07‰),分馏因子分别为1.001、0.9999、0.999

    Figure  5.   The variation of δ65Cu in residual melt, instantaneous sulfide, and cumulated sulfide during the simulated magma evolution process using Rayleigh fractionation (modified after Zou et al., 2019

    图  6   部分熔融过程以及不同类型熔体对地幔橄榄岩的影响 (据Huang et al., 2017修改)

    数据来源:Arami和华北克拉通:Liu et al. (2015);杰罗莫尼火山场:Kempton et al. (2022);Horoman:Ikehata and Hirata (2012);Baldissero和Balmuccia:Huang et al. (2017);Bohemian:Fang et al. (2024)。

    Figure  6.   The influence of partial melting processes and different types of melts on mantle peridotites (modified after Huang et al., 2017

    表  1   已报道的岩浆镍铜硫化物矿床的铜同位素值

    Table  1   Reported copper isotopic values of magmatic Ni-Cu sulfide deposits

    构造背景 矿床 矿化类型 同位素范围(‰) 文章
    西伯利亚大火成岩省Kharaelakh块状−1.8~− 0.9Malitch et al., 2014
    浸染状−2.3~−1.1
    Talnakh.块状−0.6~−0.1
    浸染状−1.1~−0.1
    Noril’sk-1浸染状−0.1~0.6
    Chernogorsk浸染状−0.1~0
    Zub-Marksheider浸染状−0.1
    Vologochan浸染状−1.1~−0.4
    Nizhny Talnakh浸染状−0.9~0
    陆内裂谷South Kawishiwi浸染状−0.36~0.45Ripley et al., 2015
    Partridge River块状−0.46
    浸染状−0.85~0.26
    Eagle浸染状0.90~1.03
    网脉状0.74~1.32
    块状0.69
    Tamarack网脉状1.21~1.29
    浸染状0.99~1.84
    Marathon−1.47~1.07Brzozowski et al., 2021b
    Northern−0.59~0.47
    Partridge River块状−1.14~0.25Smith et al., 2022
    Eagle块状−0.43~0.15
    Tamarack块状−0.39~1.06
    中亚造山带图拉尔根块状−1.08~−0.52Zhao et al., 2017
    浸染状−1.98~0.15
    图拉尔根块状−0.53~0.53Zhao et al., 2019
    浸染状−0.83~0.04
    喀拉通克块状−0.85~0.67Tang et al., 2024b
    浸染状−0.52~0.18
    块状−0.16~0.03Tang et al., 2020
    浸染状−1.32~0.07
    白石泉块状−0.40~0.59
    浸染状−0.22~0.38
    黄山南块状−0.29~−027Zhao et al., 2022b
    浸染状−0.35~0.18
    黄山东浸染状−0.69~−0.05
    葫芦块状0.06~0.17
    浸染状−0.65~0.13
    图拉尔根浸染状−1.17~0.05
    东昆仑造山带夏日哈木块状0.63~0.73Tang et al., 2024a
    浸染状0.19~0.79
    克拉通边缘裂谷带金川浸染状0.26~0.96Zhao et al., 2022a
    网脉状−0.47~1.29
    块状−0.91~0.09
    陨石撞击Sudbury−0.54~0.4Zhu et al., 2000
    Larson et al., 2003
    下载: 导出CSV
  • 李津, 唐索寒, 马健雄, 等. 金属同位素质谱分析中样品处理的基本原则与方法[J]. 岩矿测试, 2021, 405): 627636.

    LI Jin, TANG Suohan, MA Jianxiong, et al. Principles and Treatment Methods for Metal Isotopes Analysis[J]. Rock and Mineral Analysis, 2021, 405): 627636.

    李世珍, 朱祥坤, 吴龙华, 等. 干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J]. 地球学报, 2011, 326): 754760.

    LI Shizhen, ZHU Xiangkun, WU Longhua, et al. A Comparative Study of Plant Sample Preparation by Dry Ashing and Wet Digestion for Isotopic Determination of Cu, Zn and Fe[J]. Acta Geoscientica Sinica, 2011, 326): 754760.

    吕楠, 包志安, 陈开运, 等. fs-LA-MC-ICP-MS非基体匹配精确测定富铜矿物的铜同位素[J]. 中国科学(地球科学), 52(11): 2239-2253. LV N, Bao Zhian, Chen Kaiyun, et al. Accurate analysis of Cu isotopes by fs-LA-MC-ICP-MS with non-matrix-matched calibration[J]. Science ChinaEarthSciences, 2022, 6510): 20052017.
    邱坦, 汤庆艳, 杨皓辰, 等. 铁同位素分馏机理以及在镁铁-超镁铁质岩浆作用和成矿作用中的应用[J]. 岩石矿物学杂志, 2024, 434): 10341051.

    QIU Tan, TANG Qinyan, YANG Haochen, et al. Fractionation mechanism of iron isotope and its application in mafic-ultramafic magmatism and metallogenesis[J]. Acta Petrologica et Mineralogica, 2024, 434): 10341051.

    许英奎, 李智, 冯娟, 等. 星子碰撞增生过程中的同位素分馏研究进展[J]. 东华理工大学学报(自然科学版), 2023, 466): 585596.

    XU Yingkui, LI Zhi, Feng Juan, et al. Advanees in isotopic fractionation in planetesimal collisional accrelion processes[J]. Joumal of East China University of Technology(Natural Science), 2023, 466): 585596.

    王倩, 侯清华, 张婷, 等. 铜同位素测定方法研究进展[J]. 矿物岩石地球化学通报, 35(3): 497-506.

    WANG Qian, HOU Qinghua, ZHANG Ting, et al. Progresses of Copper Isotope Analytical Methods[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 497-506.

    王跃, 朱祥坤. 铜同位素在矿床学中的应用: 认识与进展[J]. 吉林大学学报: 地球科学版, 2010, 404): 739751.

    Wang Yue, Zhu Xingkun. Applications of Cu Isotopes on Studies of Mineral Deposits: a Status Report[J]. Journal of Jilin University(Earth Science Edition), 2010, 404): 739751.

    王泽洲, 刘盛遨, 李丹丹, 等. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 225): 7283.

    WANG Zezhou, LIU Shengao, LI Dandan, et al. A review of progress in copper stable isotope geochemistry[J]. Earth Science Frontiers, 2015, 225): 7283.

    辛雨, 薛胜超, 王信水, 等. 汇聚环境岩浆氧化态来源的进展与展望[J]. 岩石学报, 2023, 399): 28172831. doi: 10.18654/1000-0569/2023.09.16

    XIN Yu, XUE Shengchao, WANG Xinshui, et al. Progress and prospect of the oxidation state of magmas in convergent tectonic settings[J]. Acta Petrologica Sinica, 2023, 399): 28172831. doi: 10.18654/1000-0569/2023.09.16

    薛胜超, 刘金宇, 周翊, 等. 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报, 2024, 401): 6078. doi: 10.18654/1000-0569/2024.01.03

    Xue Shengchao, LIU Jinyu, ZHOU Xu, et al. Genetic correlation of metasomatized mantle source with Ni-Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica, 2024, 401): 6078. doi: 10.18654/1000-0569/2024.01.03

    朱祥坤, 王跃, 闫斌, 等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 326): 651688.

    ZHU Xiangkun, WANG Yue, YAN Bin, et al. Developments of Non-Traditional Stable Isotope Geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 326): 651688.

    Asael D, Matthews A, Bar-Matthews M. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel)[J]. Chemical Geology, 2007, 2433-4): 238254. doi: 10.1016/j.chemgeo.2007.06.007

    Barrat J A, Zanda B, Moynier F, et al. Geochemistry of Cl chondrites: Major and trace elements, and Cu and Zn isotopes[J]. Geochimica et Cosmochimica Acta, 2012, 83: 7992.

    Ben Othman D, Luck J M, Bodinier J L, et al. Cu-Zn isotopic variations in the Earth’s mantle[J]. Geochimica et Cosmochimica Acta, 2006, 7018): A46.

    Bigalke M, Kersten M, Weyer S, et al. Isotopes trace biogeochemistry and sources of Cu and Zn in an intertidal soil[J]. Soil Science Society of America Journal, 2013, 772): 680691. doi: 10.2136/sssaj2012.0225

    Bigalke M, Weyer S, Wilcke W. Stable copper isotopes: A novel tool to trace copper behavior in hydromorphic soils[J]. Soil Science Society of America Journal. 2010, 74(1), 60-73.

    Bigalke M, Weyer S, Wilcke W. Stable Cu isotope fractionation in soils during oxic weathering and podzolization[J]. Geochimica et Cosmochimica Acta, 2011, 7511): 31193134. doi: 10.1016/j.gca.2011.03.005

    Bishop M C, Moynier F, Weinstein C, et al. The Cu isotopic composition of iron meteorites[J]. Meteoritics and Planetary Science, 2012, 472): 268276. doi: 10.1111/j.1945-5100.2011.01326.x

    Bohlien S R, Merzger K. Origin of granulite terrenes and the formation of the lowermost continental crust[J]. Science, 1989, 244: 326329. doi: 10.1126/science.244.4902.326

    Borrok D M, Wanty R B, Ridley W I, et al. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement[J]. Chemical Geology, 2007, 2423): 400414.

    Boyle E A, John S, Abouchami W, et al. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration[J]. Limnology and Oceanography: methods, 2012, 109): 653665. doi: 10.4319/lom.2012.10.653

    Brzozowski M J, Good D J, Wu C, et al. Cu isotope systematics of conduit-type Cu-PGE mineralization in the Eastern Gabbro, Coldwell Complex, Canada[J]. Mineralium Deposita, 2021b, 564): 707724. doi: 10.1007/s00126-020-00992-8

    Brzozowski M J, Good D J, Wu C, et al. Iron isotope fractionation during sulfide liquid evolution in Cu–PGE mineralization of the Eastern Gabbro, Coldwell Complex, Canada[J]. Chemical Geology, 2021a, 576: 120282. doi: 10.1016/j.chemgeo.2021.120282

    Busigny V, Chen J B, Philippot P, et al. Insight into hydrothermal and subduction processes from copper and nitrogen isotopes in oceanic metagabbros[J]. Earth and Planetary Science Letters, 2018, 498: 5464. doi: 10.1016/j.jpgl.2018.06.030

    Chen C F, Foley S F, Shcheka S S, et al. Copper isotopes track the Neoproterozoic oxidation of cratonic mantle roots[J]. Nature Communications, 2024, 151): 4311. doi: 10.1038/s41467-024-48304-2

    Chen L M, Lightfoot P C, Zhu J M, et al. Nickel isotope ratios trace the process of sulfide-silicate liquid immiscibility during magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 2023, 353: 112. doi: 10.1016/j.gca.2023.05.013

    Chen Z X, Chen J B, Tamehe L S. Heavy Copper Isotopes in Arc-Related Lavas From Cold Subduction Zones Uncover a Sub-Arc Mantle Metasomatized by Serpentinite-Derived Sulfate-Rich Fluids[J]. Journal of Geophysical Research: Solid Earth, 2022, 12710): e2022JB024910. doi: 10.1029/2022JB024910

    Day J M D, Sossi P A, Shearer C K, et al. Volatile distributions in and on the Moon revealed by Cu and Fe isotopes in the ‘Rust-y Rock’66095[J]. Geochimica et Cosmochimica Acta, 2019, 266: 131143. doi: 10.1016/j.gca.2019.02.036

    Debret B, Beunon H, Mattielli N, et al. Ore component mobility, transport and mineralization at mid-oceanic ridges: A stable isotopes (Zn, Cu and Fe) study of the Rainbow massif (Mid-Atlantic Ridge 36 14′ N)[J]. Earth and Planetary Science Letters, 2018, 503: 170180. doi: 10.1016/j.jpgl.2018.09.009

    Dhaliwal J K, Day JM D, Creech J B, et al. Volatile depletion and evolution of Vesta from coupled Cu-Zn isotope systematics[C]//European Geosciences Union (EGU) General Assembly Conference Ab-stracts, 2021: EGU21-12820.

    Ding S, Dasgupta R. The fate of sulfide during decompression melting of peridotite-implications for sulfur inventory of the MORB-source depleted upper mantle[J]. Earth and Planetary Science Letters, 2017, 4591): 183195.

    Ding X, Ripley E M, Wang W Z, et al. Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta, 2019, 261: 327341. doi: 10.1016/j.gca.2019.07.015

    Ehrlich S, Butler I, Halicz L, et al. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS[J]. Chemical Geology, 2004, 2093): 259269.

    Fang S B, Huang J, Ackerman L, et al. Copper migration and enrichment in the mantle wedge: Insights from orogenic peridotites and pyroxenites. Geochimica et Cosmochimica Acta, 2024, 380: 83-95.

    Fellows S A, Canil D. Experimental study of the partitioning of Cu during partial melting of Earth's mantle[J]. Earth and Planetary Science Letters, 2012, 337: 133143.

    Feng Y T, Zhang W, Hu Z C, et al. New Potential Sulfide Reference Materials for Microbeam S-Fe-Cu Isotope Measurements[J]. Geostandards and Geoanalytical Research, 2023, 481): 227244.

    Fernandez A, Borrok D M. Fractionation of Cu, Fe and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology, 2009, 2641-4): 112. doi: 10.1016/j.chemgeo.2009.01.024

    Guo H H, Xia Y, Bai R X, et al. Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits[J]. National Science Review, 2020, 78): 13191330. doi: 10.1093/nsr/nwz221

    Herzog G F, Moynier F, Albarède F, et al. Isotopic and elemental abundances of copper and zinc in lunar samples, ZagamiPele’s hairs, and a terrestrial basalt[J]. Geochimica et Cosmochimica Acta, 2009, 7319): 58845904. doi: 10.1016/j.gca.2009.05.067

    Hou Q H, Zhou L, Gao S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2016, 311): 280287. doi: 10.1039/C4JA00488D

    Huang J, Fang S B, Guo S. Fluid-mediated Cu and Zn isotope fractionation in subduction zones and implications for arc volcanism: Constraints from high pressure veins within eclogites in the Dabie Orogen[J]. Chemical Geology, 2024, 663: 122258. doi: 10.1016/j.chemgeo.2024.122258

    Huang J, Huang F, Wang Z C, et al. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps[J]. Geochimica et Cosmochimica Acta, 2017, 211: 4863. doi: 10.1016/j.gca.2017.05.007

    Huang J, Liu S A, Gao Y J, et al. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific[J]. Journal of Geophysical Research: Solid Earth, 2016b, 12110): 70867100. doi: 10.1002/2016JB013095

    Huang J, Liu S A, Wörner G, et al. Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany)[J]. Contributions to Mineralogy and Petrology, 2016a, 171: 116. doi: 10.1007/s00410-015-1217-5

    Ikehata K, Hirata T. Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan[J]. Economic Geology, 2012, 1077): 14891497. doi: 10.2113/econgeo.107.7.1489

    Ikehata K, HirataT. Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite[J]. Analytical Sciences, 2013, 2912): 12131217. doi: 10.2116/analsci.29.1213

    Ikehata K, Notsu K, Hirata T. In situ determination of Cu isotope ratios in copper-rich materials by NIR femtosecond LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2008, 237): 10031008. doi: 10.1039/b801044g

    Irrgeher J, Prohaska T, Sturgeon RE, et al. Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS[J]. Analytical Methods, 2013, 57): 16871694. doi: 10.1039/c3ay00028a

    Kempton P D, Mathur R, Harmon R S, et al. Cu-isotope evidence for subduction modification of lithospheric mantle[J]. Geochemistry, Geophysics, Geosystems, 2022, 238): e2022GC010436. doi: 10.1029/2022GC010436

    Lambart S, Koornneef J M, Millet M A, et al. Highly heterogeneous depleted mantle recorded in the lower oceanic crust[J]. Nature Geoscience, 2019, 126): 482486. doi: 10.1038/s41561-019-0368-9

    Larner F, Rehkämper M, Coles B J, et al. A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 268): 16271632. doi: 10.1039/c1ja10067j

    Larson P B, Maher K, Ramos F C, et al. Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J]. Chemical Geology, 2003, 2013-4): 337350. doi: 10.1016/j.chemgeo.2003.08.006

    Lauwens S, Costas-Rodriguez M, Vanhaecke F. Ultra-trace Cu isotope ratio measurements via multi-collector ICP-mass spectrometry using Ga as internal standard: an approach applicable to micro-samples[J]. Analytica Chimica Acta, 2018, 1025: 6979. doi: 10.1016/j.aca.2018.05.025

    Le Roux V, Dasgupta R, Lee C T A. Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga, and Ge during mantle melting[J]. American Mineralogist, 2015, 10011-12): 5332544.

    Lee C T A, Luffi P, Chin E J, et al. Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science, 2012, 3366077): 6468. doi: 10.1126/science.1217313

    Li J, Tang S H, ZhuX K, et al. Basaltic and Solution Reference Materials for Iron, Copper and Zinc Isotope Measurements[J]. Geostandards and Geoanalytical Research, 20181): 163175.

    Li W Q, Jackson S E, Pearson N J, et al. The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia[J]. Chemical Geology, 2009, 2581-2): 3849. doi: 10.1016/j.chemgeo.2008.06.047

    Li Y, Audétat A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions[J]. Earth and Planetary Science Letters, 2012, 355: 327340.

    Little S H, Vance D, Mcmanus J, et al. Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta, 2017, 212: 253273. doi: 10.1016/j.gca.2017.06.019

    Liu S A, Huang J, Liu J G, et al. Copper isotopic composition of the silicate Earth[J]. Earth and Planetary Science Letters, 2015, 427: 95103. doi: 10.1016/j.jpgl.2015.06.061

    Liu S A, Li D D, Li S G, et al. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014a, 291): 122133. doi: 10.1039/C3JA50232E

    Liu S A, Liu P P, Lv Y W, et al. Cu and Zn isotope fractionation during oceanic alteration: Implications for Oceanic Cu and Zn cycles[J]. Geochimica et Cosmochimica Acta, 2019, 257: 191205. doi: 10.1016/j.gca.2019.04.026

    Liu S A, Rudnick R L, Liu W R, et al. Copper isotope evidence for sulfide fractionation and lower crustal foundering in making continental crust[J]. Science Advances, 2023, 936): eadg6995. doi: 10.1126/sciadv.adg6995

    Liu S Q, Li Y B, Liu J, et al. Equilibrium Cu isotope fractionation in copper minerals: a first-principles study[J]. Chemical Geology, 2021, 564: 120060. doi: 10.1016/j.chemgeo.2021.120060

    Liu X C, Xiong X L, Audétat A, et al. Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions[J]. Geochimica et Cosmochimica Acta, 2014b, 125: 122. doi: 10.1016/j.gca.2013.09.039

    Luck J M, Othman D B, Albarède F. Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes[J]. Geochimica et Cosmochimica Acta, 2005, 6922): 53515363. doi: 10.1016/j.gca.2005.06.018

    Luck J M, Othman D B, Barrat J A, et al. 2003. Coupled 63Cu and16O excesses in chondrites[J]. Geochimica et Cosmochimica Acta, 2003, 671): 143151. doi: 10.1016/S0016-7037(02)01038-4

    Luo C H, Wang R, Zhao Y, et al. Mobilization of Cu in the continental lower crust: A perspective from Cu isotopes[J]. Geoscience Frontiers, 2023, 145): 101590. doi: 10.1016/j.gsf.2023.101590

    Malitch K N, Latypov R M, Badanina I Y, et al. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk Province (Russia): Evidence from copper and sulfur isotopes[J]. Lithos, 2014, 204: 172187. doi: 10.1016/j.lithos.2014.05.014

    Maréchal C N, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 1561): 251273.

    Markl G, Lahaye Y, Schwinn G. Copper isotopes as monitors of redox processes in hydrothermal mineralization[J]. Geochimica et Cosmochimica Acta, 2006, 7016): 42154228. doi: 10.1016/j.gca.2006.06.1369

    Mason T F D, Weiss D J, Horstwood M, et al. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2004, 192): 209217. doi: 10.1039/b306958c

    Mathur R, Dendas M, Titley S, et al. Patterns in the Copper Isotope Composition of Minerals in Porphyry Copper Deposits in Southwestern United States[J]. Ecomomic Geology, 2010, 1058): 14571467. doi: 10.2113/econgeo.105.8.1457

    Mathur R, Ruiz J, Titley S, et al. Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 6922): 52335246. doi: 10.1016/j.gca.2005.06.022

    Mathur R, Titley S, Barra F, et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geochemical exploration, 2009, 1021): 16. doi: 10.1016/j.gexplo.2008.09.004

    Meija J, Yang L, Sturgeon R E, et al. Certification of natural isotopic abundance inorganic mercury reference material NIMS-1 for absolute isotopic composition and atomic weight[J]. Journal of Analytical Atomic Spectrometry, 2010, 253): 384389. doi: 10.1039/b926288a

    Moynier F, Albarède F, Herzog G F. 2006. Isotopic composition of zinc, copper, and iron in lunar samples[J]. Geochimica et Cosmochimica Acta, 70(24): 6103-6117.

    Moynier F, Blichert-Toft J, Telouk P, et al. 2007. Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites[Jl. Geochimica et Cosmochimica Acta, 7l(17): 4365-4379.

    Moynier F, Koeberl C, Beck P, et al. Isotopic fractionation of Cu intektities[J]. Geochimica et Cosmochimica Acta, 2010, 742): 799807. doi: 10.1016/j.gca.2009.10.012

    Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in mineralogy and geochemistry, 2017, 821): 543600. doi: 10.2138/rmg.2017.82.13

    Naldrett A J, Fedorenko V A, Asif M, et al. Controls on the composition of Ni-Cu sulfide deposits as illustrated by those at Noril’sk, Siberia[J]. Economic Geology, 1996, 914): 751773. doi: 10.2113/gsecongeo.91.4.751

    Naldrett A J, Singh J, Krstic S, et al. The mineralogy of the Voisey’s Bay Ni-Cu-Co deposit, northern Labrador, Canada: Influence of oxidation state on textures and mineral compositions[J]. Economic Geology, 2000, 954): 889900.

    Neuman M, Gargano A, Shearer C K, et al. Volatile element evolution in the Martian crust: communications with the Martian surface and atmosphere[C]//Lunar and Planetary Institute, NASA Johnson Space Center, 53rd Lunar and Planetary Science Conference, Texas: Woodlands, 2022: 1385.

    Paquet M, Moynier F, Yokoyama T, et al. Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotop ic analysis[J]. Nature Astronomy, 2023, 7: 182189.

    Qu Y R, Liu S A. Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet[J]. Geoscience Frontiers, 2024, 154): 101818. doi: 10.1016/j.gsf.2024.101818

    Ripley E M, Dong S F, Li C, et al. Cu isotope variations between conduit and sheet-style Ni-Cu-PGE sulfide mineralization in the Midcontinent Rift System, North America[J]. Chemical Geology, 2015, 414: 5968. doi: 10.1016/j.chemgeo.2015.09.007

    Ripley E M, Li C. Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis[J]?Economic Geology, 2013, 108(1): 45-58.

    Ripley E M, Li C. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits[J]. Economic Geology, 2003, 983): 635641. doi: 10.2113/gsecongeo.98.3.635

    Rouxel O, Fouquet Y, Ludden J N. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge[J]. Economic Geology, 2004, 993): 585600. doi: 10.2113/gsecongeo.99.3.585

    Savage P S, Moynier F, Chen H, et al. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation[J]. Geochemical Perspectives Letters, 2015, 11): 5364.

    Schauble E A. Applying stable isotope fractionation theory to new systems[J]. Reviews in mineralogy and geochemistry, 2004, 551): 65111. doi: 10.2138/gsrmg.55.1.65

    Sherman D M. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory[J]. Geochimica et Cosmochimica Acta, 2013, 118: 8597. doi: 10.1016/j.gca.2013.04.030

    Shields W R, Goldich S S, Garner E L, et al. Natural variations in the abundance ratio and the atomic weight of copper[J]. Journal of Geophysical Research, 1965, 702): 479491. doi: 10.1029/JZ070i002p00479

    Smith J M, Ripley E M, Li C, et al. Cu and Ni Isotope Variations of Country Rock-Hosted Massive Sulfides Located Near Midcontinent Rift Intrusions[J]. Economic Geology, 2022, 1171): 195211. doi: 10.5382/econgeo.4872

    Sullivan K, Layton-Matthews D, Leybourne M, et al. Copper Isotopic Analysis in Geological an Biological Reference Materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2020, 442): 349362. doi: 10.1111/ggr.12315

    Sun P, Niu Y L, Chen S, et al. Copper isotope fractionation during magma differentiation: evidence from lavas on the East Pacific Rise at 10◦30′N[J]. Geochimica et Cosmochimica Acta, 2023, 356: 93104. doi: 10.1016/j.gca.2023.07.016

    Takano S, Tanimizu M, Hirata T, et al. Isotopic constraints on biogeochemical cycling of copper in the ocean[J]. Nature communications, 2014, 51): 17.

    Tang D M, Qin K Z, Evans N J, et al. Sulfide copper-iron isotopic fractionation during formation of the Kalatongke magmatic Cu-Ni sulfide deposit in the Central Asian Orogenic Belt[J]. Geochemistry, Geophysics, Geosystems, 2024b, 256): e2023GC011406. doi: 10.1029/2023GC011406

    Tang D M, Qin K Z, Su B X, et al. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits[J]. Geochimica et Cosmochimica Acta, 2020, 275: 209228. doi: 10.1016/j.gca.2020.02.015

    Tang Q Y, Bao J, Zhang Y, et al. Copper isotope fractionation during magmatic evolution in a convergent tectonic setting: Constraints from sulfide Cu-S isotopes and whole-rock PGE of the Xiarihamu Ni-Cu sulfide deposit[J]. Chemical Geology, 2024a, 668: 122348. doi: 10.1016/j.chemgeo.2024.122348

    Taylor S R, MeLennan S M, MeCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta, 1983, 4711): 18971905. doi: 10.1016/0016-7037(83)90206-5

    Thompson C M, Ellwood M J. Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry, 2014, 165: 19. doi: 10.1016/j.marchem.2014.06.009

    Tollan P, Hermann J. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene[J]. Nature Geoscience, 2019, 128): 667671. doi: 10.1038/s41561-019-0411-x

    Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (London), 1947: 562-581.

    Vance D, Archer C, Bermin J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 2741): 204213.

    Wang Q, Zhou L, Feng L, et al. Use of a Cu-selective resin for Cu preconcentration from seawater prior to its isotopic analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 3511): 27322739. doi: 10.1039/D0JA00096E

    Wang Z C, Becker H, Gawronski T. Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: A case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps)[J]. Geochimica et Cosmochimica Acta, 2013, 108: 2144. doi: 10.1016/j.gca.2013.01.021

    Wang Z C, Becker H. Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle[J]. Geochimica et Cosmochimica Acta, 2015, 160: 209226. doi: 10.1016/j.gca.2015.04.006

    Wang Z C, Park J W, Wang X, et al. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc[J]. Geochimica et Cosmochimica Acta, 2019, 250: 1833. doi: 10.1016/j.gca.2019.01.040

    Wang Z C, Zhang P Y, Li Y B. Copper recycling and redox evolution through progressive stages of oceanic subduction: Insights from the Izu-Bonin-Mariana forearc[J]. Earth and Planetary Science Letters, 2021, 574: 117178. doi: 10.1016/j.jpgl.2021.117178

    Williams H M, Archer C. Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallisation processes on iron meteorite parent bodies[J]. Geochimica et Cosmochimica Acta, 2011, 7511): 31663178. doi: 10.1016/j.gca.2011.03.010

    Wohlgemuth-Ueberwasser C C, Fonseca R O C, Ballhaus C, et al. Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides[J]. Mineralium Deposita, 2013, 48: 115127. doi: 10.1007/s00126-012-0420-9

    Xia Y, Kiseeva E S, Wade J, et al. The effect of core segregation on the Cu and Zn isotope composition of the silicate Moon[J]. Geochemical Perspectives Letters, 2019, 12: 1217.

    Xue S C, Deng J, Wang Q F, et al. The redox conditions and C isotopes of magmatic Ni-Cu sulfide deposits in convergent tectonic settings: The role of reduction process in ore genesis[J]. Geochimica et Cosmochimica Acta, 2021, 306: 210225. doi: 10.1016/j.gca.2021.05.039

    Xue S C, Wang Q F, Deng J, et al. Mechanism of organic matter assimilation and its role in sulfide saturation of oxidized magmatic ore-forming system: insights from C-S-Sr-Nd isotopes of the Tulaergen deposit in NW China[J]. Mineralium Deposita, 2022, 577): 11231141. doi: 10.1007/s00126-021-01087-8

    Yang L, Peter C, Panne U, et al. Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2008, 239): 12691274. doi: 10.1039/b803143f

    Yang X M, Wang S J, Zhang Y W, et al. Nickel isotope fractionation during magmatic differentiation[J]. Geochemistry, Geophysics, Geosystems, 2023, 246): e2023GC010926. doi: 10.1029/2023GC010926

    Zhang G L, Liu Y S, Moynier F, et al. Copper mobilization in the lower continental crust beneath cratonic margins, a Cu isotope perspective[J]. Geochimica et Cosmochimica Acta, 2022, 322: 4357. doi: 10.1016/j.gca.2022.01.031

    Zhang R Y, Liou J G, Zheng J P, et al. Petrogenesis of eclogites enclosed in mantle-derived peridotites from the Sulu UHP terrane constraints from trace elements in minerals and Hf isotopes in zircon[J]. Lithos, 2009, 1093-4): 176192. doi: 10.1016/j.lithos.2008.08.002

    Zhang W Q, Liu C Z, Lissenberg C J, et al. Post-cumulus control on copper isotopic fractionation during oceanic intra-crustal magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 2024, 369: 3550. doi: 10.1016/j.gca.2024.01.030

    Zhang Y, Bao Z, Lv N, et al. Copper Isotope Ratio Measurements of Cu-Dominated Minerals Without Column Chromatography Using MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 609. doi: 10.3389/fchem.2020.00609

    Zhao Y, Liu S A, Xue C J, et al. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit[J]. American Mineralogist, 2022a, 1074): 673683. doi: 10.2138/am-2021-7911

    Zhao Y, Liu S A, Xue C J, et al. Copper isotope fractionation in magmatic Ni-Cu mineralization systems associated with the variation of oxygen fugacity in silicate magmas[J]. Geochimica et Cosmochimica Acta, 2022b, 338: 250263. doi: 10.1016/j.gca.2022.09.040

    Zhao Y, Liu S A, Xue C J, et al. Metasomatized mantle facilitates the genesis of magmatic nickel-copper sulfide deposits in orogenic belts: A copper isotope perspective[J]. Geochimica et Cosmochimica Acta, 2024a, 366: 128140. doi: 10.1016/j.gca.2023.11.028

    Zhao Y, Wang S J, Xue C J, et al. Hidden deep sulfide cumulates beneath the Jinchuan Ni-Cu-platinum-group element deposit (China) inferred from Ni-Cu isotopes[J]. Geology. 2024b.

    Zhao Y, Xue C J, Liu S A, et al. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China[J]. Lithos, 2017, 286-287: 206215. doi: 10.1016/j.lithos.2017.06.007

    Zhao Y, Xue C J, Liu S A, et al. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system[J]. Geochimica et Cosmochimica Acta, 2019, 249: 4258. doi: 10.1016/j.gca.2018.12.039

    Zheng Y C, Liu S A, Wu C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology, 2019, 472): 135138. doi: 10.1130/G45362.1

    Zhu X K, Guo Y, Williams R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 2001-2): 4762. doi: 10.1016/S0012-821X(02)00615-5

    Zhu X K, O’nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers[J]. Chemical Geology, 2000, 1631-4): 139149. doi: 10.1016/S0009-2541(99)00076-5

    Zhu Y T, Li M, Wang Z C, et al. High-precision Copper and Zinc Isotopic Measurements in Igneous Rock Standards Using Large-geometry MC-ICP-MS[J]. Atomic Spectroscopy, 2019, 406): 206214. doi: 10.46770/AS.2019.06.002

    Zou Z Q, Wang Z C, Li M, et al. Copper isotope variations during magmatic migration in the mantle: Insights from mantle pyroxenites in Balmuccia peridotite massif[J]. Journal of Geophysical Research: Solid Earth, 2019, 12411): 1113011149. doi: 10.1029/2019JB017990

    Zou Z Q, Wang Z C, Xu Y G, et al. Deep mantle cycle of chalcophile metals and sulfur in subducted oceanic crust[J]. Geochimica et Cosmochimica Acta, 2024b, 370: 1528. doi: 10.1016/j.gca.2024.02.007

    Zou Z Q, Wang Z Q, Xu Y G, et al. Contrasting Cu isotopes in mid-ocean ridge basalts and lower oceanic crust: Insights into the oceanic crustal magma plumbing systems[J]. Earth and Planetary Science Letters, 2024a, 627: 118563. doi: 10.1016/j.jpgl.2023.118563

图(6)  /  表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 修回日期:  2025-02-08
  • 录用日期:  2025-02-09
  • 网络出版日期:  2025-03-20

目录

/

返回文章
返回