ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

南蒙古-中蒙边界地区晚中生代花岗岩伸展穹隆的构造-热演化史:来自低温热年代学的约束

苏霖, 郭磊, 童英, 张颖慧, 黄河, TSERENDASHNarantsetseg

苏霖,郭磊,童英,等. 南蒙古-中蒙边界地区晚中生代花岗岩伸展穹隆的构造-热演化史:来自低温热年代学的约束[J]. 西北地质,xxxx,x(x):1−20. doi: 10.12401/j.nwg.2025020
引用本文: 苏霖,郭磊,童英,等. 南蒙古-中蒙边界地区晚中生代花岗岩伸展穹隆的构造-热演化史:来自低温热年代学的约束[J]. 西北地质,xxxx,x(x):1−20. doi: 10.12401/j.nwg.2025020
SU Lin,GUO Lei,TONG Ying,et al. Tectono-Thermal Evolution of Late Mesozoic Extensional Granite Domes in Southern Mongolia and the Sino-Mongolian Border Region: Constraints from Low-Temperature Thermochronology[J]. Northwestern Geology,xxxx,x(x):1−20. doi: 10.12401/j.nwg.2025020
Citation: SU Lin,GUO Lei,TONG Ying,et al. Tectono-Thermal Evolution of Late Mesozoic Extensional Granite Domes in Southern Mongolia and the Sino-Mongolian Border Region: Constraints from Low-Temperature Thermochronology[J]. Northwestern Geology,xxxx,x(x):1−20. doi: 10.12401/j.nwg.2025020

南蒙古-中蒙边界地区晚中生代花岗岩伸展穹隆的构造-热演化史:来自低温热年代学的约束

基金项目: 2 国家自然科学基金项目“东北亚地区早白垩世不对称花岗岩穹隆群的形成机制及其对伸展过程的制约(41972225)”和中国地质调查局项目“中生代松辽盆地周缘复合造山带岩浆演化及成矿效应专题地质调查(DD20230213)”联合资助。
详细信息
    作者简介:

    苏霖(2000−),男,硕士研究生,主要从事低温热年代学与成矿要素研究。E−mail:185979777@qq.com

    通讯作者:

    郭磊(1981−),男,副研究员,主要从事伸展构造、穹隆和构造年代学研究。E−mail:guolei_cn@sina.com

  • 中图分类号: P58;P597

Tectono-Thermal Evolution of Late Mesozoic Extensional Granite Domes in Southern Mongolia and the Sino-Mongolian Border Region: Constraints from Low-Temperature Thermochronology

  • 摘要:

    南蒙古-中蒙边界地区是东北亚伸展构造发育的重要区域,晚中生代花岗岩穹隆的形成和热演化对于理解区域伸展机制和动力学具有重要意义。本文采用磷灰石裂变径迹和锆石(U-Th)/He等低温热年代学方法,结合40Ar-39Ar热年代学数据对南蒙古及邻区的罕乌拉、Nartyn和Altanshiree三个花岗岩穹隆的构造热演化过程进行分析,结果显示三个穹隆韧性剪切带的磷灰石裂变径迹年龄为104.94±5.84 Ma、101.30±5.5 Ma、1101.73±6.20 Ma、110.05±7.38 Ma,锆石(U-Th)/He年龄为123.4±7.35 Ma、123.7±7.42 Ma,黑云母40Ar-39Ar年龄为123.9±0.90 Ma、121.3±1.40 Ma,钾长石40Ar-39Ar年龄为122.2±1.20 Ma、104.94±5.84 Ma。热史模拟结果表明,晚中生代三个穹隆均经历了明显的隆升,根据隆升速率的差异可分为三个阶段:①133~125 Ma为中等速度隆升;②125~123 Ma为快速隆升;③123~100 Ma为缓慢隆升。穹隆隆升过程与区域性岩浆作用及伸展构造活动紧密相关:早期岩浆开始侵入并加热地壳,导致地壳岩石圈强度降低,诱导穹隆隆升,后期区域性拉张背景促使穹隆快速隆升,此外,隆升活动与东北亚早白垩世其他典型变质核杂岩伸展事件具有一致性。蒙古鄂霍茨克洋闭合后垮塌引发的岩石圈伸展与古太平洋板块俯冲后回撤可能共同驱动了穹隆的隆升。

    Abstract:

    The South Mongolia–Central Mongolia border region is a significant area for the development of extensional tectonics in Northeast Asia. The formation and thermal evolution of Mesozoic granite domes in this region provide key insights into the mechanisms and dynamics of regional extension. This study combines low-temperature thermochronology techniques, including apatite fission-track dating, zircon (U-Th)/He dating and 40Ar-39Ar dating to analyze the tectonothermal evolution of three granite domes—Hannuula, Nartyn, and Altanshiree—across South Mongolia and adjacent areas. The results indicate that the ages of apatite fission-track dating from the ductile shear zones of these domes are 104.94 ± 5.84 Ma, 101.30 ± 5.5 Ma, 110.73 ± 6.20 Ma, and 110.05 ± 7.38 Ma. The zircon (U-Th)/He ages are 123.4 ± 7.35 Ma and 123.7 ± 7.42 Ma, while biotite 40Ar-39Ar ages are 123.9 ± 0.90 Ma and 121.3 ± 1.40 Ma and feldspar 40Ar-39Ar ages are 122.2 ± 1.20 Ma and 104.94 ± 5.84 Ma. Thermal history modeling reveals that all three domes underwent significant uplift during the Late Mesozoic with three distinct uplift phases: (1) moderate uplift between 133 and 125 Ma, (2) rapid uplift from 125 to 123 Ma, and (3) slow uplift from 123 to 100 Ma. The uplift of the domes is closely linked to regional magmatism and extensional tectonics. Early magmatic intrusions heated the crust, reducing lithospheric strength and inducing dome uplift, while regional extension during the later stages promoted rapid uplift. Furthermore, the uplift events are consistent with other extensional events associated with metamorphic core complexes in Northeast Asia during the Early Cretaceous. Lithospheric extension triggered by the collapse of the Mongol-Okhotsk Ocean and the rollback of the subducted Pacific Plate likely played a key role in driving the uplift of these granite domes.

  • 气候变暖是目前世界上最主要的环境问题之一,减少碳排放和增加区域生态系统碳汇是控制气候变暖的主要措施。农田生态系统作为陆地生态系统的重要组成部分,对区域碳循环起着至关重要的作用。农田生态系统既是碳源也是碳汇,准确估算农田生态系统碳变化是科学制定农业减排增汇战略的前提和基础(赵宇,2018)。

    以往研究中,净碳汇法是估算农田生态系统碳汇的常见方法,如王桂波等(2012)、康霞(2018)、翁领燕等(2018)利用该方法分别对陕西省耕地、甘肃省和江苏省农田生态系统碳源汇测算,并分析其时空变化;李艳春等(2014)、茹艺(2015)、王莉等(2022)分别分析福建省、黑龙江省和河南省农田生态系统的碳源汇时空变化及其影响因素;王敬哲等(2016)、李明琦等(2018)和郭永奇(2021)分别测算新疆、云南省和河南省农田生态系统碳源汇,并分析碳足迹变化。然而农田生态系统固碳潜力主要集中在农田土壤(赵明月等,2022),一些学者也通过自建经验公式、固碳速率法测算农田土壤碳汇量,如韩冰等(2008)通过建立公式估算农田土壤的固碳能力和潜力。李彦娥等(2023)、邱子健等(2024)采用固碳速率法分别对西北地区、江苏省农田土壤生态系统碳汇量进行核算。谭美秋等(2022)发现固碳速率法测算的河南省农田土壤与净碳汇法核算的农田生态系统碳汇结果呈现相似规律。上述农田碳汇核算研究主要集中于单一方法的测算,多方法对比研究缺乏,无法筛选出精准评估区域农田生态系统碳汇的适宜方法。

    陕西省地处西北地区,其耕地占全省土地总面积的19.34%,准确估算其农田生态系统碳汇是实现陕西省“双碳”目标的重要战略选择。笔者采用净碳汇法和固碳速率法分别核算陕西省农田生态系统碳汇,并分析两种方法的固碳时空分布差异,筛选出评估区域农田生态系统碳汇的适宜方法,为陕西省农田碳减排管理政策提供参考和技术支撑。

    本研究中涉及到的农田面积、主要作物产量、化肥施用量、农用物资使用量、农田翻耕面积、灌溉面积等均来源于2005~2020年的《陕西省统计年鉴》(htts://tjj.shaanxi.gov.cn),其中化肥为折纯量。

    净碳汇是指各种农作物在全生育期过程中碳吸收量与自然生长排放及农业投入产生的碳排放量的差值。

    $$ {C_{\text{t}}} = {E_t}{\text{ - }}{T_t} $$ (1)

    式(1)中:$ {C_{\text{t}}} $为农田生态系统碳汇,tC;$ {E_{\text{t}}} $为碳吸收量,tC;$ {T_{\text{t}}} $为碳排放量,tC。

    $$ {E_{\text{t}}} = \sum\limits_{i = 1}^n {{E_i}} = \sum\limits_{i = 1}^n {{C_i}} \times {Y_i} \times {W_i}/{H_i} $$ (2)

    式(2)中:$ {E_i} $为i类农作物碳吸收量,tC;$ {C_i} $为i类农作物碳吸收率;$ {Y_i} $为i类农作物经济产量,t;$ {W_i} $为作物干重比;$ {H_i} $为i类农作物经济系数。碳吸收率、干重比、经济系数主要参考前人研究资料(郭永奇,2021),具体见表1

    表  1  主要农作物的经济系数、干重比、碳吸收率
    Table  1.  Economic coefficient, dry weight ratio and carbon absorption rate of main crops
    作物种类 经济系数 干重比 碳吸收率 作物种类 经济系数 干重比 碳吸收率
    水稻 0.41 0.86 0.45 棉花 0.45 0.92 0.10
    麦类 0.49 0.87 0.40 麻类 0.45 0.88 0.15
    玉米 0.47 0.86 0.40 烟叶 0.45 0.84 0.55
    豆类 0.45 0.87 0.35 其他谷物 0.45 0.83 0.35
    油料 0.45 0.90 0.25 蔬菜 0.83 0.15 0.45
    下载: 导出CSV 
    | 显示表格

    农田碳排放主要包括农用物资投入引起的碳排放、土壤N2O排放、稻田CH4排放及稻田土壤呼吸4方面。其中1 t N2O 和1 t CH4所引发的温室效应相当于81.2727 tC和6.8182 tC 所产生的温室效应(谭美秋等,2022)。

    碳排放量估算:

    $$ {T_{\text{t}}} = \sum\limits_{i = 1}^n {{T_i}} = \sum\limits_{i = 1}^n {{Q_i}} \times {R_i} $$ (3)

    式(3)中:$ {T_i} $为第i类碳排放量,tC;$ {Q_i} $为第i类碳排放源数量;$ {Q_i} $为第i类碳源的碳排放系数。

    ① 农用物资投入引起的碳排放主要包括化肥、农药、农膜、农用柴油、农田翻耕和农田灌溉6方面,对应的碳排放系数见表2

    表  2  各类农用物资碳排放系数及来源
    Table  2.  Carbon Emission Coefficients and Sources of Various Agricultural Materials
    农用物资种类碳排放系数单位数据来源
    化肥0.8596Kg/Kg张精等,2021
    农药4.9341Kg/Kg张精等,2021
    农膜5.18Kg/Kg谭美秋等,2022
    柴油0.59Kg/Kg谭美秋等,2022
    翻耕31260Kg/km2谭美秋等,2022
    灌溉26648Kg/km2谭美秋等,2022
    下载: 导出CSV 
    | 显示表格

    ② 土壤N2O排放

    农作物种植过程中易对土壤表层产生破坏,从而导致大量温室气体流失到大气中,尤以N2O最为突出。各类农作物土壤N2O排放系数(谭美秋等,2022)见表3

    表  3  各类农作物土壤N2O排放系数
    Table  3.  N2O Emission Coefficients of Various Crop Soils
    农作物种类N2O排放系数
    (Kg/km2
    农作物种类N2O排放系数
    (Kg/km2
    水稻24玉米253
    麦类205蔬菜421
    豆类77其他旱地作物95
    下载: 导出CSV 
    | 显示表格

    ③ 稻田CH4排放

    农田生态系统CH4排放主要来源于稻田种植。根据以往研究结果(田云等,2013),陕西省水稻属中季稻,CH4排放系数取12.51 g/m2

    ④ 稻田土壤呼吸

    土壤呼吸主要为稻田CO2排放,稻田土壤呼吸的碳排放系数为1023 t/km2吴贤荣等,2014谭美秋等,2022)。

    根据《中华人民共和国国家标准——生态系统评估生态系统生产总值(GEP)核算技术规范》(GB/T 1.1-2020),本研究只考虑农田的土壤碳汇,不考虑农田植被的碳汇,也就是农田生态系统的净碳汇量,其计算公式为:

    $$ CSCS = \left( {BSS + SCS{R_n} + PR \times SCS{R_s}} \right) \times SC $$ (4)

    式(4)中:CSCS为农田碳汇量,tC/a;BSS为无固碳措施下固碳速率,tC/(km2·a);$ SCS{R_n} $为施用化肥固碳速率,tC/(km2·a);$ SCS{R_s} $为秸秆还田固碳速率,tC/(km2·a);PR为秸秆还田率;SC为农田面积( km2)。

    $$ BS S = NSC \times BD \times H \times 0.1 $$ (5)

    式(5)中:NSC为土壤有机碳的变化;BD为土壤容重g/cm3H为土壤厚度,取20 cm。

    $$ SCS{R_n} = 0.635\;2 \times TNF - 1.083\;4$$ (6)

    式(6)中:TNF为单位面积耕地化学氮肥、复合肥总施用量kg/(km2·a)

    $$ TNF = {{\left( {NF + CF \times 0.3} \right)} \mathord{\left/ {\vphantom {{\left( {NF + CF \times 0.3} \right)} {{S_p}}}} \right. } {{S_p}}} $$ (7)

    式(7)中:Sp为耕作面积,km2NFCF为化学氮肥和复合肥施用量,t。

    $$ SCS{R_n} = 17.116 \times S + 30.553 $$ (8)

    式(8)中:S为单位面积秸秆还田量t/( km2·a)。

    $$ S = {{\sum\nolimits_{j = 1}^n {{C_{yj}} \times SG{R_j}} } \mathord{\left/ {\vphantom {{\sum\nolimits_{j = 1}^n {{C_{yj}} \times SG{R_j}} } {{S_p}}}} \right. } {{S_p}}} $$ (9)

    式(9)中:$ {C_{yj}} $为作物j在当年的产量,t;$ SG{R_j} $为作物j的草谷比,$ {S_p} $为耕作面积。

    所用参数具体值及来源见表4表5

    表  4  主要参数列表
    Table  4.  List of Main Parameters
    参数 定义 取值 单位 来源
    PR 秸秆还田推广实行率 42.6% / 张国等,2017
    NSC 土壤有机碳的变化 0.06 / GB/T 1.1-2020
    H 土壤厚度 20 cm GB/T 1.1-2020
    NF 化学氮肥 / t 陕西省统计年鉴
    CF 复合肥施用量 / t 陕西省统计年鉴
    Sp 耕作面积 / km2 陕西省统计年鉴
    Cyj 作物j在当年的产量 / t 陕西省统计年鉴
    SGRj 作物j的草谷比 表5 / 农业农村部办公厅
    下载: 导出CSV 
    | 显示表格
    表  5  不同作物的草谷比
    Table  5.  Grass to Grain Ratio of Different Crops
    作物 草谷比 作物 草谷比
    水稻 0.623 油料 2.0
    麦类 1.366 棉花 8.1
    玉米 2.0 豆类 1.57
    薯类 0.5 麻类 8.10
    烟叶 1.0 其他谷物 0.85
    下载: 导出CSV 
    | 显示表格

    从2020年陕西省农田生态系统碳排放情况(表6)可知,全省农田生态系统碳吸收明显大于碳排放,整体呈碳汇状态,净碳汇达507.66万tC,碳汇强度131 tC/km2。这与王桂波等(2012)采用该方法核算的结果基本一致。碳吸收贡献由大到小依次为玉米、麦类、蔬菜、其他谷物、稻谷、油料、豆类、烟叶、麻类和棉花,其中玉米、麦类和蔬菜碳汇贡献率分别达40.15%、26.26%和14.11%。玉米和麦类为区域主要粮食作物,种植面积大,碳汇能力强。蔬菜作为农民创收的主要来源,种植面积大,其碳汇能力优于其他农作物。碳排放贡献由大到小依次为化肥、稻田土壤呼吸、土壤硝化、翻耕、柴油、灌溉、农膜、稻田甲烷排放和农药,其中化肥、稻田土壤呼吸、土壤硝化、翻耕影响较大,贡献率分别达27.97%、17.32%、17.11%和16.76%。

    表  6  2020年陕西省农田生态系统碳吸收、碳排放核算表
    Table  6.  Accounting table for carbon absorption and emissions of farmland ecosystems in Shaanxi Province
    碳吸收量(万t) 碳排放量(万t) 碳汇量(万t)
    稻谷 75.20 农资投入 化肥 173.56
    麦类 296.33 农药 5.90
    玉米 453.04 农膜 23.17
    豆类 20.04 柴油 55.69
    油料 29.64 翻耕 104.01
    棉花 0.01 灌溉 35.62
    麻类 0.02 自然排放 土壤N2O排放 106.18
    烟叶 5.43 稻田CH4排放 8.96
    其他谷物 89.34 稻田土壤呼吸 107.51
    蔬菜 159.21
    小计 1128.26 620.60 507.66
    下载: 导出CSV 
    | 显示表格

    全省碳吸收量分布(图1)显示,渭南最高(213.81万tC),榆林次之(178.72万tC),接着咸阳、西安、汉中和宝鸡,其余均低于100万tC。碳吸收能力的差异主要与不同区域农作物种类、产量和播种面积有关,中部地区主要以玉米和麦类种植为主,占比达75%以上;陕北主要以玉米为主,其他谷物和蔬菜次之;陕南差异较大,汉中以稻谷、玉米和蔬菜为主;商洛主要为玉米、麦类、蔬菜和其他谷物;安康则主要为玉米、稻谷和蔬菜。

    图  1  各地市农田生态系统碳吸收量
    Figure  1.  Carbon absorption of farmland ecosystems in various cities

    全省碳排放量分布情况(图2)显示,汉中最高(127.06万tC),渭南次之(113.93万tC),咸阳第三(81.95万tC),铜川最低(10.62万tC)。各地碳排放量组成结构有所差异,除汉中、安康、榆林外,其他地区均以化肥碳排放最多;汉中和安康则以稻田土壤呼吸最多;榆林以土壤翻耕和硝化为主。

    图  2  各地市农田生态系统碳排放量
    Figure  2.  Carbon emissions from farmland ecosystems in various cities

    空间分布来看(图3),除汉中外其他各地市农田均表现为碳汇状态,碳汇高值区域主要分布在榆林、渭南、西安、咸阳、宝鸡;低值区域主要分布于商洛、安康、延安、铜川;汉中处于碳源状态。由于不同行政区域农田面积相差较大,相比碳汇总量,其碳汇强度即单位面积内的碳汇量更能客观反映其碳汇水平。全省碳汇强度整体呈现“中间高,南北低”的分布格局,西安最高(238 tC/km2),汉中最低(−4 tC/km2),由大到小依次为西安、宝鸡、铜川、咸阳、渭南、榆林、商洛、延安、安康和汉中。安康和汉中碳汇强度最低,这与区域水稻种植面积较大,导致稻田土壤呼吸碳排放较多所致。

    图  3  各地市农田生态系统净碳汇量及碳汇强度
    Figure  3.  Carbon sink amount and carbon sink intensity of farmland ecosystems in various cities

    固碳速率法计算得出2020年陕西省农田生态系统碳汇为76.51万tC,碳汇强度25 tC/km2,其中66.6%来自施用氮肥和复合肥导致的碳吸收,27.3%来自秸秆还田带来的碳封存,6.1%来自无措施的土壤固碳。

    空间分布来看(图4),碳汇高值区域主要分布在渭南、咸阳、榆林、西安、宝鸡、延安;低值区域主要分布于安康、铜川、商洛。全省碳汇强度整体呈现“中间高,南北低”的分布格局,咸阳最高(42 tC/km2),榆林最低(13 tC/km2),由大到小依次为咸阳、西安、铜川、延安、渭南、宝鸡、汉中、安康、商洛和榆林。各地市碳汇组成结构有所差异,但均以施用化肥碳汇为主(48.5%~82.3%),其次为秸秆还田碳汇(13.0%~43.0%),无措施碳汇占比较少(3.6%~12.1%)。各地市碳汇组成结构差异,主要与区域经济投入、作物产量、农田管理措施有关。

    图  4  各地市农田生态系统碳汇量及固碳强度
    Figure  4.  Various carbon sinks and carbon sink intensities of farmland ecosystems in various cities and regions

    图5碳汇总量看,采用净碳汇核算的陕西省农田生态系统碳汇(452.81~507.66万tC)远大于固碳速率法核算的结果(58.83~82.28万tC),固碳速率法核算值仅占净碳汇核算值的12.8%~18.2%。

    图  5  两种方法碳汇量及碳汇强度对比
    Figure  5.  Comparison of carbon sequestration and carbon sequestration intensity between two methods

    从时间分布看,净碳汇法得出2005~2020年碳汇总量整体呈波动上升趋势,而固碳速率法表现为先上升后下降态势,其中净碳汇法在2020年达到峰值,而固碳速率法在2015年最高。碳汇强度方面净碳汇法表现为持续上升态势,而固碳速率法表现为先上升后下降态势。

    造成两者碳汇量及时空变化趋势差异的主要原因是形成碳汇的结构组成不同。净碳汇法除受作物产量因素外,还与农资投入、作物种类、土壤呼吸等因素有关;而固碳速率法主要与施肥、秸秆还田因素有关。

    从空间分布看,全省碳汇强度整体均是“中间高,南北低”的分布格局。净碳汇法整体呈现中部>北部>南部,而固碳速率法则表现为中部>南部>北部。究其原因,净碳汇法碳排放考虑稻田土壤呼吸及甲烷排放,从而使南部稻田种植面积较大的汉中、安康净碳汇量减少。这与王桂波、康苗苗等未考虑稻田土壤呼吸得出的结果一致(康苗苗等,2011王桂波等,2012)。研究认为净碳汇法更适用于区域有水稻种植的农田生态系统碳汇的核算。

    各地市碳汇强度两种方法得出的结果有所差异,净碳汇法中西安和宝鸡最高,汉中最低;而固碳速率法中咸阳和西安最高,榆林最低。净碳汇法中碳吸收主要考虑作物全生育期的碳吸收,以玉米、麦类和蔬菜贡献率为主;碳排放主要影响因素为化肥、稻田土壤呼吸、土壤硝化、翻耕等。说明净碳汇法中区域耕地数量和质量决定着其农田生态系统的碳汇能力,西安和宝鸡地处关中平原,土壤肥沃,碳汇强度高,而汉中水稻种植面积大、土壤呼吸碳排放量高导致其碳汇强度小。固碳速率法中主要以施用化肥碳汇和秸秆还田碳汇为主,说明其碳汇能力主要取决于农田经济投入和耕地质量。咸阳、西安经济发达,土壤肥沃,其碳汇强度高;榆林地处黄土高原与毛乌素沙地过渡带,土壤贫瘠,耕地撂荒现象普遍,加之,该地区人口密度低,能源资源丰富,相对来说农业经济投入较少,导致其碳汇强度低。

    净碳汇法是估算农作物全生育期碳吸收与碳排放的差值,从整个农田生态系统产出平衡来考虑。该方法分别计算农田生态系统的碳源和碳汇,可清晰识别其碳排放和碳吸收的各项具体情况,剖析碳源和碳汇的内在原因,但涉及核算数据多,计算过程复杂。固碳速率法可直接计算农田土壤生态系统碳汇,涉及数据少,但其碳汇能力大小主要取决于化肥施用量、秸秆还田率及其土壤本身的固碳率。土壤固碳率与土壤有机碳变化有关,本研究过程中受数据限制土壤有机碳变化采用全国的平均值,秸秆还田率采用2011年全省平均值42.6%,各地区土壤固碳率差异性被显著降低。

    本研究采用固碳速率法核算的全省平均碳汇强度25 tC/km2·a,核算值偏低主要未考虑免耕因素和秸秆还田率偏低等原因。金琳等(2008)得出西北地区免耕措施固碳强度为91 tC/km2·a,韩冰等(2008)研究采用免耕措施,全国平均农田土壤固碳强度为28 tC/km2·a。受数据限制,秸秆还田率采用2011年数据(42.6%)核算的碳汇强度为7 tC/km2·a。近些年随着秸秆禁止焚烧、秸秆综合利用等措施的实施,秸秆还田率已有所提高。谭美秋等(2022)采用秸秆还田率61%核算的固碳强度为27 tC/km2·a。故考虑免耕因素及秸秆还田率提高的条件下,按最小值估算,本研究采用固碳速率法核算的碳汇强度可能达到73 tC/km2·a,尽管与净碳汇法核算的131 tC/km2仍有一定差异,但核算结果单位基本一致,有一定可比性。

    稻田种植是农田生态系统CH4排放的主要来源(王莉等,2022),陕南部分地区水稻种植面积大,由稻田种植引起的CO2排放占比较高,其碳排放实际情况与净碳汇法的测算结果更相符,而固碳速率法未考虑这部分因素,故净碳汇法目前更适用于核算陕西省农田生态系统碳汇。

    (1)净碳汇法和固碳速率法核算值整体均呈碳汇状态,前者核算结果(452.81~507.66万tC)远大于后者核算结果(58.83~82.28万tC),后者核算值仅占前者核算值的12.8%~18.2%。

    (2)两种方法碳汇结构的组成差异导致两者的时空变化趋势有所不同。时间序列上,净碳汇法2005~2020年碳汇总量整体呈波动上升趋势,而固碳速率法表现为先上升后下降态势。空间格局上,净碳汇法中西安和宝鸡最高,汉中最低,整体表现为中部>北部>南部;而固碳速率法中咸阳和西安最高,榆林最低,整体表现为中部>南部>北部。

    (3)净碳汇法目前更适用于核算陕西省农田生态系统碳汇,2020年其值为507.66万tC。但考虑免耕和秸秆还田率提高等因素,两种方法核算结果单位基本一致,具有可比性。今后应加大农田土壤有机碳变化监测力度,加强农田管理措施碳汇研究,对于固碳速率法精准评估农田土壤生态系统碳汇极其重要。

  • 图  1   东北亚大地构造简图(据王涛等,2022

    Figure  1.   Tectonic Sketch Map of Northeast Asia

    图  2   东北亚地区晚中生代变质核杂岩或伸展穹隆构造分布图(据Wang et al., 2012修改)

    黑框显示了文中研究的3个花岗岩伸展穹隆

    Figure  2.   Late Mesozoic Extensional Structures in Northeast Asia

    图  3   罕乌拉穹隆构造简图(据杜灿等,2022

    Figure  3.   Hanullah dome structure schematic diagram

    图  4   Nartyn穹隆构造简图(据Daoudene et al., 2012

    Figure  4.   Nartyn dome structure schematic diagram

    图  5   Altanshiree穹隆构造简图

    Figure  5.   Altanshiree dome structure schematic diagram

    图  6   Altanshiree穹隆野外照片

    a.伸展盆地(左)与拆离断层带(右);b.穹隆核部花岗岩体;c.韧性剪切带;d.微角砾岩发育;e.穹隆核部近水平岩浆组构;f.矿物拉伸线理发育

    Figure  6.   Field Photos of the Altanshiree Dome

    图  7   手标本照片

    a.糜棱岩化细粒黑云母钾长花岗岩(采自罕乌拉穹隆);b.糜棱岩化中粗粒黑云母钾长花岗岩(采自罕乌拉穹隆);c.糜棱岩化闪长岩(采自Nartyn穹隆);d.花岗质糜棱岩(采自Altanshiree穹隆);e.花岗质糜棱岩(采自Altanshiree穹隆)

    Figure  7.   Hand specimen descriptions

    图  8   磷灰石裂变径迹年龄雷达图(左)和径迹长度分布图(右)

    Figure  8.   Radial plots of apatite fission track ages (left) and track length distributions (right)

    图  9   Nartyn穹隆闪长岩样品(M19713-39.1)中所选锆石与罕乌拉穹隆花岗岩样品(M1801717-4)中所选锆石显微照片

    Figure  9.   Selected zircon micrographs from the Nartyn dome diorite sample (M19713-39.1) and the rare earth element-rich granite sample from the Hanwula dome (M1801717-4)

    图  10   罕乌拉穹隆韧性剪切带花岗质糜棱岩样品40Ar-39Ar坪年龄

    Figure  10.   Ar-Ar plateau age of the granitic mylonite samples from the Hanwula dome ductile shear zone.

    图  11   南蒙古-中蒙边境花岗岩穹隆HeTFy模拟结果

    绿色区域和紫色区域分别代表可接受模拟结果(拟合度>5%)和良好模拟结果(拟合度>50%), 黑色实线和蓝色实线分别代表最优拟合结果和加权平均路径,图中矩形框表示时间-温度约束框。

    Figure  11.   Results of thermal history modeling of granitiod domes from the South Mongolia-Sino-Mongolian border

    图  12   南蒙古-中蒙边境典型花岗岩穹隆隆升冷却历史图(每一段折线上的数据为各阶段冷却速率)

    Figure  12.   Cooling history of typical granite dome of the South Mongolia-Sino-Mongolian border

    图  13   南蒙古-中蒙边境地区早白垩世花岗岩穹隆隆升过程模式图

    Figure  13.   Uplift Process Model of Early Cretaceous Granitic Domes in the South Mongolia-Sino-Mongolian border

    表  1   南蒙古-中蒙边境花岗岩穹隆韧性剪切带内样品特征及低温年代学信息

    Table  1   Characteristics and geochronology of mylonitic samples from the granite domes at the South Mongolia-Sino-Mongolian border

    样品 采样地点 GPS点位 岩性 高程
    (m)
    AFT年龄
    (Ma)
    ZHe年龄
    (Ma)
    Ar-Ar年龄
    (Ma)
    N180717-4 罕乌拉穹隆 116°36′44″E
    46°03′54″N
    糜棱岩化细粒黑云
    母钾长花岗岩
    890 104.94±5.84 123.4±7.35 123.9±0.90(Bi)
    104.94±5.84(K)
    N180717-9 罕乌拉穹隆 116°36′44″E
    46°03′54″N
    糜棱岩化中粗粒黑
    云母钾长花岗岩
    890 121.3±1.40(Bi)
    122.2±1.20(K)
    M19713-39.1 Nartyn穹隆 108°37′43.04″E
    45°44′28.47″N
    糜棱岩化闪长岩 1125 101.30±5.51 123.7±7.42
    M19715-310.2 Altanshiree穹隆 110°37′55.60″E
    45°46′43.36″N
    花岗质糜棱岩 1109 101.73±6.20
    M19715-311.1 Altanshiree穹隆 110°37′56.89″E
    45°45′39.60″N
    花岗质糜棱岩 1117 110.05±7.38
    下载: 导出CSV

    表  2   南蒙古-中蒙边境花岗岩穹隆磷灰石裂变径迹分析结果

    Table  2   Apatite fission track data of the granitoid samples from the South Mongolia-Sino-Mongolian border

    样号 颗粒数目 Track Density (× 106 tr cm-2) (Pχ2) 裂变径迹
    年龄(Ma)
    平均裂变径
    迹长度
    SD
    ρs(Ns) ρi(Ni) ρd(Nd) (±1σ) (µm ± 1s.e.)
    (no of tracks)
    (µm)
    N180717-4 20 0.9584(679) 1.937(1372 1.246(3987 <0.01%(99.9%) 104.9±5.5 13.66±0.09(100) 0.94
    M19713-39.1 20 1.640(723) 3.359(1481 1.219(3902 <0.01%(>99.9%) 101.3±5.5 13.70±0.10(100) 1.02
    M19715-311.1 20 0.4990(427) 0.9303(796) 1.206(3860 <0.01%(>99.9%) 110.1±7.4 13.97±0.15(40) 0.93
    M19715-310.2 20 1.138(533) 2.271(1064 1.193(3818 <0.01%(>99.9%) 101.7±6.2 13.58±0.13(54) 0.97
    下载: 导出CSV

    表  3   南蒙古-中蒙边境花岗岩穹隆锆石(U-Th)/He分析结果

    Table  3   Analysed ages of ziron of the granitoid samples from the South Mongolia-Sino-Mongolian border

    样品4He+/−U+/−Th+/−Th/UFT矫正年龄+/−等效半径
    nccppmppmfactorMaMa μm
    M19713-39.1-233.460.891771.0845.49673.0815.560.390.64128.17.842.4
    M19713-39.1-318.750.48872.2119.82515.2410.440.610.66116.97.044.3
    M19713-39.1-460.701.632149.2049.33824.0316.160.390.69126.27.648.0
    M19713-39.1-537.310.951150.7727.68587.7212.190.520.69121.17.349.3
    加权平均年龄:123.07±7.42 Ma
    N1801717-4-16.470.16449.9310.32173.803.700.400.63120.87.240.3
    N1801717-4-213.520.341214.7126.45527.6310.080.450.59124.47.437.1
    N1801717-4-323.410.59847.4719.27195.433.970.240.69124.17.447.7
    N1801717-4-47.150.18213.554.88102.702.100.490.69124.27.449.4
    加权平均年龄:123.40±7.35 Ma
    下载: 导出CSV

    表  4   基于热史模拟法、年龄-封闭温度法和矿物对法的南蒙古-中蒙边境花岗岩穹隆隆升速率

    Table  4   The rate of granite dome uplift in the South Mongolia-Sino-Mongolian border on thermal history simulation, age-sealing temperature method and mineral pair method

    样号 热史模拟法 年龄-封闭温度法 矿物对法
    快速隆升阶段 较缓慢隆升阶段 ZHe AFT Bi Ar-Ar/ZHe ZHe/AFT
    时间 速率 时间 速率 年龄 速率 年龄 速率 时间 速率 时间 速率
    M180717-4 133~124
    124~123
    1.41
    5.71
    123~105 0.109 123.4 0.038 104.9 0.026 123.9~123.4 5.71 123.4~104.9 0.109
    M19713-39.1 133~125
    125~123
    1.79
    2.02
    123~101 0.09 123.7 0.038 101.3 0.027 125~123.7 2.02 123.7~101.3 0.09
    M19715-311.1 127~126
    126~123
    14.3
    1.27
    123~110 0.151 110.1 0.025
    时间单位为Ma;速率单位为Km/Ma
    下载: 导出CSV
  • 程银行, 滕学建, 李艳锋, 等. 东乌旗罕乌拉韧性剪切带的构造属性及其年代约束[J]. 地球科学-中国地质大学学报, 2014, 394): 375386.
    杜灿, 郭磊, 王涛, 等. 中蒙边界早白垩世不对称花岗岩穹隆的伸展时限、剪切作用类型和区域构造意义[J]. 岩石矿物学杂志, 2022, 411): 1836. doi: 10.3969/j.issn.1000-6524.2022.01.002
    胡朋, 聂凤军, 江思宏, 等. 南蒙古典型金属矿床地质特征及对中国相邻地区的找矿启示[J]. 矿床地质, 2006, 25S1): 123126.
    林少泽, 朱光, 赵田, 等. 燕山地区喀喇沁变质核杂岩的构造特征与发育机制[J]. 科学通报, 2014, 5932): 31743189.
    林伟, 王军, 刘飞, 等. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论[J]. 岩石学报, 2013, 295): 17911810.
    林伟, 许德如, 侯泉林, 等. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿[J]. 大地构造与成矿学, 2019, 433): 409430. doi: 10.16539/j.ddgzyckx.2019.03.004
    刘翠, 邓晋福, 苏尚国, 等. 北京云蒙山片麻状花岗岩锆石SHRIMP定年及其地质意义[J]. 岩石矿物学杂志, 2004, 232): 141146. doi: 10.3969/j.issn.1000-6524.2004.02.005
    孙佳慧. 中蒙边境东乌旗晚中生代罕乌拉花岗岩穹隆岩浆演化过程及其构造背景[D]. 硕士学位论文, 中国地质大学(北京), 2018.
    王鸿祯, 何国琦, 张世红. 中国与蒙古之地质[J]. 地学前缘, 20066): 113. doi: 10.3321/j.issn:1005-2321.2006.06.003
    王涛, 张建军, 李舢, 等. 东北亚晚古生代—中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 2022, 292): 2844. doi: 10.13745/j.esf.sf.2022.2.5
    王涛, 郑亚东, 刘树文, 等. 中蒙边界亚干变质核杂岩糜棱状钾质花岗岩——早中生代收缩与伸展构造体制的转换标志[J]. 岩石学报, 20022): 177186. doi: 10.3969/j.issn.1000-0569.2002.02.005
    薛富红, 张晓晖, 邓江夏, 等. 内蒙古中部达来地区晚侏罗世A型花岗岩: 地球化学特征、岩石成因与地质意义[J]. 岩石学报, 2015, 316): 17741788.
    张晓伟, 童英, 赵辉, 等. 南蒙古东戈壁省石炭纪花岗岩成因——锆石U-Pb年代学、Sr-Nd-Hf同位素和地球化学证据[J]. 岩石矿物学杂志, 2021, 403): 465483. doi: 10.3969/j.issn.1000-6524.2021.03.001

    Amantov V A. First discovery of the lower Cambrian deposits in Eastern Mongolia[A]. In: Marinov N A, ed. Materials for Geology of Mongolian People’s Republic. Moscow: Nedra, 1966: 13–15.

    Byamba J, Lkhundev S, Tundev S. New data on age of Upper Proterozoic deposits in Middle Gobi[J]. Dokl. Akad. Nauk SSSR, 1990, 31212): 428431.

    Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21: 87110. doi: 10.1016/S1367-9120(02)00017-2

    Badarch G. Tectonics of south Mongolia[A]. In: Seltmann R, Gerel O, Kirwin D, eds. Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposits. London: CERCAMS, 2005: 119–129.

    Bo Zhang, et al. Sinistral strike-slip shearing along the Jiali shear zone around the Eastern Himalaya syntaxis region: Evidences for oligocene eastward limited translation of Tibet, JSG, 139, 2020.

    Castro A. On granitoid emplacement and related structures: A review[J]. Geologische Rundschau, 1987, 61): 101124.

    Corrigan J. Inversion of apatite fission track data for thermal history information[J]. Journal of Geophysical Research: Solid Earth, 1991, 96B6): 1034710360. doi: 10.1029/91JB00514

    CHEN Bin, JAHN Bor-Ming, TIAN Wen. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios, and whole rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 2009, 34: 245257. doi: 10.1016/j.jseaes.2008.05.007.

    ZHOU Zuyi. Basic methods to inverse exhumation rates using low-temperature thermochronological data[J]. Science and Technology Review, 2010, 2821): 8694.

    Davis G A, Wang C, Zheng Y D, et al. The enigmatic Yinshan fold-and-thrust belt of northern China: new views on its intraplate contractional styles[J]. Geology, 1998, 26: 4346.

    Davis G A, Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, Northern China[C]. Geological Society of America Memoir, 2001: 171–197.

    Daoudene Y, Gapais D, Ledru P, et al. The Ereendavaa Range (north-eastern Mongolia): an additional argument for Mesozoic extension throughout eastern Asia[J]. International Journal of Earth Sciences, 2009, 986): 13811393. doi: 10.1007/s00531-008-0412-2

    Daoudene Y, Gapais D, Ruffet G, et al. Syn-thinning pluton emplacement during Mesozoic extension in eastern Mongolia[J]. Tectonics, 2012, 31: TC3001, 123.

    Daoudene Y, Ruffet G, Cocherie A, et al. Timing of exhumation of the Ereendavaa metamorphic core complex (north-eastern Mongolia): U-Pb and 40Ar/39Ar constraints[J]. Journal of Asian Earth Sciences, 2013, 62: 98116. doi: 10.1016/j.jseaes.2011.04.009

    Daoudene Y, Gapais D, Cogne J P, et al. Late Jurassic – Early Cretaceous continental extension in northeast Asia: Relationships to plate kinematics[J]. Bulletin de la Société Géologique de France, 2017, 1881-2): 10.

    DONG Shuwen, ZHANG Yongqiang, ZHANG Fanqi, et al. Late Jurassic-early Cretaceous continental convergence and intracontinental orogenesis in East Asia: a synthesis of the Yanshan Revolution[J]. Journal of Asian Earth Sciences, 2015, 1144): 750770.

    Danišik M, Kuhlemann J, Dunkl I, et al. Survival of Ancient Landforms in a Collisional Setting as Revealed by Combined Fission Track and (U-Th)/He Thermochronometry: A Case Study from Corsica (France)[J]. The Journal of Geology, 2012, 1202): 155173. doi: 10.1086/663873

    Donelick R A, Ketcham R A, Carlson W D. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects[J]. American Mineralogist, 1999, 849): 12241234. doi: 10.2138/am-1999-0902

    Donelick R A, O’Sullivan P B, Ketcham R A. Apatite fission track analysis[J]. Reviews in Mineralogy and Geochemistry, 2005, 581): 4994. doi: 10.2138/rmg.2005.58.3

    DING Rui-xin, ZHOU Zuyi, WANG Wei. Modeling exhumation rates of orogenic belts with low-temperature thermochronological data[J]. Advances in Earth Science, 2007, 225): 447455.

    Edel J B, Schulmann K, Hanžl P, et al. Palaeomagnetic and structural constraints on 90° anticlockwise rotation in SW Mongolia during the Permo–Triassic: implications for Altaid oroclinal bending[J]. Journal of Asian Earth Sciences, 2014, 94: 157171. doi: 10.1016/j.jseaes.2014.07.039

    Eizenhöfer P R, Zhao G C, Zhang J, et al. Geochemical characteristics of the Permian basins and their provenance across the Solonker suture zone: assessment of net crustal growth during closure of the PalaeoAsian Ocean[J]. Lithos, 2015, 224–225: 240–255.

    GUO Lei, WANG Tao, ZHANG Jianjun, et al. Evolution and time of formation of the Hohhot metamorphic core complex, North China: New structural and geochronological evidence[J]. International Geology Review, 2011, 5411): 13091331.

    GUO Lei, WANG Tao, ZHANG Jian, et al. Petrogenesis and evolution of late Mesozoic granitic magmatism in the Hohhot metamorphic core complex, Daqing Shan, North China[J]. International Geology Review, 2012, 54: 18851905. doi: 10.1080/00206814.2012.682778

    Gleadow A J W, Duddy I R, Green P F, et al. Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy and Petrology, 1986, 944): 405415. doi: 10.1007/BF00376334

    Green P F. Thermal and tectonic history of the East Midlands shelf (onshore UK) and surrounding regions assessed by apatite fission track analysis[J]. Journal of the Geological Society, 1989, 1465): 755773. doi: 10.1144/gsjgs.146.5.0755

    Hurford A J, Green P F. The zeta age calibration of fission-track dating[J]. Chemical Geology, 1983, 41: 285317. doi: 10.1016/S0009-2541(83)80026-6

    Hurford A J. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I. U. G. S. Subcommission on Geochronology[J]. Chemical Geology, 1990, 802): 171178.

    HUANG Bao, YAN Yulin, PIPER John D, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during late Paleozoic and early Mesozoic times[J]. Earth Science Reviews, 2018, 186: 836. doi: 10.1016/j.earscirev.2018.02.004

    JAHN Bor-Ming, WU Fuyuan, CHEN Bin. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 232): 8292. doi: 10.18814/epiiugs/2000/v23i2/001

    Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales[J]. American Mineralogist, 1999, 849): 12351255. doi: 10.2138/am-1999-0903

    Khain E V, Bibikova E V, Kröner A, et al. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters, 2002, 199: 311325. doi: 10.1016/S0012-821X(02)00587-3

    Koppers A A P. ArArCALC - Software for 40Ar/39Ar age calculations[J]. Computers & Geosciences, 2002, 28: 605619.

    Ketcham R A, Carter A, Donelick R A, et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 2007, 925-6): 799810. doi: 10.2138/am.2007.2281

    Ketcham R A, Donelick R A, Balestrieri M L, et al. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 2009, 2843-4): 504515. doi: 10.1016/j.jpgl.2009.05.015

    LÜ Honghua, CHANG Yuan, WANG Wei, et al. Rapid exhumation of the Tianshan Mountains since the early Miocene: Evidence from combined apatite fission track and (U-Th)/He thermochronology[J]. Science China Earth Sciences, 2013, 5612): 21162125. doi: 10.1007/s11430-013-4715-1

    Lehmann J, Schulmann K, Lexa O, et al. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 2010, 310: 575628. doi: 10.2475/07.2010.02

    LI Sanzhong, ZHANG Guowei, ZHOU Lihong, et al. The opposite Meso-Cenozoic intracontinental deformations under the super convergence: rifting and extension in the North China Craton and shortening and thrusting in the South China Craton[J]. Earth Science Frontiers, 2011, 18: 79107.

    LIU Yongjiang, LI Weimin, FENG Zhiqiang, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123148. doi: 10.1016/j.gr.2016.03.013

    LIN Wei, FAURE Michel, CHEN Yan, et al. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt[J]. Gondwana Research, 2013, 231): 5477. doi: 10.1016/j.gr.2012.02.013

    LIN Wei, WEI Wei. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: a review and synthesis[J]. International Geology Review, 2018. (published online).

    MENG Qingren. What drove Late Mesozoic extension of the northern China–Mongolia tract?[J]. Tectonophysics, 2003, 3693-4): 155174. doi: 10.1016/S0040-1951(03)00195-1

    MENG Qing-Ren, ZHOU Zhong-He, ZHU Ri-Xiang, et al. Cretaceous basin evolution in northeast Asia: Tectonic responses to the Paleo-Pacific plate subduction[J]. National Science Review, 2022, 91): nwab088. doi: 10.1093/nsr/nwab088

    MAO Jingwen, LIU Peng, GOLDFARB Richard J, et al. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia[J]. Ore Geology Reviews, 2021, 136: 104270. doi: 10.1016/j.oregeorev.2021.104270

    PENG Song, WANG Tao, TONG Ying, et al. Late Carboniferous intrusions along the Kalamaili suture zone, southwestern Central Asian Orogenic Belt (CAOB): implications for a tectonic switch from subduction to collision[J]. International Geology Review, 2022. doi: 10.1080/00206814.2022.2098834.

    Ruzhentsev S V, Pospelov I I, Badarch G. Tectonics of the Mongolian Indosinides[J]. Geotectonics, 1989, 23: 476487.

    Reiners P W, Spell T L, Nicolescu S, et al. Zircon (U-Th)/He thermophotometry: He diffusion and comparisons with 40Ar/39Ar dating[J]. Geochimica et Cosmochimica Acta, 2004, 688): 18571887. doi: 10.1016/j.gca.2003.10.021

    Steiger R H, Jäger E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochemistry[J]. Earth and Planetary Science Letters, 1977, 36: 359362. doi: 10.1016/0012-821X(77)90060-7

    Sengör A M C. Some current problems on the tectonic evolution of the Mediterranean during the Cainozoic[M]. Springer Netherlands, 1993.

    Sengör A M C, Natal'in B A. Paleotectonics of Asia: Fragments of a synthesis[A]. In: Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 1996: 486–641.

    Thomson S N, Ring U. Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey[J]. Tectonics, 2006, 253): TC3005.

    TANG Jiaxuan, CHEN Lin, MENG Qingren, et al. The effects of the thermal state of overriding continental plate on subduction dynamics: Two-dimensional thermal mechanical modeling[J]. Science China Earth Sciences, 2020, 6310): 15191539. doi: 10.1007/s11430-019-9624-1

    TANG Jie, LI Ao-Peng, XU Wenliang. Geochronology and geochemistry of late Carboniferous–Middle Jurassic magmatism in the Helong area, NE China: Implications for the tectonic transition from the Paleo-Asian oceanic to circum-Pacific regime[J]. Geological Journal, 2020, 553): 18081825. doi: 10.1002/gj.3611

    Wallis S R. Vorticity analysis and recognition of ductile deformation in the Sanbagawa Belt, SW Japan[J]. Journal of Structural Geology, 1995, 17: 10771093. doi: 10.1016/0191-8141(95)00005-X

    Webb L E, Graham S A, Johnson C L, et al. Occurrence, age, and implications of the Yagan-Onch Hayrhan metamorphic core complex, southern Mongolia[J]. Geology, 1999, 272): 143146. doi: 10.1130/0091-7613(1999)027<0143:OAAIOT>2.3.CO;2

    Wilde S A. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction — a review of the evidence[J]. Tectonophysics, 2015, 662: 345362. doi: 10.1016/j.tecto.2015.05.006

    Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 1641): 3147. doi: 10.1144/0016-76492006-022

    WU Fu-yuan, HAN Ryong-Hyon, YANG Jin-Hui, et al. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology[J]. Chemical Geology, 2007, 2383): 232248.

    WU Fu-yuan, JI wei-qiang, SUN da-hai, et al. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 2012, 150: 625. doi: 10.1016/j.lithos.2012.03.020

    Wang Fei, Jourdan F, Lo Ching-hua, et al. YBCs: A new standard for 40Ar/39Ar dating[J]. Chemical Geology, 2014, 388: 8798. doi: 10.1016/j.chemgeo.2014.09.003

    WANG Tao, ZHENG Yidong, ZHANG Jianjun, et al. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 2011, 30(6).

    WANG Tao, GUO Lei, ZHENG Yidong, et al. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes[J]. Lithos, 2012, 154: 315345. doi: 10.1016/j.lithos.2012.07.020

    WANG Tao, GUO Lei, ZHANG Lei, et al. Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 2015, 97(Part B): 365–392.

    WEI Xu, ZHOU Yongshui, ZHANG Jiong, LI Yi, et al. Thermo-tectonic evolution of the northern Erlian Basin (NE China): Evidence from fission track and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 2023, 248: 105620. doi: 10.1016/j.jseaes.2023.105620

    XIAO Wenjiao, WINDLEY Brian F, HAO Jie, ZHAI Mingguo, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6).

    XIAO Wenjiao, WINDLEY Brian F, SUN Shu, LI Jiliang, HUANG Baochun, HAN Chunming, YUAN Chao, SUN Min, CHEN Hanlin, et al. A tale of amalgamation of three collage systems in the Permian-Middle Triassic in Central Asia: oroclines, sutures and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477507. doi: 10.1146/annurev-earth-060614-105254

    XIAO Wenjiao, WINDLEY Brian F, HAN Chunming, LIU Wei, WAN Bo, ZHANG Ji'en, AO Songjian, ZHANG Zhiyong, SONG Dongfang, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94128. doi: 10.1016/j.earscirev.2017.09.020

    York D. Least squares fitting of a straight line with correlated errors[J]. Earth and Planetary Science Letters, 1969, 5: 320324.

    YANG Jin Hui, WU Fu Yuan, CHUNG Sun Lin, et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar-39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton[J]. Geological Society of America Bulletin, 2007, 11911): 14051414.

    Yin An. Gneiss domes and gneiss dome systems[A]. In: Whitney D L, Teyssier C, Siddoway C S, eds. Gneiss Dome in Orogeny. Boulder: Geological Society of America Special Paper, 2004, 380: 1–14.

    ZHAO Jipei, MENG Lingsen, QIU Huai. Extensional tectonics and North China Craton destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and metamorphic core complex[J]. Science China Earth Sciences, 2021, 64.

    ZHANG Shuan-Hong, ZHAO Yue, YANG Zhen-Yu, et al. The 1.35Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent[J]. Earth and Planetary Science Letters, 2009, 2883-4): 588600. doi: 10.1016/j.jpgl.2009.10.023

    YANG Fei, CHEN Gong-Zheng, WU Guang, et al. Geochronology and geochemistry of Early Cretaceous bimodal volcanic rocks from Erguna Massif, NE China: Evidence for the back-arc extension of the Mongol-Okhotsk orogenic belt[J]. International Journal of Earth Sciences, 2022, 1111): 173194. doi: 10.1007/s00531-021-02106-9

    Zheng Yadong, et al. An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sino-Mongolian boundary area[J]. Science in China (series B), 1991, 34: 11461152.

    ZHANG Qian, LIANG Chenyue, LIU Yongjiang, et al. Final Closure Time of the Paleo-Asian Ocean: Implication from the Provenance Transformation from the Yangjiagou Formation to Lujiatun Formation in the Jiutai Area, NE China[J]. Acta Geologica Sinica-English Edition, 2019, 93: 14561476. doi: 10.1111/1755-6724.14388

    ZHANG Feng-Qi, CHEN Han-Lin, YANG Shu-Feng, FENG Zhi-Qiang, et al. Late mesozoic–cenozoic evolution of the Sanjiang Basin in NE China and its tectonic implications for the West Pacific continental margin[J]. Journal of Asian Earth Sciences, 2012, 49: 287299. doi: 10.1016/j.jseaes.2011.12.017

    ZHOU Yin-Zhang, HAN Bao-Fu, ZHANG Bo, et al. The Yingba shear zone on the Sino-Mongolian border: Southwestern extension of the Zuunbayan Fault from Mongolia to China and implications for Late Mesozoic intracontinental extension in Eastern Asia[J]. Tectonophysics, 2012, 574: 118132.

    ZHANG Feng-Qi, DILEK Yildirim, CHEN Han-Lin, et al. Late Cretaceous tectonic switch from a Western Pacific- to an Andean-Type continental margin evolution in East Asia, and a foreland basin development in NE China[J]. Terra Nova, 2017, 296): 335342. doi: 10.1111/ter.12286

    ZHOU Jianping, LIU Yongjiang, et al. Eastern extension of the Solonker-Xar Moron-Changchun-Yanji Suture Zone: Constraints from thermochronology of sedimentary and mafic rocks in the Hunchun-Yanji area, Northeast China[J]. Geological Journal, 2019, 54: 679697. doi: 10.1002/gj.3462

    ZHANG Jianjun, GUO Pengyuan, et al. Petrogenesis of the early Cretaceous intra-plate basalts from the Western North China Craton: Implications for the origin of the metasomatized cratonic lithospheric mantle[J]. Lithos, 2021, 380−381.

图(13)  /  表(4)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-09
  • 修回日期:  2024-12-20
  • 录用日期:  2025-02-24
  • 网络出版日期:  2025-03-23

目录

/

返回文章
返回