ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    新疆西天山阿希低硫型浅成低温热液金矿床碳酸盐矿物形成过程及其成矿启示

    杨虹, 彭义伟, 顾雪祥, 韩建民, 魏征, 刘俊平, 宋明伟, 张焱, 陈曦

    杨虹,彭义伟,顾雪祥,等. 新疆西天山阿希低硫型浅成低温热液金矿床碳酸盐矿物形成过程及其成矿启示[J]. 西北地质,2025,58(4):1−20. doi: 10.12401/j.nwg.2025023
    引用本文: 杨虹,彭义伟,顾雪祥,等. 新疆西天山阿希低硫型浅成低温热液金矿床碳酸盐矿物形成过程及其成矿启示[J]. 西北地质,2025,58(4):1−20. doi: 10.12401/j.nwg.2025023
    YANG Hong,PENG Yiwei,GU Xuexiang,et al. The Formation Process and Metallogenic Implications of Carbonate Minerals in the Axi Low-Sulfidation Epithermal Gold Deposit in the Western Tianshan, Xinjiang[J]. Northwestern Geology,2025,58(4):1−20. doi: 10.12401/j.nwg.2025023
    Citation: YANG Hong,PENG Yiwei,GU Xuexiang,et al. The Formation Process and Metallogenic Implications of Carbonate Minerals in the Axi Low-Sulfidation Epithermal Gold Deposit in the Western Tianshan, Xinjiang[J]. Northwestern Geology,2025,58(4):1−20. doi: 10.12401/j.nwg.2025023

    新疆西天山阿希低硫型浅成低温热液金矿床碳酸盐矿物形成过程及其成矿启示

    基金项目: 国家自然科学基金项目(42130804,41702081)、成都理工大学珠峰科学研究计划项目(80000-2024ZF11426)。
    详细信息
      作者简介:

      杨虹(1999−),女,硕士研究生,矿物学、岩石学、矿床学专业。E−mail:yhong1009@163.com

      通讯作者:

      彭义伟(1987−),男,副教授,硕士生导师,长期从事矿床学及矿床地球化学教学与相关研究。E−mail:pengyiwei15@cdut.edu.cn

    • 中图分类号: P57

    The Formation Process and Metallogenic Implications of Carbonate Minerals in the Axi Low-Sulfidation Epithermal Gold Deposit in the Western Tianshan, Xinjiang

    • 摘要:

      新疆西天山阿希金矿床是赋存于陆相火山岩中的低硫型浅成低温热液金矿床。该矿床成矿过程分为石英-绢云母-黄铁矿(I)、石英-黄铁矿(II)、石英-多金属硫化物-碳酸盐(III)、碳酸盐-石英(IV)和碳酸盐(V)5个阶段。碳酸盐矿物是金矿石中除石英外最主要的非金属矿物,其组构与成分特征记录了成矿物质来源及成矿流体演化信息。本文对阶段II皮壳状石英中自形粗粒白云石(Dol-I)、阶段III叶片状白云石(Dol-II)、阶段IV脉状白云石(Dol-III)和阶段V脉状方解石(Cal-IV)开展了岩相学观察、阴极发光拍摄、电子探针和C-O同位素分析。结果显示:Dol-I由白云石(Dol-Ia)和铁白云石(Dol-Ib)组成,二者的FeO含量(0.31wt%~0.68wt%、14.17wt%~14.66wt%)差异显著;Dol-II和Dol-III的FeO含量(0.63wt%~1.48wt%、1.57wt%~3.89wt%)相似,均属含铁白云石。Dol-III和Cal-IV的δ13CV-PDB均值分别为3.05‰、2.48‰,与海相碳酸盐的碳同位素组成相似,表明流体中碳可能源自矿区基底灰岩;二者的δ18OSMOW均值为15.72‰和15.68‰,呈负向飘移,可能是循环大气降水萃取赋矿大哈拉军山组火山岩所致。阶段II皮壳状矿石从脉壁向中心分别形成平行的含载金硫化物的石英微条带、梳状石英、胶状结构“球状”石英和Dol-I,表明它是成矿流体经历多次流体沸腾作用后,酸性气体逸失和硫化物大量沉淀的碱性条件下的产物。阶段III中Dol-II呈叶片状发育在烟灰色隐晶质石英中,表明它是流体初始沸腾过程中从非平衡过饱和热液体系中直接析出的产物。阶段IV中Dol-III呈自形粗粒的白云石脉穿切早期矿脉,它是在浅地表成矿环境稳定的条件下缓慢结晶形成的。阶段V中Cal-IV呈自形粗粒分布于成矿系统边缘,在温压降低的条件下,由热液中CO2、H2S逸失以及HCO3-解离产生的CO32-与Ca2+结合所形成。综合碳酸盐矿物组构学、主量元素和同位素地球化学特征,本文认为流体沸腾是阿希金矿床阶段II、阶段III矿质富集沉淀的关键机制。

      Abstract:

      The Axi gold deposit in the western Tianshan of Xinjiang is a low-sulfidation epithermal gold deposit hosted in continental volcanic rocks. The ore-forming process of this deposit can be divided into five stages: quartz-sericite-pyrite (I), quartz-pyrite (II), quartz-polymetallic sulfide-carbonate (III), carbonate-quartz (IV), and carbonate (V). Carbonate minerals, apart from quartz, are the most important non-metallic minerals in gold ores. Their textural and compositional characteristics record information about the source of ore-forming materials and the evolution of ore-forming fluids. In this paper, petrographic observations, cathodoluminescence photography, electron probe analysis, and C-O isotope analysis were carried out on the euhedral coarse-grained dolomite (Dol-I) in the stage II crustiform quartz, the bladed dolomite (Dol-II) in stage III, the vein dolomite (Dol-III) in stage IV, and the vein calcite (Cal-IV) in stage V. The results show that Dol-I is composed of dolomite (Dol-Ia) and ankerite (Dol-Ib), with significant differences in FeO content (0.31wt%~0.68wt% and 14.17wt%~14.66wt%). The FeO contents of Dol-II and Dol-III (0.63wt%~1.48wt% and 1.57wt%~3.89wt%) are similar, and both belong to iron-bearing dolomite. The average δ13CV-PDB values of Dol-III and Cal-IV are 3.05‰ and 2.48‰ respectively, which are similar to the carbon isotope composition of marine carbonates, indicating that the carbon in the fluid may be derived from the limestone in the basement of the mining area. The average δ18OSMOW values of the two are 15.72‰ and 15.68‰, showing a negative shift, which may be due to the extraction of the volcanic rocks of the Dahalajunshan Formation hosting the ore by circulating meteoric water. In stage II, the crustiform ore formed parallel quartz micro-bands containing gold-bearing sulfides, comb quartz, colloform “spherical” quartz, and Dol-I from the vein wall to the center, indicating that it is a product of alkaline conditions after the ore-forming fluid experienced multiple episodes of fluid boiling, loss of acidic gases, and massive sulfide precipitation. In stage III, Dol-II developed as bladed crystals in smoky gray cryptocrystalline quartz, indicating that it is a product of direct precipitation from a non-equilibrium supersaturated hydrothermal system during the initial boiling of the fluid. In stage IV, Dol-III occurs as euhedral coarse-grained dolomite veins cutting through early-stage veins, formed by slow crystallization under stable shallow-surface mineralization conditions. In stage V, Cal-IV occurs as euhedral coarse-grained crystals distributed at the edges of the mineralization system, formed by the combination of CO32- and Ca2+ generated by the dissociation of HCO3- due to the loss of CO2 and H2S from the hydrothermal fluid under decreasing temperature and pressure conditions. Based on the comprehensive analysis of the textures, major elements, and isotopic geochemistry of carbonate minerals, this study concludes that fluid boiling is a key mechanism for the enrichment and precipitation of ore-forming materials in stages II and III of the Axi gold deposit.

    • 丹霞地貌(Danxia landform)是发育于中生代至新近纪陆相近水平厚层状紫红色砂岩、砾岩, 由于地壳抬升、断裂切割、流水侵蚀、重力坍塌、风化剥落、化学溶蚀等多种地质作用而形成的丹崖赤壁及方山、石墙、石柱、峡谷、洞穴等地貌的统称(彭华, 2000彭华等, 2013郭福生等, 2020)。虽然中国丹霞地貌几乎均由中生代(尤以白垩纪为主)红层发育演化而来(齐德利等,2005Qi et al.,2005保广普等,2019潘志新等2021),但在不同的地理环境下,因地质构造背景、岩石性质、内外动力作用等因素变化,所形成的丹霞地貌发育模式、景观类型、空间格局、形成机理都在一定程度上有所不同。经过统计(齐德利等,2005黄进等,2015a),丹霞地貌在中国广泛分布,丹霞地貌研究历经90多年研究历程,可划分为初创阶段(1928~1949年)、成型阶段(1950~1990年)、大发展阶段(1991~2009年)、国际化阶段(2009年至今)(齐德利等,2009欧阳杰等,2011闫罗彬等,2023丁华等,2023aLeng et al.,2023)。到目前为止,现在已查明丹霞地貌1100余处(欧阳杰等,2011),分布于全国28个省(自治区、直辖市、特别行政区),相对集中分布在东南地区、西南地区和西北地区(黄进等,2015b欧阳杰等,2011闫罗彬等2023)。长期以来,研究的重点和中心多集中在中国的东南地区湿润–半湿润地带、西南湿润–半湿润地带,对于西北地区半干旱地区丹霞地貌的研究较少(齐德利等,2009丁华等,2023a2023b),尤其是对于陕北丹霞地貌研究甚少。

      2015年,全国开展了“西北地区重要地质遗迹调查”,陕西省地质调查院科研人员在陕北黄土高原地区发现了丹霞地貌的带状延展。经过测算,陕北黄土高原丹霞地貌景观带是由榆林市、延安市、铜川市、咸阳市、宝鸡市等地区串联起来的世界级丹霞地貌群,南北最长约为770 km,东西宽约为5~100 km,呈“S”形条带,总面积约为30773 km2图1),约有丹霞地貌经过142处,是中国最大的丹霞地貌景观带(洪增林等,2023)。其中,府谷莲花辿、靖边龙洲丹霞、安塞阎山湾、安塞王家湾、志丹毛项沟、甘泉雨岔大峡谷等丹霞地貌区,这些丹霞地貌具有极高的科学研究价值和美学观赏价值(吕艳等,2019Leng et al.,2023),特别是沟谷型丹霞(以甘泉雨岔大峡谷为典型代表)、波浪型丹霞(以靖边龙洲丹霞为典型代表)、彩丘型丹霞(以府谷莲花辿为典型代表)等丹霞地貌和景观的发现,突破了以往对中国丹霞空间分布、构成、地貌类型、地貌演化的认识(丁华等,2023b),也为丹霞地貌的研究提供了新区域和新领域,对于补充和完善中国丹霞地貌的研究具有非常重要的科学意义和研究价值。

      图  1  陕北黄土高原丹霞景观带范围示意图
      Figure  1.  Schematic diagram of the scope of the Danxia landscape zone on the Loess Plateau in northern Shaanxi Province, China

      因此,本研究以陕北黄土高原丹霞地貌景观带为研究范围,采用CiteSpace软件分析总结归纳陕北黄土高原丹霞地貌的研究历程和研究热点,并提出未来研究的重点方向,以期对未来陕北黄土高原丹霞地貌研究提供一定的科学参考和依据。

      基于“丹霞地貌”国内外研究,对WOS(Web of Science)数据库、CNKI(China National Knowledge Infrastructure)数据库、CSTJ数据库(China Science and Technology Journal Database)、CDDB数据库(China Dissertation Database)分别进行检索获取国外、国内研究原始数据。中国学者冯景兰、陈国达最早提出“丹霞层”“丹霞地形”的概念,曾昭璇首次使用“丹霞地貌”这一术语;学者们对中国丹霞地貌的概念定义(彭华,2002赵汀等,2014郭福生等,2020)、类型划分(彭华,2002)、空间分布(齐德利等,2005欧阳杰等,2011黄进等,2015a闫罗彬等2023)、景观特征(朱诚等,2000张荷生,2007郭福生,2011)、成因机制(朱诚等,2015章桂芳等,2018)、国内外对比(潘志新等,2018)、旅游开发(周学军,2003)等方面进行了多方位研究。2010年,“中国丹霞”成功列入《世界遗产名录》。国外没有正式统一使用“丹霞地貌”这一专用名词,使用较多的是“红层”“红层地貌”“红层地形”等术语,主要集中在欧洲、北美、西亚、北非、澳大利亚等各地区、各国该类景观特征、发育过程和机制、风化机理、地貌对比等方面,研究方法和技术手段上较先进(彭华等,2013潘志新等,2018)。

      鉴于国内外术语使用和研究的差异性,对WOS(Web of Science)数据库中,按照关键词、主题、摘要、全文等,第一层次输入“red bed”“red layer”“loess plateau”“North Shaanxi Province”及它们的组合等内容进行检索;其次,按照陕北黄土高原丹霞景观带的代表性地貌及景观,如“Yucha Grand Canyon”(or Ganquan Grand Canyon)、“Longzhou Danxia landform”等进行检索获取;这样先后多轮检索获得外文数据。在CNKI(China National Knowledge Infrastructure)数据库、CSTJ数据库(China Science and Technology Journal Database)、CDDB数据库(China Dissertation Database)中,按照关键词、主题、摘要、全文等,第一层次输入“陕北地区”“黄土高原”“丹霞地貌”“丹霞景观”“丹霞地质遗迹”及它们的组合等进行多轮检索;按照陕北黄土高原丹霞景观带涉及的榆林、延安、铜川、咸阳、宝鸡等地代表性地貌及景观,如照金香山、甘泉大峡谷、靖边龙洲丹霞、府谷莲花辿等进行多轮检索;经过多轮检索侯,获得相关中文数据。

      在WOS数据库、CNKI数据库、CSTJ数据库、CDDB数据库中检索出246篇文献。为保证数据的精确性,人工剔除了报纸、年鉴、专利以及信息不完整、不符合学术论文规范的文献(含中文数据库检索到的英文文献等的无效数据),筛选合并后最终得到有效文献125条作为陕北黄土高原丹霞地貌的国内研究成果。其中,有101篇(占数据的80.80%)来自期刊,17篇(占数据的13.60%)来自硕博论文,7篇(占数据的5.60%)来自会议论文。

      CiteSpace是一种对文献结果进行定量分析的实用型文献分析软件。该软件是由美国德雷赛尔大学计算机与情报学教授陈超美博士基于Java语言开发、基于引文分析理论的信息可视化软件(李杰等,2016)。该软件可通过文献的被引、合作网络、主题、领域贡献等分析来探究某个特定领域研究的知识背景和目前前沿话题,探测学科和领域的演变过程(Chen et al.,2006),并通过定量化与可视化相结合,将某领域一定时期内的研究现状、合作情况、热点主题等展现在图谱上(陈悦等,2015王娟等,2016)。本研究采用CiteSpace 6.3.R1软件绘制相应作者及机构共线图谱、关键词共线图谱、关键词聚类图谱、关键词时间线图谱以及关键词突现图谱,从文献计量学的角度分析陕北黄土高原地区丹霞地貌研究历程、研究热点与前沿动态。鉴于吴成基等(1989)在《黄土高原的基岩侵蚀初探》一文中提出到陕北黄土高原地区的基岩为第三系红层和中生界陆相碎屑岩,在沟谷处表现为黄土戴帽、红土(基岩)穿裙的特殊地貌景观(Wu et al.,1989),在本研究中被视为第一篇涉及陕北黄土高原丹霞地貌的研究,因此该软件运行时间跨度为1989~2023年(Slice Length=1)。

      论文发表数量体现了研究学者对某个领域的关注度,也是对衡量某一时间段中这个领域发展趋势的一个重要指标。根据在WOS(Web of Science)数据库、CNKI(China National Knowledge Infrastructure)数据库、CSTJ数据库(China Science and Technology Journal Database)、CDDB数据库(China Dissertation Database)等搜索125篇有关文献数据进行论文数量可视化研究(图2)。可以清晰看出,陕北黄土高原地区丹霞地貌的研究可以分为明确的3个阶段:零散阶段(1989~2011年)、起步阶段(2012~2016年)、发展阶段(2017年至今)。

      图  2  历年文献发文数量
      Figure  2.  Number of Literature Issued in Calendar Years

      零散阶段(1989~2011年):研究文献总体数量较少,共计16篇,占研究数据的12.80%。这一时期的研究对象、研究内容较为零散,主要是从区域地貌研究视角揭示丹霞地貌的类型和景观。张哲夫(1993)在研究铜川市地貌时,提出丹霞地貌是该区重要的地貌类型,主要以“方山”为主,在玉华川上游最典型,以著名的唐代玉华宫遗址为代表。惠振德等(1994)提出陕西丹霞地貌以关中盆地西部和陕北盆地西部鼻状凹陷地带最为典型(榆林红石峡、彬县大佛寺、麟游千佛洞、耀县张阁老崖等),造型风景丹霞地貌有26处,以白垩系和第三系红色砂砾岩形成的峭壁丹崖、峰寨岩柱及洞府等为主,是喜马拉雅运动、新构造运动的改造和流水、重力、风化共同作用下形成。这也为后来研究陕北黄土高原丹霞地貌的类型及景观研究提供了理论基础。

      起步阶段(2012~2016年):文献数量整体呈上升趋势,共计24篇,占研究总数据的19.20%,这一时期的研究成果主要围绕照金香山丹霞的地质遗迹特征、地质公园建设、旅游发展展开。2012年,铜川照金香山丹霞地质公园成为第六批国家地质公园,为促进地质公园科学、持续开发建设,专家学者开始了一系列研究,如杨望暾(2013)研究了陕西耀州照金丹霞国家地质公园地质遗迹资源研究与建设构想。彭华(2013)的研究则将陕北红层归入丹霞,大大开拓了陕北丹霞的研究进展。2015年,陕西省地质调查院科技人员在陕北延安、榆林等地发现了大规模的丹霞地貌,使得陕北黄土高原丹霞地貌受到了前所未有的关注。

      发展阶段(2017年至今):虽2021~2023年间发文量受到新冠疫情的影响较前稍有下降,但这一时期文献数量呈现跨越式发展,共计85篇,占研究数据的68.00%。研究对象主要围绕延安丹霞地貌(吴昊等,2018吕艳等,2019彭小华等,2024)、神木丹霞地貌(唐永忠等,2018)、靖边龙洲丹霞(李东兴等,2019党晨等,2020彭小华等,2020唐永忠等,2020石浩等,2022)、甘泉雨岔大峡谷(丁华等,2023a)等开展研究,且多数受到国家自然科学基金等资助。研究方法上融合了无人机倾斜摄影(高海峰等,2019)、遥感影像(闫颖等,2018)等方法,大大的加强了陕北黄土高原丹霞地貌定量研究方法。研究内容上主要针对于陕北丹霞地貌的类型(吴昊等,2018杨望暾等,2020)、景观特征(吴昊等,2022丁华等,2023b)、空间的分布(丁华等,2023b)、沉积环境(唐永忠等,20182020Xing et al.,2021石浩等,2022)、粒度组成(王晓宁等,2021)、保护利用(党晨等,2020丁华等,2023b)等内容。但由于南北在地域上存在明显差异,导致陕北“丹霞地貌”的定义、形成机制、发育条件等存在一定的争议。例如,王冉等(2020)不认为陕北波浪谷景观属于“丹霞地貌”,认为两者具有完全不同的大地构造意义,与南方地区发展出来的丹霞地貌是有区域差异性的。郭福生等(2020)研究丹霞地貌的定义和分类,为陕北地区丹霞地貌景观的特殊性做出说明,并对“丹霞地貌”的概念做出修改,在一定程度上避免了丹霞地貌定义泛滥化使用。潘志新等(2021)研究陕北丹霞地貌特征与美国西部丹霞地貌进行对比研究,为总结概括丹霞地貌的一般特征和发育演化规律夯实了基础。

      从上述阶段可以看出,陕北丹霞地貌研究远远滞后于中国丹霞地貌整体研究阶段和历程,其零散阶段、起步阶段、发展阶段与全国丹霞地貌研究的成型阶段、大发展阶段、国际化阶段相对应,还需要进一步加大丹霞地貌研究方法、研究技术、保护利用理论体系的构建和研究。

      将搜集的数据导入CiteSpace软件中,将节点(Node Types)类型设置为机构(Institution),生成机构合作关系图谱(图3),其中圆圈的大小表示着该机构所发文的数量多少,节点之间的连线则表示机构与机构之间的合作关系(Chen et al.,2006)。从发文机构合作关系图中可以看出,国内的研究机构共有67个节点,70条连线,整体的网络密度为0.0317,表明机构之间的合作网络较为松散。关于陕北黄土高原丹霞地貌的国内文献的研究机构中,以高校、研究院居多,以陕西省地质调查院、长安大学、陕西师范大学、中国科学院、中国地质大学等为中国研究陕北黄土高原地区丹霞地貌研究成果的重要力量。高校机构中发文量最多的则是长安大学、陕西师范大学,分别为19篇、12篇。研究院机构发文量最多的是陕西省地质调查院,发表文献共计22篇,以其下属单位陕西省矿产地质调查中心发文量最多,共计20篇。根据机构发文数据的整理,列举出Top5的发文机构(表1),排在Top5机构之间的连线较少,说明研究成果较多的机构彼此之间合作较少,学术联系不紧密,未能形成依托各机构的学术成果融合。

      图  3  发文机构合作关系图谱
      Figure  3.  The map of cooperation relationship on institutional
      表  1  1989~2023年中国陕北黄土高原丹霞地貌研究高频发文机构Top5统计
      Table  1.  Top5 statistics of high-frequency issuing organizations for the study of Danxia landforms on the Loess Plateau of Shanbei, China from 1989 to 2023
      序号 发文机构名称 发文量(篇) 起始时间(年) 与其他机构合作频次(次) 与Top10机构合作频次(次)
      1 陕西省地质调查院 22 1995 10 6
      2 长安大学 19 2010 12 2
      3 陕西师范大学 13 1994 4 1
      4 中国地质大学 11 2009 7 3
      5 中国科学院 9 2007 9 4
      下载: 导出CSV 
      | 显示表格

      总的来看,陕西省地质调查院、长安大学、陕西师范大学是研究陕北丹霞地貌景观带的主导力量,以地质、地理、旅游等为专业基础,体现了与研究地域的“近距性”;同时,也体现出跨区域研究较少、研究单位彼此之间的合作较少,呈现学术界重视该主题研究但学术交流不足的特点。

      对陕北黄土高原丹霞地貌研究作者看,共有184位作者被纳入统计分析,利用Citespace进行作者合作网络图谱分析(图4),节点代表发文作者,节点的大小代表发文的次数,节点越大该作者的发文量越多。作者之间的合作关系以节点之间的连线来体现,连线越短说明合作越紧密。目前,有多位研究作者的集群总体呈现大集中小分散的趋势,以吴昊、李兴文、祝捷、李益朝、彭小华、唐永忠、杨望暾、党晨等研究作者为中心展开合作的网络最为紧密(图4)。根据数据整理列举出发文量位居Top8的作者(表2)。其中,吴昊是本次统计范围内发文量最多的研究作者,发文量为18篇,与其他研究学者之间的合作最多。对于发文量位于Top8的研究作者和发文机构来看,位居Top8的研究作者有7位都来自陕西省地质调查院。说明研究成果突出的团队中研究作者联系是较为紧密的,但也反映出研究成果较多的团队较为单一。

      图  4  发文作者关系图谱
      Figure  4.  Mapping of Author Relationships in Publications
      表  2  1989~2023年中国陕北黄土高原丹霞地貌研究Top8发文作者统计
      Table  2.  Statistics of authors of Top10 publications on Danxia geomorphology research in the Loess Plateau of northern Shaanxi Province, China from 1989 to 2023
      序号 作者 发文量(篇) 起始时间(年) 合作频次(次) 与Top10作者合作频次(次)
      1 吴昊 18 2018 25 8
      2 李兴文 13 2018 19 7
      3 祝捷 11 2018 16 6
      4 李益朝 11 2017 23 8
      5 彭小华 9 2018 16 6
      6 唐永忠 8 2018 11 5
      7 杨望暾 7 2010 15 0
      8 党晨 6 2020 13 7
      下载: 导出CSV 
      | 显示表格

      论文的关键词基本上是论文研究重点较为准确的高度概括。笔者利用CiteSpace软件对检索出的有效文献进行可视化计量研究。文献以Refworks格式导入该软件。时间模块(Time Slicing)的范围选择1989~2023年,最小时间切片(Years Per Slice)设置为1年,Node Types选项设置成Keyword,生成的高频关键词共现图谱,此图谱表示不同文献中的共线频次和关联对应,并生成有166个节点,411条连线,整体密度为0.03的关键词共线知识图谱,表明各方向之间有着密切的联系(图5)。图中,节点代表着该研究领域的某一个关键词,节点越大,说明关键词出现的频率就越高,关注度也就越高(王娟等,2016)。中心性则能反映出关键词的核心程度,节点的相关性越大,中心性越高,一般来说中心性>0.1的,则可以认为关键词在这个领域的影响力越大(李想等,2018)。

      图  5  关键词共线知识图谱图
      Figure  5.  Keyword co-linear knowledge mapping diagram

      由于在检索文献时已经采用“陕北地区”“黄土高原”“丹霞地貌”“丹霞景观”“丹霞地质遗迹”等进行检索,故在对研究热点和重点进行深入分析的时候,首先去掉这些关键词。从关键词共线图谱可知,国内对于陕北黄土高原丹霞地貌的研究形成了较为紧密的网络结构,呈现出了以“丹霞红层”“沉积环境”“粒度组成”“景观特征”“地质公园”“恐龙足迹”等出现频率较大的关键词集群(表3),属于陕北黄土高原丹霞地貌研究的热点。

      表  3  高频关键词频次及中心性
      Table  3.  Frequency and centrality of high-frequency keywords
      序号关键词频次(次)中心性出现时间(年)
      1丹霞红层230.012000
      2沉积环境210.252018
      3粒度组成200.072020
      4景观特征1602021
      5地质公园120.122010
      6恐龙足迹50.212018
      下载: 导出CSV 
      | 显示表格

      热点词的出现体现了研究机构及学者的关注方向。“地质公园”作为该研究领域的热点词出现,主要是围绕陕西省唯一国家级丹霞地质公园——铜川市耀州区照金丹霞国家地质公园开发建设展开。该地质公园地处鄂尔多斯盆地西南缘,是一处典型的西北“方山”型丹霞地貌,以白垩纪宜君砾岩构成的壮年期和幼年期的丹霞地貌(杨望暾等,2017),这是2012~2016年主要的研究热点,研究学者以杨望暾等为主。

      “沉积环境”“粒度组成”两个热点词往往相伴出现,体现出研究机构及学者探索研究陕北黄土高原丹霞地貌岩石的沉积成因,主要以岩石的微观层面进行定量研究,通过偏光显微镜、电子探针等技术手段(宋炎,2018),研究丹霞地貌沉积物岩相、岩性、粒度、结构以及磁化率、化学组成等特征,为陕北黄土高原丹霞的成景岩石及环境提供科学依据(李东兴等,2019王晓宁,2021石浩等,2022)。

      “景观特征”作为研究区域的关键词,体现出丹霞地貌的地质遗迹景观特色和美学价值。吴昊等(2018)提出延安地区丹霞地貌主要以“沟谷型”丹霞为主,按照其形态特征细分为“天井式”“狭缝式”“巷道式”“宽谷式”等类型。彭小华等(2021)提出延安丹霞地貌主要以负地貌“沟谷型”以及正地貌的“波浪型”、石崖(壁)、天生桥、石蘑菇等5种类型等地貌景观。潘志新等(2021)认为从区域性的群体地貌尺度来看,陕北地区丹霞地貌整体为高原-峡谷型景观;从单体地貌尺度来看,主要为沟谷−崖壁组合。丁华等(2023b)提出陕北黄土高原丹霞地貌主要以狭缝型沟谷丹霞、波浪型丹霞、彩色丘陵为特色,并以甘泉雨岔大峡谷为例,系统研究了狭缝型沟谷丹霞以负地形的波浪谷(波浪状凹槽与凸起间或分布)为主,为具有国际对比研究价值的黄土覆盖型丹霞。

      “恐龙足迹”作为关键词主要与陕西省地质调查院和中国地质大学的唐永忠、邢立达等专家学者有关。2017年,在开展“神木市公格沟丹霞地质公园申报项目”野外调查中,发现了白垩系紫红色砒砂岩(距今约1.4亿a)存在多处恐龙足迹(唐永忠等,2020),这在鄂尔多斯盆地东北部首次发现,也是中国历史上首次发现(唐永忠等,2018Xing et al.,2021)。恐龙足迹化石从早、中侏罗纪到早白垩纪均有分布,对中国白垩纪沙漠相恐龙动物群的类型及分布研究、古气候等具有重要价值和意义(石浩等,2022)。

      对陕北黄土高原丹霞地貌的关键词进行聚类,是根据关键词之间的共线强度而进行再分类,将关联较为紧密的关键词聚成一类(图6),从而形成关注度较高的文献群。聚类模块值Q值等于0.652,大于0.3,可以判断聚类结果显著;聚落剪影度S值等于0.9464,大于0.7,可以证明该聚类是合理的。按照运算的规则,关键词组成了6个明显的聚类标签,聚类序号以#0开始,#5结束,分别为丹霞红层、景观特征、鄂尔多斯盆地西南缘、粒度组成、地质公园、形成机理以及其他。数字越小,则表示该聚类中包含的关键词数目越多。

      图  6  关键词聚类图
      Figure  6.  Keyword clustering map

      CiteSpace关键词时间线图(图7),侧重勾画聚类之间和单个聚类中文文献的时间跨度,从而呈现出该研究的热点和变化趋势,且提供模块数(Q值)和平均轮廓值(S值)两个指标作为评判图谱绘制效果的依据。一般认为Q>0.3聚类结果显著,S>0.5聚类为合理的,S>0.7聚类结果令人信服。文中Q值为0.652,S值为0.9464,可认为聚类结果显著与可信性,显示了前6个显著聚类,“#0丹霞红层”“#1景观特征”“#2鄂尔多斯盆地西南缘”“#3粒度组成”“#4地质公园”“#5形成机理”6个主题。基本与关键词聚类的结果相吻合。

      图  7  关键词时间线图
      Figure  7.  Keyword timeline graph

      根据聚类数据显示(表4),一般类团中的数量<10的类团,聚类程度较差。聚类Silhouette(聚类剪影)用来检测一个类团中的成员的紧密程度,一般>0.7就说明它们的紧密程度良好,说明聚类是成功的(李杰等,2016)。

      表  4  不同聚类研究内容与特点
      Table  4.  Content and characteristics of different clustering studies
      聚类编号 聚类名称 聚类数(个) 聚类剪影(相似度) 主要关键词
      #0 丹霞红层 38 0.988 丹霞红层;丹霞地貌;陕西省;景观特征;遥感解译
      #1 景观特征 28 0.854 景观特征;陕西省;洛河组;保护利用;空间
      分布
      #2 鄂尔多斯盆地西南缘 20 0.869 鄂尔多斯盆地西南缘;地貌特征;设计研究;
      形成机制;红层沉积
      #3 粒度组成 18 0.971 粒度组成;元素;沉积环境;砂岩成因;古气候
      #4 地质公园 13 0.95 地质公园;开发建设;综合评价;资源禀赋
      #5 形成机理 11 0.983 丹霞类型;景观特征;发育演化;演化模式
      下载: 导出CSV 
      | 显示表格

      以上结果表明,基于关键词聚类及关键词时间共线的研究热点,两者基本吻合,主要研究热点围绕丹霞红层、景观特征、鄂尔多斯盆地西南缘、地质公园、形成机理等研究上。

      关键词突现是指在文献当中关键词短时间产生的较大的变化,分析关键词突现可以识别该领域中新兴研究的发展趋势。笔者利用CiteSpace软件进行Burstness(关键词突现)检测,最小持续时间设置为1年,“Year”表示对应节点出现的时间,“Strength”表示节点的突现强度,“Begin”和“End”表示节点开始和结束的时间;按照关键词的突现强度(Strength)和关键词突现时间(Begin)进行排序,获得了1989~2023时间段内22个突发关键词和他们所持续的时间(图8)。

      图  8  关键词突现图
      Figure  8.  Keyword burst map

      1989~2023年,突发关键词数量很多,且这22个关键词出现的时间范围都沿用至今。从突现强度来看,“陕西省”“地质公园”“洛河组”这3个关键词的突现强度最大,是这一领域的研究热点。从突现时间来看,国内研究主题的发展有明显的阶段性,但基本在2016年以后突现词变多。1989~2015年整体论文数量较少,主要还是停留在陕西省丹霞地貌的发现上,并开始探究地质公园的景观资源和评价,但整体的研究对象、内容上还是趋于单一化。2016~2023年,突现词增多,“陕北地区”成为关键词,标志着对该区域的重视程度。“红色砂岩”“沉积环境”“白垩纪”“洛河组”“岩石粒度”“发育机制”出现频次和强度增加,成为最近时期的研究前沿。

      从现有科研成果来看,陕北黄土高原地区丹霞地貌研究主要通过实地踏勘与测量、电子显微镜或偏光显微镜对岩石成分、结构、构造进行研究,通过无人机航摄测量、遥感解译、DEM高程分析等揭示地貌演化阶段(高海峰等,2019马爱华,2020吴昊等,2022),相比较东南地区、西南地区丹霞地貌研究,定量研究方法整体处于起步阶段,需扩大应用范围和深度。未来应加强区域构造应力演化过程和应力场、岩石力学性质(如抗压、抗酸和冻融实验)、岩石暴露年龄、岩石侵蚀速率、水动力机制等定量研究,并结合多学科进行丹霞地貌动态监测、植被特征、构建生物栖息地网络等研究方向,为黄土高原丹霞地质景观科学保护和合理利用的措施和对策提供科学依据和关键技术支撑。

      陕北黄土高原丹霞地貌为国内外罕见的黄土覆盖型丹霞,与广东仁化丹霞山等东南丹霞、赤水河古等西南地区丹霞不同,也不同于天水麦积山等西北丹霞,其演化模式和形成机理难以套用已有研究成果,上覆黄土覆盖层沟谷演化和侵蚀对于黄土高原丹霞地貌的控制和影响包括哪些方面?黄土高原白垩系丹霞地貌形成的主要营力和关键因素是什么?这些问题均需要通过科学手段去揭示规律和形成机制、构建模型。未来应以“格局−侵蚀−演化−机制”为研究主线,填补现有黄土高原丹霞地貌基础理论研究严重不足的空白,也是对现有丹霞地貌研究的补充和完善。

      陕北黄土高原丹霞地貌及景观是国内外罕见的地质遗迹奇观。例如,甘泉雨岔大峡谷更被称为“中国的羚羊谷”“黄土地缝奇观”,兼具世界级科研价值和旅游价值。通过研究揭示黄土高原地区狭缝式丹霞地质景观的成景基础、控制构造、主导营力和影响因素,进而提出地质景观形成机制,可以为与美国羚羊谷等世界知名丹霞峡谷的国际对比研究提供范例。对于国内国际的丹霞地貌的对比研究,还可以从红层的发育序列、构造环境、古地理环境、红层岩性和地貌发育等方面进行。

      在黄河流域生态保护和高质量发展新要求下,地质遗迹景观的科学保护和合理利用显得极为迫切和更为必要。陕北黄土高原丹霞地貌及景观主要发育区是生态环境脆弱区或敏感区,也是经济发展滞后区,保护好丹霞地貌及景观是发展的基础,是利用好丹霞地貌及景观科学处理地质遗迹景观保护与旅游发展的关系的关键。未来应基于保护与利用“双赢”目标,研究丹霞地貌及景观保护痛点难点、生态承载力、旅游目的地建设等方面,建立丹霞生态环境脆弱评价体系,依据评价的结果和数据,形成保护利用协同推进局面,促进区域和谐、有序发展。

      (1)本研究全面梳理了1989~2023近35年研究成果,可以看出陕北黄土高原丹霞地貌研究历经了零散阶段、起步阶段、发展阶段3个阶段;但外文文献整体较少。

      (2)区域上由西南边缘地区逐步转向中部地区、由零散研究或个案研究逐步向区域研究转变;研究早期以陕北黄土高原边缘的照金丹霞为主,近期以延安丹霞地貌、靖边龙洲丹霞地貌、甘泉雨岔大峡谷等为主。

      (3)研究内容主要以“丹霞地貌分类”“景观特征”“沉积环境”“发育机制”等为热点。

      (4)为进一步推动陕北黄土高原丹霞地貌的科学保护和合理开发利用,未来应注重加强定量研究、深入揭示丹霞地貌形成机理、强化国内国际对比、保护利用协同推进等方面。

    • 图  1   吐拉苏盆地区域地质图(a)和地层柱状图(b)(据Zhao et al.,2014Li et al.,2023修改)

      Figure  1.   Regional geological map (a); stratigraphic columnar section of the Tulasu Basin (b)

      图  2   阿希金矿床地质简图(a)和A-A'勘探线剖面图(b)(董连慧和沙德铭,2005Zhai et al.,2009

      Figure  2.   Simplified geological map (a); cross-section of the A-A' prospection line of the Axi deposit (b)

      图  3   阿希金矿床不同类型矿石样品照片

      a. 角砾岩型矿石,乳白色石英常破碎成角砾被烟灰色石英胶结,两者同时被Dol-III胶结;b. 石英岩型矿石,烟灰色石英中发育的浸染状细粒黄铁矿;c. 皮壳状矿石,皮壳状石英沿围岩角砾顺层生长,Dol-I在皮壳状石英脉中心晶洞处生长;d. 皮壳状矿石,含有Dol-II的烟灰色石英脉明显穿切皮壳状石英;e. 皮壳状矿石,皮壳状矿石被Dol-III明显穿切;f. 皮壳状石英呈角砾状被烟灰色石英脉穿插,二者同时被晚期灰白色石英脉和Dol-III穿切;g. 石英岩型矿石,含Dol-II的石英角砾被Dol-III穿插,两者同时被烟灰色石英穿切;h. 鸡冠状矿石,脉状白云石环绕石英角砾生长;i. Dol-III穿插早期石英角砾,两者同时被Cal-IV穿切

      Figure  3.   Photographs of different types of ore samples from the Axi deposit

      图  4   阿希金矿床碳酸盐矿物的物质组成和显微组构

      a. 皮壳状石英中心晶洞处发育的梳状石英、胶状结构的“球状”石英和Dol-I(阴极发光);b. 皮壳状石英脉中顺层生长的烟灰色他形细粒石英、乳白色胶状石英和无色透明自形粗粒石英(阴极发光);c. 皮壳状石英被含Dol-II的烟灰色石英脉穿切(单偏光);d. Dol-II和他形细粒石英(阴极发光);e. Dol-II被胶状石英交代,两者同时被Dol-III穿插(单偏光);f. Dol-III和其中间位置发育的石英(阴极发光);g. Dol-III穿切他形细粒石英中,中间发育更晚期的粗粒石英(单偏光);h. 含硫化物细脉的白云石胶结物(单偏光);i. Cal-IV穿切脉状白云石(阴极发光);j. Dol-I中的铁白云石和白云石(背散射图像);k. 针状/放射状硫化物集合体分布在皮壳状石英中(反射光);l. 硫化物集合体粒间的自然金(反射光);m. 烟灰色石英中的粗粒柱状黄铁矿,毒砂环绕黄铁矿生长或呈浸染状分布(反射光);Dol. 白云石;Cal. 方解石;Q. 石英;Py. 黄铁矿;Apy. 毒砂;Au. 自然金

      Figure  4.   Material composition and microtexture of carbonate minerals in the Axi deposit

      图  5   阿希金矿床成矿阶段及矿物生成顺序

      Figure  5.   Metallogenic stages and mineral formation sequence of the Axi deposit

      图  6   阿希金矿床碳酸盐矿物电子探针主量元素三元图

      Figure  6.   Ternary diagram of major elements of carbonate minerals in the Axi deposit by electron probe

      图  7   阿希金矿床碳酸盐矿物的δ18OSMOW-δ13CV-PDB图解(据刘建明等,1997毛景文等,2002

      Figure  7.   The δ18OSMOW-δ13Cv-PDB diagram of carbonate minerals in the Axi deposit

      图  8   阿希金矿床碳酸盐矿物组构学特征素描图

      Figure  8.   Sketch diagrams showing the textural characteristics of carbonate minerals in the Axi gold deposit

      表  1   阿希金矿床碳酸盐矿物电子探针分析结果(wt%)

      Table  1   The Electron Probe Micro-Analysis (EPMA) results of carbonate minerals from the Axi gold deposit (wt%)

      样号样品类型Na2OMgOMnOCaOFeOSrOK2OP2O5SiO2Al2O3BaOCO2Total
      17AX-28-2B-1Dol-Ia0.0320.680.0331.030.680.060.000.000.000.000.0547.4399.98
      17AX-28-2B-20.0020.080.0029.710.450.010.000.020.000.030.0048.0198.31
      17AX-28-2B-30.0020.570.0630.710.310.000.000.000.010.000.0047.7099.36
      17AX-28-2B-40.0621.160.0829.520.370.010.000.000.000.000.0447.8799.11
      17AX-28-2B-5Dol-Ib0.009.781.9828.8814.580.000.010.000.000.000.0044.2299.45
      17AX-28-2B-60.029.551.9428.9614.580.060.000.000.030.010.0444.2099.39
      17AX-28-2B-70.039.762.5128.3114.170.000.020.000.000.000.0044.3199.11
      17AX-28-2B-80.049.042.7828.6114.660.000.010.010.010.000.0044.0899.24
      14AX-13T-1-1Dol-II0.0020.030.4229.471.290.000.000.000.040.000.0347.6498.92
      14AX-13T-1-20.0019.710.4430.581.250.020.040.000.060.030.0047.3999.51
      14AX-13T-1-30.0220.690.2429.850.630.030.000.000.050.030.0047.7399.26
      14AX-13T-1-40.0020.030.5429.790.770.030.000.010.060.010.0347.6898.96
      14AX-13T-1-50.0020.040.5829.151.420.000.010.020.050.020.0047.6498.92
      14AX-13T-1-60.0020.280.8729.091.480.000.010.000.000.000.0047.5099.23
      14AX-13T-1-70.0020.240.4330.271.300.030.020.050.020.020.0047.3999.75
      14AX-13T-1-80.0120.120.5729.291.350.000.000.000.000.000.0047.6298.96
      14AX-13T-2-1Dol-III0.0419.440.2630.951.980.000.000.000.030.000.0047.1699.84
      14AX-13T-2-20.0018.710.7629.432.730.000.000.000.060.000.0947.2098.99
      14AX-13T-2-30.0019.040.4730.721.610.000.020.030.020.000.0047.3399.23
      14AX-13T-2-40.0118.121.0429.963.890.000.010.000.010.020.0046.7099.75
      14AX-13T-2-50.0018.451.1129.743.020.080.010.000.050.040.0146.9499.45
      14AX-13T-2-60.0019.630.7229.622.070.000.010.080.000.000.0047.3099.44
      14AX-13T-2-70.0119.310.8029.452.360.000.000.000.000.010.0747.2499.23
      14AX-13T-2-80.0019.540.7129.311.570.000.000.040.000.020.0247.5798.78
      16AX-58J-1-1Cal-IV0.000.241.1653.470.830.050.000.030.000.000.0043.9199.69
      16AX-58J-1-20.010.311.2153.470.910.000.010.030.020.000.0443.8799.87
      16AX-58J-1-30.000.140.6153.490.610.010.000.030.030.000.1044.1299.14
      16AX-58J-1-40.000.170.7953.650.700.070.010.000.020.000.0244.0199.45
      16AX-58J-1-50.000.350.2252.041.340.070.000.000.050.000.0044.3698.43
      16AX-58J-1-60.000.250.2453.170.990.050.000.000.020.000.0044.2198.94
      16AX-58J-1-70.000.190.2753.130.980.120.010.010.040.010.0044.1998.95
      16AX-58J-1-80.030.210.4453.870.890.100.000.050.000.020.0044.0099.60
      下载: 导出CSV

      表  2   阿希、塔吾尔别克、塔北和京希-伊尔曼德矿床碳酸盐矿物的碳、氧同位素组成(‰)

      Table  2   The carbon and oxygen isotope compositions of carbonate minerals in the Axi, Tawuerbieke, Tabei and Jingxi-Yelmend deposits (‰)

      矿床样品号样品类型δ13CV-PDBδ18OV-PDBδ18OSMOW数据来源
      阿希金矿16AX-34阶段IV脉状白云石2.54−15.6114.82本文
      17AX-573.56−13.8616.62
      16AX-58阶段V脉状方解石1.77−18.2612.09本文
      16AX-63.18−11.2919.27
      塔吾尔别克金矿ABYD-11方解石−2.90−23.906.20Peng et al.,2017
      ABYD-12方解石−0.90−17.1013.30
      ABYD-16方解石−2.80−21.708.60
      TWE IV-6方解石−0.30−17.1013.30
      TWE I-2方解石−1.30−20.1010.10
      塔北铅锌矿TB-18方解石0.50−22.507.80Peng et al.,2018,2022
      TB-22方解石1.30−22.008.30
      TB-35方解石1.50−20.909.40
      TB-40方解石1.10−21.408.80
      TB-50方解石1.00−21.808.50
      15TB-4方解石1.00−23.706.50
      15TB-6方解石1.00−23.506.70
      21TB-1方解石1.50−24.505.60
      21TB-1方解石1.50−24.705.40
      21TB-4-2方解石0.90−24.505.60
      京希-伊尔曼德金矿JXQ12方解石−2.76−12.2418.24朱亿广等,2011
      JXQ14方解石2.14−17.2913.04
      GM09方解石4.32−16.7013.64
      GM21方解石6.26−16.7013.64
      9-May-08方解石1.20−10.1520.40
      9-May-10方解石2.72−23.826.30
      下载: 导出CSV
    • 安芳, 朱永峰. 新疆阿希金矿矿床地质和地球化学研究[J]. 矿床地质, 2009, 28(2): 143−156. doi: 10.3969/j.issn.0258-7106.2009.02.004

      AN Fang, ZHU Yongfeng. Geological and Geochemical Studies on the Axi Gold Deposit in Xinjiang[J]. Mineral Deposits,2009,28(2):143−156. doi: 10.3969/j.issn.0258-7106.2009.02.004

      鲍景新, 陈衍景, 张增杰, 等. 西天山阿希金矿浊沸石化与古地热成矿流体系统的初步研究[J]. 北京大学学报(自然科学), 2002, 38(2): 252−259.

      BAO Jingxin, CHEN Yanjing, ZHANG Zengjie, et al. The Preliminary Study of Laumontitization of Axi Gold Deposit and Paleogeothermal Minerogenetic Fluid System in West Tianshan[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2002,38(2):252−259.

      崔广申, 包志伟, 李群. 云南会泽超大型铅锌矿田热液白云岩的成因及地质意义[J]. 大地构造与成矿学, 2023, 47(2): 361−375.

      CUI Guangshen, BAO Zhiwei, LI Qun. Genesis and Geological Significance of Hydrothermal Dolomite in the Huize Super-Large Lead-Zinc Ore Field, Yunnan[J]. Geotectonica et Metallogenia,2023,47(2):361−375.

      丁坤. 南秦岭柞-山矿集区典型金矿床成矿作用与成矿动力学背景[D]. 西安: 长安大学, 2020.

      DING Kun. Metallogenesis and Metallogenic Dynamic Background of Typical Gold Deposits in the Zha-Shan Ore Concentration Area, South Qinling[D]. Xi'an: Chang'an University, 2020.

      董连慧, 沙德铭. 西天山地区晚古生代浅成低温热液金矿床[M]. 北京: 地质出版社, 2005.

      DONG Lianhui, SHA Deming. Epithermal Gold Deposits in the Late Paleozoic in Western Tianshan Region[M]. Beijing: Geological Publishing House, 2005.

      董连慧, 田昌烈. 西天山吐拉苏-也里莫墩金成矿带简述[J]. 地质与资源, 2001, 10(2): 85−90. doi: 10.3969/j.issn.1671-1947.2001.02.004

      DONG Lianhui, TIAN Changlie. A Brief Introduction to the Tulasu-Yerimodun Gold Metallogenic Belt in Western Tianshan[J]. Geology and Resources,2001,10(2):85−90. doi: 10.3969/j.issn.1671-1947.2001.02.004

      顾雪祥, 董连慧, 彭义伟, 等. 新疆西天山吐拉苏火山岩盆地浅成低温热液-斑岩型金多金属成矿系统的形成与演化[J]. 岩石学报, 2016, 32(5): 1283−1300.

      Gu Xuexiang, Dong Lianhui, Peng Yiwei, et al. Formation and Evolution of the Epithermal-Porphyry Gold Polymetallic Metallogenic System in the Tulasu Volcanic Basin, Western Tianshan, Xinjiang[J]. Acta Petrologica Sinica,2016,32(5):1283−1300.

      葛禹, 李昌昊, 彭深远, 等. 四川盆地东南缘下志留统龙马溪组白云岩特征及成因分析[J]. 矿物岩石, 2023, 43(4): 132−141.

      GE Yu, LI Changhao, PENG Shenyuan, et al. Characteristics and Genesis Analysis of Dolomite in the Lower Silurian Longmaxi Formation in the Southeastern Margin of the Sichuan Basin[J]. Journal of Mineralogy and Petrology,2023,43(4):132−141.

      高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12): 1804−1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

      GAO Jun, QIAN Qing, LONG Lingli, et al. The Accretionary Orogenic Process of Western Tianshan[J]. Geological Bulletin of China,2009,28(12):1804−1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

      顾雪祥, 章永梅, 彭义伟等. 西天山博罗科努成矿带与侵入岩有关的铁铜钼多金属成矿系统: 成岩成矿地球化学与构造-岩浆演化[J]. 地学前缘, 2014, 21(5): 156−175.

      Gu Xuexiang, Zhang Yongmei, Peng Yiwei, et al. The Fe-Cu-Mo Polymetallic Metallogenic System Related to Intrusive Rocks in the Boluokenu Metallogenic Belt, Western Tianshan: Geochemistry of Diagenesis and Mineralization and Tectonic-Magmatic Evolution[J]. Earth Science Frontiers,2014,21(5):156−175.

      贾斌, 毋瑞身. 新疆阿希晚古生代冰长石-绢云母型金矿特征[J]. 地质与资源, 1999, 8(4): 199−208.

      JIA Bin, WU Ruishan. Characteristics of the Adularia-Sericite Type Gold Deposits in the Late Paleozoic in Axi, Xinjiang[J]. Geology and Resources,1999,8(4):199−208.

      梁峰, 毕献武, 冯彩霞, 等. 云南富乐铅锌矿床碳酸盐矿物化学特征及其对成矿作用的指示[J]. 岩石学报, 2016, 32(11): 3418−3430.

      LIANG Feng, BI Xianwu, FENG Caixia, et al. Chemical Characteristics of Carbonate Minerals in the Fule Lead-Zinc Deposit, Yunnan and Their Implications for Mineralization[J]. Acta Petrologica Sinica,2016,32(11):3418−3430.

      刘建明, 刘家军. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J]. 矿物学报, 1997, 17(4): 448−456. doi: 10.3321/j.issn:1000-4734.1997.04.012

      LIU Jianming, LIU Jiajun. Basin Fluid Genetic Model of Sediment-Hosted Microdisseminated Gold Deposits in the Gold-Triangle Area between Guizhou, Guangxi and Yunnan[J]. Acta Mineralogica Sinica,1997,17(4):448−456. doi: 10.3321/j.issn:1000-4734.1997.04.012

      毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, 21(2): 121−128. doi: 10.3969/j.issn.0258-7106.2002.02.004

      MAO Jingwen, HE Ying, DING Tiping. Mantle Fluids Involved in Metallogenesis of Jiaodong (East Shandong) Gold District: Evidence of C, O and H Isotopes[J]. Mineral Deposits,2002,21(2):121−128. doi: 10.3969/j.issn.0258-7106.2002.02.004

      毛先成, 潘敏, 刘占坤, 等. 西天山阿希金矿床黄铁矿微量元素 LA-ICP-MS 原位测试及其指示意义[J]. 中南大学学报(自然科学版), 2018, 49(5): 1148−1159.

      MAO Xiancheng, PAN Min, LIU Zhankun, et al. LA-ICP-MS trace element analysis of pyrite from Axi gold deposit in western Tianshan and its significance[J]. Journal of Central South University (Science and Technology),2018,49(5):1148−1159.

      彭义伟, 顾雪祥, 程文斌, 等. 西天山吐拉苏盆地塔吾尔别克金矿床成因探讨: 来自同位素年代学和稳定同位素证据[J]. 岩石学报, 2016, 32(5): 1361−1378.

      Peng Yiwei, Gu Xuexiang, Cheng Wenbin, et al. Discussion on the Genesis of the Tawuerbieke Gold Deposit in the Tulasu Basin, Western Tianshan: Evidence from Isotope Geochronology and Stable Isotopes[J]. Acta Petrologica Sinica,2016,32(5):1361−1378.

      彭义伟. 新疆西天山吐拉苏火山岩带岩浆作用与金铜铁多金属成矿系统[D]. 北京: 中国地质大学, 2015.

      PENG Yiwei. Magmatism and Gold-Copper-Iron Polymetallic Metallogenic System in the Tulasu Volcanic Belt, Western Tianshan, Xinjiang[D]. Beijing: China University of Geosciences, 2015.

      彭义伟, 顾雪祥, 章永梅, 等. 新疆阿希与塔吾尔别克金矿床的成因联系: 来自流体包裹体、S-Pb同位素和黄铁矿热电性的证据[J]. 地质学报, 2020, 94(10): 2920−2945.

      PENG Yiwei, GU Xuexiang, ZHANG Yongmei, et al. Genetic Links between the Axi and Tawuerbieke Gold Deposits in Xinjiang: Evidence from Fluid Inclusions, S-Pb Isotopes and Pyrite Thermoelectricity[J]. Acta Geologica Sinica,2020,94(10):2920−2945.

      史训立. CO2和石英等矿物在常见水盐体系中的溶解度模型研究[D]. 北京: 中国地质大学, 2019.

      Shi Xunli. Research on Solubility Models of CO₂ and Minerals Such as Quartz in Common Water-Salt Systems [D]. Beijing: China University of Geosciences, 2019.

      沙德铭, 董连慧, 鲍庆中, 等. 西天山地区金矿床主要成因类型及找矿方向[J]. 新疆地质, 2003, 21(4): 419−425. doi: 10.3969/j.issn.1000-8845.2003.04.008

      SHA Deming, DONG Lianhui, BAO Qingzhong, et al. Main Genetic Types and Prospecting Directions of Gold Deposits in Western Tianshan Region[J]. Xinjiang Geology,2003,21(4):419−425. doi: 10.3969/j.issn.1000-8845.2003.04.008

      沙德铭, 金成洙, 董连慧, 等. 西天山阿希金矿成矿地球化学特征研究[J]. 地质与资源, 2005, 14(2): 118−125. doi: 10.3969/j.issn.1671-1947.2005.02.008

      SHA Deming, JIN Chengzhu, DONG Lianhui, et al. Study on the Metallogenic Geochemical Characteristics of the Axi Gold Deposit in Western Tianshan[J]. Geology and Resources,2005,14(2):118−125. doi: 10.3969/j.issn.1671-1947.2005.02.008

      谭茂, 吴鹏, 韩润生, 等. 会泽超大型铅锌矿床“矿石-接触带-围岩”白云石微区原位地球化学特征及其指示意义[J]. 矿物学报, 2022, 42(3): 315−328.

      TAN Mao, WU Peng, HAN Runsheng, et al. In-situ Geochemical Characteristics of Dolomite in the “Ore-Contact Zone-Wall Rock” of the Huize Super-large Lead-Zinc Deposit and Their Implications[J]. Acta Mineralogica Sinica,2022,42(3):315−328.

      魏佳林, 曹新志, 徐伯骏, 等. 西天山阿希浅成低温热液金矿床剥蚀改造过程探讨[J]. 矿床地质, 2014, 33(2): 241−254. doi: 10.3969/j.issn.0258-7106.2014.02.001

      WEI Jialin, CAO Xinzhi, XU Bojun, et al. Discussion on the Denudation and Reformation Process of the Axi Epithermal Gold Deposit in Western Tianshan[J]. Mineral Deposits,2014,33(2):241−254. doi: 10.3969/j.issn.0258-7106.2014.02.001

      王天齐, 李红艳, 王栋. 胶东大尹格庄金矿碳酸盐矿物的特征、物源及其在金成矿过程中的作用[J]. 岩石学报, 2024, 40(4): 1264−1284. doi: 10.18654/1000-0569/2024.04.13

      WANG Tianqi, LI Hongyan, WANG Dong. Characteristics, Provenance and Role in Gold Mineralization Process of Carbonate Minerals in the Dayingezhuang Gold Deposit in Jiaodong[J]. Acta Petrologica Sinica,2024,40(4):1264−1284. doi: 10.18654/1000-0569/2024.04.13

      吴胜华, 毛景文, 谭道荣, 等. 赣南印支期中硫化型浅成低温热液银矿床的发现和意义[J]. 矿床地质, 2021, 40(3): 636−640.

      Wu Shenghua, Mao Jingwen, Tan Daorong, et al. Discovery and Significance of the Indosinian Intermediate-Sulfidation Epithermal Silver Deposits in Southern Jiangxi Province[J]. Mineral Deposits,2021,40(3):636−640.

      薛春纪, 王洪刚, 赵晓波, 等. 新疆西天山吐拉苏金矿集区克峡希小岩体群及其铜矿找矿前景[J]. 地学前缘, 2013, 20(6): 180−194.

      XUE Chunji, WANG Honggang, ZHAO Xiaobo, et al. Kexiaxi Cluster of Small Intrusions in the Tulasu Mineralization District, Western Tianshan, Xinjiang and Its Copper Exploration Prospect[J]. Earth Science Frontiers,2013,20(6):180−194.

      徐伯骏, 曹新志, 魏佳林, 等. 新疆伊犁阿希-塔吾尔别克-阿庇因迪成矿区金-铅锌成矿系列和成矿模型研究[J]. 地质找矿论丛, 2014, 29(4): 495−505. doi: 10.6053/j.issn.1001-1412.2014.04.004

      XU Bojun, CAO Xinzhi, WEI Jialin, et al. Study on Gold-Lead-Zinc Metallogenic Series and Metallogenic Model in the Axi-Tawuerbieke-Abiyindi Metallogenic Area in Yili, Xinjiang[J]. Contributions to Geology and Mineral Resources Research,2014,29(4):495−505. doi: 10.6053/j.issn.1001-1412.2014.04.004

      岳继宗. 新疆伊宁大哈拉军山组火山岩特征与构造意义[D]. 成都: 成都理工大学, 2021.

      Yue Jizong. Characteristics and Tectonic Significance of Volcanic Rocks of the Dahalajunshan Formation in Yining, Xinjiang [D]. Chengdu: Chengdu University of Technology, 2021.

      由雪莲, 贾文强, 徐帆, 等. 铁白云石矿物学特征及原生次生成因机制[J]. 地球科学, 2018, 43(11): 4046−4055.

      YOU Xuelian, JIA Wenqiang, XU Fan, et al. Mineralogical Characteristics and Primary and Secondary Genesis Mechanisms of Ankerite[J]. Earth Science,2018,43(11):4046−4055.

      杨虎城, 林良彪, 余瑜, 等. 川西南天全地区中二叠统碳酸盐岩地球化学特征及其古环境意义[J]. 矿物岩石, 2022, 42(2): 47−59. doi: 10.3969/j.issn.1001-6872.2022.2.kwys202202005

      YANG Hucheng, LIN Liangbiao, YU Yu, et al. Geochemical Characteristics of Middle Permian Carbonate Rocks in Tianquan Area, Southwestern Sichuan and Their Palaeo Environmental Significance[J]. Journal of Mineralogy and Petrology,2022,42(2):47−59. doi: 10.3969/j.issn.1001-6872.2022.2.kwys202202005

      张涛, 陈正乐, 周振菊, 等. 西南天山阿沙哇义金矿床流体包裹体和H-O同位素地球化学特征与造山型金矿成因[J]. 中国地质, 2023, 50(5): 1513−1531. doi: 10.12029/gc20200418001

      ZHANG Tao, CHEN Zhengle, ZHOU Zhenju, et al. Geochemical Characteristics of Fluid Inclusions and H-O Isotopes in the Ashawayi Gold Deposit in Southwestern Tianshan and the Genesis of Orogenic Gold Deposits[J]. Geology in China,2023,50(5):1513−1531. doi: 10.12029/gc20200418001

      张作衡, 毛景文, 王志良, 等. 新疆西天山阿希金矿床流体包裹体地球化学特征[J]. 岩石学报, 2007, 23(10): 2403−2414. doi: 10.3969/j.issn.1000-0569.2007.10.009

      ZHANG Zuoheng, MAO Jingwen, WANG Zhiliang, et al. Geochemical Characteristics of Fluid Inclusions in the Axi Gold Deposit in Western Tianshan, Xinjiang[J]. Acta Petrologica Sinica,2007,23(10):2403−2414. doi: 10.3969/j.issn.1000-0569.2007.10.009

      翟伟, 孙晓明, 高俊, 等. 新疆阿希金矿床赋矿围岩-大哈拉军山组火山岩SHRIMP锆石年龄及其地质意义[J]. 岩石学报, 2006, 22(5): 1399−1404. doi: 10.3321/j.issn:1000-0569.2006.05.028

      ZHAI Wei, SUN Xiaoming, GAO Jun, et al. SHRIMP Zircon Ages of the Ore-Hosting Wall Rocks-Dahalajunshan Formation Volcanic Rocks in the Axi Gold Deposit, Xinjiang and Their Geological Significance[J]. Acta Petrologica Sinica,2006,22(5):1399−1404. doi: 10.3321/j.issn:1000-0569.2006.05.028

      翟伟, 孙晓明, 贺小平, 等. 新疆阿希低硫型金矿床流体地球化学特征与成矿机制[J]. 地质学报, 2007, 81(5): 659−669. doi: 10.3321/j.issn:0001-5717.2007.05.010

      ZHAI Wei, SUN Xiaoming, HE Xiaoping, et al. Fluid Geochemical Characteristics and Metallogenic Mechanism of the Axi Low-sulfur Gold Deposit, Xinjiang[J]. Acta Geologica Sinica,2007,81(5):659−669. doi: 10.3321/j.issn:0001-5717.2007.05.010

      翟伟, 孙晓明, 苏丽薇, 等. 新疆阿希金矿: 古生代的低硫型浅成低温热液金矿床[J]. 地学前缘, 2010, 17(2): 266−285.

      ZHAI Wei, SUN Xiaoming, SU Liwei, et al. Axi Gold Deposit in Xinjiang: A Paleozoic Low-Sulfur Epithermal Gold Deposit[J]. Earth Science Frontiers,2010,17(2):266−285.

      郑永飞. 稳定同位素体系理论模式及其矿床地球化学应用[J]. 矿床地质, 2001, 20(1): 57−85. doi: 10.3969/j.issn.0258-7106.2001.01.007

      ZHENG Yongfei. Theoretical Models of Stable Isotope Systems and Their Application in Deposit Geochemistry[J]. Mineral Deposits,2001,20(1):57−85. doi: 10.3969/j.issn.0258-7106.2001.01.007

      朱亿广, 刘家军, 朱炳玉, 等. 新疆金山金矿床硫铅碳同位素组成及对成矿物质的示踪[J]. 黄金, 2011, 32(11): 10−15. doi: 10.3969/j.issn.1001-1277.2011.11.003

      ZHU Yiguang, LIU Jiajun, ZHU Bingyu, et al. Sulfur, Lead and Carbon Isotope Compositions of the Jinshan Gold Deposit in Xinjiang and Their Tracing for Ore-forming Materials[J]. Gold,2011,32(11):10−15. doi: 10.3969/j.issn.1001-1277.2011.11.003

      朱志新, 李锦轶, 董连慧, 等. 新疆西天山古生代侵入岩的地质特征及构造意义[J]. 地学前缘, 2011, 18(2): 170−179.

      ZHU Zhixin, LI Jinyi, DONG Lianhui, et al. Geological Characteristics and Tectonic Significance of Paleozoic Intrusive Rocks in Western Tianshan, Xinjiang[J]. Earth Science Frontiers,2011,18(2):170−179.

      André-Mayer A, Leroy J, Bailly L, et al. Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru[J]. Mineralium Deposita,2002,37(5):452−464. doi: 10.1007/s00126-001-0247-2

      An F, Zhu Y. Geology and geochemistry of the early permian Axi low-sulfidation epithermal gold deposit in North Tianshan (NW China)[J]. Ore Geology Reviews,2018,100:12−30. doi: 10.1016/j.oregeorev.2017.03.021

      Brathwaite R L, Faure K. The waihi epithermal gold-silver-base metal sulfide-quartz vein system, New Zealand: temperature and salinity controls on electrum and sulfide deposition[J]. Economic Geology,2002,97(2):269−290. doi: 10.2113/gsecongeo.97.2.269

      Burtner, Geoffrey K. The mercedes gold-silver district, sonora, mexico: geology, geochemistry and structure of a sierra madre low-sulfidation epithermal system[D]. Reno: University of Nevada, 2013.

      Camprubí A, Albinson T. Epithermal deposits in Mexico-Update of current knowledge and an empirical reclassification[J]. Special Paper of the Geological Society of America,2007,422:377−415.

      Clark L V, Gemmell J B. Vein Stratigraphy, Mineralogy, and Metal Zonation of the Kencana Low-Sulfidation Epithermal Au-Ag Deposit, Gosowong Goldfield, Halmahera Island, Indonesia[J]. Economic Geology,2018,113(1):209−236. doi: 10.5382/econgeo.2018.4549

      Carrillo-Rosúa J, Morales-Ruano S, Roberts S, et al. Application of the mineralogy and mineral chemistry of carbonates as a genetic tool in the hydrothermal environment[J]. Minerals,2021,11(8):822. doi: 10.3390/min11080822

      Chen Y J, Pirajno F, Wu G, et al. Epithermal deposits in North Xinjiang, NW China[J]. International Journal of Earth Sciences,2012,101(4):889−917. doi: 10.1007/s00531-011-0689-4

      Dong G, Morrison G, Jaireth S. Quartz textures in epithermal veins, Queensland-classification, origin, and implication[J]. Economic Geology,1995,90(6):1841−1856. doi: 10.2113/gsecongeo.90.6.1841

      Drummond S E, Ohmoto H. Chemical evolution and mineral deposition in boiling hydrothermal systems[J]. Economic Geology,1985,80(1):126−147. doi: 10.2113/gsecongeo.80.1.126

      Dong L L, Wan B, Deng C, et al. An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ oxygen-sulfur isotopes and geochronology[J]. Journal of Asian Earth Sciences,2018,153:412−424. doi: 10.1016/j.jseaes.2017.07.044

      Dong G Y, Zhou T. Zoning in the Carboniferous-Lower Permian Cracow epithermal vein system, central Queensland, Australia[J]. Mineralium Deposita,1996,31(3):210−224. doi: 10.1007/BF00204028

      Etoh J, Izawa E, Taguchi S. A fluid inclusion study on columnar adularia from the Hishikari low-sulfidation epithermal gold deposit, Japan[J]. Resource Geology,2002,52(1):73−78. doi: 10.1111/j.1751-3928.2002.tb00119.x

      Fu Hanjing, Jian Xing, Zhang Wei et al. A comparative study of methods for determining carbonate content in marine and terrestrial sediments[J]. Marine and petroleum geology,2020,116:104337−000. doi: 10.1016/j.marpetgeo.2020.104337

      Faure K, Matsuhisa Y, Metsugi H, et al. The Hishikari Au-Ag Epithermal Deposit, Japan: Oxygen and Hydrogen Isotope Evidence in Determining the Source of Paleohydrothermal Fluids[J]. Economic Geology,2002,97(3):481−498. doi: 10.2113/gsecongeo.97.3.481

      Frondel C. Stability of colloidal gold under hydrothermal conditions[J]. Economic Geology,1938,33:1−20. doi: 10.2113/gsecongeo.33.1.1

      Fournier R O. Silica minerals as indicators of conditions during gold deposition[J]. Geological Survey Bulletin,1985,1646:15−26.

      Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment: A Review[J]. Sedimentology,2015,62(6):1749−1769. doi: 10.1111/sed.12202

      Gorczyk W, Gonzalez M C, Hobbs B. Carbon dioxide as a proxy for orogenic gold source[J]. Ore Geology Reviews,2020,127:103829. doi: 10.1016/j.oregeorev.2020.103829

      Gao S, Xu H, Zang Y Q, et al. Mineralogy, ore-forming fluids and geochronology of the Shangmachang and Beidagou gold deposits, Heilongjiang province, NE China[J]. Journal of Geochemical Exploration,2018,188:137−155. doi: 10.1016/j.gexplo.2017.12.016

      Gao S, Hofstra A H, Zou X, et al. Oxygen isotope evidence for input of magmatic fluids and precipitation of Au-Ag telluride s in an otherwise ordinary adularia sericite epithermal system in NE China[J]. American Mineralogist,2021,106:2003−2019. doi: 10.2138/am-2021-7825

      Genna A, Jebrak M, Marcoux E, et al. Genesis of cockade breccias in the tectonic evolution of the Cirotan epithermal gold system, West Java[J]. Canadian Journal of Earth Sciences,1996,33(1):93−102. doi: 10.1139/e96-010

      Hoefs J. Stable lsotope Geochemistry[M]. Berlin: Springer, 2009.

      Hedenquist J W, Arribas A, Gonzalez-Ruien E. Exploration for epithermal gold deposits[J]. Reviews in Economic Geology,2000,13:245−277.

      Heald P, Foley N, Hayba D. Comparative Anatomy of Volcanic-Hosted Epithermal Deposits-Acid-Sulfate and Adularia-Sericite Types[J]. Economic Geology,1987,82(1):1−26. doi: 10.2113/gsecongeo.82.1.1

      Hayashi K I, Maruyama T, Satoh H. Precipitation of gold in a low-sulfidation epithermal gold deposits: Insights from a submillimeter-scale oxygen isotope analysis of vein quartz[J]. Economic Geology,2001,96:211−216. doi: 10.2113/gsecongeo.96.1.211

      John D A, Hofstra A H, Fleck R J, et al. Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, north-central Nevada[J]. Economic Geology and the Bulletin of the Society of Economic Geologists,2003,98(2):425−463. doi: 10.2113/gsecongeo.98.2.425

      Klein C, Dutrow B. Manuel of Mineral Science[M]. New York: Wiley, 2008.

      Kaewpaluk S, Salam A, Assawincharoenkij T, et al. Geology, mineralization, and alteration of B Prospect of the epithermal Au-Ag deposit in Central Thailand: A study on Chatree's satellite deposit for future gold exploration[J]. Scienceasia,2023,49(1):131. doi: 10.2306/scienceasia1513-1874.2022.142

      Lovering T G. Jasperoid in the United States; its characteristics, origin, and economic signifcance[M]. Washington: U. S. Geological Survey, 1972.

      Liu Z, Mao X, Ackerman L, et al. Two-stage gold mineralization of the Axi epithermal Au deposit, Western Tianshan, NW China: Evidence from Re-Os dating, S isotope, and trace elements of pyrite[J]. Mineralium Deposita,2020,55(5):863−880. doi: 10.1007/s00126-019-00903-6

      Liu Z K, Mao X C, Deng H L, et al. Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan: Insights from geochemical effects of alteration, mineralization and trace elements in pyrite[J]. Ore Geology Reviews,2018,102:368−385. doi: 10.1016/j.oregeorev.2018.09.009

      Li K, Xi K L, Cao Y C, et al. Genesis of granular calcite in lacustrine fine-grained sedimentary rocks and its indication to volcanichy-drothermal events: A case study of Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development,2023,50(3):615−627. doi: 10.1016/S1876-3804(23)60414-8

      Li N, Zhang B, Danisik M, et al. Formation-exhumation history of the Carboniferous Axi epithermal gold deposit in the Chinese Western Tianshan based on zircon U-Pb and pyrite Re-Os geochronology, and (U-Th)/He zircon-apatite thermochronometry[J]. Journal of the Geological Society, 2023, 180(4).

      Marinova I. Bladed Texture and Exploration Implications. A Case Study from the Kuklitsa Deposit, Krumovgrad Goldfield, SE Bulgaria[J]. Geology of Ore Deposits,2019,61(2):185−197. doi: 10.1134/S1075701519020028

      Moncada D, Baker D, Bodnar R J. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México[J]. Ore Geology Reviews,2017,89:143−170. doi: 10.1016/j.oregeorev.2017.05.024

      Mottram, Catherine M K, Dawn A B, et al. Tracking the porphyry-epithermal mineralization transition using U-Pb carbonate dating[J]. Geology,2024,52(9):723−728. doi: 10.1130/G52211.1

      Ma L T, Dai L Q, Zheng Y F, et al. Geochemical evidence for incorporation of subducting sediment-derived melts into the mantle source of Paleozoic high-Mg andesites from northwestern Tianshan in western China[J]. Geological Society of America Bulletin,2023,135(1-2):310−330. doi: 10.1130/B36341.1

      Marinova I, Ganev V, Titorenkova R. Colloidal origin of colloform banded textures in the Paleogene low sulfidation Khan Krum gold deposit, SE Bulgaria[J]. Mineralium Deposita,2014,49:49−74. doi: 10.1007/s00126-013-0473-4

      Moncada D, Mutchler S, Nieto A, et al. Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration[J]. Journal of Geochemical Exploration,2012,114:20−35. doi: 10.1016/j.gexplo.2011.12.001

      Monecke T, Monecke J, Reynolds J T. The Influence of CO2 on the Solubility of Quartz in Single-Phase Hydrothermal Fluids: Implications for the Formation of Stockwork Veins in Porphyry Copper Deposits[J]. Economic Geology,2019,114(6):1195−1206. doi: 10.5382/econgeo.4680

      Marchev P, Singer B, Jelev D, et al. The Ada Tepe deposit: a sediment-hosted, detachment fault controlled, low-sulfidation gold deposit in the Eastern Rhodopes, SE Bulgaria[J]. Schweizerische Mineralogische Und Petrographische Mitteilungen,2004,84:59−78.

      Miladinovic Z, Simic V, Nikolic N, et al. Agates of the Lece Volcanic Complex (Serbia): Mineralogical and Geochemical Characteristics[J]. Minerals,2024,14(5):511−511. doi: 10.3390/min14050511

      Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos,2005,79:1−24. doi: 10.1016/j.lithos.2004.04.048

      McLeish D F, Williams-Jones A E, Vasyukova O V, et al. Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature[J]. Proceedings of the National Academy of Sciences, 2021, 118(20).

      Nickel E H, Grice J D. The IMA commission on new minerals and mineral names: Procedures and guidelines on mineral nomenclature, 1998[J]. Canadian mineralogist,1998,36(3):913−926.

      Özbaş F, Hanilçi N. Quartz textures, mineral chemistry and fluid inclusion features of Tuztaşı low-sulphidation Au mineralization: Implication to it's formation[J]. Geochemistry, 2024.

      Ohmoto H. Systematics of sulfur and carbon isotopes in hydro thermal ore deposits[J]. Economic Geology,1972,67:551−578. doi: 10.2113/gsecongeo.67.5.551

      Peng Y W, Gu X X, Cheng W B, et al. Metallogenesis of the Late Palaeozoic Axi-Tawuerbieke Au-Pb-Zn district in the Tulasu Basin, Western Tianshan, China: Constraints from geological characteristics and isotope geochemistry[J]. Geological Journal,2018,53(6):3030−3050. doi: 10.1002/gj.3141

      Peng Y W, Gu X X, Lv P R, et al. Genesis and tectonic setting of the Late Devonian Tawuerbieke gold deposit in the Tulasu ore cluster, western Tianshan, Xinjiang, China[J]. International Geology Review,2017,59(10):1344−1368. doi: 10.1080/00206814.2016.1236354

      Peng Y W, Gu X X, Su J, et al. Geology, geochemistry and genesis of Tabei: A newly identified intermediate-sulphidation epithermal Pb-Zn deposit adjacent to low-sulphidation Au deposit in the Tulasu Basin, Chinese Western Tianshan[J]. Geological Journal,2022,58(2):583−604.

      Qiu K F, Deng J, Laflamme C, et al. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments[J]. Geochimica et Cosmochimica Acta,2023,343:133−141. doi: 10.1016/j.gca.2023.01.002

      Rottier B, Casanova V. Trace element composition of quartz from porphyry systems: a tracer of the mineralizing fluid evolution[J]. Mineralium Deposita,2021,56(5):843−862. doi: 10.1007/s00126-020-01009-0

      Reed M H, Spycher N F. Boiling, cooling, and oxidation in epithermal systems: A numerical modelling approach[J]. Reviews in Economic Geology, 1985, 249-272.

      Saunders J A. Colloidal transport of gold and silica in epithermal precious metal systems. Evidence from the Sleeper deposit, Nevada[J]. Geology,1990,18(8):757−760. doi: 10.1130/0091-7613(1990)018<0757:CTOGAS>2.3.CO;2

      Simmons S F, Brown K L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit[J]. Science,2006,314(5797):288−291. doi: 10.1126/science.1132866

      Simmons S F, Christenson B W. Origins of calcite in boiling geothermal system[J]. American Journal of Science,1994,294:361−400. doi: 10.2475/ajs.294.3.361

      Sander M V, John E B. Crystallization and recrystallization of growth-zoned vein quartz crystals from epithermal systems; implications for fluid inclusion studies[J]. Economic Geology,1988,83(5):1052−1060. doi: 10.2113/gsecongeo.83.5.1052

      Simon G, Kesler S E, Russell N, et al. Epithermal gold mineralization in an old volcanic arc: The Jacinto deposit, Camaguey district, Cuba[J]. Economic Geology and the Bulletin of the Society of Economic Geologists,1999,94(4):487−506. doi: 10.2113/gsecongeo.94.4.487

      Shimizu T. Reinterpretation of quartz textures in terms of hydrothermal fluid evolution at the Koryu Au-Ag deposit, Japan[J]. Economic Geology,2014,109:2051−2065. doi: 10.2113/econgeo.109.7.2051

      Shimizu T, Matsueda H, Ishiyama D, et al. Genesis of epithermal Au-Ag mineralization of the Koryu mine, Hokkaido, Japan[J]. Economic Geology,1998,93(3):303−325. doi: 10.2113/gsecongeo.93.3.303

      Swinkels L J, Schulz I J, Frenzel M, et al. Spatial and Temporal Evolution of the Freiberg Epithermal Ag-Pb-Zn District, Germany[J]. Economic Geology,2021,116(7):1649−1667. doi: 10.5382/econgeo.4833

      Saunders J A, Unger D L, Kamenov G D, et al. Genesis of Middle Miocene Yellowstone-hotspotrelated bonanza epithermal Au-Ag deposits, Northern Great Basin Region, USA[J]. Mineralium Deposita,2008,43:715−734. doi: 10.1007/s00126-008-0201-7

      Tang G J, Wang Q, Wyman D A, et al. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions[J]. Journal of Asian Earth Sciences,2013,74:113−128. doi: 10.1016/j.jseaes.2013.03.022

      Wang Y N, Cai K D, Sun M, et al. Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track (AFT) dating: implication for the preservation of epithermal deposits in the ancient orogenic belt[J]. Ore Geology Reviews,2018,100:111−132. doi: 10.1016/j.oregeorev.2017.04.011

      Wang Q X, Deng T, Xu D, et al. Genetic association between carbonates and gold precipitation mechanisms in the Jinshan deposit, eastern Jiangnan orogen[J]. Bulletin of the Geological Society of America,2024,136(9-10):4195−4217. doi: 10.1130/B37361.1

      Warmada I W, Lehmann B, Simandjuntak M et al. Fluid inclusion, rare-earth element and stable isotope study of carbonate minerals from the Pongkor epithermal gold-silver deposit, west Java, Indonesia[J]. Resource Geology,2007,57(2):124−135. doi: 10.1111/j.1751-3928.2007.000012.x

      Xie Z J, Huang K J, Xia Y, et al. Heavy δ26Mg values in carbonate indicate a magmatic-hydrothermal origin of Carlin-type Au deposit[J]. Geochimica et Cosmochimica Acta,2022,333:166−183. doi: 10.1016/j.gca.2022.07.009

      Yilmaz H, Sonmez F N, Akay E, et al. Low-sulfidation epithermal Au-Ag mineralization in the Sindirgi District, Balikesir Province, Turkey[J]. Turkish Journal of Earth Sciences,2013,22(4):485−522.

      Zheng Y F, Hoefs J. Carbon and oxygen isotopic covariations in hydrothermal calcites[J]. Mineralium Deposita,1993,28(2):79−89.

      Zeeck L R, Monecke T, Reynolds T J, et al. Textural Characteristics of Barren and Mineralized Colloform Quartz Bands at the Low-Sulfidation Epithermal Deposits of the Omu Camp in Hokkaido, Japan: Implications for Processes Resulting in Bonanza-Grade Precious Metal Enrichment[J]. Economic Geology,2021,116(2):407−425. doi: 10.5382/econgeo.4795

      Zhang B L, Nuo S, Sun P W, et al. Textural and compositional evolution of Au-hosting Fe-S-As minerals at the Axi epithermal gold deposit, Western Tianshan, NW China[J]. Ore Geology Reviews,2018,100:31−50. doi: 10.1016/j.oregeorev.2017.08.002

      Zhai W, Sun X M, Sun WD, et al. Geology, geochemistry, and genesis of Axi: A Paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China[J]. Ore Geology Reviews,2009,36(4):265−281. doi: 10.1016/j.oregeorev.2009.04.003

      Zhang Y Z, Wang Y J, Fan W M, et al. Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (similar to 825 Ma) high-mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications[J]. Precambrian Research,2012,220:139−157.

      Zhao X B, Xue C J, Symons D T A, et al. Microgranular enclaves in island-arc andesites: a possible link between known epithermal Au and potential porphyry Cu-Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China[J]. Journal of Asian Earth Sciences,2014,85:210−223. doi: 10.1016/j.jseaes.2014.01.014

      Zhang H, Zhou X J, Zhou F M , et al. Zinc isotopes revealed the role of ore-hosting carbonate rocks in the formation of MVT deposits: A case study of the Huize Pb-Zn deposit, SW China[J]. Journal of Geochemical Exploration, 2024, 258.

    图(8)  /  表(2)
    计量
    • 文章访问数:  53
    • HTML全文浏览量:  10
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-22
    • 修回日期:  2025-02-19
    • 录用日期:  2025-03-04
    • 网络出版日期:  2025-03-21

    目录

    /

    返回文章
    返回